
Operators
and

Matrices

Volume 7, Number 2 (2013), 241–283 doi:10.7153/oam-07-15

INITIAL VALUE PROBLEMS AND WEYL–TITCHMARSH THEORY
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Abstract. We develop Weyl–Titchmarsh theory for self-adjoint Schrödinger operators Hα in
L2((a,b);dx;H ) associated with the operator-valued differential expression τ = −(d2/dx2)+
V (·) , with V : (a,b) → B(H ) , and H a complex, separable Hilbert space. We assume reg-
ularity of the left endpoint a and the limit point case at the right endpoint b . In addition, the
bounded self-adjoint operator α = α∗ ∈B(H ) is used to parametrize the self-adjoint boundary
condition at the left endpoint a of the type

sin(α)u′(a)+ cos(α)u(a) = 0,

with u lying in the domain of the underlying maximal operator Hmax in L2((a,b);dx;H ) as-
sociated with τ . More precisely, we establish the existence of the Weyl–Titchmarsh solution of
Hα , the corresponding Weyl–Titchmarsh m -function mα and its Herglotz property, and deter-
mine the structure of the Green’s function of Hα .

Developing Weyl–Titchmarsh theory requires control over certain (operator-valued) so-
lutions of appropriate initial value problems. Thus, we consider existence and uniqueness of
solutions of 2nd-order differential equations with the operator coefficient V ,{

−y′′ +(V − z)y = f on (a,b),
y(x0) = h0, y′(x0) = h1,

under the following general assumptions: (a,b) ⊆ R is a finite or infinite interval, x0 ∈ (a,b) ,
z∈C , V : (a,b)→B(H ) is a weakly measurable operator-valued function with ‖V (·)‖B(H ) ∈
L1

loc((a,b);dx) , and f ∈ L1
loc((a,b);dx;H ) . We also study the analog of this initial value prob-

lem with y and f replaced by operator-valued functions Y,F ∈ B(H ) .
Our hypotheses on the local behavior of V appear to be the most general ones to date.
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1. Introduction

The principal purpose of this paper is to derive a streamlined version of Weyl–
Titchmarsh theory for Schrödinger operators on a finite or infinite interval (a,b) ⊂ R
with operator-valued potentials V ∈ B(H ) (H a complex, separable Hilbert space
and B(H ) the Banach space of bounded linear operators defined on H ) under very
general conditions on the local behavior of V . We will work under the (simplifying)
hypothesis that the underlying operator-valued differential expression

τ = −d2/dx2 +V (x), x ∈ (a,b), (1.1)

is regular at the left endpoint a and in the limit point case at the right endpoint b . (For
simplicity, the reader may think of the standard half-line case (a,b) = (0,∞) .)

In performing this task, it is necessary to first study existence and uniqueness ques-
tions of the following initial value problems associated with τ in great detail. More
precisely, in Section 2 we investigate the following two types of initial value prob-
lems: First, we consider existence and uniqueness of H -valued solutions y(z, ·,x0) ∈
W 2,1

loc ((a,b);dx;H ) of the initial value problem{
−y′′ +(V − z)y = f on (a,b)\E,

y(x0) = h0, y′(x0) = h1,
(1.2)

where the exceptional set E is of Lebesgue measure zero and independent of z . Here
we suppose that (a,b) ⊆ R is a finite or infinite interval, x0 ∈ (a,b) , z ∈ C , V :
(a,b) → B(H ) is a weakly measurable operator-valued function with ‖V(·)‖B(H ) ∈
L1

loc((a,b);dx) , and that h0,h1 ∈ H , and f ∈ L1
loc((a,b);dx;H ) .

In particular, we prove for fixed x0,x ∈ (a,b) and z ∈ C , that
• y(z,x,x0) depends jointly continuously on h0,h1 ∈ H , and f ∈ L1

loc((a,b);dx;H ) ,
• y(z,x,x0) is strongly continuously differentiable with respect to x on (a,b) ,
• y′(z,x,x0) is strongly differentiable with respect to x on (a,b)\E ,
and that
• for fixed x0,x ∈ (a,b) , y(z,x,x0) and y′(z,x,x0) are entire with respect to z .

Second, again assuming (a,b) ⊆ R to be a finite or infinite interval, x0 ∈ (a,b) ,
z ∈ C , Y0, Y1 ∈ B(H ) , and F, V : (a,b) → B(H ) two weakly measurable operator-
valued functions with ‖V(·)‖B(H ), ‖F(·)‖B(H ) ∈ L1

loc((a,b);dx) , we consider exis-
tence and uniqueness of B(H )-valued solutions Y (z, ·,x0) : (a,b) → B(H ) of the
initial value problem {

−Y ′′ +(V − z)Y = F on (a,b)\E,

Y (x0) = Y0, Y ′(x0) = Y1,
(1.3)

where again the exceptional set E is of Lebesgue measure zero and independent of z .

For fixed x0 ∈ (a,b) and z ∈ C , we prove that
• Y (z,x,x0) is continuously differentiable with respect to x on (a,b) in the B(H )-
norm,
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• Y ′(z,x,x0) is strongly differentiable with respect to x on (a,b)\E ,
and that
• for fixed x0,x ∈ (a,b) , Y (z,x,x0) and Y ′(z,x,x0) are entire in z in the B(H )-norm.

In addition, Section 2 introduces the notion of regular endpoints of intervals, sev-
eral notions of Wronskians, the variation of constants formula, and several versions of
Green’s formula.

Our principal Section 3 then develops Weyl–Titchmarsh theory associated with
the operator-valued differential expression τ in (1.1) under the simplifying (yet most
important) assumption that the left endpoint a is regular for τ and that the right end-
point b is of the limit point type for τ . We introduce minimal and maximal operators
associated with τ , show that they are adjoint to each other, introduce the self-adjoint
operators Hα in the underlying Hilbert space L2((a,b);dx;H ) , parametrized by the
bounded self-adjoint operator α = α∗ ∈B(H ) in the self-adjoint boundary condition
at the left endpoint a of the type

sin(α)u′(a)+ cos(α)u(a) = 0,

with u lying in the domain of the maximal operator Hmax in L2((a,b);dx;H ) , estab-
lish the existence of the Weyl–Titchmarsh solution of Hα , introduce the corresponding
Weyl–Titchmarsh m-function mα and its Herglotz property, and determine the struc-
ture of the Green’s function of Hα .

Appendix A then establishes basic facts on bounded operator-valued Herglotz
functions (i.e., B(H )-valued functions M analytic in the open upper complex half-
plane C+ with Im(M(·) � 0 on C+ ).

While we restrict our attention to the case (a,b) with a a regular point for τ and
τ in the limit point case at b , it is clear how to apply the standard 2×2 block operator
formalism (familiar in the case of scalar and matrix-valued potentials V ) to obtain the
Weyl–Titchmarsh formalism for Schrödinger operators with both endpoints a and b
in the limit point case (and hence Schrödinger operators on the whole real line R , cf.
Remark 3.18).

Of course, Schrödinger operators with bounded and unbounded operator-valued
potentials V (·) have been studied in the past and we will briefly review the fundamental
contributions in this area next. We note, however, that our hypotheses on the local
behavior of V (·) ∈ B(H ) appear to be the most general to date.

The case of Schrödinger operators with operator-valued potentials under various
continuity or smoothness hypotheses on V (·) and under various self-adjoint boundary
conditions on bounded and unbounded open intervals received considerable attention
in the past: In the special case where dim(H ) < ∞ , that is, in the case of Schrödinger
operators with matrix-valued potentials, the literature is so voluminous that we can-
not possibly describe individual references and hence we primarily refer to [3], [91],
and the references cited therein. We also mention that the finite-dimensional case,
dim(H ) < ∞ , as discussed in [23], is of considerable interest as it represents an im-
portant ingredient in some proofs of Lieb–Thirring inequalities (cf. [63]).

In addition, the constant coefficient case, where τ is of the form τ =−(d2/dx2)+
A , has received overwhelming attention. But since this is not the focus of this paper we
just refer to [49], [50, Chs. 3, 4], [69], and the literature cited therein.
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In the particular case of Schrödinger-type operators corresponding to the differen-
tial expression τ =−(d2/dx2)+A+V(x) on a bounded interval (a,b)⊂R with either
A = 0 or A a self-adjoint operator satisfying A � cIH for some c > 0, unique solvabil-
ity of boundary value problems, the asymptotic behavior of eigenvalues, and trace for-
mulas in connection with various self-adjoint realizations of τ =−(d2/dx2)+A+V(x)
on a bounded interval (a,b) are discussed, for instance, in [11]–[13], [19], [46], [47],
[51], [52], [74], [76] (for the case of spectral parameter dependent separated boundary
conditions, see also [5], [7], [20]).

For earlier results on various aspects of boundary value problems, spectral theory,
and scattering theory in the half-line case (a,b) = (0,∞) , the situation closely related
to the principal topic of this paper, we refer, for instance, to [6], [8], [35], [46]–[48],
[51], [60], [74], [76], [87], [94], [103] (the case of the real line is discussed in [105]).
While our treatment of initial value problems was inspired by the one in [94], we permit
a more general local behavior of V (·) . In addition, we also put particular emphasis on
Weyl–Titchmarsh theory and the structure of the Green’s function of Hα .

We should also add that this paper represents a first step in our program. Step
two will be devoted to spectral properties of Hα , and step three will aim at certain
classes of unbounded operator-valued potentials V , applicable to multi-dimensional
Schrödinger operators in L2(Rn;dnx) , n ∈ N , n � 2, generated by differential expres-
sions of the type Δ +V (·) . In fact, it was precisely the connection between multi-
dimensional Schrödinger operators and one-dimensional Schrödinger operators with
unbounded operator-valued potentials which originally motivated our interest in this
program. This connection was already employed by Kato [58] in 1959; for more recent
applications of this connection between one-dimensional Schrödinger operators with
unbounded operator-valued potentials and multi-dimensional Schrödinger operators we
refer, for instance, to [2], [32], [56], [64], [69], [71]–[73], [92], [93], [95]–[101], and
the references cited therein.

Finally, we comment on the notation used in this paper: Throughout, H denotes
a separable, complex Hilbert space with inner product and norm denoted by (·, ·)H
(linear in the second argument) and ‖ · ‖H , respectively. The identity operator in H
is written as IH . We denote by B(H ) the Banach space of linear bounded operators
in H . The domain, range, kernel (null space) of a linear operator will be denoted by
dom(·) , ran(·) , ker(·) , respectively. The closure of a closable operator S in H is
denoted by S .

2. The initial value problem of second-order differential equations with operator
coefficients

In this section we provide some basic results about initial value problems for
second-order differential equations of the form −y′′ + Qy = f on an arbitrary open
interval (a,b) ⊆ R with a bounded operator-valued coefficient Q , that is, when Q(x)
is a bounded operator on a separable, complex Hilbert space H for a.e. x ∈ (a,b) . In
fact, we are interested in two types of situations: In the first one f (x) is an element of
the Hilbert space H for a.e. x∈ (a,b) , and the solution sought is to take values in H .
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In the second situation, f (x) is a bounded operator on H for a.e. x ∈ (a,b) , as is the
proposed solution y .

We start with some preliminaries: Let (a,b) ⊆ R be a finite or infinite interval
and X a Banach space. Unless explicitly stated otherwise (such as in the context
of operator-valued measures in Nevanlinna–Herglotz representations, cf. Appendix A),
integration of X -valued functions on (a,b) will always be understood in the sense
of Bochner (cf., e.g., [15, p. 6–21], [39, p. 44–50], [54, p. 71–86], [70, Ch. III], [109,
Sect. V.5] for details). In particular, if p � 1, the symbol Lp((a,b);dx;X ) denotes
the set of equivalence classes of strongly measurable X -valued functions which differ
at most on sets of Lebesgue measure zero, such that ‖ f (·)‖p

X ∈ L1((a,b);dx) . The
corresponding norm in Lp((a,b);dx;X ) is given by

‖ f‖Lp((a,b);dx;X ) =
(ˆ

(a,b)
dx‖ f (x)‖p

X

)1/p

(2.1)

and Lp((a,b);dx;X ) is a Banach space.
If H is a separable Hilbert space, then so is L2((a,b);dx;H ) (see, e.g., [21,

Subsects. 4.3.1, 4.3.2], [27, Sect. 7.1]).
One recalls that by a result of Pettis [84], if X is separable, weak measurability

of X -valued functions implies their strong measurability.
If g ∈ L1((a,b);dx;X ) , f (x) =

´ x
x0

dx′g(x′) , x0,x ∈ (a,b) , then f is strongly
differentiable a.e. on (a,b) and

f ′(x) = g(x) for a.e. x ∈ (a,b) . (2.2)

In addition,

lim
t↓0

1
t

ˆ x+t

x
dx′‖g(x′)−g(x)‖X = 0 for a.e. x ∈ (a,b) , (2.3)

in particular,

s-lim
t↓0

1
t

ˆ x+t

x
dx′g(x′) = g(x) for a.e. x ∈ (a,b) . (2.4)

Sobolev spaces Wn,p((a,b);dx;X ) for n ∈ N and p � 1 are defined as follows:
W 1,p((a,b);dx;X ) is the set of all f ∈ Lp((a,b);dx;X ) such that there exists a g ∈
Lp((a,b);dx;X ) and an x0 ∈ (a,b) such that

f (x) = f (x0)+
ˆ x

x0

dx′ g(x′) for a.e. x ∈ (a,b) . (2.5)

In this case g is the strong derivative of f , g = f ′ . Similarly, Wn,p((a,b);dx;X )
is the set of all f ∈ Lp((a,b);dx;X ) so that the first n strong derivatives of f are in
Lp((a,b);dx;X ) . For simplicity of notation one also introduces W 0,p((a,b);dx;X ) =
Lp((a,b);dx;X ) . Finally, Wn,p

loc ((a,b);dx;X ) is the set of X -valued functions de-
fined on (a,b) for which the restrictions to any compact interval [α,β ] ⊂ (a,b) are
in Wn,p((α,β );dx;X ) . In particular, this applies to the case n = 0 and thus defines
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Lp
loc((a,b);dx;X ) . If a is finite we may allow [α,β ] to be a subset of [a,b) and denote

the resulting space by Wn,p
loc ([a,b);dx;X ) (and again this applies to the case n = 0).

Following a frequent practice (cf., e.g., the discussion in [14, Sect. III.1.2]), we
will call elements of W 1,1([c,d];dx;X ) , [c,d] ⊂ (a,b) (resp., W 1,1

loc ((a,b);dx;X )),
strongly absolutely continuous X -valued functions on [c,d] (resp., strongly locally
absolutely continuous X -valued functions on (a,b)), but caution the reader that unless
X posseses the Radon–Nikodym (RN) property, this notion differs from the classical
definition of X -valued absolutely continuous functions (we refer the interested reader
to [39, Sect. VII.6] for an extensive list of conditions equivalent to X having the RN
property). Here we just mention that reflexivity of X implies the RN property.

In the special case where X = C , we omit X and just write Lp
(loc)((a,b);dx) , as

usual.
A Remark on notational convention. To avoid possible confusion later on be-

tween two standard notions of strongly continuous operator-valued functions F(x) ,
x ∈ (a,b) , that is, strong continuity of F(·)h in H for all h ∈ H (i.e., pointwise
continuity of F(·)), versus strong continuity of F(·) in the norm of B(H ) (i.e., uni-
form continuity of F(·)), we will always mean pointwise continuity of F(·) in H .
The same pointwise conventions will apply to the notions of strongly differentiable and
strongly measurable operator-valued functions throughout this manuscript. In particu-
lar, and unless explicitly stated otherwise, for operator-valued functions Y , the symbol
Y ′ will be understood in the strong sense; similarly, y′ will denote the strong derivative
for vector-valued functions y .

The following elementary lemma is probably well-known, but since we repeatedly
use it below, and we could not quickly locate it in the literature, we include a detailed
proof:

LEMMA 2.1. Let (a,b) ⊆ R . Suppose Q : (a,b) → B(H ) is a weakly measur-
able operator-valued function with ‖Q(·)‖B(H ) ∈ L1

loc((a,b);dx) and g : (a,b) → H
is (weakly) measurable. Then Qg is (strongly) measurable. Moreover, if g is strongly
continuous, then there exists a set E ⊂ (a,b) with zero Lebesgue measure, depending
only on Q, such that for every x0 ∈ (a,b)\E ,

lim
t↓0

1
t

ˆ x0+t

x0

dx‖Q(x)g(x)−Q(x0)g(x0)‖H = 0, (2.6)

in particular,

s-lim
t↓0

1
t

ˆ x0+t

x0

dxQ(x)g(x) = Q(x0)g(x0), (2.7)

in addition, the set of Lebesgue points of Q(·)g(·) can be chosen independently of g .

Proof. Since by hypothesis, Q(·) on (a,b) is weakly measurable in H , that is,

( f ,Q(·)g)H is (Lebesgue) measurable for all f ,g ∈ H , (2.8)



WEYL-TITCHMARSH THEORY AND OPERATOR-VALUED POTENTIALS 247

one infers that this is equivalent to Q(·)∗ on (a,b) being weakly measurable in H .
An application of Pettis’ theorem [84] then yields that Q(·) f (equivalently, Q(·)∗ f ) on
(a,b) is strongly measurable for all f ∈ H .

Next, let {en}n∈N be a complete orthonormal system in H . Then writing

‖Q(·) f‖2
H = ∑

n∈N
(Q(·) f ,en)H (en,Q(·) f )H , (2.9)

one concludes that ‖Q(·) f‖H on (a,b) is measurable for all f ∈ H . In addition, let
h(·) on (a,b) be a weakly (and hence, strongly) measurable function in H . Then

( f ,Q(·)h(·))H = (Q(·)∗ f ,h(·))H = ∑
n∈N

(Q(·)∗ f ,en)H (en,h(·))H , (2.10)

implies that Q(·)h(·) on (a,b) is weakly measurable in H . Another application of
Pettis’ theorem then yields the strong measurability of Q(·)h(·) on (a,b) in H .

Let E0 ⊂ (a,b) be a set of Lebesgue measure zero such that every x0 ∈ (a,b)\E0

is a Lebesgue point for the function ‖Q(·)‖B(H ) , implying,

lim
t↓0

1
t

ˆ x0+t

x0

dx‖Q(x)‖B(H ) = ‖Q(x0)‖B(H ), x0 ∈ (a,b)\E0. (2.11)

Next, let {En}n∈N be a sequence of subsets of (a,b) such that each En is of
Lebesgue measure zero and every x0 ∈ (a,b)\En is a Lebesgue point for the vector-
valued function Q(·)en , that is,

lim
t↓0

1
t

ˆ x0+t

x0

dx‖Q(x)en−Q(x0)en‖H = 0, x0 ∈ (a,b)\En. (2.12)

In addition, let E =
⋃∞

n=0 En , then every x0 ∈ (a,b)\E is a Lebesgue point for
Q(·)g(·) . Indeed, decomposing g(x0) with respect to the orthonormal basis {en}n∈N ,

g(x0) = ∑
n∈N

gn(x0)en, gn(x0) =
(
en,g(x0)

)
H

, n ∈ N, (2.13)

and recalling that by Pettis’ theorem, Qg is strongly measurable, yields (for t > 0)



248 F. GESZTESY, R. WEIKARD AND M. ZINCHENKO

∥∥∥∥1
t

ˆ x0+t

x0

dx [Q(x)g(x)−Q(x0)g(x0)]
∥∥∥∥

H

� 1
t

ˆ x0+t

x0

dx‖Q(x)g(x)−Q(x0)g(x0)‖H

� 1
t

ˆ x0+t

x0

dx‖Q(x)[g(x)−g(x0)]‖H +
1
t

ˆ x0+t

x0

dx‖[Q(x)−Q(x0)]g(x0)‖H

� 1
t

ˆ x0+t

x0

dx‖Q(x)‖B(H ) sup
x∈[x0,x0+t]

‖g(x)−g(x0)‖H

+
N

∑
n=1

|gn(x0)|
(

1
t

ˆ x0+t

x0

dx‖[Q(x)−Q(x0)]en‖H

)
+
(

1
t

ˆ x0+t

x0

dx [‖Q(x)‖B(H ) +‖Q(x0)‖B(H )]
)∥∥∥∥ ∞

∑
n=N+1

gn(x0)en

∥∥∥∥
H

. (2.14)

Finally, taking the limit t ↓ 0 renders the first term on the right-hand side of (2.14)
zero as g(·) is strongly continuous in H and x0 is a Lebesgue point of ‖Q(·)‖B(H )
by (2.11). Similarly, taking t ↓ 0 renders the second term on the right-hand side of
(2.14) zero by (2.12). Again by (2.11), the third term on the right-hand side of (2.14)
approaches 2‖Q(x0)‖B(H )

∥∥∑∞
n=N+1 gn(x0)en

∥∥
H

as t ↓ 0 and hence vanishes in the
limit N → ∞ (cf. (2.13)). �

In connectionwith (2.7) we also refer to [39, Theorem II.2.9], [54, Subsect. III.3.8],
[109, Theorem V.5.2].

DEFINITION 2.2. Let (a,b)⊆R be a finite or infinite interval, Q : (a,b)→B(H )
a weakly measurable operator-valued function with ‖Q(·)‖B(H ) ∈ L1

loc((a,b);dx) , and
suppose that f ∈ L1

loc((a,b);dx;H ) . Then the H -valued function y : (a,b) → H is
called a (strong) solution of

− y′′+Qy = f (2.15)

if y ∈W 2,1
loc ((a,b);dx;H ) and (2.15) holds a.e. on (a,b) .

We recall our notational convention that vector-valued solutions of (2.15) will al-
ways be viewed as strong solutions.

One verifies that Q : (a,b) → B(H ) satisfies the conditions in Definition 2.2 if
and only if Q∗ does (a fact that will play a role later on, cf. the paragraph following
(2.33)).

THEOREM 2.3. Let (a,b)⊆R be a finite or infinite interval and V :(a,b)→B(H )
a weakly measurable operator-valued function with ‖V(·)‖B(H ) ∈L1

loc((a,b);dx) . Sup-
pose that x0 ∈ (a,b) , z ∈ C , h0,h1 ∈ H , and f ∈ L1

loc((a,b);dx;H ) . Then there is a
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unique H -valued solution y(z, ·,x0) ∈W 2,1
loc ((a,b);dx;H ) of the initial value problem{

−y′′ +(V − z)y = f on (a,b)\E,

y(x0) = h0, y′(x0) = h1,
(2.16)

where the exceptional set E is of Lebesgue measure zero and independent of z.
Moreover, the following properties hold:

(i) For fixed x0,x ∈ (a,b) and z ∈ C , y(z,x,x0) depends jointly continuously on
h0,h1 ∈ H , and f ∈ L1

loc((a,b);dx;H ) in the sense that∥∥y(z,x,x0;h0,h1, f
)− y

(
z,x,x0; h̃0, h̃1, f̃

)∥∥
H

� C(z,V )
[∥∥h0− h̃0

∥∥
H

+
∥∥h1− h̃1

∥∥
H

+
∥∥ f − f̃

∥∥
L1([x0,x];dx;H )

]
,

(2.17)

where C(z,V ) > 0 is a constant, and the dependence of y on the initial data
h0,h1 and the inhomogeneity f is displayed in (2.17).

(ii) For fixed x0 ∈ (a,b) and z ∈ C , y(z,x,x0) is strongly continuously differentiable
with respect to x on (a,b) .

(iii) For fixed x0 ∈ (a,b) and z ∈ C , y′(z,x,x0) is strongly differentiable with respect
to x on (a,b)\E .

(iv) For fixed x0,x ∈ (a,b) , y(z,x,x0) and y′(z,x,x0) are entire with respect to z.

Proof. As discussed in the proof of Lemma 2.1, if f : (a,b) → H is strongly
measurable, then Q(·) f (·) is also a strongly measurable H -valued function.

As in the classical scalar case (i.e., H = C), one can show that a function y(z, ·,x0)
∈W 2,1

loc ((a,b);dx;H ) satisfies the initial-value problem (2.16) if and only if y(z, ·,x0)
is strongly measurable, strongly locally bounded, and satisfies the integral equation,

y(z,x,x0) = cos
(
z1/2(x− x0)

)
h0 + z−1/2 sin

(
z1/2(x− x0)

)
h1

+
ˆ x

x0

dx′ z−1/2 sin
(
z1/2(x− x′)

)[
V (x′)y(z,x′,x0)− f (x′)

]
, (2.18)

z ∈ C, Im(z1/2) � 0, x0,x ∈ (a,b).

Thus, it suffices to verify existence and uniqueness for a solution of (2.18). For unique-
ness it is enough to check that y(z, ·,x0) = 0 is the only solution of

y(z,x,x0) =
ˆ x

x0

dx′ z−1/2 sin
(
z1/2(x− x′)

)
V (x′)y(x′). (2.19)

Let K ⊂ (a,b) be a compact subset containing x0 , then iterations of (2.19) yield

sup
x∈K

‖y(z,x,x0)‖H � 1
n!

(
C(z)
ˆ x

x0

‖V (x′)‖B(H )dx′
)n

sup
x′∈K

‖y(z,x′,x0)‖H , n ∈ N,

(2.20)



250 F. GESZTESY, R. WEIKARD AND M. ZINCHENKO

for an appropriate constant C(z) > 0. Since K and n are arbitrary, the only solution of
(2.19) is the zero solution.

To show existence one uses the method of successive approximations. Define a
sequence of vector-valued functions yn(z, ·,x0) : (a,b) → H , n ∈ N0 , by

y0(z,x,x0) = cos
(
z1/2(x− x0)

)
h0 + z−1/2 sin

(
z1/2(x− x0)

)
h1

−
ˆ x

x0

dx′ z−1/2 sin
(
z1/2(x− x′)

)
f (x′),

yn(z,x,x0) =
ˆ x

x0

dx′ z−1/2 sin
(
z1/2(x− x′)

)
V (x′)yn−1(z,x′,x0), n ∈ N. (2.21)

Then for each n ∈ N0 , it follows inductively that for fixed x0 ∈ (a,b) and z ∈ C ,
yn(z,x,x0) is strongly locally absolutely continuous with respect to x on (a,b) , and for
fixed x0,x ∈ (a,b) , yn(z,x,x0) , y′n(z,x,x0) are entire with respect to z . The estimate

‖yn(z,x,x0)‖H +‖y′n(z,x,x0)‖H

� 1
n!

(
C
ˆ x

x0

dx′ ‖V (x′)‖B(H )dx′
)n(

‖h0‖H +‖h1‖H +
ˆ x

x0

‖ f (x′)‖H

)
,

(2.22)

holds uniformly in (z,x) on compact subsets of C× (a,b) , where C depends only on
the compact subset of C× (a,b) . This yields convergence of the series,

y(z,x,x0) =
∞

∑
n=0

yn(z,x,x0), y′(z,x,x0) =
∞

∑
n=0

y′n(z,x,x0), (2.23)

with

‖y(z,x,x0)‖H � exp

(
C
ˆ x

x0

dx′ ‖V(x′)‖B(H )

)
×
(
‖h0‖B(H ) +‖h1‖H +

ˆ x

x0

dx′ ‖ f (x′)‖H

)
, (2.24)

uniformly in (z,x) on compact subsets of C× (a,b) . Then (2.21), (2.23) imply that
y(z, ·,x0) is a solution of the integral equation (2.18), and (2.23), (2.24) yield the prop-
erties (i) (taking into account linearity of (2.16)) and (iv) .

Finally, by (2.18), for each z ∈ C and a.e. x ∈ (a,b) ,

y′′(z,x,x0) = zy(z,x,x0)−V(x)y(z,x,x0)+ f (x), (2.25)

and hence

y(z,x,x0) = cos
(
z1/2(x− x0)

)
h0 + z−1/2 sin

(
z1/2(x− x0)

)
h1

+
ˆ x

x0

dx′
(ˆ x′

x0

dx′′
[
zy(z,x′′,x0)−V(x′′)y(z,x′′,x0)+ f (x′′)

])
.

(2.26)
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This representation of y(z,x,x0) combined with Lemma 2.1 yields the properties (ii)
and (iii) . In particular, y(z, ·,x0) ∈W 2,1

loc ((a,b);dx;H ) and y(z, ·,x0) is a strong solu-
tion of the initial value problem (2.16). �

For classical references on initial value problems we refer, for instance, to [33,
Chs. III, VII] and [40, Ch. 10], but we emphasize again that our approach minimizes
the smoothness hypotheses on V and f .

DEFINITION 2.4. Let (a,b) ⊆ R be a finite or infinite interval and assume that
F, Q : (a,b) → B(H ) are two weakly measurable operator-valued functions such
that ‖F(·)‖B(H ), ‖Q(·)‖B(H ) ∈ L1

loc((a,b);dx) . Then the B(H )-valued function
Y : (a,b) → B(H ) is called a solution of

−Y ′′ +QY = F (2.27)

if Y (·)h ∈W 2,1
loc ((a,b);dx;H ) for every h ∈ H and −Y ′′h+QYh = Fh holds a.e. on

(a,b) .

COROLLARY 2.5. Let (a,b) ⊆ R be a finite or infinite interval, x0 ∈ (a,b) , z ∈
C , Y0, Y1 ∈ B(H ) , and suppose F, V : (a,b) → B(H ) are two weakly measur-
able operator-valued functions with ‖V (·)‖B(H ), ‖F(·)‖B(H ) ∈ L1

loc((a,b);dx) . Then
there is a unique B(H )-valued solution Y(z, ·,x0) : (a,b) → B(H ) of the initial
value problem {

−Y ′′ +(V − z)Y = F on (a,b)\E,

Y (x0) = Y0, Y ′(x0) = Y1.
(2.28)

where the exceptional set E is of Lebesgue measure zero and independent of z. More-
over, the following properties hold:

(i) For fixed x0 ∈ (a,b) and z ∈ C , Y (z,x,x0) is continuously differentiable with
respect to x on (a,b) in the B(H )-norm.

(ii) For fixed x0 ∈ (a,b) and z ∈ C , Y ′(z,x,x0) is strongly differentiable with respect
to x on (a,b)\E .

(iii) For fixed x0,x ∈ (a,b) , Y (z,x,x0) and Y ′(z,x,x0) are entire in z in the B(H )-
norm.

Proof. Applying Theorem 2.3 to h0 = Y0h , h1 = Y1h , and f (x) = F(x)h with
h ∈ H yields a unique vector-valued solution yh(z,x,x0) . Since yh(z,x,x0) depends
continuously on h by Theorem 2.3 (i) , this yields a unique operator-valued solution
Y (z, ·,x0) : (a,b) → B(H ) of the initial value problem (2.28), where Y (z,x,x0)h =
yh(z,x,x0) for all h ∈ H .

It follows from Theorem 2.3 (ii) that for fixed x0 ∈ (a,b) , z ∈ C , and every h ∈
H , ‖Y (z, ·,x0)h‖H is continuous on (a,b) and hence bounded on every compact
subset of (a,b) . Thus, it follows from the uniform boundedness principle (cf. [59,
Thm. III.1.3.29]) that ‖Y (z, ·,x0)‖B(H ) is bounded on every compact subset of (a,b) .
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Moreover, Theorem 2.3 (ii) and (iii) also imply that Y (z,x,x0) and Y ′(z,x,x0)
are differentiable with respect to x in the strong operator topology. Hence, using

Y (z,x,x0)h = cos
(
z1/2(x− x0)

)
Y0h+ z−1/2 sin

(
z1/2(x− x0)

)
Y1h

+
ˆ x

x0

dx′
(ˆ x′

x0

dx′′ [zY (z,x′′,x0)h−V(x′′)Y (z,x′′,x0)h+F(x′′)h]
)

,

(2.29)

one computes∥∥∥1
t
[Y (z,x+ t,x0)−Y (z,x,x0)]h−Y ′(z,x,x0)h

∥∥∥
H

� O(t)‖Y0‖B(H )‖h‖H +O(t)‖Y1‖B(H )‖h‖H

+
1
|t|
(ˆ x+t

x
dx′
(ˆ x′

x
dx′′ [|z|+‖V(x′′)‖B(H )]‖Y (z,x′′,x0)‖B(H )

))
‖h‖H

+
1
|t|
(ˆ x+t

x
dx′
(ˆ x′

x
dx′′ ‖F(x′′)‖B(H )

))
‖h‖H .

(2.30)

Since the right hand-side vanishes as t ↓ 0 uniformly in h ∈ H with ‖h‖H � 1, the
solution Y (z,x,x0) is differentiable with respect to x in the B(H )-norm topology.
Similarly one uses (2.29) to verify continuity of Y ′(z,x,x0) with respect to x in the
B(H )-norm topology, implying item (i) .

Item (ii) follows directly from Theorem 2.3 (iii) with the set E possibly de-
pendent on h ∈ H . To remove the h -dependence one chooses an orthonormal basis
{en}n∈N ⊂ H and let En be the corresponding exceptional sets. Then E =

⋃∞
n=1 En

can be used as the exceptional set in item (ii) .
Finally, by Theorem 2.3 (iv) , Y (z,x,x0) and Y ′(z,x,x0) are entire with respect

to z in the strong operator topology and hence by [59, Theorem III.1.37] also in the
B(H )-topology, implying item (iii) . �

Various versions of Theorem 2.3 and Corollary 2.5 exist in the literature under
varying assumptions on V and f ,F . For instance, the case where V (·) is continuous
in the B(H )-norm and F = 0 is discussed in [53, Theorem 6.1.1]. The case, where
‖V(·)‖B(H ∈ L1

loc([a,c];dx) for all c > a and F = 0 is discussed in detail in [94]
(it appears that a measurability assumption of V (·) in the B(H )-norm is missing in
the basic set of hypotheses of [94]). Our extension to V (·) weakly measurable and
‖V(·)‖B(H ∈ L1

loc([a,b);dx) may well be the most general one published to date, but
we obviously claim no originality in this context.

DEFINITION 2.6. Pick c ∈ (a,b) . The endpoint a (resp., b ) of the interval (a,b)
is called regular for the operator-valued differential expression −(d2/dx2) + Q(·) if
it is finite and if Q is weakly measurable and ‖Q(·)‖B(H ) ∈ L1

loc([a,c];dx) (resp.,
‖Q(·)‖B(H ) ∈ L1

loc([c,b];dx)) for some c ∈ (a,b) . Similarly, −(d2/dx2) + Q(·) is



WEYL-TITCHMARSH THEORY AND OPERATOR-VALUED POTENTIALS 253

called regular at a (resp., regular at b ) if a (resp., b ) is a regular endpoint for −(d2/dx2)
+Q(·) .

We note that if a (resp., b ) is regular for −(d2/dx2)+Q(x) , one may allow for
x0 to be equal to a (resp., b ) in the existence and uniqueness Theorem 2.3.

If f1, f2 are strongly continuously differentiable H -valued functions, we define
the Wronskian of f1 and f2 by

W∗( f1, f2)(x) = ( f1(x), f ′2(x))H − ( f ′1(x), f2(x))H , x ∈ (a,b). (2.31)

If f2 is an H -valued solution of −y′′ +Qy = 0 and f1 is an H -valued solution of
−y′′ +Q∗y = 0, their Wronskian W∗( f1, f2)(x) is x -independent, that is,

d
dx

W∗( f1, f2)(x) = 0, for a.e. x ∈ (a,b) . (2.32)

Equation (2.55) will show that the right-hand side of (2.32) actually vanishes for all
x ∈ (a,b) .

We decided to use the symbol W∗(·, ·) in (2.31) to indicate its conjugate linear
behavior with respect to its first entry.

Similarly, if F1,F2 are strongly continuously differentiable B(H )-valued func-
tions, their Wronskian is defined by

W (F1,F2)(x) = F1(x)F ′
2(x)−F ′

1(x)F2(x), x ∈ (a,b). (2.33)

Again, if F2 is a B(H )-valued solution of −Y ′′+QY = 0 and F1 is a B(H )-valued
solution of −Y ′′ +YQ = 0 (the latter is equivalent to −(Y ∗)′′ +Q∗Y ∗ = 0 and hence
can be handled in complete analogy via Theorem 2.3 and Corollary 2.5, replacing Q
by Q∗ ) their Wronskian will be x -independent,

d
dx

W (F1,F2)(x) = 0 for a.e. x ∈ (a,b) . (2.34)

Our main interest is in the case where V (·) = V (·)∗ ∈ B(H ) is self-adjoint, that
is, in the differential equation τη = zη , where η represents an H -valued, respec-
tively, B(H )-valued solution (in the sense of Definitions 2.2, resp., 2.4), and where τ
abbreviates the operator-valued differential expression

τ = −(d2/dx2)+V(·). (2.35)

To this end, we now introduce the following basic assumption:

HYPOTHESIS 2.7. Let (a,b) ⊆ R , suppose that V : (a,b) → B(H ) is a weakly
measurable operator-valued function with ‖V (·)‖B(H ) ∈ L1

loc((a,b);dx) , and assume
that V (x) = V (x)∗ for a.e. x ∈ (a,b) .

Moreover, for the remainder of this section we assume that α ∈ B(H ) is a self-
adjoint operator,

α = α∗ ∈ B(H ). (2.36)
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Assuming Hypothesis 2.7 and (2.36), we introduce the standard fundamental sys-
tems of operator-valued solutions of τy = zy as follows: Since α is a bounded self-
adjoint operator, one may define the self-adjoint operators A = sin(α) and B = cos(α)
via the spectral theorem. One then concludes that sin2(α) + cos2(α) = IH and
[sinα,cosα] = 0 (here [·, ·] represents the commutator symbol). The spectral theorem
implies also that the spectra of sin(α) and cos(α) are contained in [−1,1] and that the
spectra of sin2(α) and cos2(α) are contained in [0,1] . Given such an operator α and
a point x0 ∈ (a,b) or a regular endpoint for τ , we now define θα (z, ·,x0,),φα (z, ·,x0)
as those B(H )-valued solutions of τY = zY (in the sense of Definition 2.4) which
satisfy the initial conditions

θα (z,x0,x0) = φ ′
α(z,x0,x0) = cos(α), −φα(z,x0,x0) = θ ′

α (z,x0,x0) = sin(α).
(2.37)

By Corollary 2.5 (iii) , for any fixed x,x0 ∈ (a,b) , the functions θα (z,x,x0) and
φα(z,x,x0) as well as their strong x -derivatives are entire with respect to z in the
B(H )-norm. The same is true for the functions z 
→ θα(z,x,x0)∗ and z 
→ φα(z,x,x0)∗ .

Since θα(z , ·,x0)∗ and φα (z , ·,x0)∗ satisfy the adjoint equation −Y ′′ +YV = zY
and the same initial conditions as θα and φα , respectively, one obtains the following
identities from the constancy of Wronskians:

θ ′
α (z ,x,x0)∗θα(z,x,x0)−θα(z ,x,x0)∗θ ′

α (z,x,x0) = 0, (2.38)

φ ′
α (z ,x,x0)∗φα(z,x,x0)−φα(z ,x,x0)∗φ ′

α (z,x,x0) = 0, (2.39)

φ ′
α (z ,x,x0)∗θα(z,x,x0)−φα(z ,x,x0)∗θ ′

α (z,x,x0) = IH , (2.40)

θα (z ,x,x0)∗φ ′
α(z,x,x0)−θ ′

α(z ,x,x0)∗φα (z,x,x0) = IH . (2.41)

Equations (2.38)–(2.41) are equivalent to the statement that the block operator

Θα(z,x,x0) =
(

θα(z,x,x0) φα(z,x,x0)
θ ′

α(z,x,x0) φ ′
α(z,x,x0)

)
(2.42)

has a left inverse given by(
φ ′

α(z ,x,x0)∗ −φα(z ,x,x0)∗
−θ ′

α(z ,x,x0)∗ θα(z ,x,x0)∗

)
. (2.43)

Thus the operator Θα(z,x,x0) is injective. It is also surjective as will be shown next:
Let ( f1,g1)� be an arbitrary element of H ⊕H and let y be an H -valued solution
of the initial value problem {

τy = zy,

y(x1) = f1, y′(x1) = g1,
(2.44)

for some given x1 ∈ (a,b) . One notes that due to the initial conditions specified in
(2.37), Θα(z,x0,x0) is bijective. We now assume that ( f0,g0)� are given by

Θα(z,x0,x0)
(

f0
g0

)
=
(

y(x0)
y′(x0)

)
. (2.45)
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The existence and uniqueness Theorem 2.3 then yields that

Θα(z,x1,x0)
(

f0
g0

)
=
(

f1
g1

)
. (2.46)

This establishes surjectivity of Θα(z,x1,x0) which therefore has a right inverse too,
also given by (2.43). This fact then implies the following identities:

φα (z,x,x0)θα (z ,x,x0)∗ −θα(z,x,x0)φα(z ,x,x0)∗ = 0, (2.47)

φ ′
α (z,x,x0)θ ′

α (z ,x,x0)∗ −θ ′
α(z,x,x0)φ ′

α(z ,x,x0)∗ = 0, (2.48)

φ ′
α (z,x,x0)θα (z ,x,x0)∗ −θ ′

α(z,x,x0)φα(z ,x,x0)∗ = IH , (2.49)

θα (z,x,x0)φ ′
α (z ,x,x0)∗ −φα(z,x,x0)θ ′

α(z ,x,x0)∗ = IH . (2.50)

Having established the invertibility of Θα(z,x1,x0) we can now show that for any
x1 ∈ (a,b) , any H -valued solution of τy = zy may be expressed in terms of θα(z, ·,x1)
and φα(z, ·,x1) , that is,

y(x) = θα(z,x,x1) f + φα(z,x,x1)g (2.51)

for appropriate vectors f ,g ∈ H or B(H ) .
Next we establish a variation of constants formula.

LEMMA 2.8. Suppose F : (a,b) → B(H ) is a weakly measurable operator-
valued function such that ‖F(·)‖B(H ) ∈ L1

loc((a,b);dx) , assume that Y0,Y1 ∈ B(H ) ,
and let x0 ∈ (a,b) . Then the unique B(H )-valued solution Y(z, ·,x0) of the initial
value problem {

(τ − z)Y = F,

Y (x0) = Y0, Y ′(x0) = Y1,
(2.52)

is given by Yh +Yp , where Yp is the particular solution of (τ − z)Y = F ( in the sense
of Definition 2.4) of the form

Yp(x) = θα(z,x,x0)
ˆ x

x0

dx′ φα(z ,x′,x0)∗F(x′)

−φα(z,x,x0)
ˆ x

x0

dx′ θα (z ,x′,x0)∗F(x′),
(2.53)

and Yh is the unique solution of the homogeneous initial value problem (again in the
sense of Definition 2.4) {

τY = zY,

Y (x0) = Y0, Y ′(x0) = Y1.
(2.54)

The analogous statement holds when F is replaced by f ∈ L1
loc((a,b);dx;H ) and

Y0,Y1 are replaced by y0,y1 ∈ H .
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Proof. This follows from a direct computation taking into account the identities
(2.47) and (2.49). �

Finally we establish several versions of Green’s formula (also called Lagrange’s
identity) which will be used frequently in the following.

LEMMA 2.9. Let (a,b) ⊆ R be a finite or infinite interval and [x1,x2] ⊂ (a,b) .
(i) Assume that f ,g ∈W 2,1

loc ((a,b);dx;H ) . Then

ˆ x2

x1

dx [((τ f )(x),g(x))H − ( f (x),(τg)(x))H ] = W∗( f ,g)(x2)−W∗( f ,g)(x1). (2.55)

(ii) Assume that F : (a,b) → B(H ) is absolutely continuous, that F ′ is again differ-
entiable, and that F ′′ is weakly measurable. Also assume that ‖F ′′‖H ∈ L1

loc((a,b);dx)
and g ∈W 2,1

loc ((a,b);dx;H ) . Then

ˆ x2

x1

dx [(τF∗)∗(x)g(x)−F(x)(τg)(x)] = (Fg′ −F ′g)(x2)− (Fg′ −F ′g)(x1). (2.56)

(iii) Assume that F, G : (a,b) → B(H ) are absolutely continuous operator-valued
functions such that F ′, G′ are again differentiable and that F ′′ , G′′ are weakly mea-
surable. In addition, suppose that ‖F ′′‖H , ‖G′′‖H ∈ L1

loc((a,b);dx) . Then

ˆ x2

x1

dx [(τF∗)(x)∗G(x)−F(x)(τG)(x)] = (FG′ −F ′G)(x2)− (FG′ −F ′G)(x1).

(2.57)

Proof. The product rule for scalar products

d
dx

( f (x),g(x))H = ( f (x),g′(x))H +( f ′(x),g(x))H (2.58)

implies, as usual, the formula for integration by parts. Equation (2.55) is then an im-
mediate consequence of the latter and the fact that V is self-adjoint so that (V f ,g)H =
( f ,Vg)H .

To prove (2.56), we first note that g : (a,b)→H is strongly continuous so that, by
Lemma 2.1 the function F ′′g is (strongly) measurable and integrable. Lemma 2.1 then
shows that also Fg′′ and FVg are measurable. Consequently, the integral on the left-
hand side of (2.56) is well-defined in the strong sense. The remainder of the proof relies
again on a product rule. The product rule follows from the fact that each summand in∥∥∥∥F(x+ ε)

(
g(x+ ε)−g(x)

ε
−g′(x)

)∥∥∥∥
H

+‖(F(x+ ε)−F(x))g′(x)‖H

+
∥∥∥∥(F(x+ ε)g(x)−F(x)g(x)

ε
−F ′(x)g(x)

)∥∥∥∥
H

(2.59)

tends to zero as ε ↓ 0, recalling that x ∈ (a,b) is fixed.
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Finally, to prove (2.57), we first note that Gh : (a,b) → H is strongly continuous
for any h ∈ H . Again, Lemma 2.1 shows that F ′′Gh is strongly measurable and inte-
grable for any h∈H . The same applies to the terms FG′′h and FVGh . Consequently,
the integral on the left-hand side of (2.57) is well-defined in the strong sense. The stated
equality (2.57) now follows from an integration by parts as before. �

LEMMA 2.10. Suppose that y0,y1 ∈ H and either x0 ∈ (a,b) or x0 is a regular
endpoint of τ . Let y(z, ·,x0) be the unique solution of{

τy = zy,

y(x0) = y0, y′(x0) = y1.
(2.60)

Then there is a constant c0 > 0 and a constant C(z,V ) � 1 depending only on z and
V such that ˆ x

x0

dx′ ‖y(x′)‖2
H � c2

0(x− x0)3
∥∥(y0,y1)�

∥∥2
H ⊕H

(2.61)

provided 0 � x− x0 � C(z,V ) . A similar estimate holds for x < x0 .

Proof. Define r(t) = y(t)− y0 − (t − x0)y1 . Then −r′′ = (z−V )y so that the
vector version of the variation of constants formula (Lemma 2.8) treating (z−V )y as
the non-homogeneous term implies

r(x) =
ˆ x

x0

dx′ (x′ − x)[z−V(x′)]y(x′). (2.62)

Hence,

‖r(x)‖H �
√

2(x− x0)
∥∥(y0,y1)�

∥∥
H ⊕H

ˆ x

x0

dx′ ‖z−V(x′)‖B(H )

+ (x− x0)
ˆ x

x0

dx′ ‖z−V(x′)‖B(H )‖r(x′)‖H ,

(2.63)

provided |x− x0| � 1. Gronwall’s lemma then implies the estimate

‖r(x)‖H � C
∥∥(y0,y1)�

∥∥
H ⊕H

(x− x0)
ˆ x

x0

dx′ ‖z−V(x′)‖B(H ) (2.64)

for an appropriate constant C depending on V − z . Thus, using an integration by parts,
ˆ x

x0

dx′ ‖r(x′)‖2
H � 1

3
C2
∥∥(y0,y1)�

∥∥2
H ⊕H

(x− x0)3
(ˆ x

x0

dx′ ‖z−V(x′)‖B(H )

)2

.

(2.65)
On the other hand,ˆ x

x0

dx′ ‖y0 +(x′ − x0)y1‖2
H

� (x− x0)‖y0‖2
H − (x− x0)2‖y0‖H ‖y1‖H +

1
3
(x− x0)3‖y1‖2

H

� 4c2
0(x− x0)3(‖y0‖2

H +‖y1‖2
H ) (2.66)
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for some constant c0 > 0, provided x−x0 is sufficiently small (for instance, c0 = 1/10
will do if 0 � x− x0 � 1). Combining this with (2.65) yields(ˆ x

x0

dx′ ‖y(x′)‖2
H

)1/2

� (x− x0)3/2
∥∥(y0,y1)�

∥∥
H ⊕H

×
[
2c0−C

ˆ x

x0

dx′ ‖z−V(x′)‖B(H )

]
.

(2.67)

Finally, if x is sufficiently close to x0 in (2.67), the term inside the square brackets will
be larger than c0 . �

3. Weyl–Titchmarsh theory

In this section we develop Weyl–Titchmarsh theory for self-adjoint Schrödinger
operators Hα in L2((a,b);dx;H ) associated with the operator-valued differential ex-
pression τ =−(d2/dx2)+V (·) , assuming regularity of the left endpoint a and the limit
point case at the right endpoint b (see Definition 3.6). We prove the existence of Weyl–
Titchmarsh solutions, introduce the corresponding Weyl–Titchmarsh m-function, and
determine the structure of the Green’s function of Hα .

The broad outline of our approach in this section follows to a certain degree the
path taken in the scalar case by Bennewitz [24, Chs. 10, 11], Edmunds and Evans [42,
Sect. III.10], and Weidmann [106, Sect. 8.4]. However, the operator-valued context
also necessitates crucial deviations from the scalar approach as will become clear in the
course of this section.

We note that the boundary triple approach (see, e.g., [36], [37], [68], [69], [50,
Chs. 3, 4] and the extensive literature cited therein) constitutes an alternative way to
introduce operator-valued Weyl–Titchmarsh functions. However, we are not aware that
this approach has been established for potentials V satisfying our general Hypothesis
2.7. Moreover, we intend to derive the existence of Weyl–Titchmarsh solutions from
first principles and with minimal technical efforts.

As before, H denotes a separable Hilbert space and (a,b) denotes a finite or
infinite interval. One recalls that L2((a,b);dx;H ) is separable (since H is) and that

( f ,g)L2((a,b);dx;H ) =
ˆ b

a
dx( f (x),g(x))H , f ,g ∈ L2((a,b);dx;H ). (3.1)

Assuming Hypothesis 2.7 throughout this section, we are interested in studying
certain self-adjoint operators in L2((a,b);dx;H ) associated with the operator-valued
differential expression τ =−(d2/dx2)+V (·) . These will be suitable restrictions of the
maximal operator Hmax in L2((a,b);dx;H ) defined by

Hmax f = τ f ,

f ∈ dom(Hmax) =
{
g ∈ L2((a,b);dx;H )

∣∣g ∈W 2,1
loc ((a,b);dx;H ); (3.2)

τg ∈ L2((a,b);dx;H )
}
.
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We also introduce the operator Ḣmin in L2((a,b);dx;H ) as the restriction of Hmax to
the domain

dom(Ḣmin) = {g ∈ dom(Hmax) | supp(u) is compact in (a,b)}. (3.3)

Finally, the minimal operator Hmin in L2((a,b);dx;H ) associated with τ is then de-
fined as the closure of Ḣmin ,

Hmin = Ḣmin. (3.4)

Next, we intend to show that Hmax is the adjoint of Ḣmin (and hence that of Hmin ),
implying, in particular, that Hmax is closed. To this end, we first establish the following
two preparatory lemmas for the case where a and b are both regular endpoints for τ in
the sense of Definition 2.6.

LEMMA 3.1. In addition to Hypothesis 2.7 suppose that a and b are regular
endpoints for τ . Then

ker(Hmax− zIL2((a,b);dx;H ))

= {[θ0(z, ·,a) f + φ0(z, ·,a)g] ∈ L2((a,b);dx;H ) | f ,g ∈ H } (3.5)

is a closed subspace of L2((a,b);dx;H ) .

Proof. It is clear that the set on the right-hand side of (3.5) is contained in ker(Hmax

− zIL2((a,b);dx;H )) . The existence and uniqueness result, Theorem 2.3, also establishes
the converse inclusion. Thus, we only need to show that ker(Hmax − zIL2((a,b);dx;H )) is

a closed subspace of L2((a,b);dx;H ) (one recalls that we did not yet establish that
Hmax is a closed operator).

Suppose that {un}n∈N ⊂ ker(Hmax − zIL2((a,b);dx;H )) is a Cauchy sequence with

respect to the topology in L2((a,b);dx;H ) . By Lemma 2.10 one has for some ε > 0,

‖un−um‖2
L2((a,b);dx;H ) �

ˆ a+ε

a
dx‖un(x)−um(x)‖2

H

� c2
0ε3‖(un(a)−um(a),u′n(a)−u′m(a))‖2

H ⊕H .

(3.6)

This implies that both {un(a)}n∈N and {u′n(a)}n∈N are Cauchy sequences in H and
hence convergent. Denoting the limits by f and g , respectively, one concludes that
u = [θ0(z, ·,a) f + φ0(z, ·,a)g] ∈ ker(Hmax − zIL2((a,b);dx;H )) . Since

‖un−u‖L2((a,b);dx;H ) � [2(b−a)]1/2[C1(z)‖un(a)− f‖H +C2(z)‖u′n(a)−g‖H

]
,

(3.7)
where

C1(z) = max
x∈[a,b]

‖θ0(z,x,a)‖B(H ), C2(z) = max
x∈[a,b]

‖φ0(z,x,a)‖B(H ), (3.8)

the element u is the strong limit if of the sequence un in L2((a,b);dx;H ) and hence
ker(Hmax − zIL2((a,b);dx;H )) is closed. �
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REMARK 3.2. If H is finite-dimensional (e.g., in the scalar case, dim(H ) = 1),
then ker(Hmax − zIL2((a,b);dx;H )) is finite-dimensional and hence automatically closed.

LEMMA 3.3. In addition to Hypothesis 2.7 suppose that a and b are regular
endpoints for τ . Denote by H0 the linear operator in L2((a,b);dx;H ) defined by the
restriction of Hmax to the space

dom(H0) = {g ∈ dom(Hmax) |g(a) = g(b) = g′(a) = g′(b) = 0}. (3.9)

Then
ker(Hmax) = [ran(H0)]⊥, (3.10)

that is, the space of solutions u of τu = 0 coincides with the orthogonal complement
of the collection of elements τu0 satisfying u0 ∈ dom(H0) .

Proof. Suppose u ∈ ker(Hmax) and u0 ∈ dom(H0) . Let f0 = H0u0 . Then Green’s
formula (2.55) yields ( f0,u)L2((a,b);dx;H ) = 0 so that ran(H0) ⊆ [ker(Hmax)]⊥ .

Next, assume that f0 ∈ [ker(Hmax)]⊥ . Since f0 is integrable, there is a solution u0

of the initial value problem τu0 = f0 , u0(b) = u′0(b) = 0. If u1 ∈ ker(Hmax) , one has

0 = ( f0,u1)L2((a,b);dx;H ) = −(u0(a),u′1(a))H +(u′0(a),u1(a))H , (3.11)

using Green’s formula (2.55) once more. Since one can choose u1 so that u′1(a)= 0 and
u1(a) is an arbitrary vector in H , one necessarily concludes that u′0(a) = 0. Similarly,
choosing u1(a) = 0 and u′1(a) arbitrarily shows that u0(a) = 0. Hence u0 ∈ dom(H0)
and f0 ∈ ran(H0) .

We have now shown that ran(H0) = [ker(Hmax)]⊥ . Taking orthogonal comple-
ments and recalling from Lemma 3.1 that ker(Hmax) is closed, concludes the proof of
Lemma 3.3. �

THEOREM 3.4. Assume Hypothesis 2.7. Then the operator Ḣmin is densely de-
fined. Moreover, Hmax is the adjoint of Ḣmin ,

Hmax = (Ḣmin)∗. (3.12)

In particular, Hmax is closed. In addition, Ḣmin is symmetric and H∗
max is the closure

of Ḣmin , that is,

H∗
max = Ḣmin = Hmin. (3.13)

Proof. Suppose f1 is perpendicular to dom(Ḣmin) and let u1 be a solution of
τu1 = f1 . Let [ã, b̃] be a compact interval contained in (a,b) and introduce the op-

erators H̃max and ˜̇Hmin associated with that interval and acting in the Hilbert space
˜L2((a,b);dx;H ) = L2

((
ã, b̃
)
;dx;H

)
with inner product (·, ·) ˜L2((a,b);dx;H )

. We ex-

tend any function u0 ∈ dom
( ˜̇Hmin

)
by zero outside the interval [ã, b̃] to get an element
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of dom(Ḣmin) , also denoted by u0 . Similarly, we consider the restriction of f1 to [ã, b̃] ,
and for simplicity, also denote it by f1 . Thus, setting f0 = τu0 , we get via Green’s for-
mula (2.55)

0 = (u0, f1)L2((a,b);dx;H ) = (u0, f1) ˜L2((a,b);dx;H )
= ( f0,u1) ˜L2((a,b);dx;H )

. (3.14)

Lemma 3.3 then implies that u1 ∈ ker
(
H̃max

)
and hence that f1 is zero almost every-

where in [ã, b̃] . Since we may choose ã arbitrarily close to a , and b̃ arbitrarily close
to b , we get f1 = 0 a.e., proving that Ḣmin is densely defined.

To show that Hmax is the adjoint of Ḣmin (and hence a closed operator), we first
recall that the domain of (Ḣmin)∗ is given by

dom
((

Ḣmin
)∗)= {u ∈ L2((a,b);dx;H ) | there exists u∗ ∈ L2((a,b);dx;H ), such

that for all u0 ∈ dom(Ḣmin),(Ḣminu0,u)L2((a,b);dx;H ) = (u0,u
∗)L2((a,b);dx;H )}.

(3.15)

The inclusion dom(Hmax)⊆ dom(
(
Ḣmin)∗) then follows immediately from Green’s for-

mula (2.55) because we can choose u∗ to be τu whenever u ∈ dom(Hmax) .
For proving the reverse inclusion, let u ∈ dom((Ḣmin)∗) , note that u∗ = (Ḣmin)∗u

is locally integrable, and let h be a solution of the differential equation τh = u∗ . As a
consequence of Green’s formula (2.55) one obtains that

ˆ b

a
dx(τv,u−h)H = (Ḣminv,u)L2((a,b);dx;H ) −

ˆ b

a
dx(τv,h)H

= (v,u∗)L2((a,b);dx;H ) −
ˆ b

a
dx(v,τh)H = 0,

(3.16)

whenever v∈ dom(Ḣmin) . Thus, the restriction of u−h to any interval [ã, b̃]⊇ supp(v)
is orthogonal to ran

( ˜̇Hmin

)
and hence lies in ker

(
H̃max

)
. This shows that u and u′

are locally absolutely continuous and that τu = u∗ ∈ L2((a,b);dx;H ) , that is, u ∈
dom(Hmax) .

Since
Ḣmin ⊆ Hmax = (Ḣmin)∗, (3.17)

Ḣmin is symmetric in L2((a,b);dx;H ) . Hence H∗
max is a restriction of Hmax and thus

an extension of Ḣmin . Finally, (3.13) is an immediate consequence of (3.12). �

Lemmas 3.1, 3.3, and Theorem 3.4, under additional hypotheses on V (typically
involving continuity assumptions) are of course well-known and go back to Rofe-
Beketov [88], [89] (see also [50, Sect. 3.4], [91, Ch. 5]).

REMARK 3.5. In the special case where a and b are regular endpoints for τ , the
operator H0 introduced in (3.9) coincides with the minimal operator Hmin .
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Using the dominated convergence theorem and Green’s formula (2.55) one can
show that limx→aW∗(u,v)(x) and limx→bW∗(u,v)(x) both exist whenever u,v ∈
dom(Hmax) . We will denote these limits by W∗(u,v)(a) and W∗(u,v)(b) , respectively.
Thus Green’s formula also holds for x1 = a and x2 = b if u and v are in dom(Hmax) ,
that is,

(Hmaxu,v)L2((a,b);dx;H ) − (u,Hmaxv)L2((a,b);dx;H ) = W∗(u,v)(b)−W∗(u,v)(a). (3.18)

This relation and the fact that Hmin = H∗
max is a restriction of Hmax show that

dom(Hmin) = {u ∈ dom(Hmax) |W∗(u,v)(b) = W∗(u,v)(a) = 0

for all v ∈ dom(Hmax)}.
(3.19)

DEFINITION 3.6. Assume Hypothesis 2.7. Then the endpoint a (resp., b ) is said
to be of limit-point type for τ if W∗(u,v)(a) = 0 (resp., W∗(u,v)(b) = 0) for all u,v ∈
dom(Hmax) .

By using the term “limit-point type” one recognizes Weyl’s contribution to the
subject in his celebrated paper [108].

Next, we introduce the subspaces

Dz = {u ∈ dom(Hmax) |Hmaxu = zu}, z ∈ C. (3.20)

For z ∈ C\R , Dz represent the deficiency subspaces of Hmin . Von Neumann’s theory
of extensions of symmetric operators implies that

dom(Hmax) = dom(Hmin)�Di �D−i (3.21)

where � indicates the direct (but not necessarily orthogonal direct) sum.

LEMMA 3.7. Assume Hypothesis 2.7. Suppose a is a regular endpoint for τ ,
let f1 ∈ H , f2 ∈ H . Then there are elements u ∈ dom(Hmax) such that u(a) = f1 ,
u′(a) = f2 , and u vanishes on [c,b) for some c ∈ (a,b) . The analogous statements
hold with the roles of a and b interchanged.

Proof. Let h = [θ0(0, ·,a)g1 + φ0(0, ·,a)g2]χ[a,c] , where g1 ∈ H , g2 ∈ H , and
c ∈ (a,b) are as yet undetermined. Then h ∈ L2((a,b);dx;H ) . Solving the initial
value problem τu = h , u(c) = u′(c) = 0, implies that u ∈ dom(Hmax) and that u is
zero on [c,b) . Moreover, Green’s formula (2.56) shows that

ˆ c

a
dx′ θ0(0,x′,a)∗h(x′) =

ˆ c

a
dx′ θ0(0,x′,a)∗(−u′′+Vu) = u′(a) (3.22)

and
ˆ c

a
dx′ φ0(0,x′,a)∗h(x′) =

ˆ c

a
dx′ φ0(0,x′,a)∗(−u′′ +Vu) = −u(a). (3.23)
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We want to choose g1 and g2 so that u(a) = f1 and u′(a) = f2 , that is, Ac(g1,g2)� =
( f2,− f1)� , where Ac : H ⊕H → H ⊕H is given by

Ac =

(´ c
a dx′ θ0(0,x′,a)∗θ0(0,x′,a)

´ c
a dx′ θ0(0,x′,a)∗φ0(0,x′,a)´ c

a dx′ φ0(0,x′,a)∗θ0(0,x′,a)
´ c
a dx′ φ0(0,x′,a)∗φ0(0,x′,a)

)
. (3.24)

Hence the proof will be complete if we can show that Ac is invertible for a proper
choice of c . Let F = (g1,g2)� ∈ H ⊕H . Since

(F,AcF)H ⊕H =
ˆ c

a
dx′ ‖θ0(0,x′,a)g1 + φ0(0,x′,a)g2‖2

H , (3.25)

and since θ0(0,x′,a)g1 + φ0(0,x′,a)g2 = 0 only if g1 = g2 = 0, it follows that Ac is
positive definite and hence injective. To show that Ac is also surjective we will prove
that (F,AcF)H ⊕H � γ‖F‖2

H ⊕H for some constant γ > 0 since this implies that zero
cannot be in the approximate point spectrum of Ac (we recall that the spectrum and
approximate point spectrum coincide for self-adjoint operators and refer for additional
comments to the paragraph preceding Lemma 3.12).

By Lemma 2.10,

(F,AcF)H ⊕H =
ˆ c

a
dx′ ‖θ0(0,x′,a)g1 + φ0(0,x′,a)g2‖2

H � c2
0(c−a)3‖F‖2

H ⊕H

(3.26)
provided c−a is sufficiently small. Thus, γ can be chosen as c2

0(c−a)3 . �
We now set out to determine the self-adjoint restrictions of Hmax assuming that

a is a regular endpoint for τ and b is of limit-point type for τ . To this end we first
briefly recall the concept of a Hermitian relation. For more information the reader may
consult, for instance, [91, Appendix A].

A subset M of H ⊕H is called a Hermitian relation in the Hilbert space H if
it has the following two properties:

1. If ( f1, f2) and (g1,g2) are in M , then ( f1,g2)H = ( f2,g1)H .

2. If ( f1, f2) ∈ H ⊕H and ( f1,g2)H = ( f2,g1)H for all (g1,g2) ∈ M , then
( f1, f2) ∈ M .

Thus, a Hermitian relation is a linear subspace of H ⊕H and one can show that
M = M̃ if M and M̃ are Hermitian relations such that M ⊆ M̃ . Moreover, the
following lemma holds:

LEMMA 3.8. The maps π± : M → H : ( f1, f2) 
→ f± = f2 ± i f1 are linear bi-
jections and U = π− ◦π−1

+ : H → H is unitary1.

Proof. It is clear that π± are linear. If ( f1, f2) ∈M , a straightforward calculation
yields

‖ f±‖2
H = ‖ f1‖2

H +‖ f2‖2
H (3.27)

1We note that U is called the Cayley transform of M .
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and so proves injectivity of π± and that U is a partial isometry. The proof will be
finished when we show that π± are also surjective.

We begin by showing that the range of π+ is dense in H . To do so assume that
g∈H is orthogonal to f2 + i f1 , that is, 0 = (g, f2 + i f1)H = (g, f2)H − (ig, f1)H for
all ( f1, f2) ∈ M . This implies that (g, ig) ∈ M . Then π−(g, ig) = 0 and, using (3.27),
we have g = 0. Now let f+ ∈ H . Then there is a sequence ( f1,n, f2,n) ∈ M , n ∈ N ,
such that f2,n + i f1,n converges to f+ . Thus f2,n + i f1,n is Cauchy in H and (3.27)
entails that f1,n and f2,n , n ∈ N , are separately Cauchy and hence convergent in H .
Denote the limit of ( f1,n, f2,n) as n → ∞ by ( f1, f2) . In view of the continuity of scalar
products one finds that

( f1,g2)H = lim
n→∞

( f1,n,g2)H = lim
n→∞

( f2,n,g1)H = ( f2,g1)H , (g1,g2) ∈ M . (3.28)

This implies that ( f1, f2) ∈ M and f+ = f2 + i f1 ∈ ran(π+) . Surjectivity of π− is
shown in the same manner. �

Next, suppose that α is a (bounded or unbounded) self-adjoint operator in H .
Then

Mα = {( f1, f2) ∈ H ⊕H | sin(α) f2 + cos(α) f1 = 0} (3.29)

is a Hermitian relation. This follows since sin(α) f2 +cos(α) f1 = 0 if and only if there
is an h ∈ H such that f1 = −sin(α)h and f2 = cos(α)h . In fact, h = cos(α) f2 −
sin(α) f1 , if ( f1, f2) ∈ Mα is given.

We now use the theory of Hermitian relations to characterize all self-adjoint re-
strictions of Hmax under the following set of assumptions:

HYPOTHESIS 3.9. In addition to Hypothesis 2.7 suppose that a is a regular end-
point for τ and b is of limit-point type for τ .

THEOREM 3.10. Assume Hypothesis 3.9. If H is a self-adjoint restriction of
Hmax , then there is a bounded and self-adjoint operator α ∈ B(H ) such that

dom(H) = {u ∈ dom(Hmax) | sin(α)u′(a)+ cos(α)u(a) = 0}. (3.30)

Conversely, for every α ∈B(H ) , (3.30) gives rise to a self-adjoint restriction of Hmax

in L2((a,b);dx;H ) .

Proof. Suppose H = H∗ ⊆ Hmax and define

M = {( f1, f2) ∈ H ⊕H | there exists u ∈ dom(H) such that f = u(a), f ′ = u′(a)}.
(3.31)

We show first that M is a Hermitian relation: For ( f1, f2),(g1,g2) ∈ M let u,v ∈
dom(H) be such that u(a) = f1 , u′(a) = f2 , v(a) = g1 , and v′(a) = g2 . Since H is
self-adjoint one infers from Green’s formula (2.55) that

0 = (Hu,v)L2((a,b);dx;H ) − (u,Hv)L2((a,b);dx;H )

= −W∗(u,v)(a) = (u′(a),v(a))H − (u(a),v′(a))H .
(3.32)
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Next assume ( f1, f2)∈H ⊕H and that ( f1,v′(a))H = ( f2,v(a))H for all v∈ dom(H) .
By Lemma 3.7 there is a u ∈ dom(Hmax) with initial values ( f1, f2) and hence,

(Hmaxu,v)L2((a,b);dx;H )− (u,Hv)L2((a,b);dx;H )

= −W∗(u,v)(a) = ( f2,v(a))H − ( f1,v
′(a))H = 0.

(3.33)

This implies that u∈ dom(H∗)= dom(H) (with H∗u = Hmaxu ) and hence that ( f1, f2)∈
M . Thus M is indeed a Hermitian relation. Denote its Cayley transform by U
and the family of strongly right-continuous spectral projections associated with U by
{FU(t)}t∈[0,2π ] , implying2,

( f ,Ug)H =
ˆ

[0,2π ]
eit d( f ,FU (t)g)H , F(0) = 0. (3.34)

Additionally, let α be the bounded self-adjoint operator defined by

( f ,αg)H =
1
2

ˆ
[0,2π ]

t d( f ,FU (t)g)H . (3.35)

Since U is the Cayley transform of M , we have U( f2 + i f1) = f2 − i f1 , or equiv-
alently, (U − IH ) f2 + i(U + IH ) f1 = 0. Since U = e2iα , the latter relation implies
that sin(α) f2 + cos(α) f1 = 0. Thus, M ⊆ Mα , implying (as shown in the paragraph
preceding Lemma 3.8), that M = Mα . Thus the first part of Theorem 3.10 follows.

For the converse part, assume α = α∗ ∈ B(H ) is given, and let H denote the
restriction of Hmax to those functions satisfying sin(α)u′(a)+ cos(α)u(a) = 0, that
is, u ∈ dom(H) if and only if (u(a),u′(a)) ∈ Mα . Therefore, if u,v ∈ dom(H) ,
then W∗(u,v)(a) =W∗(u,v)(b) = 0 so that (Hu,v)L2((a,b);dx;H ) = (u,Hv)L2((a,b);dx;H ) ,
implying dom(H) ⊆ dom(H∗) . To show the opposite inclusion one first notes that
dom(H∗) ⊆ dom(Hmax) since dom(H∗

max) ⊆ dom(H) . Now assume that u ∈ dom(H∗)
and v ∈ dom(H) . Then H∗u = Hmaxu so that W∗(u,v)(a) = 0 for all (v(a),v′(a)) ∈
Mα . This implies that (u(a),u′(a)) ∈ Mα , that is, dom(H∗) ⊆ dom(H) . �

Henceforth, under the assumptions of Theorem 3.10, we denote the operator H
in L2((a,b);dx;H ) associated with the boundary condition induced by α = α∗ ∈
B(H ) , that is, the restriction of Hmax to the set

dom(Hα) = {u ∈ dom(Hmax) | sin(α)u′(a)+ cos(α)u(a) = 0} (3.36)

by Hα . For a discussion of boundary conditions at infinity, see, for instance, [68], [75],
and [90].

Our next goal is to construct the square integrable solutions Y (z, ·) ∈ B(H ) of
τY = zY , z ∈ C\R , the B(H )-valued Weyl–Titchmarsh solutions, under the assump-
tions that a is a regular endpoint for τ and b is of limit-point type for τ .

For ease of notation, we denote in the following the resolvent of Hα by Rz,α , that
is, Rz,α = (Hα − zIL2((a,b);dx;H ))

−1 .

2We employ the standard slight abuse of notation where FU (t) = FU ([0,t)) , t ∈ [0,2π] , and use the
normalization s-limε↓0 FU (−ε) = 0 , FU (2π) = s-limε↓0 FU (2π + ε) = IH .
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One recalls that the graph of Hα , given by

Γ = {( f ,Hα f ) ∈ L2((a,b);dx;H )⊕L2((a,b);dx;H ) | f ∈ dom(Hα )}, (3.37)

is a Hilbert subspace of L2((a,b);dx;H )⊕ L2((a,b);dx;H ) . Equivalently, one can
consider dom(Hα) as a Hilbert space with scalar product

( f ,g)Γ =
ˆ b

a
dx( f (x),g(x))H +

ˆ b

a
dx((Hα f )(x),(Hα g)(x))H ,

f ,g ∈ dom(Hα),
(3.38)

and the corresponding norm ‖ f‖Γ = ( f , f )1/2
Γ , f ∈ dom(Hα) . Given a compact in-

terval J ⊂ [a,b) we know that dom(Hα) is contained in the Banach space C1(J;H )
of continuously differentiable functions on J with values in H and norm given by
‖ f‖J = supx∈J ‖ f (x)‖H + supx∈J ‖ f ′(x)‖H . In fact, the following lemma holds.

LEMMA 3.11. Assume Hypothesis 3.9 and suppose that α ∈B(H ) is self-adjoint.
For each compact interval J ⊂ [a,b) there is a constant CJ such that ‖y‖J � CJ‖y‖Γ
for every y ∈ dom(Hα) .

Proof. Suppose {yn}n∈N ⊂ dom(Hα) is a sequence converging to y ∈ dom(Hα)
with respect to the norm ‖ · ‖Γ and that yn|J converges in C1(J;H ) to ỹ as n → ∞ . It
follows that

‖yn− y‖L2((a,b);dx;H ) +‖yn− y‖L2(J;dx;H ) −→n→∞
0. (3.39)

On account of the uniform convergence in C1(J;H ) one also concludes that ‖yn −
ỹ‖L2(J;dx;H ) → 0 as n → ∞ . Thus, y|J = ỹ so that the restriction map y 
→ y|J defined
on dom(Hα ) is closed and hence bounded by the closed graph theorem. �

We recall that a point λ ∈ C is said to be in the approximate point spectrum of a
closed operator T ∈B(H ) if there is a sequence {xn}n∈N ⊂H such that ‖xn‖H = 1,
n ∈ N , and limn→∞ ‖(T −λ IH )xn‖H = 0. If λ is an eigenvalue, then it is, of course,
in the approximate point spectrum. λ is also in the approximate point spectrum, if
T − λ IH is injective and its image is dense in H but not closed, a fact that can be
seen as follows: In this case (T − λ IH )−1 is a densely defined unbounded operator,
that is, there is a sequence fn such that ‖ fn‖H = 1 and ‖(T − λ IH )−1 fn‖H > n ,
n ∈ N . This is equivalent to the existence of a sequence {yn}n∈N ⊂ H (namely yn =
(T −λ )−1 fn/‖(T −λ )−1 fn‖ , n ∈ N) such that ‖yn‖H = 1 and ‖(T −λ IH )yn‖H <
1/n , n ∈ N , so that λ is in the approximate point spectrum. If T has no residual
spectrum, in particular, if T is self-adjoint, its spectrum coincides with its approximate
point spectrum.

LEMMA 3.12. Suppose α ∈ B(H ) is self-adjoint. If c j ∈ C , j = 1,2 , with
c1/c2 ∈ C\R , then 0 ∈ ρ(c1 sin(α)+ c2 cos(α)) .
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Proof. Let A = sin(α) , B = cos(α) , and assume that c j ∈ C , j = 1,2, with
c1/c2 ∈ C\R . The spectral theorem implies that the spectra of A and B are con-
tained in [−1,1] and that the spectra of A2 and B2 are contained in [0,1] . By way of
contradiction, assume that 0 is in the approximate point spectrum of c1A+ c2B . Then
there is a sequence {xn}n∈N ⊂ H such that ‖xn‖H = 1, n ∈ N , and limn→∞ ‖(c1A+
c2B)xn‖H = 0. Accordingly, also

‖(c2
1A

2 + c1c2AB)xn‖H → 0 and ‖(c1c2BA+ c2
2B

2)xn‖H → 0 (3.40)

as n → ∞ . Hence, (c2
1A

2− c2
2B

2)xn = (c2
1 + c2

2)A
2xn − c2

2xn tends to zero as n → ∞ , so
that c2

2/(c2
1 + c2

2) is in the approximate point spectrum of A2 . This implies that c1/c2

is real, a contradiction. Thus, 0 is not in the approximate point spectrum of c1A+ c2B .
Hence, for 0 to be in the spectrum of c1A + c2B would require that its image not be
dense in H , that is, that ker(c1A + c2B) = ker((c1A + c2B)∗) = ran(c1A + c2B)⊥ �
{0} . But this is impossible as we have just shown. �

Fix c∈ (a,b) and z∈ ρ(Hα) . For any f0 ∈H let f = f0χ[a,c] ∈ L2((a,b);dx;H )
and u( f0,z, ·) = Rz,α f ∈ dom(Hα) . By the variation of constants formula,

u( f0,z,x) = θα (z,x,a)
(

g(z)+
ˆ c

x
dx′ φα (z,x′,a)∗ f0

)
+ φα(z,x,a)

(
h(z)−

ˆ c

x
dx′ θα (z,x′,a)∗ f0

) (3.41)

for suitable vectors g(z) ∈ H , h(z) ∈ H . Since u( f0,z, ·) ∈ dom(Hα) , one infers that

g(z) = −
ˆ c

a
dx′ φα(z,x′,a)∗ f0, z ∈ ρ(Hα), (3.42)

and that

h(z) = cos(α)u′( f0,z,a)− sin(α)u( f0,z,a)+
ˆ c

a
dx′ θα(z,x′,a)∗ f0, z ∈ ρ(Hα).

(3.43)

LEMMA 3.13. Assume Hypothesis 3.9 and suppose that α ∈B(H ) is self-adjoint.
In addition, choose c∈ (a,b) and introduce g(·) and h(·) as in (3.42) and (3.43). Then
the maps

C1,α(c,z) :

{
H → H ,

f0 
→ g(z),
C2,α(c,z) :

{
H → H ,

f0 
→ h(z),
z ∈ ρ(Hα), (3.44)

are linear and bounded. Moreover, C1,α(c, ·) is entire and C2,α(c, ·) is analytic on
ρ(Hα) . In addition, C1,α(c,z) is boundedly invertible if z ∈ C\R and c is chosen
appropriately.
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Proof. According to equation (3.42) one has

C1,α(c,z) = −
ˆ c

a
dx′ φα (z,x′,a)∗. (3.45)

By Corollary 2.5 (iii) , C1,α(c, ·) is entire.
Next, one observes that ρ(Hα) � z 
→ u( f0,z,x) = (Rz,α f )(x) is analytic and its

derivative at z0 is given by (R2
z0,α f )(x) . This follows from Lemma 3.11 and the first

resolvent identity since∥∥∥∥ (Rz,α f )(x)− (Rz0,α f )(x)
z− z0

− (R2
z0,α f )(x)

∥∥∥∥
H

�
∥∥∥∥Rz,α f −Rz0,α f

z− z0
−R2

z0,α f

∥∥∥∥
J

� CJ

∥∥∥∥Rz,α f −Rz0,α f

z− z0
−R2

z0,α f

∥∥∥∥
Γ

� CJ
∥∥(Rz,α −Rz0,α)Rz0,α f

∥∥
Γ , (3.46)

as long as x ∈ J , with J ⊂ (a,b) a compact interval, noting in addition that

Hα(Rz,α −Rz0,α) = zRz,α − z0Rz0,α . (3.47)

Similarly, z 
→ u′( f0,z,x) = (Rz,α f )′(x) is analytic, proving that C2,α(c, ·) is analytic
on ρ(Hα) .

It remains to show the bounded invertibility of C1,α(c,z) for z ∈ C\R and appro-
priate c ∈ (a,b) . In order for the expression

tan(μ)
μ

=
1− cos(2μ)
μ sin(2μ)

, μ ∈ C, (3.48)

to be real-valued it is necessary that μ be either real or purely imaginary. Hence, using
Lemma 3.12, one finds that the operator

S = sin(α)
sin(k(c−a))

k
+ cos(α)

cos(k(c−a))−1
k2

=
ˆ c

a
dx′
[
sin(α)cos(k(x′ −a))− cos(α)

sin(k(x′ −a))
k

] (3.49)

is boundedly invertible unless k2 ∈ R . A proof similar to that of Lemma 2.10 then
shows that ∥∥C1,α(c,k2)−S

∥∥
B(H ) (3.50)

is arbitrarily small for c−a is sufficiently small. This proves that C1,α(c,z) is bound-
edly invertible if z ∈ C\R and c is chosen appropriately. �

Using the bounded invertibility of C1,α(c,z) we now define

ψα(z,x) = θα (z,x,a)+φα(z,x,a)C2,α (c,z)C1,α(c,z)−1, z ∈ C\R, x ∈ [a,b), (3.51)

still assuming Hypothesis 3.9 and α = α∗ ∈ B(H ) . By Lemma 3.13, ψα(·,x) is
analytic on z ∈ C\R for fixed x ∈ [a,b] .
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Since ψα(z, ·) f0 is the solution of the initial value problem

τy = zy, y(c) = u( f0,z,c), y′(c) = u′( f0,z,c), z ∈ C\R, (3.52)

the function ψα(z,x)C1,α (z,c) f0 equals u( f0,z,x) for x � c , and thus is square in-
tegrable for every choice of f0 ∈ H . In particular, choosing c ∈ (a,b) such that
C1,α(z,c)−1 ∈ B(H ) , one infers that

ˆ b

a
dx‖ψα(z,x) f‖2

H < ∞, f ∈ H , z ∈ C\R. (3.53)

Every H -valued solution of τy = zy may be written as

y = θα (z, ·,a) fα ,a + φα(z, ·,a)gα ,a, (3.54)

with

fα ,a = (cosα)y(a)+ (sinα)y′(a), gα ,a = −(sinα)y(a)+ (cosα)y′(a). (3.55)

Hence we can define the maps

C1,α ,z :

{
Dz → H ,

θα(z, ·,a) fα ,a + φα(z, ·,a)gα ,a 
→ fα ,a,
(3.56)

C2,α ,z :

{
Dz → H ,

θα(z, ·,a) fα ,a + φα(z, ·,a)gα ,a 
→ gα ,a.
(3.57)

LEMMA 3.14. Assume Hypothesis 3.9, suppose that α ∈ B(H ) is self-adjoint,
and let z ∈ C\R . Then the operators C1,α ,z and C2,α ,z are linear bijections and hence

C1,α ,z, C−1
1,α ,z, C2,α ,z, C

−1
2,α ,z ∈ B(H ). (3.58)

Proof. It is clear that C1,α ,z and C2,α ,z are linear. Given f ∈ H one concludes
that u = ψα(z, ·) f and v = ψα+π/2(z, ·) f are in Dz and C1,α ,zu = C2,α ,zv = f . This
proves surjectivity of C1,α ,z and C2,α ,z .

Next, let u = θα f +φαg ∈ Dz and f = 0 or g = 0. Then W∗(u,u)(a) = 0. More-
over, since b is of limit-point type for τ , W∗(u,u)(b) = 0. Hence, by (3.18),

0 = (Hmaxu,u)L2((a,b);dx;H )− (u,Hmaxu)L2((a,b);dx;H )

= (zu,u)L2((a,b);dx;H ) − (u,zu)L2((a,b);dx;H ) = (z− z)‖u‖2
L2((a,b);dx;H ),

(3.59)

implying u = 0 and injectivity of C1,α ,z and C2,α ,z . Since for any invertible operator T
in H one has that T−1 is closed if and only if T is (cf. [59, Sect. III.5.2]), the closed
graph theorem (see, [59, Sect. III.5.4]) yields (3.58). �

At this point we are finally in the position to define the Weyl–Titchmarsh m-
function for z ∈ C\R by setting

mα(z) = C2,α ,zC
−1
1,α ,z, z ∈ C\R. (3.60)
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THEOREM 3.15. Assume Hypothesis 3.9 and suppose that α ∈ B(H ) is self-
adjoint. Then

mα(z) ∈ B(H ), z ∈ C\R, (3.61)

and mα(·) is analytic on C\R . Moreover,

mα(z) = mα(z)∗, z ∈ C\R. (3.62)

Proof. The boundedness relation (3.61) follows from (3.58) and (3.60). To prove
analyticity we first show that mα(z) = C2,α(c,z)C−1

1,α (c,z) where C1,α , C2,α and c are
as in Lemma 3.13. To this end let h be an arbitrary element of H . Then

C2,α ,zC
−1
1,α ,zh = C2,α ,zψα(z, ·)h

= C2,α ,z(θα(z, ·,a)h+ φα(z, ·,a)C2,α (c,z)C1,α (c,z)−1h)

= C2,α(c,z)C1,α(c,z)−1h (3.63)

establishing the claimed identity. The analyticity of mα on C\R now follows from
Lemma 3.13.

To prove (3.62) one first observes that (2.38)–(2.41) yield

W (ψα(z, ·)∗,ψα(z, ·))(x) = mα(z)−mα(z)∗. (3.64)

Fixing arbitrary f ,g ∈ H , then yields

( f ,(mα (z)−mα(z)∗)g)H = W (ψα(z, ·)∗ f ,ψα (z, ·)g)(x) −→
x↑b

0, (3.65)

since both ψα(z, ·) f and ψα(z, ·)g are in dom(Hmax) and since b is of limit-point-type
for τ . �

As a consequence of (3.63), the B(H )-valued function ψα(z, ·) in (3.51) can be
rewritten in the form

ψα(z,x) = θα (z,x,a)+ φα(z,x,a)mα (z), z ∈ C\R, x ∈ [a,b). (3.66)

In particular, this implies that ψα(z, ·) is independent of the choice of the parameter
c ∈ (a,b) in (3.51). Following the tradition in the scalar case (dim(H ) = 1), we will
call ψα(z, ·) the Weyl–Titchmarsh solution associated with τY = zY .

We remark that, given a function u ∈ Dz , the operator m0(z) assigns the Neu-
mann boundary data u′(a) to the Dirichlet boundary data u(a) , that is, m0(z) is the
(z-dependent) Dirichlet-to-Neumann map.

With the aid of the Weyl–Titchmarsh solutions we can now give a detailed descrip-
tion of the resolvent Rz,α = (Hα − zIL2((a,b);dx;H ))

−1 of Hα .

THEOREM 3.16. Assume Hypothesis 3.9 and suppose that α ∈ B(H ) is self-
adjoint. Then the resolvent of Hα is an integral operator of the type(

(Hα − zIL2((a,b);dx;H ))
−1u
)
(x) =

ˆ b

a
dx′Gα(z,x,x′)u(x′),

u ∈ L2((a,b);dx;H ), z ∈ ρ(Hα), x ∈ [a,b),
(3.67)
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with the B(H )-valued Green’s function Gα(z, ·, ·) given by

Gα(z,x,x′) =

{
φα(z,x,a)ψα (z,x′)∗, a � x � x′ < b,

ψα(z,x)φα (z,x′,a)∗, a � x′ � x < b,
z ∈ C\R. (3.68)

Proof. First assume that u ∈ L2((a,b);dx;H ) is compactly supported and let

v(x) = ψα(z,x)
ˆ x

a
φα(z,x′,a)∗u(x′)dx′ + φα(z,x,a)

ˆ b

x
ψα(z,x′)∗u(x′)dx′. (3.69)

We need to show that v = Rz,αu . To this end one notes that both v and v′ are in

W (1,1)
loc ((a,b),dx;H ) . Near the endpoints v is a multiple of either φα(z, ·,a) or ψα(z, ·) .

Hence it satisfies the boundary condition at a and is square integrable. Differentiating
once more shows that τv = u so that v∈ L2((a,b);dx;H ) and v = Rz,αu . The fact that
compactly supported functions are dense in L2((a,b);dx;H ) completes the proof. �

One recalls from Definition A.1 that a nonconstant function N : C+ → B(H ) is
called a (bounded) operator-valued Herglotz function, if z 
→ (u,N(z)u)H is analytic
and has a non-negative imaginary part for all u ∈ H .

THEOREM 3.17. Assume Hypothesis 3.9 and suppose that α ∈ B(H ) and β ∈
B(H ) are self-adjoint. Then the B(H )-valued function mα(·) is an operator-valued
Herglotz function and explicitly determined by the Green’s function for Hα as follows,

mα(z) =
(− sin(α),cos(α)

)( Gα(z,a,a) Gα ,x′(z,a,a)
Gα ,x(z,a,a) Gα ,x,x′(z,a,a)

)(−sin(α)
cos(α)

)
,

z ∈ C\R, (3.70)

where we denoted

Gα ,x(z,a,a) = s-lim
x′→a

a<x<x′

∂
∂x

Gα(z,x,x′),

Gα ,x′(z,a,a) = s-lim
x′→a

a<x<x′

∂
∂x′

Gα(z,x,x′), (3.71)

Gα ,x,x′(z,a,a) = s-lim
x′→a

a<x<x′

∂
∂x

∂
∂x′

Gα(z,x,x′)

( the strong limits referring to the strong operator topology in H ) . In addition, mα(·)
extends analytically to the resolvent set of Hα .

Moreover, mα(·) and mβ (·) are related by the following linear fractional trans-
formation,

mβ = (C+Dmα)(A+Bmα)−1, (3.72)

where (
A B
C D

)
=
(

cos(β ) sin(β )
−sin(β ) cos(β )

)(
cos(α) −sin(α)
sin(α) cos(α)

)
. (3.73)
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Proof. Pick z ∈ C\R throughout this proof. We begin by establishing the validity
of the linear fractional transformation. Let ψ be any H -valued square integrable
solution of τψ = zψ . Since

ψ(x) = θα(z, ·,a) f + φα(z, ·,a)g = θβ (z, ·,a)u+ φβ (z, ·,a)v (3.74)

for appropriate f ,g,u,v ∈ H , one gets(
u
v

)
=
(

A B
C D

)(
f
g

)
. (3.75)

Since v = mβ u , g = mα f , and since A+Bmα(z) = C1,β ,zC
−1
1,α ,z is invertible, one ob-

tains (3.72).
In view of this relationship between m-operators for different boundary conditions

we prove the first part of the theorem first for a specific boundary condition, namely
α0 = π

2 IH so that sin(α0) = IH and cos(α0) = 0. Then, for every ε > 0 there is a
δ > 0 such that ‖θπ/2(z,x,a)‖B(H ) and ‖φπ/2(z,x,a)− IH ‖B(H ) are smaller than

ε provided x− a < δ . Next, for any fixed u0 ∈ H let uδ = u0χ[a,a+δ ]/δ 1/2 . Using
Theorems 3.15 and 3.16, one obtains

(uδ ,Rz,π/2uδ )L2((a,b);dx;H )

=
ˆ a+δ

a
dx

{(
uδ (x),θπ/2(z,x,a)

ˆ x

a
dx′ φπ/2(z,x

′,a)∗uδ (x′)
)

H

+
(

uδ (x),φπ/2(z,x,a)
ˆ b

x
dx′ θπ/2(z,x

′,a)∗uδ (x′)
)

H

+
(

uδ (x), [φπ/2(z,x,a)− IH ]mπ/2(z)
ˆ b

a
dx′ φπ/2(z,x

′,a)∗uδ (x′)
)

H

+
(

uδ (x),mπ/2(z)
ˆ b

a
dx′ [φπ/2(z,x

′,a)∗ − IH ]uδ (x′)
)

H

}
+(u0,mπ/2(z)u0)H . (3.76)

Hence,

|(u0,mπ/2(z)u0)H − (uδ ,Rz,π/2uδ )L2((a,b);dx;H )|
� (ε(1+2‖mπ/2(z)‖)+ ε2(1+‖mπ/2(z)‖))‖u0‖2.

(3.77)

Since δ goes to zero with ε one gets

Im
(
(u0,mπ/2(z)u0)H

)
= lim

δ↓0
Im
(
(uδ ,Rz,π/2uδ )L2((a,b);dx;H )

)
= Im(z) lim

δ↓0

ˆ
R

d(uδ ,EHπ/2
((−∞,t])uδ )L2((a,b);dx;H )

|t− z|2 � 0,
(3.78)

where EHπ/2
(·) denotes the strongly right-continuous family of spectral projections as-

sociated with Hπ/2 . Since we already showed that mπ/2 is analytic away from the real
axis, it follows that it is an operator-valued Herglotz function.
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It remains to show that mβ possesses the Herglotz property for general β . Using
(3.72) for α = π/2 and setting v0 = (A+Bmπ/2)−1u0 for an arbitrary element u0 of
H one finds

2i Im
(
(u0,mβ u0)H

)
= (u0,mβ u0)H − (mβu0,u0)H
= (v0,mπ/2v0)H − (mπ/2v0,v0)H
= 2i Im

(
(v0,mπ/2v0)H

)
� 0, (3.79)

proving that mβ is Herglotz.
Finally, (3.70) follows by a simple calculation. �

We also mention that Gα(·,x,x) is a bounded Herglotz operator in H for each
x ∈ (a,b) , as is clear from (2.47), (3.66), (3.68), and the Herglotz property of mα .

REMARK 3.18. The Weyl–Titchmarsh theory established in this section is mod-
eled after right half-lines (a,b) = (0,∞) . Of course precisely the analogous theory
applies to left half-lines (−∞,0) . Given the two half-line results, one then establishes
the full-line result on R in the usual fashion with x = 0 a reference point and a 2× 2
block operator formalism as in the well-known scalar or matrix-valued cases; we omit
further details at this point.

A. Basic facts on operator-valued Herglotz functions

In this appendix we review some basic facts on (bounded) operator-valued Her-
glotz functions, applicable to mα and Gα(·,x,x) , x ∈ (a,b) , discussed in the bulk of
this paper.

In the remainder of this appendix, let H be a separable, complex Hilbert space
with inner product denoted by (·, ·)H .

DEFINITION A.1. The map M : C+ → B(H ) is called a bounded operator-
valued Herglotz function in H (in short, a bounded Herglotz operator in H ) if M
is analytic on C+ and Im(M(z)) � 0 for all z ∈ C+ .

Here we follow the standard notation

Im(M) = (M−M∗)/(2i), Re(M) = (M +M∗)/2, M ∈ B(H ). (A.1)

Note that M is a bounded Herglotz operator if and only if the scalar-valued func-
tions (u,Mu)H are Herglotz for all u ∈ H .

As in the scalar case one usually extends M to C− by reflection, that is, by defin-
ing

M(z) = M(z)∗, z ∈ C−. (A.2)

Hence M is analytic on C\R , but M
∣∣
C− and M

∣∣
C+

, in general, are not analytic con-
tinuations of each other.
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Of course, one can also consider unbounded operator-valued Herglotz functions,
but they will not be used in this paper.

In contrast to the scalar case, one cannot generally expect strict inequality in
Im(M(·)) � 0. However, the kernel of Im(M(·)) has simple properties:

LEMMA A.2. Let M(·) be a bounded operator-valued Herglotz function in H .
Then the kernel H0 = ker(Im(M(z))) is independent of z ∈ C+ . Consequently, upon
decomposing H = H0 ⊕H1 , H1 = H ⊥

0 , Im(M(·)) takes on the form

Im(M(z)) =
(

0 0
0 N1(z)

)
, z ∈ C+, (A.3)

where N1(·) ∈ B(H1) satisfies

N1(z) > 0, z ∈ C+. (A.4)

For a proof of Lemma A.2 see, for instance, [38, Proposition 1.2 (ii)] (alternatively, the
proof of [45, Lemma 5.3] in the matrix-valued context extends to the present infinite-
dimensional situation).

Next we recall the definition of a bounded operator-valued measure (see, also [25,
p. 319], [67], [85]):

DEFINITION A.3. Let H be a separable, complex Hilbert space. A map Σ :
B(R) → B(H ) , with B(R) the Borel σ -algebra on R , is called a bounded, nonneg-
ative, operator-valued measure if the following conditions (i) and (ii) hold:
(i) Σ( /0) = 0 and 0 � Σ(B) ∈ B(H ) for all B ∈ B(R) .
(ii) Σ(·) is strongly countably additive (i.e., with respect to the strong operator topol-

ogy in H ), that is,

Σ(B) = s-lim
N→∞

N

∑
j=1

Σ(Bj) (A.5)

whenever B =
⋃
j∈N

Bj, with Bk ∩B� = /0 for k �= �, Bk ∈ B(R), k, � ∈ N.

In addition, Σ(·) is called an (operator-valued ) spectral measure (or an orthogonal
operator-valued measure) if the following condition (iii) holds:
(iii) Σ(·) is projection-valued (i.e., Σ(B)2 = Σ(B) , B ∈ B(R)) and Σ(R) = IH .
(iv) Let f ∈ H and B ∈ B(R) . Then the vector-valued measure Σ(·) f has finite
variation on B , denoted by V (Σ f ;B) , if

V (Σ f ;B) = sup

{ N

∑
j=1

‖Σ(Bj) f‖H

}
< ∞, (A.6)

where the supremum is taken over all finite sequences {Bj}1� j�N of pairwise disjoint
subsets on R with Bj ⊆ B , 1 � j � N . In particular, Σ(·) f has finite total variation if
V (Σ f ;R) < ∞ .
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We recall that due to monotonicity considerations (cf. (A.17)), taking the limit in
the strong operator topology in (A.5) is equivalent to taking the limit with respect to the
weak operator topology in H .

We also note that integrals of the type (A.7)–(A.10) below are now taken with
respect to an operator-valued measure, as opposed to the Bochner integrals we used in
the bulk of this paper, Sections 2 and 3.

For relevant material in connection with the following result we refer the reader,
for instance, to [1], [9], [10], [22], [25, Sect. VI.5,], [29, Sect. I.4], [30], [31], [34],
[36]–[38], [41, Sects. XIII.5–XIII.7], [55], [61], [62], [65]–[67], [80, Ch. VI], [81]–
[83], [102], [104], [107, Sects. 8–10].

THEOREM A.4. ([10], [29, Sect. I.4], [102].) Let M be a bounded operator-
valued Herglotz function in H . Then the following assertions hold:
(i) For each f ∈ H , ( f ,M(·) f )H is a (scalar) Herglotz function.
(ii) Suppose that {e j} j∈N is a complete orthonormal system in H and that for some
subset of R having positive Lebesgue measure, and for all j ∈ N , (e j,M(·)e j)H has
zero normal limits. Then M ≡ 0.
(iii) There exists a bounded, nonnegative B(H )-valued measure Ω on R such that
the Nevanlinna representation

M(z) = C+Dz+
ˆ

R

dΩ(λ )
1+ λ 2

1+ λ z
λ − z

(A.7)

= C+Dz+
ˆ

R
dΩ(λ )

[
1

λ − z
− λ

1+ λ 2

]
, z ∈ C+, (A.8)

Ω̃((−∞,λ ]) = s-lim
ε↓0

ˆ λ+ε

−∞

dΩ(t)
1+ t2

, λ ∈ R, (A.9)

Ω̃(R) = Im(M(i)) =
ˆ

R

dΩ(λ )
1+ λ 2 ∈ B(H ), (A.10)

C = Re(M(i)), D = s-lim
η↑∞

1
iη

M(iη) � 0, (A.11)

holds in the strong sense in H . Here Ω̃(B) =
´
B

(
1+ λ 2

)−1
dΩ(λ ) , B ∈ B(R) .

(iv) Let λ1,λ2 ∈ R , λ1 < λ2 . Then the Stieltjes inversion formula for Ω reads

Ω((λ1,λ2]) f = π−1 s-lim
δ↓0

s-lim
ε↓0

ˆ λ2+δ

λ1+δ
dλ Im(M(λ + iε)) f , f ∈ H . (A.12)

(v) Any isolated poles of M are simple and located on the real axis, the residues at
poles being nonpositive bounded operators in B(H ) .
(vi) For all λ ∈ R ,

s-lim
ε↓0

ε Re(M(λ + iε)) = 0, (A.13)

Ω({λ}) = s-lim
ε↓0

ε Im(M(λ + iε)) = −is-lim
ε↓0

εM(λ + iε). (A.14)
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(vii) If in addition M(z) ∈B∞(H ) , z ∈C+ , then the measure Ω in (A.7) is countably
additive with respect to the B(H )-norm, and the Nevanlinna representation (A.7),
(A.8) and the Stieltjes inversion formula (A.12) as well as (A.13), (A.14) hold with the
limits taken with respect to the ‖ · ‖B(H ) -norm.
(viii) Let f ∈ H and assume in addition that Ω(·) f is of finite total variation. Then
for a.e. λ ∈ R , the normal limits M(λ + i0) f exist in the strong sense and

s-lim
ε↓0

M(λ + iε) f = M(λ + i0) f = H(Ω(·) f )(λ )+ iπΩ′(λ ) f , (A.15)

where H(Ω(·) f ) denotes the H -valued Hilbert transform

H(Ω(·) f )(λ ) = p.v.
ˆ ∞

−∞
dΩ(t) f

1
t−λ

= s-lim
δ↓0

ˆ
|t−λ |�δ

dΩ(t) f
1

t−λ
. (A.16)

Sketch of proof. Item (i) is clear and it implies items (ii) together with the fact
that ∑ j∈N 2− j(e j,Ω(·)e j)H represents a (scalar) control measure for Ω(·) .

That equations (A.7)–(A.11) hold in the strong sense in H and the validity of
the Stieltjes inversion formula (A.12) were proved by Allen and Narcowich [10]. Their
proofs rely on the polarization identity and the one-to-one correspondence between
bounded, symmetric sesquilinear forms on H and the set of bounded self-adjoint op-
erators on H . We also note that the proof of Theorem A.4 in the case where strong
convergence is replaced by weak convergence readily follows from the corresponding
scalar version (see also the matrix-valued case studied, e.g., in [45, Theorems 5.4 and
5.5]). The various extensions from weak convergence to strong convergence in The-
orem A.4 then repeatedly use a standard result on monotonic sequences of bounded,
nonnegative operators in H (called Vigier’s theorem in [86, p. 263]):

If 0 � B1 � B2 � · · · � B∞, with Bn,B∞ ∈ B(H ), n ∈ N,

then s-lim
n→∞

Bn = B for some B ∈ B(H ). (A.17)

Similarly, recalling the extension of this convergence result to compact operators (cf.
[10, Lemma 2.1]):

If 0 � C1 � C2 � · · · � C∞, with Cn,C∞ ∈ B∞(H ), n ∈ N,

then lim
n→∞

‖Cn−C‖B(H ) = 0 for some C ∈ B∞(H ), (A.18)

repeated applications of this fact yield the extensions to B(H )-norm convergence in
item (vii) . Of course, the monotonically increasing and uniformly bounded families
{Bn}n∈N and {Cn}n∈N in (A.17) and (A.18) can be replaced by monotonically de-
creasing families of uniformly bounded operators in H . (For variations of (A.17) and
(A.18) we also refer to [59, Theorems VIII.3.3 and VIII.3.5, Remark VIII.3.4].)

In the special case of scalar Herglotz functions m (cf. [17] and [57] for detailed
treatments), isolated zeros of m are well-known to be necessarily simple and located
on R . This can be inferred from the fact that −1/m is a Herglotz function whenever
m is one, and hence isolated poles of 1/m are also necessarily simple with a negative
residue. Studying ( f ,M(z) f )H for all f ∈ H then illustrates item (v) .
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That item (vi) holds, in fact, with s-limε↓0 rather than w-limε↓0 follows again
from monotonicity considerations: First, (choosing D = 0 in (A.8) without loss of
generality) one notes that the expression on the left-hand side in (A.19) below

ε Im

(
1

t− (λ + iε)

)
=

ε2

(t −λ )2 + ε2 ∈ [0,1], (t,λ ) ∈ R2, ε > 0, (A.19)

is nonnegative, uniformly bounded by 1, and monotonically decreasing with respect to
ε as ε ↓ 0. Moreover,

lim
ε↓0

ε Im

(
1

t − (λ + iε)

)
=

{
0, t ∈ R\{λ},
1, t = λ .

(A.20)

Combining this with the analog of the monotonicity result (A.17) in the decreasing case
proves the first equality in (A.14). In the remainder of the proof of item (vi) we make
the simplifying assumption that M is of the form M(z) =

´
R dΩ(λ )(λ − z)−1 , z ∈ C+ ,

which is permitted, without loss of generality, as only local considerations are at stake.
Since

ε Re

(
1

t − (λ + iε)

)
=

ε(t −λ )
(t −λ )2 + ε2 ∈ [−1/2,1/2], (t,λ ) ∈ R2, ε > 0, (A.21)

is not monotonic with respect to ε as ε ↓ 0, we decompose it into three monotonic
pieces as follows,

ε Re

(
1

t− (λ + iε)

)
= ψ1(t−λ ,ε)+ ψ2(t −λ ,ε)−2−1, (A.22)

where

ψ1(x,ε) =

{
εx
[
x2 + ε2

]−1
, |x| � ε,

1/2, |x| � ε,
ψ2(x,ε) =

{
εx
[
x2 + ε2

]−1
, |x| � ε,

1/2, |x| � ε.
(A.23)

By monotonicity of each of the three terms with respect to ε , one obtains that

s-lim
ε↓0

ε Re(M(λ + iε) = s-lim
ε↓0

ˆ
R

dΩ(t)
ε(t −λ )

(t−λ )2 + ε2

= s-lim
ε↓0

ˆ
R

dΩ(t)
[
ψ1(t −λ ,ε)+ ψ2(t−λ ,ε)−2−1]= 0, (A.24)

because the corresponding weak limits equal zero by the following well-known argu-
ments: Let f ∈ H , then∣∣∣∣ε ˆ|t−λ |�1

d( f ,Ω(t) f )H
(t −λ )

(t−λ )2 + ε2

∣∣∣∣
� ε
ˆ
|t−λ |�1

d( f ,Ω(t) f )H |t−λ |−1 −→
ε↓0

0.

(A.25)
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By polarization, also

lim
ε↓0

∣∣∣∣ε ˆ|t−λ |�1
d( f ,Ω(t)g)H

(t−λ )
(t −λ )2 + ε2

∣∣∣∣= 0, f ,g ∈ H . (A.26)

Next, for f ∈ H ,

lim
ε↓0

∣∣∣∣ˆ|t−λ |�1
d( f ,Ω(t) f )H

ε(t −λ )
(t −λ )2 + ε2

∣∣∣∣
� lim

ε↓0

ˆ
|t−λ |�1

d( f ,Ω(t) f )H
ε|t−λ |

(t−λ )2 + ε2 = 0,

(A.27)

applying the dominated convergence theorem, as

ε|t−λ |
(t−λ )2 + ε2 � 1

2
, t ∈ R, ε > 0. (A.28)

Again by polarization,

lim
ε↓0

∣∣∣∣ε ˆ|t−λ |�1
d( f ,Ω(t)g)H

(t−λ )
(t −λ )2 + ε2

∣∣∣∣= 0, f ,g ∈ H , (A.29)

completing the proof of
w-lim

ε↓0
ε Re(M(λ + iε)) = 0. (A.30)

Thus, (A.24) together with the first equality in (A.14), then also prove the second equal-
ity in (A.14) and hence completes the proof of item (vi) .

Item (viii) is a consequence of [21, Subsections 1.2.4 and 1.2.5] (which in turn
are based on [18]). �

As usual, the normal limits in Theorem A.4 can be replaced by nontangential ones.
The nature of the boundary values of M(·+ i0) when for some p > 0, M(z) ∈

Bp(H ) , z ∈ C+ , was clarified in detail in [26], [77], [78], [79].
Using an approach based on operator-valued Stieltjes integrals, a special case of

Theorem A.4 was proved by Brodskii [29, Sect. I.4]. In particular, he proved the ana-
log of the Herglotz representation for operator-valued Caratheodory functions. More
precisely, if F is analytic on D (the open unit disk in C) with nonnegative real part
Re(F(w)) � 0, w ∈ D , then F is of the form

F(w) = i Im(F(0))+
‰

∂ D
dϒ(ζ )

ζ +w
ζ −w

, w ∈ D,

Re(F(0)) = ϒ(∂ D),
(A.31)

with ϒ a bounded, nonnegative B(H )-valued measure on ∂ D . The result (A.31) can
also be derived by an application of Naimark’s dilation theory (cf. [10] and [43, p. 68]),
and it can also be used to derive the Nevanlinna representation (A.7), (A.8) (cf. [10],
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and in a special case also [29, Sect. I.4]). Finally, we also mention that Shmuly’an
[102] discusses the Nevanlinna representation (A.7), (A.8); moreover, certain special
classes of Nevanlinna functions, isolated by Kac and Krein [57] in the scalar context,
are studied by Brodskii [29, Sect. I.4] and Shmuly’an [102].

For a variety of applications of operator-valued Herglotz functions, see, for in-
stance, [1], [4], [16], [28], [31], [36]–[38], [44], [66]–[69], [102], and the literature
cited therein.
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[52] E. GÜL, On the regularized trace of a second order differential operator, Appl. Math. Comp. 198
(2008), 471–480.

[53] E. HILLE, Lectures on Ordinary Differential Equations, Addison–Wesley, Reading, MA, 1969.
[54] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semi-Groups, Colloquium Publications,

Vol. 31, rev. ed., Amer. Math. Soc., Providence, RI, 1985.
[55] D. HINTON AND A. SCHNEIDER, On the spectral representation for singular selfadjoint bound-

ary eigenvalue problems, in Contributions to Operator Theory in Spaces with an Indefinite Metric,
A. Dijksma, I. Gohberg, M. A. Kaashoek, R. Mennicken (eds.), Operator Theory: Advances and
Applications, Vol. 106 (1998), pp. 217–251.
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[99] Y. SAITŌ, On the asymptotic behavior of solutions of the Schrödinger equation (−Δ+Q(y)−k2)V =
F , Osaka J. Math. 14 (1977), 11–35.
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twicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), 220–269.

[109] K. YOSIDA, Functional Analysis, 6th ed., Springer, Berlin, 1980.

(Received September 8, 2011) Fritz Gesztesy
Department of Mathematics

University of Missouri
Columbia, MO 65211, USA

e-mail: gesztesyf@missouri.edu

http: // www. math. missouri. edu/ personnel/faculty/gesztesyf. html

Rudi Weikard
Department of Mathematics

University of Alabama at Birmingham
Birmingham, AL 35294, USA
e-mail: rudi@math.uab.edu

http:// www. math. uab. edu/ ~ rudi

Maxim Zinchenko
Department of Mathematics

University of Central Florida
Orlando, FL 32816, USA

e-mail: maxim@math.ucf.edu

http: // www. math. ucf. edu/ ~ maxim

Operators and Matrices
www.ele-math.com
oam@ele-math.com

http://www.math.missouri.edu/personnel/faculty/gesztesyf.html
http://www.math.uab.edu/~rudi
http://www.math.ucf.edu/~maxim

