NUMERICAL RADIUS AND DISTANCE FROM UNITARY OPERATORS

Catalin Badea and Michel Crouzeix

(Communicated by T. Ando)

Abstract

Denote by $w(A)$ the numerical radius of a bounded linear operator A acting on Hilbert space. Suppose that A is invertible and that $w(A) \leqslant 1+\varepsilon$ and $w\left(A^{-1}\right) \leqslant 1+\varepsilon$ for some $\varepsilon \geqslant 0$. It is shown that $\inf \{\|A-U\|: U$ unitary $\} \leqslant c \varepsilon^{1 / 4}$ for some constant $c>0$. This generalizes a result due to J.G. Stampfli, which is obtained for $\varepsilon=0$. An example is given showing that the exponent $1 / 4$ is optimal. The more general case of the operator ρ-radius $w_{\rho}(\cdot)$ is discussed for $1 \leqslant \rho \leqslant 2$.

1. Introduction and statement of the results

Let H be a complex Hilbert space endowed with the inner product $\langle\cdot, \cdot\rangle$ and the associated norm $\|\cdot\|$. We denote by $\mathscr{B}(H)$ the C^{*}-algebra of all bounded linear operators on H equipped with the operator norm

$$
\|A\|=\sup \{\|A h\|: h \in H,\|h\|=1\}
$$

It is easy to see that unitary operators can be characterized as invertible contractions with contractive inverses, i.e. as operators A with $\|A\| \leqslant 1$ and $\left\|A^{-1}\right\| \leqslant 1$. More generally, if $A \in \mathscr{B}(H)$ is invertible then

$$
\inf \{\|A-U\|: U \text { unitary }\}=\max \left(\|A\|-1,1-\frac{1}{\left\|A^{-1}\right\|}\right)
$$

We refer to [6, Theorem 1.3] and [9, Theorem 1] for a proof of this equality using the polar decomposition of bounded operators. It also follows from this proof that if $A \in \mathscr{B}(H)$ is an invertible operator satisfying $\|A\| \leqslant r$ and $\left\|A^{-1}\right\| \leqslant r$ for some $r \geqslant 1$, then there exists a unitary operator $U \in \mathscr{B}(H)$ such that $\|A-U\| \leqslant r-1$.

The numerical radius of the operator A is defined by

$$
w(A)=\sup \{|\langle A h, h\rangle|: h \in H,\|h\|=1\} .
$$

Stampfli has proved in [8] that numerical radius contractivity of A and of its inverse A^{-1}, that is $w(A) \leqslant 1$ and $w\left(A^{-1}\right) \leqslant 1$, imply that A is unitary. We define a function $\psi(r)$ for $r \geqslant 1$ by

$$
\psi(r)=\sup \left\{\|A\|: A \in \mathscr{B}(H), w(A) \leqslant r, w\left(A^{-1}\right) \leqslant r\right\}
$$

Keywords and phrases: Numerical radius, unitary operator, unitary ρ-dilation.
the supremum being also considered over all Hilbert spaces H. Then the conditions $w(A) \leqslant r$ and $w\left(A^{-1}\right) \leqslant r$ imply $\max \left(\|A\|-1,1-\left\|A^{-1}\right\|^{-1}\right) \leqslant \max \left(\|A\|-1,\left\|A^{-1}\right\|-1\right)$ $\leqslant \psi(r)-1$, hence the existence of a unitary operator U such that $\|A-U\| \leqslant \psi(r)-1$. We have the two-sided estimate

$$
r+\sqrt{r^{2}-1} \leqslant \psi(r) \leqslant 2 r
$$

The upper bound follows from the well-known inequalities $w(A) \leqslant\|A\| \leqslant 2 w(A)$, while the lower bound is obtained by choosing $H=\mathbb{C}^{2}$ and

$$
A=\left(\begin{array}{cc}
1 & 2 y \\
0 & -1
\end{array}\right) \quad \text { with } y=\sqrt{r^{2}-1}
$$

in the definition of ψ. Indeed, we have $A=A^{-1}, w(A)=\sqrt{1+y^{2}}=r$, and $\|A\|=$ $y+\sqrt{1+y^{2}}=r+\sqrt{r^{2}-1}$.

Our first aim is to improve the upper estimate.
Theorem 1.1. Let $r \geqslant 1$. Then

$$
\begin{equation*}
\psi(r) \leqslant X(r)+\sqrt{X(r)^{2}-1}, \quad \text { with } \quad X(r)=r+\sqrt{r^{2}-1} \tag{1}
\end{equation*}
$$

The estimate given in Theorem 1.1 is more accurate than $\psi(r) \leqslant 2 r$ for r close to 1 , more precisely for $1 \leqslant r \leqslant 1.0290855 \ldots$. It also gives $\psi(1)=1$ (leading to Stampfli's result) and the following asymptotic estimate.

Corollary 1.2. We have

$$
\psi(1+\varepsilon) \leqslant 1+\sqrt[4]{8 \varepsilon}+O\left(\varepsilon^{1 / 2}\right), \quad \varepsilon \rightarrow 0
$$

Our second aim is to prove that the exponent $1 / 4$ in Corollary 1.2 is optimal. This is a consequence of the following result.

THEOREM 1.3. Let n be a positive integer of the form $n=8 k+4$. There exists a $n \times n$ invertible matrix A_{n} with complex entries such that

$$
w\left(A_{n}\right) \leqslant \frac{1}{\cos \frac{\pi}{n}}, \quad w\left(A_{n}^{-1}\right) \leqslant \frac{1}{\cos \frac{\pi}{n}}, \quad\left\|A_{n}\right\|=1+\frac{1}{8 \sqrt{n}} .
$$

Indeed, Theorem 1.3 implies that

$$
\psi\left(\frac{1}{\cos \frac{\pi}{n}}\right) \geqslant\left\|A_{n}\right\|=1+\frac{1}{8 \sqrt{n}}
$$

Taking $1+\varepsilon=1 / \cos \frac{\pi}{n}=1+\frac{\pi^{2}}{2 n^{2}}+O\left(\frac{1}{n^{4}}\right)$, we see that the exponent $\frac{1}{4}$ cannot be improved.

More generally, we can consider for $\rho \geqslant 1$ the ρ-radius $w_{\rho}(A)$ introduced by Sz.Nagy and Foiaş (see [5, Chapter 1] and the references therein). Consider the class \mathscr{C}_{ρ} of operators $T \in \mathscr{B}(H)$ which admit unitary ρ-dilations, i.e. there exist a super-space $\mathscr{H} \supset H$ and a unitary operator $U \in \mathscr{B}(\mathscr{H})$ such that

$$
T^{n}=\rho P U^{n} P^{*}, \quad \text { for } n=1,2, \ldots
$$

Here P denotes the orthogonal projection from \mathscr{H} onto H. Then the operator ρ-radius is defined by

$$
w_{\rho}(A)=\inf \left\{\lambda>0 ; \lambda^{-1} A \in \mathscr{C}_{\rho}\right\} .
$$

From this definition it is easily seen that $r(A) \leqslant w_{\rho}(A) \leqslant \rho\|A\|$, where $r(A)$ denotes the spectral radius of A. Also, $w_{\rho}(A)$ is a non-increasing function of ρ. Another equivalent definition follows from [5, Theorem 11.1]:

$$
\begin{aligned}
w_{\rho}(A) & =\sup _{h \in \mathscr{E}_{\rho}}\left\{\left(1-\frac{1}{\rho}\right)|\langle A h, h\rangle|+\sqrt{\left(1-\frac{1}{\rho}\right)^{2}|\langle A h, h\rangle|^{2}+\left(\frac{2}{\rho}-1\right)\|A h\|^{2}}\right\}, \quad \text { with } \\
\mathscr{E}_{\rho} & =\left\{h \in H ;\|h\|=1 \operatorname{and}\left(1-\frac{1}{\rho}\right)^{2}|\langle A h, h\rangle|^{2}-\left(1-\frac{2}{\rho}\right)\|A h\|^{2} \geqslant 0\right\} .
\end{aligned}
$$

Notice that $\mathscr{E}_{\rho}=\{h \in H ;\|h\|=1\}$ whenever $1 \leqslant \rho \leqslant 2$. This shows that $w_{1}(A)=\|A\|$, $w_{2}(A)=w(A)$ and $w_{\rho}(A)$ is a convex function of A if $1 \leqslant \rho \leqslant 2$.

We now define a function $\psi_{\rho}(r)$ for $r \geqslant 1$ by

$$
\psi_{\rho}(r)=\sup \left\{\|A\| ; A \in \mathscr{B}(H), w_{\rho}(A) \leqslant r, w_{\rho}\left(A^{-1}\right) \leqslant r\right\} .
$$

As before, the conditions $w_{\rho}(A) \leqslant r$ and $w_{\rho}\left(A^{-1}\right) \leqslant r$ imply the existence of a unitary operator U such that $\|A-U\| \leqslant \psi_{\rho}(r)-1$, and we have $\psi_{\rho}(r) \leqslant \rho r$. We will generalize the estimate (1) from Theorem 1.1 by proving, for $1 \leqslant \rho \leqslant 2$, the following result.

THEOREM 1.4. For $1 \leqslant \rho \leqslant 2$ we have

$$
\begin{align*}
\psi_{\rho}(r) & \leqslant X_{\rho}(r)+\sqrt{X_{\rho}(r)^{2}-1} \tag{2}\\
\text { with } \quad X_{\rho}(r) & =\frac{2+\rho r^{2}-\rho+\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 r}
\end{align*}
$$

Corollary 1.5. For $1 \leqslant \rho \leqslant 2$ we have

$$
\psi_{\rho}(1+\varepsilon) \leqslant 1+\sqrt[4]{8(\rho-1) \varepsilon}+O\left(\varepsilon^{1 / 2}\right), \quad \varepsilon \rightarrow 0
$$

We recover in this way for $1 \leqslant \rho \leqslant 2$ the recent result of Ando and Li [2, Theorem 2.3], namely that $w_{\rho}(A) \leqslant 1$ and $w_{\rho}\left(A^{-1}\right) \leqslant 1$ imply A is unitary. The range $1 \leqslant \rho \leqslant 2$ coincides with the range of those $\rho \geqslant 1$ for which $w_{\rho}(\cdot)$ is a norm. Contrarily to [2], we have not been able to treat the case $\rho>2$.

The organization of the paper is as follows. In Section 2 we prove Theorem 1.4, which reduces to Theorem 1.1 in the case $\rho=2$. The proof of Theorem 1.3 which shows the optimality of the exponent $1 / 4$ in Corollary 1.2 is given in Section 3.

As a concluding remark, we would like to mention that the present developments have been influenced by the recent work of Sano/Uchiyama [7] and Ando/Li [2]. In [3], inspired by the paper of Stampfli [8], we have developed another (more complicated) approach in the case $\rho=2$.

2. Proof of Theorem 1.4 about ψ_{ρ}

Let us consider $M=\frac{1}{2}\left(A+\left(A^{*}\right)^{-1}\right)$; then

$$
M^{*} M-1=\frac{1}{4}\left(A^{*} A+\left(A^{*} A\right)^{-1}-2\right) \geqslant 0
$$

This implies $\left\|M^{-1}\right\| \leqslant 1$. In what follows $C^{1 / 2}$ will denote the positive square root of the self-adjoint positive operator C. From $\left(A^{*} A-2 M^{*} M+1\right)^{2}=4 M^{*} M\left(M^{*} M-1\right)$ we infer

$$
\begin{aligned}
A^{*} A-2 M^{*} M+1 & \leqslant 2\left(M^{*} M\right)^{1 / 2}\left(M^{*} M-1\right)^{1 / 2} \\
\text { whence } \quad A^{*} A & \leqslant\left(\left(M^{*} M\right)^{1 / 2}+\left(M^{*} M-1\right)^{1 / 2}\right)^{2}
\end{aligned}
$$

Therefore $\|A\| \leqslant\|M\|+\sqrt{\|M\|^{2}-1}$.
We now assume $1 \leqslant \rho \leqslant 2$. Then $w_{\rho}($.$) is a norm and the two conditions w_{\rho}(A) \leqslant$ r and $w_{\rho}\left(A^{-1}\right) \leqslant r$ imply $w_{\rho}(M) \leqslant r$. The desired estimate of $\psi_{\rho}(r)$ will follow from the following auxiliary result.

Lemma 2.1. Assume $\rho \geqslant 1$. Then the assumptions $w_{\rho}(M) \leqslant r$ and $\left\|M^{-1}\right\| \leqslant 1$ imply $\|M\| \leqslant X_{\rho}(r)$.

Proof. The contractivity of M^{-1} implies

$$
\begin{equation*}
\|u\| \leqslant\|M u\|, \quad(\forall u \in H) \tag{3}
\end{equation*}
$$

As $w_{\rho}(M) \leqslant r$, it follows from a generalization by Durszt [4] of a decomposition due to Ando [1], that the operator M can be decomposed as

$$
M=\rho r B^{1 / 2} U C^{1 / 2}
$$

with U unitary, C selfadjoint satisfying $0<C<1$, and $B=f(C)$ with f defined by $f(x)=(1-x) /(1-\rho(2-\rho) x)^{-1}$. Notice that f is a decreasing function on the segment $[0,1]$ and an involution : $f(f(x))=x$. Let $[\alpha, \beta]$ be the smallest segment containing the spectrum of C. Then $[\sqrt{\alpha}, \sqrt{\beta}]$ is the smallest segment containing the spectrum of $C^{1 / 2}$ and $[\sqrt{f(\beta)}, \sqrt{f(\alpha)}]$ is the smallest segment containing the spectrum of $B^{1 / 2}$. We have

$$
\|u\| \leqslant\|M u\| \leqslant \rho r \sqrt{f(\alpha)}\left\|C^{1 / 2} u\right\|, \quad(\forall u \in H)
$$

Choosing a sequence u_{n} of norm-one vectors $\left(\left\|u_{n}\right\|=1\right)$ such that $\left\|C^{1 / 2} u_{n}\right\|$ tends to $\sqrt{\alpha}$, we first get $1 \leqslant \rho r \sqrt{\alpha f(\alpha)}$, i.e. $1-\left(2+\rho r^{2}-\rho\right) \rho \alpha+\rho^{2} r^{2} \alpha^{2} \leqslant 0$. Consequently we have

$$
\frac{2+\rho r^{2}-\rho-\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 \rho r^{2}} \leqslant \alpha \leqslant \frac{2+\rho r^{2}-\rho+\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 \rho r^{2}}
$$

and, using $\alpha=f(f(\alpha))$,

$$
\frac{2+\rho r^{2}-\rho-\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 \rho r^{2}} \leqslant f(\alpha) \leqslant \frac{2+\rho r^{2}-\rho+\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 \rho r^{2}}
$$

Similarly, noticing that $\left\|\left(M^{*}\right)^{-1}\right\| \leqslant 1, M^{*}=\rho r C^{1 / 2} U^{*} B^{1 / 2}$ and $C=f(B)$, we obtain

$$
\frac{2+\rho r^{2}-\rho-\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 \rho r^{2}} \leqslant \beta \leqslant \frac{2+\rho r^{2}-\rho+\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 \rho r^{2}}
$$

Therefore

$$
\|M\| \leqslant \rho r\left\|B^{1 / 2}\right\|\left\|C^{1 / 2}\right\|=\rho r \sqrt{f(\alpha) \beta} \leqslant \frac{2+\rho r^{2}-\rho+\sqrt{\left(2+\rho r^{2}-\rho\right)^{2}-4 r^{2}}}{2 r}
$$

This shows that $\|M\| \leqslant X_{\rho}(r)$.

3. The exponent $1 / 4$ is optimal (Proof of Theorem 1.3)

Consider the family of $n \times n$ matrices $A=D B D$, defined for $n=8 k+4$, by

$$
\begin{aligned}
D= & \operatorname{diag}\left(e^{i \pi / 2 n}, \ldots, e^{(2 \ell-1) i \pi / 2 n}, \ldots, e^{(2 n-1) i \pi / 2 n}\right) \\
B= & I+\frac{1}{2 n^{3 / 2}} E, \quad \text { where } E \text { is a matrix whose entries are defined as } \\
& e_{i j}=1 \text { if } 3 k+2 \leqslant|i-j| \leqslant 5 k+2, \quad e_{i j}=0 \text { otherwise. }
\end{aligned}
$$

We first remark that $\|A\|=\|B\|=1+\frac{1}{8 \sqrt{n}}$. Indeed, B is a symmetric matrix with non negative entries, $B e=\left(1+\frac{1}{8 \sqrt{n}}\right) e$ with $e^{T}=(1,1,1 \ldots, 1)$. Thus $\|B\|=r(B)=1+\frac{1}{8 \sqrt{n}}$ by the Perron-Frobenius theorem.

Consider now the permutation matrix P defined by $p_{i j}=1$ if $i=j+1$ modulo n and $p_{i j}=0$ otherwise and the diagonal matrix $\Delta=\operatorname{diag}(1, \ldots, 1,-1)$. Then $P^{-1} D P=e^{i \pi / n} \Delta D$ and $P^{-1} E P=E$, whence $(P \Delta)^{-1} A P \Delta=e^{2 i \pi / n} A$. Since $P \Delta$ is a unitary matrix, the numerical range $W(A)=\{\langle A u, u\rangle, ;\|u\|=1\}$ of A satisfies $W(A)=$ $W\left((P \Delta)^{-1} A P \Delta\right)=e^{2 i \pi / n} W(A)$. This shows that the numerical range of A is invariant by the rotation of angle $2 \pi / n$ centered in 0 , and the same property also holds for the numerical range of A^{-1}.

We postpone the proof of the estimates $\left\|\frac{1}{2}\left(A+A^{*}\right)\right\| \leqslant 1$ and $\left\|\frac{1}{2}\left(A^{-1}+\left(A^{-1}\right)^{*}\right)\right\| \leqslant$ 1 to later sections. Using these estimates, we obtain that the numerical range $W(A)$ is contained in the half-plane $\{z ; \operatorname{Re} z \leqslant 1\}$, whence in the regular n-sided polygon given by the intersection of the half-planes $\left\{z ; \operatorname{Re}\left(e^{2 i \pi k / n} z\right) \leqslant 1\right\}, k=1, \ldots, n$. Consequently $w(A) \leqslant 1 / \cos (\pi / n)$. The proof of $w\left(A^{-1}\right) \leqslant 1 / \cos (\pi / n)$ is similar.

3.1. Proof of $\left\|\frac{1}{2}\left(A+A^{*}\right)\right\| \leqslant 1$.

Since the (ℓ, j)-entry of A is $e^{(\ell+j-1) i \frac{\pi}{n}}\left(\delta_{\ell, j}+\frac{e_{\ell, j}}{2 n^{3 / 2}}\right)$, the matrix $\frac{1}{2}\left(A+A^{*}\right)$ is a real symmetric matrix whose (i, j)-entry is $\cos \left((i+j-1) \frac{\pi}{n}\right)\left(\delta_{i, j}+\frac{e_{i, j}}{2 n^{3 / 2}}\right)$. It suffices to show that, for every $u=\left(u_{1}, \cdots, u_{n}\right)^{T} \in \mathbb{R}^{n}$, we have $\|u\|^{2}-\operatorname{Re}\langle A u, u\rangle \geqslant 0$. Let $\mathscr{E}=\{(i, j) ; 1 \leqslant i, j \leqslant n, 3 k+2 \leqslant|i-j| \leqslant 5 k+2\}$. The inequality which has to be proved is equivalent to

$$
\sum_{i=1}^{n} 2 \sin ^{2}\left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right) u_{i}^{2}-\frac{1}{2 n^{3 / 2}} \sum_{i, j \in \mathscr{E}} \cos \left((i+j-1) \frac{\pi}{n}\right) u_{i} u_{j} \geqslant 0
$$

Setting $v_{j}=u_{j} \sin \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right)$, this may be also written as follows

$$
\begin{equation*}
2\|v\|^{2}-\langle M v, v\rangle+\frac{1}{2 n^{3 / 2}}\langle E v, v\rangle \geqslant 0, \quad\left(v \in \mathbb{R}^{n}\right) \tag{4}
\end{equation*}
$$

Here M is the matrix whose entries are defined by

$$
m_{i j}=\frac{1}{2 n^{3 / 2}} \cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right) \cot \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right), \quad \text { if }(i, j) \in \mathscr{E}, \quad m_{i j}=0 \quad \text { otherwise. }
$$

We will see that the Frobenius (or Hilbert-Schmidt) norm of M satisfies $\|M\|_{F} \leqslant$ $\sqrt{9 / 32}<3 / 4$. A fortiori, the operator norm of M satisfies $\|M\| \leqslant \frac{3}{4}$. Together with $\|E\|=n / 4$, this shows that $\|M\|+\frac{1}{2 n^{3 / 2}}\|E\| \leqslant \frac{7}{8}$. Property (4) is now verified.

It remains to show that $\|M\|_{F}^{2} \leqslant \frac{9}{32}$. First we notice that $m_{i j}=m_{j i}=m_{n+1-i, n+1-j}$, and $m_{i i}=0$. Hence, with $\mathscr{E}^{\prime}=\{(i, j) \in \mathscr{E} ; i<j$ and $i+j \leqslant n+1\}$,

$$
\|M\|_{F}^{2}=2 \sum_{i<j}\left|m_{i j}\right|^{2} \leqslant 4 \sum_{(i, j) \in \mathscr{E}^{\prime}}\left|m_{i j}\right|^{2}
$$

We have, for $(i, j) \in \mathscr{E}^{\prime}$,

$$
\begin{aligned}
& 2 j \leqslant i+j+5 k+2 \leqslant n+5 k+3=13 k+7, \quad \text { thus } \quad 3 k+3 \leqslant j \leqslant \frac{13 k+7}{2}, \\
& 2 i \leqslant i+j-3 k-2 \leqslant n-3 k-1=5 k+3, \quad \text { thus } \quad 1 \leqslant i \leqslant \frac{5 k+3}{2} .
\end{aligned}
$$

This shows that

$$
\frac{3 \pi}{16} \leqslant \frac{3 k+2}{16 k+8} \pi \leqslant\left(j-\frac{1}{2}\right) \frac{\pi}{n} \leqslant \frac{13 k+6}{16 k+8} \pi \leqslant \pi-\frac{3 \pi}{16}, \quad \text { hence } \quad\left|\cot \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right)\right| \leqslant \cot \frac{3 \pi}{16} \leqslant \frac{3}{2}
$$

We also use the estimate $\cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right) \leqslant n /\left(\pi\left(i-\frac{1}{2}\right)\right)$ and the relation $\sum_{i \geqslant 1}(i-1 / 2)^{-2}=$ $\pi^{2} / 2$ to obtain

$$
\|M\|_{F}^{2} \leqslant 4 \sum_{(i, j) \in \mathscr{E}^{\prime}}\left|m_{i j}\right|^{2} \leqslant \frac{4}{4 n^{3}} \frac{n^{2}}{\pi^{2}} \sum_{i \geqslant 1} \frac{1}{(i-1 / 2)^{2}}(2 k+1) \frac{9}{4}=\frac{9}{32} .
$$

3.2. Proof of $\left\|\frac{1}{2}\left(A^{-1}+\left(A^{-1}\right)^{*}\right)\right\| \leqslant 1$.

We start from

$$
\begin{aligned}
\left(A^{-1}\right)^{*} & =D\left(1+\frac{1}{2 n^{3 / 2}} E\right)^{-1} D \\
& =D^{2}-\frac{1}{2 n^{3 / 2}} D E D+\frac{1}{4 n^{3}} D E^{2}\left(1+\frac{1}{2 n^{3 / 2}} E\right)^{-1} D
\end{aligned}
$$

and we want to show that $\|u\|^{2}-\operatorname{Re}\left\langle A^{-1} u, u\right\rangle \geqslant 0$. We set $v_{j}=u_{j} \sin \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right)$. The inequality $\left\|\frac{1}{2}\left(A^{-1}+\left(A^{-1}\right)^{*}\right)\right\| \leqslant 1$ is equivalent to

$$
2\|v\|^{2}-\left\langle\left(M_{1}+M_{2}+M_{3}+M_{4}\right) v, v\right\rangle \geqslant 0, \quad\left(v \in \mathbb{R}^{n}\right) .
$$

Here the entries of the matrices $M_{p}, 1 \leqslant p \leqslant 4$, are given by

$$
\begin{aligned}
& \left(m_{1}\right)_{i j}=-\frac{1}{2 n^{3 / 2}} \cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right) \cot \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right) e_{i j} \\
& \left(m_{2}\right)_{i j}=\frac{1}{2 n^{3 / 2}} e_{i j} \\
& \left(m_{3}\right)_{i j}=\frac{1}{4 n^{3}} \cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right) \cot \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right) f_{i j} \\
& \left(m_{4}\right)_{i j}=-\frac{1}{4 n^{3}} f_{i j}
\end{aligned}
$$

$e_{i j}$ and $f_{i j}$ respectively denoting the entries of the matrices E and $F=E^{2}\left(1+\frac{1}{2 n^{3 / 2}} E\right)^{-1}$. Noticing that $M_{1}=-M$, we have $\left\|M_{1}\right\| \leqslant \frac{3}{4},\left\|M_{2}\right\|=\frac{1}{8 \sqrt{n}},\|F\| \leqslant \frac{n^{2} / 16}{1-1 /(8 \sqrt{n})} \leqslant \frac{n^{2}}{14}$ and $\left\|M_{4}\right\|=\frac{1}{4 n^{3}}\|F\|$. Now we use

$$
\left\|M_{3}\right\|^{2} \leqslant\left\|M_{3}\right\|_{F}^{2} \leqslant \frac{1}{16 n^{6}} \max _{i j}\left|f_{i j}\right|^{2} \sum_{i, j}\left|\cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right)\right|^{2}\left|\cot \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right)\right|^{2}
$$

together with

$$
\begin{aligned}
\sum_{i, j}\left|\cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right)\right|^{2}\left|\cot \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right)\right|^{2} & =\left(\sum_{i=1}^{n}\left|\cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right)\right|^{2}\right)^{2} \\
& \leqslant 4\left(\sum_{i=1}^{n / 2}\left|\cot \left(\left(i-\frac{1}{2}\right) \frac{\pi}{n}\right)\right|^{2}\right)^{2} \leqslant n^{4}
\end{aligned}
$$

to obtain

$$
\left\|M_{3}\right\| \leqslant \frac{1}{4 n} \max _{i j}\left|f_{i j}\right|
$$

Using the notation $\|E\|_{\infty}:=\max \left\{\|E u\|_{\infty} ; u \in \mathbb{C}^{n},\|u\|_{\infty} \leqslant 1\right\}$ for the operator norm induced by the maximum norm in \mathbb{C}^{d}, we have $\|E\|_{\infty}=n / 4$, whence $\left\|\frac{1}{2 n^{3 / 2}} E\right\|_{\infty} \leqslant 1 / 8$ and thus $\left\|\left(1+\frac{1}{2 n^{3 / 2}} E\right)^{-1}\right\|_{\infty} \leqslant \frac{1}{1-1 / 8}=\frac{8}{7}$. This shows that

$$
\max _{i j}\left|f_{i j}\right| \leqslant\left\|\left(1+\frac{1}{2 n^{3 / 2}} E\right)^{-1}\right\|_{\infty} \max _{i j}\left|e_{i j}^{2}\right| \leqslant \frac{2 n}{7}
$$

by denoting $e_{i j}^{2}$ the entries of the matrix E^{2} and noticing that $\max _{i, j}\left|e_{i j}^{2}\right|=n / 4$. Finally, we obtain $\left\|M_{3}\right\| \leqslant \frac{1}{14}$ and $\left\|M_{1}+M_{2}+M_{3}+M_{4}\right\| \leqslant \frac{3}{4}+\frac{1}{8}+\frac{1}{14}+\frac{1}{56}<1$.

Acknowledgement

The authors thank the referees for a careful reading of the article and for their useful remarks and suggestions. The first-named author was supported in part by ANR Projet Blanc DYNOP.

REFERENCES

[1] T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15.
[2] T. Ando, C. K. Li, Operator radii and unitary operators, Oper. Matrices 4, 2 (2010), 273-281.
[3] M. Crouzeix, The annulus as a K-spectral set, to appear in Comm. Pure Appl. Anal.
[4] E. Durszt, Factorization of operators in C_{ρ} class, Acta Sci. Math. (Szeged) 37 (1975), 195-200.
[5] B.-Sz. NAGy, C. FoiAş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, Paris, 1967.
[6] D. D. Rogers, Approximation by unitary and essentially unitary operators, Acta Sci. Math. (Szeged) 39, 1-2 (1977), 141-151.
[7] T. Sano, A. Uchiyama, Numerical radius and unitarity, Acta Sci. Math. (Szeged) 76 (2010), 581584.
[8] J. G. Stampfli, Minimal range theorems for operators with thin spectra, Pacific Journal of Math. 23 (1967), 601-612.
[9] A. F. M. TER Elst, Approximation by unitary operators, Acta Sci. Math. (Szeged) 54 (1990), 145-149.

Catalin Badea
Laboratoire Paul Painlevé
UMR no. 8524, Bât. M2
Université Lille 1
59655 Villeneuve d'Ascq Cedex
France
e-mail: badea@math.univ-lille1.fr
Michel Crouzeix
Institut de Recherche Mathématique de Rennes
UMR no. 6625
Université Rennes 1 Campus de Beaulieu 35042 Rennes Cedex

France
e-mail: michel.crouzeix@univ-rennes1.fr

