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NUMERICAL RADIUS AND DISTANCE FROM UNITARY OPERATORS

CATALIN BADEA AND MICHEL CROUZEIX

(Communicated by T. Ando)

Abstract. Denote by w(A) the numerical radius of a bounded linear operator A acting on Hilbert
space. Suppose that A is invertible and that w(A) � 1+ε and w(A−1) � 1+ε for some ε � 0 .
It is shown that inf{‖A−U‖ : U unitary} � cε1/4 for some constant c > 0 . This generalizes a
result due to J.G. Stampfli, which is obtained for ε = 0 . An example is given showing that the
exponent 1/4 is optimal. The more general case of the operator ρ -radius wρ (·) is discussed for
1 � ρ � 2 .

1. Introduction and statement of the results

Let H be a complex Hilbert space endowed with the inner product 〈·, ·〉 and the
associated norm ‖ · ‖ . We denote by B(H) the C∗ -algebra of all bounded linear oper-
ators on H equipped with the operator norm

‖A‖ = sup{‖Ah‖ : h ∈ H,‖h‖ = 1}.
It is easy to see that unitary operators can be characterized as invertible contractions
with contractive inverses, i.e. as operators A with ‖A‖ � 1 and ‖A−1‖ � 1. More
generally, if A ∈ B(H) is invertible then

inf{‖A−U‖ : U unitary } = max

(
‖A‖−1,1− 1

‖A−1‖
)

.

We refer to [6, Theorem 1.3] and [9, Theorem 1] for a proof of this equality using
the polar decomposition of bounded operators. It also follows from this proof that if
A ∈ B(H) is an invertible operator satisfying ‖A‖� r and ‖A−1‖ � r for some r � 1,
then there exists a unitary operator U ∈ B(H) such that ‖A−U‖ � r−1.

The numerical radius of the operator A is defined by

w(A) = sup{|〈Ah,h〉| : h ∈ H,‖h‖ = 1}.
Stampfli has proved in [8] that numerical radius contractivity of A and of its inverse
A−1 , that is w(A) � 1 and w(A−1) � 1, imply that A is unitary. We define a function
ψ(r) for r � 1 by

ψ(r) = sup{‖A‖ : A ∈ B(H),w(A) � r, w(A−1) � r},
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the supremum being also considered over all Hilbert spaces H . Then the conditions
w(A) � r and w(A−1) � r imply max(‖A‖−1,1−‖A−1‖−1) � max(‖A‖−1,‖A−1‖−1)
� ψ(r)−1, hence the existence of a unitary operator U such that ‖A−U‖ � ψ(r)−1.
We have the two-sided estimate

r+
√

r2 −1 � ψ(r) � 2r.

The upper bound follows from the well-known inequalities w(A) � ‖A‖ � 2w(A) ,
while the lower bound is obtained by choosing H = C2 and

A =
(

1 2y
0 −1

)
with y =

√
r2−1,

in the definition of ψ . Indeed, we have A = A−1 , w(A) =
√

1+ y2 = r , and ‖A‖ =
y+

√
1+y2 = r+

√
r2−1.

Our first aim is to improve the upper estimate.

THEOREM 1.1. Let r � 1 . Then

ψ(r) � X(r)+
√

X(r)2−1, with X(r) = r+
√

r2−1. (1)

The estimate given in Theorem 1.1 is more accurate than ψ(r) � 2r for r close to 1,
more precisely for 1 � r � 1.0290855 . . .. It also gives ψ(1) = 1 (leading to Stampfli’s
result) and the following asymptotic estimate.

COROLLARY 1.2. We have

ψ(1+ε) � 1+ 4
√

8ε +O(ε1/2), ε → 0.

Our second aim is to prove that the exponent 1/4 in Corollary 1.2 is optimal. This
is a consequence of the following result.

THEOREM 1.3. Let n be a positive integer of the form n = 8k+4 . There exists a
n×n invertible matrix An with complex entries such that

w(An) � 1
cos π

n

, w(A−1
n ) � 1

cos π
n

, ‖An‖ = 1+
1

8
√

n
.

Indeed, Theorem 1.3 implies that

ψ
(

1
cos π

n

)
� ‖An‖ = 1+

1
8
√

n
.

Taking 1+ε = 1/cos π
n = 1 + π2

2n2 + O( 1
n4 ) , we see that the exponent 1

4 cannot be
improved.
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More generally, we can consider for ρ � 1 the ρ -radius wρ(A) introduced by Sz.-
Nagy and Foiaş (see [5, Chapter 1] and the references therein). Consider the class Cρ
of operators T ∈ B(H) which admit unitary ρ -dilations, i.e. there exist a super-space
H ⊃ H and a unitary operator U ∈ B(H ) such that

Tn = ρPUnP∗, for n = 1,2, . . . .

Here P denotes the orthogonal projection from H onto H . Then the operator ρ -radius
is defined by

wρ (A) = inf{λ > 0;λ−1A ∈ Cρ}.
From this definition it is easily seen that r(A) � wρ(A) � ρ‖A‖ , where r(A) denotes
the spectral radius of A . Also, wρ(A) is a non-increasing function of ρ . Another
equivalent definition follows from [5, Theorem 11.1]:

wρ (A) = sup
h∈Eρ

{
(1− 1

ρ ) |〈Ah,h〉|+
√

(1− 1
ρ )2|〈Ah,h〉|2 +( 2

ρ −1)‖Ah‖2
}

, with

Eρ = {h ∈ H ;‖h‖ = 1 and(1− 1
ρ )2|〈Ah,h〉|2− (1− 2

ρ )‖Ah‖2 � 0}.

Notice that Eρ = {h∈H ;‖h‖= 1} whenever 1� ρ � 2. This shows that w1(A)= ‖A‖ ,
w2(A) = w(A) and wρ(A) is a convex function of A if 1 � ρ � 2.

We now define a function ψρ(r) for r � 1 by

ψρ(r) = sup{‖A‖ ;A ∈ B(H),wρ (A) � r, wρ (A−1) � r}.
As before, the conditions wρ (A) � r and wρ(A−1) � r imply the existence of a unitary
operator U such that ‖A−U‖� ψρ(r)−1, and we have ψρ(r) � ρr . We will generalize
the estimate (1) from Theorem 1.1 by proving, for 1 � ρ � 2, the following result.

THEOREM 1.4. For 1 � ρ � 2 we have

ψρ(r) � Xρ(r)+
√

Xρ(r)2 −1, (2)

with Xρ(r) =
2+ ρr2−ρ +

√
(2+ ρr2−ρ)2−4r2

2r
.

COROLLARY 1.5. For 1 � ρ � 2 we have

ψρ(1+ε) � 1+ 4
√

8(ρ −1)ε +O(ε1/2), ε → 0.

We recover in this way for 1 � ρ � 2 the recent result of Ando and Li [2, Theorem 2.3],
namely that wρ(A) � 1 and wρ (A−1) � 1 imply A is unitary. The range 1 � ρ � 2
coincides with the range of those ρ � 1 for which wρ(·) is a norm. Contrarily to [2],
we have not been able to treat the case ρ > 2.

The organization of the paper is as follows. In Section 2 we prove Theorem 1.4,
which reduces to Theorem 1.1 in the case ρ = 2. The proof of Theorem 1.3 which
shows the optimality of the exponent 1/4 in Corollary 1.2 is given in Section 3.
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As a concluding remark, we would like to mention that the present developments
have been influenced by the recent work of Sano/Uchiyama [7] and Ando/Li [2]. In [3],
inspired by the paper of Stampfli [8], we have developed another (more complicated)
approach in the case ρ = 2.

2. Proof of Theorem 1.4 about ψρ

Let us consider M = 1
2 (A+(A∗)−1) ; then

M∗M−1 = 1
4 (A∗A+(A∗A)−1−2) � 0.

This implies ‖M−1‖ � 1. In what follows C1/2 will denote the positive square root
of the self-adjoint positive operator C . From (A∗A−2M∗M +1)2 = 4M∗M(M∗M−1)
we infer

A∗A−2M∗M +1 � 2(M∗M)1/2(M∗M−1)1/2,

whence A∗A � ((M∗M)1/2 +(M∗M−1)1/2)2.

Therefore ‖A‖ � ‖M‖+
√‖M‖2−1.

We now assume 1 � ρ � 2. Then wρ(.) is a norm and the two conditions wρ (A)�
r and wρ(A−1) � r imply wρ (M) � r . The desired estimate of ψρ(r) will follow from
the following auxiliary result.

LEMMA 2.1. Assume ρ � 1 . Then the assumptions wρ (M) � r and ‖M−1‖ � 1
imply ‖M‖ � Xρ(r) .

Proof. The contractivity of M−1 implies

‖u‖ � ‖Mu‖, (∀u ∈ H). (3)

As wρ (M) � r , it follows from a generalization by Durszt [4] of a decomposition due
to Ando [1], that the operator M can be decomposed as

M = ρrB1/2UC1/2,

with U unitary, C selfadjoint satisfying 0 < C < 1, and B = f (C) with f defined by
f (x) = (1−x)/(1−ρ(2−ρ)x)−1 . Notice that f is a decreasing function on the segment
[0,1] and an involution : f ( f (x)) = x . Let [α,β ] be the smallest segment containing
the spectrum of C . Then [

√
α ,

√
β ] is the smallest segment containing the spectrum of

C1/2 and [
√

f (β ),
√

f (α)] is the smallest segment containing the spectrum of B1/2 .
We have

‖u‖ � ‖Mu‖ � ρr
√

f (α)‖C1/2u‖, (∀u ∈ H).
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Choosing a sequence un of norm-one vectors (‖un‖ = 1) such that ‖C1/2un‖ tends to√
α , we first get

1 � ρr
√

α f (α) , i.e. 1− (2+ρr2−ρ)ρα + ρ2r2α2 � 0. Consequently we have

2+ρr2−ρ −√
(2+ρr2−ρ)2−4r2

2ρ r2 � α � 2+ρr2−ρ +
√

(2+ρr2−ρ)2−4r2

2ρ r2 ,

and, using α = f ( f (α)) ,

2+ρr2−ρ −
√

(2+ρr2−ρ)2−4r2

2ρ r2 � f (α) � 2+ρr2−ρ +
√

(2+ρr2−ρ)2−4r2

2ρ r2 .

Similarly, noticing that ‖(M∗)−1‖� 1, M∗ = ρrC1/2U∗B1/2 and C = f (B) , we obtain

2+ρr2−ρ −√
(2+ρr2−ρ)2−4r2

2ρ r2 � β � 2+ρr2−ρ +
√

(2+ρr2−ρ)2−4r2

2ρ r2 .

Therefore

‖M‖ � ρr‖B1/2‖‖C1/2‖ = ρr
√

f (α)β � 2+ρr2−ρ +
√

(2+ρr2−ρ)2−4r2

2r
.

This shows that ‖M‖ � Xρ(r) . �

3. The exponent 1/4 is optimal (Proof of Theorem 1.3)

Consider the family of n×n matrices A = DBD , defined for n = 8k+4, by

D = diag(eiπ/2n, . . . ,e(2�−1)iπ/2n, . . . ,e(2n−1)iπ/2n),

B = I + 1
2n3/2 E, where E is a matrix whose entries are defined as

ei j = 1 if 3k+2 � |i− j|� 5k+2, ei j = 0 otherwise.

We first remark that ‖A‖ = ‖B‖ = 1+ 1
8
√

n . Indeed, B is a symmetric matrix with non

negative entries, Be = (1+ 1
8
√

n )e with eT = (1,1,1 . . . ,1) . Thus ‖B‖= r(B) = 1+ 1
8
√

n
by the Perron-Frobenius theorem.

Consider now the permutation matrix P defined by pi j = 1 if i = j+1 mod-
ulo n and pi j = 0 otherwise and the diagonal matrix Δ =diag(1, . . . ,1,−1) . Then
P−1DP = eiπ/nΔD and P−1EP = E , whence (PΔ)−1APΔ = e2iπ/nA . Since PΔ is a
unitary matrix, the numerical range W (A) = {〈Au,u〉, ;‖u‖= 1} of A satisfies W (A) =
W ((PΔ)−1APΔ) = e2iπ/nW (A) . This shows that the numerical range of A is invariant
by the rotation of angle 2π/n centered in 0, and the same property also holds for the
numerical range of A−1 .

We postpone the proof of the estimates
∥∥ 1

2 (A+A∗)
∥∥ � 1 and

∥∥ 1
2 (A−1+(A−1)∗)

∥∥ �
1 to later sections. Using these estimates, we obtain that the numerical range W (A) is
contained in the half-plane {z ;Re z � 1} , whence in the regular n -sided polygon given
by the intersection of the half-planes {z ;Re(e2iπk/nz) � 1} , k = 1, . . . ,n . Consequently
w(A) � 1/cos(π/n) . The proof of w(A−1) � 1/cos(π/n) is similar.
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3.1. Proof of
∥∥ 1

2(A+A∗)
∥∥ � 1 .

Since the (�, j)-entry of A is e(�+ j−1)i π
n

(
δ�, j +

e�, j

2n3/2

)
, the matrix 1

2(A+A∗) is a

real symmetric matrix whose (i, j)−entry is cos
(
(i+ j−1)π

n

)(
δi, j +

ei, j

2n3/2

)
. It suffices

to show that, for every u = (u1, · · · ,un)T ∈ Rn , we have ‖u‖2 −Re〈Au,u〉 � 0. Let
E = {(i, j) ;1 � i, j � n,3k + 2 � |i− j| � 5k + 2} . The inequality which has to be
proved is equivalent to

n

∑
i=1

2sin2((i− 1
2 )π

n )u2
i − 1

2n3/2 ∑
i, j∈E

cos((i+ j−1)π
n )ui u j � 0.

Setting v j = u j sin(( j− 1
2 )π

n ) , this may be also written as follows

2‖v‖2−〈Mv,v〉+ 1
2n3/2 〈Ev,v〉 � 0, (v ∈ R

n). (4)

Here M is the matrix whose entries are defined by

mi j = 1
2n3/2 cot((i− 1

2 )π
n ) cot(( j− 1

2)π
n ), if (i, j) ∈ E , mi j = 0 otherwise.

We will see that the Frobenius (or Hilbert-Schmidt) norm of M satisfies ‖M‖F �√
9/32 < 3/4. A fortiori, the operator norm of M satisfies ‖M‖ � 3

4 . Together with
‖E‖ = n/4, this shows that ‖M‖+ 1

2n3/2 ‖E‖ � 7
8 . Property (4) is now verified.

It remains to show that ‖M‖2
F

� 9
32 . First we notice that mi j =mji = mn+1−i,n+1− j ,

and mii = 0. Hence, with E ′ = {(i, j) ∈ E ; i < j and i+ j � n+1} ,

‖M‖2
F

= 2∑
i< j

|mi j|2 � 4 ∑
(i, j)∈E ′

|mi j|2.

We have, for (i, j) ∈ E ′ ,

2 j � i+ j +5k+2 � n+5k+3 = 13k+7, thus 3k+3 � j � 13k+7
2 ,

2i � i+ j−3k−2 � n−3k−1 = 5k+3, thus 1 � i � 5k+3
2 .

This shows that

3π
16 � 3k+2

16k+8π � ( j− 1
2)π

n � 13k+6
16k+8π � π − 3π

16 , hence |cot(( j− 1
2 )π

n )| � cot 3π
16 � 3

2 .

We also use the estimate cot((i−1
2)π

n )� n/(π(i−1
2)) and the relation ∑i�1(i−1/2)−2 =

π2/2 to obtain

‖M‖2
F

� 4 ∑
(i, j)∈E ′

|mi j|2 � 4
4n3

n2

π2 ∑
i�1

1
(i−1/2)2 (2k+1)

9
4

=
9
32

.
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3.2. Proof of
∥∥ 1

2(A−1+(A−1)∗)
∥∥ � 1 .

We start from

(A−1)∗ = D(1+ 1
2n3/2 E)−1D

= D2 − 1
2n3/2 DED+ 1

4n3 DE2(1+ 1
2n3/2 E)−1D,

and we want to show that ‖u‖2−Re〈A−1u,u〉 � 0. We set v j = u j sin(( j− 1
2 )π

n ) . The
inequality

∥∥ 1
2 (A−1+(A−1)∗)

∥∥ � 1 is equivalent to

2‖v‖2−〈(M1 +M2 +M3 +M4)v,v〉 � 0, (v ∈ R
n).

Here the entries of the matrices Mp , 1 � p � 4, are given by

(m1)i j = − 1
2n3/2 cot((i− 1

2)π
n ) cot(( j− 1

2 )π
n )ei j,

(m2)i j = 1
2n3/2 ei j,

(m3)i j = 1
4n3 cot((i− 1

2 )π
n ) cot(( j− 1

2 )π
n ) fi j,

(m4)i j = − 1
4n3 fi j,

ei j and fi j respectively denoting the entries of the matrices E and F = E2(1+ 1
2n3/2 E)−1 .

Noticing that M1 =−M , we have ‖M1‖� 3
4 , ‖M2‖= 1

8
√

n , ‖F‖� n2/16
1−1/(8

√
n) � n2

14 and

‖M4‖ = 1
4n3 ‖F‖ . Now we use

‖M3‖2 � ‖M3‖2
F

� 1
16n6 max

i j
| fi j|2 ∑

i, j
|cot((i− 1

2 )π
n )|2 |cot(( j− 1

2)π
n )|2,

together with

∑
i, j
|cot((i− 1

2)π
n )|2 |cot(( j− 1

2 )π
n )|2 =

( n

∑
i=1

|cot((i− 1
2 )π

n )|2
)2

� 4
( n/2

∑
i=1

|cot((i− 1
2)π

n )|2
)2

� n4,

to obtain

‖M3‖ � 1
4n max

i j
| fi j|.

Using the notation ‖E‖∞ := max{‖Eu‖∞ ;u ∈ Cn,‖u‖∞ � 1} for the operator norm
induced by the maximum norm in C

d , we have ‖E‖∞ = n/4, whence ‖ 1
2n3/2 E‖∞ � 1/8

and thus ‖(1+ 1
2n3/2 E)−1‖∞ � 1

1−1/8 = 8
7 . This shows that

max
i j

| fi j| � ‖(1+ 1
2n3/2 E)−1‖∞ max

i j
|e2

i j| �
2n
7

,

by denoting e2
i j the entries of the matrix E2 and noticing that maxi, j |e2

i j|= n/4. Finally,

we obtain ‖M3‖ � 1
14 and ‖M1 +M2 +M3 +M4‖ � 3

4 + 1
8 + 1

14 + 1
56 < 1.
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