REFINED JENSEN'S OPERATOR INEQUALITY WITH CONDITION ON SPECTRA

Jadranka Mićić, Josip Pečarić and Jurica Perić

(Communicated by C.-K. Li)

Abstract

We give a refinement of Jensen's inequality for n-tuples of self-adjoint operators, unital n-tuples of positive linear mappings and real valued continuous convex functions with condition on the spectra of the operators. The refined Jensen's inequality is used to obtain a refinement of inequalities among quasi-arithmetic means under similar conditions. As an application of these results we give a refinement of inequalities among power means.

1. Introduction

We recall some notations and definitions. Let $\mathscr{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space H and 1_{H} stands for the identity operator. We define bounds of a self-adjoint operator $A \in \mathscr{B}(H)$ by

$$
m_{A}=\inf _{\|x\|=1}\langle A x, x\rangle \quad \text { and } \quad M_{A}=\sup _{\|x\|=1}\langle A x, x\rangle
$$

for $x \in H$. If $\operatorname{Sp}(A)$ denotes the spectrum of A, then $\operatorname{Sp}(A)$ is real and $\operatorname{Sp}(A) \subseteq$ $\left[m_{A}, M_{A}\right]$.

For an operator $A \in \mathscr{B}(H)$ we define operators $|A|, A^{+}, A^{-}$by

$$
|A|=\left(A^{*} A\right)^{1 / 2}, \quad A^{+}=(|A|+A) / 2, \quad A^{-}=(|A|-A) / 2
$$

Obviously, if A is self-adjoint, then $|A|=\left(A^{2}\right)^{1 / 2}$ and $A^{+}, A^{-} \geqslant 0$ (called positive and negative parts of $A=A^{+}-A^{-}$).
B. Mond and J. Pečarić in [7] proved the following version of Jensen's operator inequality

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} w_{i} \Phi_{i}\left(A_{i}\right)\right) \leqslant \sum_{i=1}^{n} w_{i} \Phi_{i}\left(f\left(A_{i}\right)\right), \tag{1.1}
\end{equation*}
$$

for operator convex functions f defined on an interval I, where $\Phi_{i}: \mathscr{B}(H) \rightarrow \mathscr{B}(K)$, $i=1, \ldots, n$, are unital positive linear mappings, A_{1}, \ldots, A_{n} are self-adjoint operators with the spectra in I and w_{1}, \ldots, w_{n} are non-negative real numbers with $\sum_{i=1}^{n} w_{i}=1$.

[^0]F. Hansen, J. Pečarić and I. Perić gave in [1] a generalization of (1.1) for a unital field of positive linear mappings. Recently, J.Mićić, J.Pečarić and Y.Seo in [5] gave a generalization of this results for a not-unital field of positive linear mappings.

Very recently, J. Mićić, Z. Pavić and J. Pečarić gave in [3, Theorem 1] Jensen’s operator inequality without operator convexity as follows.

THEOREM A. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $\mathscr{B}(H)$ with bounds m_{i} and $M_{i}, m_{i} \leqslant M_{i}, i=1, \ldots, n$. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an n-tuple of positive linear mappings $\Phi_{i}: \mathscr{B}(H) \rightarrow \mathscr{B}(K), i=1, \ldots, n$, such that $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=$ 1_{K}. If

$$
\begin{equation*}
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n \tag{1.2}
\end{equation*}
$$

where m_{A} and $M_{A}, m_{A} \leqslant M_{A}$, are bounds of the self-adjoint operator $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{1.3}
\end{equation*}
$$

holds for every continuous convex function $f: I \rightarrow \mathbb{R}$ provided that the interval I contains all m_{i}, M_{i}.

If $f: I \rightarrow \mathbb{R}$ is concave, then the reverse inequality is valid in (1.3).
In the same paper [3], we study the quasi-arithmetic operator mean

$$
\begin{equation*}
\mathscr{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n)=\varphi^{-1}\left(\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)\right) \tag{1.4}
\end{equation*}
$$

where $\left(A_{1}, \ldots, A_{n}\right)$ is an n-tuple of self-adjoint operators in $\mathscr{B}(H)$ with the spectra in $I,\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ is an n-tuple of positive linear mappings $\Phi_{i}: \mathscr{B}(H) \rightarrow \mathscr{B}(K)$ such that $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=1_{K}$, and $\varphi: I \rightarrow \mathbb{R}$ is a continuous strictly monotone function.

The following results about the monotonicity of this mean is proven in [3, Theorem $3]$.

THEOREM B. Let $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be as in the definition of the quasi-arithmetic mean (1.4). Let m_{i} and $M_{i}, m_{i} \leqslant M_{i}$ be the bounds of $A_{i}, i=1, \ldots, n$. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous strictly monotone functions on an interval I which contains all m_{i}, M_{i}. Let m_{φ} and $M_{\varphi}, m_{\varphi} \leqslant M_{\varphi}$, be the bounds of the mean $\mathscr{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n)$, such that

$$
\begin{equation*}
\left(m_{\varphi}, M_{\varphi}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n \tag{1.5}
\end{equation*}
$$

If one of the following conditions
(i) $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone,
(i') $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone,
is satisfied, then

$$
\begin{equation*}
\mathscr{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) \leqslant \mathscr{M}_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n) \tag{1.6}
\end{equation*}
$$

If one of the following conditions
(ii) $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator monotone,
(ii') $\psi \circ \varphi^{-1}$ is convex and $-\psi^{-1}$ is operator monotone,
is satisfied, then the reverse inequality is valid in (1.6).

In this paper we study a refinement of Jensen's inequality given in Theorem A. As an application of this result, we give a refinement of inequalities order among quasiarithmetic means given in Theorem B and inequalities among power means.

2. Jensen's operator inequality

To obtain our result we need a result given in the following lemma.

LEMMA 1. Let f be a convex function on an interval $I, x, y \in I$ and $p_{1}, p_{2} \in[0,1]$ such that $p_{1}+p_{2}=1$. Then

$$
\begin{gather*}
\min \left\{p_{1}, p_{2}\right\}\left[f(x)+f(y)-2 f\left(\frac{x+y}{2}\right)\right] \\
\leqslant p_{1} f(x)+p_{2} f(y)-f\left(p_{1} x+p_{2} y\right) \tag{2.1}
\end{gather*}
$$

Proof. This results follows from [6, Theorem 1, p. 717].
In Theorem A we prove that Jensen's operator inequality holds for every continuous convex function and for every n-tuple of self-adjoint operators $\left(A_{1}, \ldots, A_{n}\right)$, for every n-tuple of positive linear mappings $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ in the case when the interval with bounds of the operator $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ has no intersection points with the interval with bounds of the operator A_{i} for each $i=1, \ldots, n$. It is interesting to consider can we make a refinement of this inequality. To achieve this we need the following result, where we use the idea given in [2, Theorem 12].

Lemma 2. Let A be a self-adjoint operator $A \in B(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$, for some scalars $m<M$. Then

$$
\begin{align*}
f(A) & \leqslant \frac{M 1_{H}-A}{M-m} f(m)+\frac{A-m 1_{H}}{M-m} f(M)-\delta_{f} \widetilde{A} \tag{2.2}\\
(\text { resp. } \quad f(A) & \geqslant \frac{M 1_{H}-A}{M-m} f(m)+\frac{A-m 1_{H}}{M-m} f(M)+\delta_{f} \widetilde{A}
\end{align*}
$$

holds for every continuous convex (resp. concave) function $f:[m, M] \rightarrow \mathbb{R}$, where

$$
\begin{gathered}
\delta_{f}=f(m)+f(M)-2 f\left(\frac{m+M}{2}\right) \quad\left(\text { resp. } \delta_{f}=2 f\left(\frac{m+M}{2}\right)-f(m)-f(M)\right), \\
\text { and } \quad \widetilde{A}=\frac{1}{2} 1_{H}-\frac{1}{M-m}\left|A-\frac{m+M}{2} 1_{H}\right| .
\end{gathered}
$$

Proof. We prove only the convex case. Putting $x=m, y=M$ in (2.1) it follows that

$$
\begin{align*}
f\left(p_{1} m+p_{2} M\right) \leqslant & p_{1} f(m)+p_{2} f(M) \\
& -\min \left\{p_{1}, p_{2}\right\}\left(f(m)+f(M)-2 f\left(\frac{m+M}{2}\right)\right) \tag{2.3}
\end{align*}
$$

holds for every $p_{1}, p_{2} \in[0,1]$ such that $p_{1}+p_{2}=1$. For any $t \in[m, M]$ we can write

$$
f(t)=f\left(\frac{M-t}{M-m} m+\frac{t-m}{M-m} M\right)
$$

Then by using (2.3) for $p_{1}=\frac{M-t}{M-m}$ and $p_{2}=\frac{t-m}{M-m}$ we get

$$
\begin{align*}
f(t) \leqslant & \frac{M-t}{M-m} f(m)+\frac{t-m}{M-m} f(M) \\
& -\left(\frac{1}{2}-\frac{1}{M-m}\left|t-\frac{m+M}{2}\right|\right)\left(f(m)+f(M)-2 f\left(\frac{m+M}{2}\right)\right) \tag{2.4}
\end{align*}
$$

since

$$
\min \left\{\frac{M-t}{M-m}, \frac{t-m}{M-m}\right\}=\frac{1}{2}-\frac{1}{M-m}\left|t-\frac{m+M}{2}\right|
$$

Finally we use the continuous functional calculus for a self-adjoint operator $A: f, g \in$ $\mathscr{C}(I), S p(A) \subseteq I$ and $f \geqslant g$ implies $f(A) \geqslant g(A)$; and $h(t)=|t|$ implies $h(A)=|A|$. Then by using (2.4) we obtain the desired inequality (2.2).

THEOREM 3. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an $n-$ tuple of self-adjoint operators $A_{i} \in B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leqslant M_{i}, i=1, \ldots, n$. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an $n-$ tuple of positive linear mappings $\Phi_{i}: B(H) \rightarrow B(K), i=1, \ldots, n$, such that $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=1_{K}$. Let

$$
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m<M
$$

where m_{A} and $M_{A}, m_{A} \leqslant M_{A}$, are the bounds of the operator $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ and

$$
m=\max \left\{M_{i}: M_{i} \leqslant m_{A}, i \in\{1, \ldots, n\}\right\}, M=\min \left\{m_{i}: m_{i} \geqslant M_{A}, i \in\{1, \ldots, n\}\right\}
$$

If $f: I \rightarrow \mathbb{R}$ is a continuous convex (resp. concave) function provided that the interval I contains all m_{i}, M_{i}, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A} \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{2.5}
\end{equation*}
$$

(resp.

$$
\begin{equation*}
\left.f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \geqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)+\delta_{f} \widetilde{A} \geqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)\right) \tag{2.6}
\end{equation*}
$$

holds, where

$$
\begin{align*}
& \delta_{f} \equiv \delta_{f}(\bar{m}, \bar{M})=f(\bar{m})+f(\bar{M})-2 f\left(\frac{\bar{m}+\bar{M}}{2}\right) \\
(\text { resp. } & \left.\delta_{f} \equiv \delta_{f}(\bar{m}, \bar{M})=2 f\left(\frac{\bar{m}+\bar{M}}{2}\right)-f(\bar{m})-f(\bar{M})\right), \tag{2.7}\\
\widetilde{A} & \equiv \widetilde{A}_{A}(\bar{m}, \bar{M})=\frac{1}{2} 1_{K}-\frac{1}{\bar{M}-\bar{m}}\left|A-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right|
\end{align*}
$$

and $\bar{m} \in\left[m, m_{A}\right], \bar{M} \in\left[M_{A}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

Proof. We prove only the convex case.
Since $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) \in B(K)$ is the self-adjoint operator such that $\bar{m} 1_{K} \leqslant m_{A} 1_{K} \leqslant$ $\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) \leqslant M_{A} 1_{K} \leqslant \bar{M} 1_{K}$ and f is convex on $[\bar{m}, \bar{M}] \subseteq I$, then by Lemma 2 we obtain

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leqslant \frac{\bar{M} 1_{K}-\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)}{\bar{M}-\bar{m}} f(\bar{m})+\frac{\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-\bar{m} 1_{K}}{\bar{M}-\bar{m}} f(\bar{M})-\delta_{f} \widetilde{A} \tag{2.8}
\end{equation*}
$$

where δ_{f} and \widetilde{A} are defined by (2.7).
But since f is convex on $\left[m_{i}, M_{i}\right]$ and since $\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset$ implies $(\bar{m}, \bar{M}) \cap\left[m_{i}, M_{i}\right]=\emptyset$, then

$$
f\left(A_{i}\right) \geqslant \frac{\bar{M} 1_{H}-A_{i}}{\bar{M}-\bar{m}} f(\bar{m})+\frac{A_{i}-\bar{m} 1_{H}}{\bar{M}-\bar{m}} f(\bar{M}), \quad i=1, \ldots, n
$$

holds. Applying a positive linear mapping Φ_{i}, summing and adding $-\delta_{f} \widetilde{A}$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \tilde{A} \geqslant \frac{\bar{M} 1_{K}-\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)}{\bar{M}-\bar{m}} f(\bar{m})+\frac{\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-\bar{m} 1_{K}}{\bar{M}-\bar{m}} f(\bar{M})-\delta_{f} \widetilde{A} \tag{2.9}
\end{equation*}
$$

since $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=1_{K}$. Combining the two inequalities (2.8) and (2.9), we have LHS of (2.5). Since $\delta_{f} \geqslant 0$ and $\widetilde{A} \geqslant 0$ then we have RHS of (2.5).

REMARK 4. Specially, if $m_{A}<M_{A}$, then Theorem 3 in the convex case gives

$$
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\bar{\delta}_{f} \bar{A} \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)
$$

where

$$
\begin{gathered}
\bar{\delta}_{f} \equiv \delta_{f}\left(m_{A}, M_{A}\right)=f\left(m_{A}\right)+f\left(M_{A}\right)-2 f\left(\frac{m_{A}+M_{A}}{2}\right) \\
\bar{A} \equiv \widetilde{A}_{A}\left(m_{A}, M_{A}\right)=\frac{1}{2} 1_{K}-\frac{1}{M_{A}-m_{A}}\left|A-\frac{m_{A}+M_{A}}{2} 1_{K}\right|
\end{gathered}
$$

and
But if $m<M$ and $m_{A}=M_{A}$, then the inequality (2.5) holds, but $\bar{\delta}_{f} \bar{A}$ is not defined. Some examples of this case are given in Example 5 I) and II).

Example 5. We give three examples for the matrix cases and $n=2$. Then we have refined inequalities given in Figure 1.

We put $f(t)=t^{4}$ which is convex but not operator convex in (2.5). Also, we define mappings $\Phi_{1}, \Phi_{2}: M_{3}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ as follows: $\Phi_{1}\left(\left(a_{i j}\right)_{1 \leqslant i, j \leqslant 3}\right)=\frac{1}{2}\left(a_{i j}\right)_{1 \leqslant i, j \leqslant 2}$, $\Phi_{2}=\Phi_{1}$ (then $\left.\Phi_{1}\left(I_{3}\right)+\Phi_{2}\left(I_{3}\right)=I_{2}\right)$.

$$
\begin{aligned}
& f\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right) \leq \Phi_{1}\left(f\left(A_{1}\right)\right)+\Phi_{2}\left(f\left(A_{2}\right)\right)-\delta_{f} \tilde{A}, \\
& \text { where } \\
& \left.\delta_{f}=f(\bar{m})+f(\bar{M})-2 f(\bar{M}+\bar{m}) / 2\right), \\
& \tilde{A}=\frac{1}{2} 1_{\kappa}-\frac{1}{\bar{M}-\bar{m}}\left|\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)-\frac{\bar{M}+\bar{m}}{2} 1_{\kappa}\right|
\end{aligned}
$$

Figure 1: Refinement for two operators and a convex function f
I) First, we observe an example when $\delta_{f} \widetilde{A}$ is equal the difference RHS and LHS of Jensen's inequality. If $A_{1}=-3 I_{3}$ and $A_{2}=2 I_{3}$, then $A=\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)=$ $-0.5 I_{2}$, so $m=-3, M=2$. We put also that $\bar{m}=-3$ and $\bar{M}=2$. We obtain

$$
\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)^{4}=0.0625 I_{2} \leqslant 48.5 I_{2}=\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)
$$

and its improvement

$$
\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)^{4}=0.0625 I_{2}=\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)-48.4375 I_{2}
$$

since $\delta_{f}=96.875, \widetilde{A}=0.5 I_{2}$.
II) Next, we observe an example when $\delta_{f} \widetilde{A}$ is not equal the difference RHS and LHS of Jensen's inequality. If

$$
A_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { then } \quad A=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

so $m=-1, M=2$. We put also that $\bar{m}=-1$ and $\bar{M}=2$. We obtain

$$
\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)^{4}=\frac{1}{16}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \leqslant\left(\begin{array}{cc}
\frac{17}{2} & 0 \\
0 & \frac{97}{2}
\end{array}\right)=\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)
$$

and its improvement

$$
\begin{aligned}
\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)^{4} & =\frac{1}{16}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \leqslant \frac{1}{16}\left(\begin{array}{cc}
1 & 0 \\
0 & 641
\end{array}\right) \\
& =\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)-\frac{135}{16}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

since $\delta_{f}=135 / 8, \widetilde{A}=I_{2} / 2$.
III) Next, we observe an example with matrices that are not special. If

$$
A_{1}=\left(\begin{array}{ccc}
-4 & 1 & 1 \\
1 & -2 & -1 \\
1 & -1 & -1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{ccc}
5 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 3
\end{array}\right) \quad \text { then } \quad A=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

so $m_{1}=-4.8662, M_{1}=-0.3446, m_{2}=1.3446, M_{2}=5.8662, m=-0.3446, M=$ 1.3446 and we put $\bar{m}=m, \bar{M}=M$ (rounded to four decimal places). We have

$$
\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)^{4}=\frac{1}{16}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \leqslant\left(\begin{array}{cc}
\frac{1283}{2} & -255 \\
-255 & \frac{237}{2}
\end{array}\right)=\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)
$$

and its improvement

$$
\begin{aligned}
\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)^{4} & =\frac{1}{16}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \leqslant\left(\begin{array}{cc}
639.9213 & -255 \\
-255 & 117.8559
\end{array}\right) \\
& =\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)-\left(\begin{array}{cc}
1.5787 & 0 \\
0 & 0.6441
\end{array}\right)
\end{aligned}
$$

(rounded to four decimal places), since

$$
\delta_{f}=3.1574, \quad \widetilde{A}=\left(\begin{array}{cc}
0.5 & 0 \\
0 & 0.2040
\end{array}\right) .
$$

But, if we put $\bar{m}=m_{A}=0, \bar{M}=M_{A}=0.5$ in the example III), then $\tilde{A}=\mathbf{0}$, so we do not have an improvement of Jensen's inequality. Also, if we put $\bar{m}=0, \bar{M}=1$, then $\tilde{A}=0.5\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \delta_{f}=7 / 8$ and $\delta_{f} \tilde{A}=0.4375\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, which is worse than the above improvement.

We have the following obvious corollary of Theorem 3 with the convex combination of operators $A_{i}, i=1, \ldots, n$.

COROLLARY 6. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leqslant M_{i}, i=1, \ldots, n$. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an $n-$ tuple of nonnegative real numbers such that $\sum_{i=1}^{n} \alpha_{i}=1$. Let

$$
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m<M,
$$

where m_{A} and $M_{A}, m_{A} \leqslant M_{A}$, are the bounds of $A=\sum_{i=1}^{n} \alpha_{i} A_{i}$ and

$$
m=\max \left\{M_{i} \leqslant m_{A}, i \in\{1, \ldots, n\}\right\}, M=\min \left\{m_{i} \geqslant M_{A}, i \in\{1, \ldots, n\}\right\}
$$

If $f: I \rightarrow \mathbb{R}$ is a continuous convex (resp. concave) function provided that the interval I contains all m_{i}, M_{i}, then

$$
\begin{aligned}
& f\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right)
\end{aligned} \leqslant \sum_{i=1}^{n} \alpha_{i} f\left(A_{i}\right)-\delta_{f} \tilde{\tilde{A}} \leqslant \sum_{i=1}^{n} \alpha_{i} f\left(A_{i}\right)
$$

holds, where δ_{f} is defined by (2.7), $\tilde{\tilde{A}}=\frac{1}{2} 1_{H}-\frac{1}{\bar{M}-\bar{m}}\left|\sum_{i=1}^{n} \alpha_{i} A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|$ and $\bar{m} \in$ $\left[m, m_{A}\right], \bar{M} \in\left[M_{A}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

Proof. We apply Theorem 3 for positive linear mappings $\Phi_{i}: \mathscr{B}(H) \rightarrow \mathscr{B}(H)$ determined by $\Phi_{i}: B \mapsto \alpha_{i} B, i=1, \ldots, n$.

3. Quasi-arithmetic means

In this section we will study a refinement of inequalities among quasi-arithmetic mean defined by (1.4).

For convenience we introduce the following denotations

$$
\begin{align*}
\delta_{\varphi, \psi}(m, M) & =\psi(m)+\psi(M)-2 \psi \circ \varphi^{-1}\left(\frac{\varphi(m)+\varphi(M)}{2}\right) \\
\widetilde{A}_{\varphi}(m, M) & =\frac{1}{2} 1_{K}-\frac{1}{|\varphi(M)-\varphi(m)|}\left|\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)-\frac{\varphi(M)+\varphi(m)}{2} 1_{K}\right| \tag{3.1}
\end{align*}
$$

where $\left(A_{1}, \ldots, A_{n}\right)$ is an n-tuple of self-adjoint operators in $\mathscr{B}(H)$ with the spectra in $I,\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ is an n-tuple of positive linear mappings $\Phi_{i}: \mathscr{B}(H) \rightarrow \mathscr{B}(K)$ such that $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=1_{K}, \varphi, \psi: I \rightarrow \mathbb{R}$ are continuous strictly monotone functions and $m, M \in I, m<M$. Of course, we include implicitly that $\widetilde{A}_{\varphi}(m, M) \equiv \widetilde{A}_{\varphi, A}(m, M)$, where $A=\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)$.

In the next theorem we give a refinement of results given in Theorem B.

THEOREM 7. Let $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be as in the definition of the quasi-arithmetic mean (1.4). Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous strictly monotone functions on an interval I which contains all m_{i}, M_{i}. Let

$$
\left(m_{\varphi}, M_{\varphi}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m<M
$$

where m_{φ} and $M_{\varphi}, m_{\varphi} \leqslant M_{\varphi}$, are the bounds of the mean $\mathscr{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n)$ and $m=$ $\max \left\{M_{i}: M_{i} \leqslant m_{\varphi}, i \in\{1, \ldots, n\}\right\}, M=\min \left\{m_{i}: m_{i} \geqslant M_{\varphi}, i \in\{1, \ldots, n\}\right\}$.
(i) If $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone, then

$$
\begin{equation*}
\mathscr{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) \leqslant \psi^{-1}\left(\sum_{i=1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)-\delta_{\varphi, \psi} \widetilde{A}_{\varphi}\right) \leqslant \mathscr{M}_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n) \tag{3.2}
\end{equation*}
$$

holds, where $\delta_{\varphi, \psi} \geqslant 0$ and $\widetilde{A}_{\varphi} \geqslant 0$.
(i') If $\psi \circ \varphi^{-1}$ is convex and $-\psi^{-1}$ is operator monotone, then the reverse inequality is valid in (3.2), where $\delta_{\varphi, \psi} \geqslant 0$ and $\widetilde{A}_{\varphi} \geqslant 0$.
(ii) If $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone, then (3.2) holds, where $\delta_{\varphi, \psi} \leqslant 0$ and $\widetilde{A}_{\varphi} \geqslant 0$.
(ii') If $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator monotone, then the reverse inequality is valid in (3.2), where $\delta_{\varphi, \psi} \leqslant 0$ and $\widetilde{A}_{\varphi} \geqslant 0$.

In all the above cases, we assume that $\delta_{\varphi, \psi} \equiv \delta_{\varphi, \psi}(\bar{m}, \bar{M}), \widetilde{A}_{\varphi} \equiv \widetilde{A}_{\varphi}(\bar{m}, \bar{M})$ are defined by (3.1) and $\bar{m} \in\left[m, m_{\varphi}\right], \bar{M} \in\left[M_{\varphi}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

Proof. We only prove the case (i). Suppose that φ is a strictly increasing function. Since $m_{i} 1_{H} \leqslant A_{i} \leqslant M_{i} 1_{H}, i=1, \ldots, n$, and $m_{\varphi} 1_{K} \leqslant \mathscr{M}_{\varphi}(\mathbf{A}, \Phi, n) \leqslant M_{\varphi} 1_{K}$, then

$$
\begin{gathered}
\varphi\left(m_{i}\right) 1_{H} \leqslant \varphi\left(A_{i}\right) \leqslant \varphi\left(M_{i}\right) 1_{H}, \quad i=1, \ldots, n \\
\varphi\left(m_{\varphi}\right) 1_{K} \leqslant \sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right) \leqslant \varphi\left(M_{\varphi}\right) 1_{K}
\end{gathered}
$$

Also

$$
\left(m_{\varphi}, M_{\varphi}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n
$$

implies

$$
\begin{equation*}
\left(\varphi\left(m_{\varphi}\right), \varphi\left(M_{\varphi}\right)\right) \cap\left[\varphi\left(m_{i}\right), \varphi\left(M_{i}\right)\right]=\emptyset \quad \text { for } i=1, \ldots, n \tag{3.3}
\end{equation*}
$$

Replacing A_{i} by $\varphi\left(A_{i}\right)$ in (2.5) and taking into account (3.3), we obtain that

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)\right) \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right)-\delta_{f} \widetilde{A}_{\varphi} \leqslant \sum_{i=1}^{n} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right) \tag{3.4}
\end{equation*}
$$

holds for every convex function $f: J \rightarrow \mathbb{R}$ on an interval J which contains all

$$
\left[\varphi\left(m_{i}\right), \varphi\left(M_{i}\right)\right]=\varphi\left(\left[m_{i}, M_{i}\right]\right)
$$

where

$$
\begin{equation*}
\delta_{f}=f(\varphi(\bar{m}))+f(\varphi(\bar{M}))-2 f\left(\frac{\varphi(\bar{m})+\varphi(\bar{M})}{2}\right) \geqslant 0 \tag{3.5}
\end{equation*}
$$

and $\widetilde{A}_{\varphi}=\frac{1}{2} 1_{K}-\frac{1}{\varphi(\bar{M})-\varphi(\bar{m})}\left|\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)-\frac{\varphi(\bar{M})+\varphi(\bar{m})}{2} 1_{K}\right| \geqslant 0$.
Also, if φ is strictly decreasing, then we check that (3.4) holds for convex $f: J \rightarrow$ \mathbb{R} on J which contains all $\left[\varphi\left(M_{i}\right), \varphi\left(m_{i}\right)\right]=\varphi\left(\left[m_{i}, M_{i}\right]\right)$, where δ_{f} is defined by (3.5) and $\widetilde{A}_{\varphi}=\frac{1}{2} 1_{K}-\frac{1}{\varphi(\bar{m})-\varphi(\bar{M})}\left|\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)-\frac{\varphi(\bar{M})+\varphi(\bar{m})}{2} 1_{K}\right| \geqslant 0$.

Putting $f=\psi \circ \varphi^{-1}$ in (3.4) and then applying an operator monotone function ψ^{-1}, we obtain (3.2).

The proof of the case (ii) is similar to the above case with the inequality (2.6) instead of (2.5).

Now, we give a special case of the above theorem. It is a refinement of [3, Corollary 5].

COROLLARY 8. Let $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be as in the definition of the quasi-arithmetic mean (1.4). Let m_{i} and $M_{i}, m_{i} \leqslant M_{i}$ be the bounds of $A_{i}, i=1, \ldots, n$. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous strictly monotone functions on an interval I which contains all m_{i}, M_{i} and \mathscr{I} be the identity function on I.
(i) If φ^{-1} is convex and

$$
\begin{equation*}
\left(m_{\varphi}, M_{\varphi}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m_{[\varphi]}<M_{[\varphi]} \tag{3.6}
\end{equation*}
$$

is valid, where m_{φ} and $M_{\varphi}, m_{\varphi} \leqslant M_{\varphi}$ are the bounds of $M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n)$ and $m_{[\varphi]}=$ $\max \left\{M_{i}: M_{i} \leqslant m_{\varphi}, i \in\{1, \ldots, n\}\right\}, M_{[\varphi]}=\min \left\{m_{i}: m_{i} \geqslant M_{\varphi}, i \in\{1, \ldots, n\}\right\}$, then

$$
\begin{equation*}
M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) \leqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n)-\delta_{\varphi, \mathscr{\mathscr { }}}(\bar{m}, \bar{M}) \widetilde{A}_{\varphi}(\bar{m}, \bar{M}) \leqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n) \tag{3.7}
\end{equation*}
$$

holds for every $\bar{m} \in\left[m_{[\varphi]}, m_{\varphi}\right], \bar{M} \in\left[M_{\varphi}, M_{[\varphi]}\right], \bar{m}<\bar{M}$, where $\delta_{\varphi, \mathscr{\mathscr { I }}}(\bar{m}, \bar{M}) \geqslant 0$ and $\widetilde{A}_{\varphi}(\bar{m}, \bar{M}) \geqslant 0$ are defined by (3.1).
(ii) If φ^{-1} is concave and (3.6) is valid, then

$$
\begin{equation*}
M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) \geqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n)-\delta_{\varphi, \mathscr{I}}(\bar{m}, \bar{M}) \widetilde{A}_{\varphi}(\bar{m}, \bar{M}) \geqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n) \tag{3.8}
\end{equation*}
$$

holds for every $\bar{m} \in\left[m_{[\varphi]}, m_{\varphi}\right], \bar{M} \in\left[M_{\varphi}, M_{[\varphi]}\right], \bar{m}<\bar{M}$, where $\delta_{\varphi, \mathscr{\mathscr { I }}}(\bar{m}, \bar{M}) \leqslant 0$ and $\widetilde{A}_{\varphi}(\bar{m}, \bar{M}) \geqslant 0$ are defined by (3.1).
(iii) If φ^{-1} is convex and (3.6) is valid and if ψ^{-1} is concave, and

$$
\left(m_{\psi}, M_{\psi}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m_{[\psi]}<M_{[\psi]}
$$

is valid, where m_{ψ} and $M_{\psi}, m_{\psi} \leqslant M_{\psi}$ are the bounds of $M_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n)$ and $m_{[\psi]}=$ $\max \left\{M_{i}: M_{i} \leqslant m_{\psi}, i \in\{1, \ldots, n\}\right\}, M_{[\psi]}=\min \left\{m_{i}: m_{i} \geqslant M_{\psi}, i \in\{1, \ldots, n\}\right\}$, then

$$
\begin{align*}
M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) & \leqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n)-\delta_{\varphi, \mathscr{I}}(\bar{m}, \bar{M}) \tilde{A}_{\varphi}(\bar{m}, \bar{M}) \leqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n) \\
& \leqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n)-\delta_{\psi, \mathscr{\mathscr { I }}}(\overline{\bar{m}}, \overline{\bar{M}}) \tilde{A}_{\psi}(\overline{\bar{m}}, \overline{\bar{M}}) \leqslant M_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n) \tag{3.9}
\end{align*}
$$

holds for every $\bar{m} \in\left[m_{[\varphi]}, m_{\varphi}\right], \bar{M} \in\left[M_{\varphi}, M_{[\varphi]}\right], \bar{m}<\bar{M}$ and every $\overline{\bar{m}} \in\left[m_{[\psi]}, m_{\psi}\right]$, $\overline{\bar{M}} \in\left[M_{\underline{\psi}}, M_{[\psi]}\right], \overline{\bar{m}}<\overline{\bar{M}}$, where $\delta_{\varphi, \mathscr{I}}(\bar{m}, \bar{M}) \geqslant 0, \widetilde{A}_{\varphi}(\bar{m}, \bar{M}) \geqslant 0$ and $\delta_{\psi, \mathscr{\mathscr { I }}}(\overline{\bar{m}}, \overline{\bar{M}}) \leqslant 0$, $\widetilde{A}_{\psi}(\overline{\bar{m}}, \overline{\bar{M}}) \geqslant 0$ are defined by (3.1).

Proof. (i)-(ii): Putting $\psi=\mathscr{I}$ in Theorem 7 (i) and (ii'), we obtain (3.7) and (3.8), respectively.
(iii): Replacing ψ by φ in (ii) and combining this with (i), we obtain the desired inequality (3.9).

REMARK 9. Let the assumptions of Corollary 8 (iii) be valid. We get the following refinement of inequalities quasi-arithmetic means

$$
M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) \leqslant M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n)+\Delta_{\varphi, \psi}(\bar{m}, \bar{M}, \overline{\bar{m}}, \overline{\bar{M}}) \leqslant M_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n)
$$

where

$$
\Delta_{\varphi, \psi}(\bar{m}, \bar{M}, \overline{\bar{m}}, \overline{\bar{M}})=\delta_{\varphi, \mathscr{I}}(\bar{m}, \bar{M}) \widetilde{A}_{\varphi}(\bar{m}, \bar{M})-\delta_{\psi, \mathscr{I}}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{\psi}(\overline{\bar{m}}, \overline{\bar{M}}) \geqslant 0
$$

Especially,

$$
\begin{aligned}
M_{\varphi}(\mathbf{A}, \mathbf{\Phi}, n) & \leqslant M_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n)+\bar{\delta}_{\varphi}(\bar{m}, \bar{M}) \widetilde{A}_{\varphi}(\bar{m}, \bar{M})+\bar{\delta}_{\psi}(\bar{m}, \bar{M}) \widetilde{A}_{\psi}(\bar{m}, \bar{M}) \\
& \leqslant M_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n)
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{\delta}_{\varphi}(\bar{m}, \bar{M})=\bar{m}+\bar{M}-2 \varphi^{-1}\left(\frac{\varphi(\bar{m})+\varphi(\bar{M})}{2}\right) \geqslant 0 \\
& \bar{\delta}_{\psi}(\bar{m}, \bar{M})=2 \psi^{-1}\left(\frac{\psi(\bar{m})+\psi(\bar{M})}{2}\right)-\bar{m}-\bar{M} \geqslant 0
\end{aligned}
$$

It is interesting to study a refinement of (1.6) under the condition placed only on the bounds of operators whose means we are considering. We study it in the following corollary. It is a refinement of the result given in [4, Theorem 2.1].

Corollary 10. Let $A_{i}, \Phi_{i}, m_{i}, M_{i}, i=1, \ldots, n$, and $\varphi, \psi, \mathscr{I}$ as in the assumptions of Corollary 8.

Let

$$
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m<M
$$

be valid, where m_{A} and $M_{A}, m_{A} \leqslant M_{A}$, are the bounds of $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ and

$$
m=\max \left\{M_{i}: M_{i} \leqslant m_{A}, i \in\{1, \ldots, n\}\right\}, M=\min \left\{m_{i}: m_{i} \geqslant M_{A}, i \in\{1, \ldots, n\}\right\}
$$

If ψ is convex, ψ^{-1} is operator monotone, φ is concave, φ^{-1} is operator monotone, then

$$
\begin{align*}
\mathscr{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}, n) & \leqslant \varphi^{-1}\left(\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)+\delta_{\varphi} \widetilde{A}\right) \leqslant M_{\mathscr{I}}(\mathbf{A}, \boldsymbol{\Phi}, n) \\
& \leqslant \psi^{-1}\left(\sum_{i=1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)-\delta_{\psi} \bar{A}\right) \leqslant \mathscr{M}_{\psi}(\mathbf{A}, \boldsymbol{\Phi}, n) \tag{3.10}
\end{align*}
$$

holds, where

$$
\begin{gathered}
\delta_{\varphi}=2 \varphi\left(\frac{\bar{m}+\bar{M}}{2}\right)-\varphi(\bar{m})-\varphi(\bar{M}) \geqslant 0, \quad \delta_{\psi}=\psi(\overline{\bar{m}})+\psi(\overline{\bar{M}})-2 \psi\left(\frac{\overline{\bar{m}}+\overline{\bar{M}}}{2}\right) \geqslant 0, \\
\widetilde{A}=\frac{1}{2} 1_{K}-\frac{1}{\bar{M}-\bar{m}}\left|A-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right|, \quad \bar{A}=\frac{1}{2} 1_{K}-\frac{1}{\overline{\bar{M}}-\overline{\bar{m}}}\left|A-\frac{\overline{\bar{m}}+\overline{\bar{M}}}{2} 1_{K}\right|
\end{gathered}
$$

and $\quad \bar{m}, \overline{\bar{m}} \in\left[m, m_{A}\right], \bar{M}, \overline{\bar{M}} \in\left[M_{A}, M\right], \bar{m}<\bar{M}, \overline{\bar{m}}<\overline{\bar{M}} \quad$ are arbitrary numbers.
If ψ is convex, $-\psi^{-1}$ is operator monotone, φ is concave, $-\varphi^{-1}$ is operator monotone, then the reverse inequality is valid in (3.10).

Proof. We only prove (3.10). By replacing φ by \mathscr{I} and next ψ by φ in Theorem 7 (ii') we obtain LHS of (3.10). Also, by replacing φ by \mathscr{I} in Theorem 7 (i) we obtain RHS of (3.10).

4. Application to the power mean

As an application of results given in the above section we study a refinement of inequalities among power means.

As a special case of the quasi-arithmetic mean (1.4) we can study the operator power mean

$$
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi})= \begin{cases}\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{r}\right)\right)^{1 / r}, & r \in \mathbb{R} \backslash\{0\} \tag{4.1}\\ \exp \left(\sum_{i=1}^{n} \Phi_{i}\left(\ln \left(A_{i}\right)\right)\right), & r=0\end{cases}
$$

where $\left(A_{1}, \ldots, A_{n}\right)$ is an n - tuple of strictly positive operators in $\mathscr{B}(H)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ is an n - tuple of positive linear mappings $\Phi_{i}: \mathscr{B}(H) \rightarrow \mathscr{B}(K)$ such that $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=$ 1_{K}.

For convenience we introduce denotations as a special case of (3.1) as follows

$$
\begin{align*}
& \delta_{r, s}(m, M)= \begin{cases}m^{s}+M^{s}-2\left(\frac{m^{r}+M^{r}}{2}\right)^{s / r}, r \neq 0 \\
m^{s}+M^{s}-2(m M)^{s / 2}, & r=0,\end{cases} \tag{4.2}\\
& \widetilde{A}_{r}(m, M)= \begin{cases}\frac{1}{2} 1_{K}-\frac{1}{\left|M^{r}-m^{r}\right|}\left|\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{r}\right)-\frac{M^{r}+m^{r}}{2} 1_{K}\right|, & r \neq 0, \\
\frac{1}{2} 1_{K}-\left|\ln \left(\frac{M}{m}\right)\right|^{-1}\left|\sum_{i=1}^{n} \Phi_{i}\left(\ln A_{i}\right)-\ln \sqrt{M m} 1_{K}\right|, & r=0\end{cases}
\end{align*}
$$

$\underset{\sim}{\text { wh}}$ where $m, M \underset{\sim}{\mathbb{R}}, 0<m<M$ and $r, s \in \mathbb{R}, r \leqslant s$. Of course, we include implicitly that $\widetilde{A}_{r}(m, M) \equiv \widetilde{A}_{r, A}(m, M)$, where $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{r}\right)$ for $r \neq 0$ and $A=\sum_{i=1}^{n} \Phi_{i}\left(\ln A_{i}\right)$ for $r=0$.

Applying Theorem 7 on the operator power means we obtain the following refinement of inequalities among power means given in [3, Corollary 7].

COROLLARY 11. Let $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be as in the definition of the power mean (4.1). Let m_{i} and $M_{i}, 0<m_{i} \leqslant M_{i}$ be the bounds of $A_{i}, i=1, \ldots, n$.
(i) If $r \leqslant s, s \geqslant 1$ or $r \leqslant s \leqslant-1$,

$$
\left(m^{[r]}, M^{[r]}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset, \quad i=1, \ldots, n, \quad \text { and } \quad m<M
$$

where $m^{[r]}$ and $M^{[r]}, m^{[r]} \leqslant M^{[r]}$ are the bounds of $\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi})$ and $m=\max \left\{M_{i}: M_{i} \leqslant m^{[r]}, i \in\{1, \ldots, n\}\right\}, \quad M=\min \left\{m_{i}: m_{i} \geqslant M^{[r]}, i \in\{1, \ldots, n\}\right\}$, then

$$
\begin{equation*}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \Phi) \leqslant\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{S}\right)-\delta_{r, s} \widetilde{A}_{r}\right)^{1 / s} \leqslant \mathscr{M}_{n}^{[s]}(\mathbf{A}, \Phi) \tag{4.3}
\end{equation*}
$$

holds, where $\delta_{r, s} \geqslant 0$ for $s \geqslant 1, \delta_{r, s} \leqslant 0$ for $s \leqslant-1$ and $\widetilde{A}_{r} \geqslant 0$. Here we assume that $\delta_{r, s} \equiv \delta_{r, s}(\bar{m}, \bar{M}), \widetilde{A}_{r} \equiv \widetilde{A}_{r}(\bar{m}, \bar{M})$ are defined by (4.2) and $\bar{m} \in\left[m, m^{[r]}\right], \bar{M} \in\left[M^{[r]}, M\right]$, $\bar{m}<\bar{M}$, are arbitrary numbers.
(ii) If $r \leqslant s, r \leqslant-1$ or $1 \leqslant r \leqslant s$,

$$
\left(m^{[s]}, M^{[s]}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset, \quad i=1, \ldots, n, \quad \text { and } \quad m<M
$$

where $m^{[s]}$ and $M^{[s]}, m^{[s]} \leqslant M^{[s]}$ are the bounds of $\mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})$ and
$m=\max \left\{M_{i}: M_{i} \leqslant m^{[s]}, i \in\{1, \ldots, n\}\right\}, \quad M=\min \left\{m_{i}: m_{i} \geqslant M^{[s]}, i \in\{1, \ldots, n\}\right\}$,
then

$$
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{r}\right)-\delta_{s, r} \widetilde{A}_{s}\right)^{1 / r} \leqslant \mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})
$$

holds, where $\delta_{s, r} \geqslant 0$ for $r \leqslant-1, \delta_{s, r} \leqslant 0$ for $r \geqslant 1$ and $\widetilde{A}_{s} \geqslant 0$. Here we assume that $\delta_{s, r} \equiv \delta_{s, r}(\bar{m}, \bar{M}), \widetilde{A}_{s} \equiv \widetilde{A}_{s}(\bar{m}, \bar{M})$ are defined by (4.2) and $\bar{m} \in\left[m, m^{[s]}\right], \bar{M} \in\left[M^{[s]}, M\right]$, $\bar{m}<\bar{M}$, are arbitrary numbers.

Proof. We prove only the case (i). We put $\varphi(t)=t^{r}$ and $\psi(t)=t^{s}$ for $t>0$.
Then $\psi \circ \varphi^{-1}(t)=t^{s / r}$ is concave for $r \leqslant s, s \leqslant 0$ and $r \neq 0$. Since $-\psi^{-1}(t)=$ $-t^{1 / s}$ is operator monotone for $s \leqslant-1$ and $\left(m^{[r]}, M^{[r]}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset$ is satisfied, then by applying Theorem 7 (ii) we obtain (4.3) for $r \leqslant s \leqslant-1$.

But, $\psi \circ \varphi^{-1}(t)=t^{s / r}$ is convex for $r \leqslant s, s \geqslant 0$ and $r \neq 0$. Since $\psi^{-1}(t)=t^{1 / s}$ is operator monotone for $s \geqslant 1$, then by applying Theorem 7 (i) we obtain (4.3) for $r \leqslant s, s \geqslant 1, r \neq 0$.

If $r=0$ and $s \geqslant 1$, we put $\varphi(t)=\ln t$ and $\psi(t)=t^{s}, t>0$. Since $\psi \circ \varphi^{-1}(t)=$ $\exp (s t)$ is convex, then similarly as above we obtain the desired inequality.

In the case (ii) we put $\varphi(t)=t^{s}$ and $\psi(t)=t^{r}$ for $t>0$ and we use the same technique as in the case (i).

Figure 2 shows regions (1), (2), (4), (6), (7) in where the monotonicity of the power mean holds true [3, Corollary 6], also Figure 2 shows regions (1)-(7) which this holds true with condition on spectra [3, Corollary 7]. We show in [3, Example 2] that the order among power means does not hold generally without a condition on spectra in regions (3), (5). Now, by using Corollary 11 we give a refinement of inequalities among power means in the regions (2)-(6) (see Remark 13).

Corollary 12. Let $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be as in the definition of the power mean (4.1). Let m_{i} and $M_{i}, 0<m_{i} \leqslant M_{i}$ be the bounds of $A_{i}, i=1, \ldots, n$. Let

$$
M_{n}^{[r]}(\mathbf{A}, \Phi) \leq M_{n}^{[s]}(\mathbf{A}, \Phi) \text { in (1), (2), (4), (6), (7) }
$$

WITHOUT CONDITION ON SPECTRA
$M_{n}^{[r]}(\mathbf{A}, \Phi) \leq M_{n}^{[r]}(\mathbf{A}, \Phi)+\Delta(r, S, \mathbf{A}) \leq M_{n}{ }^{[s]}(\mathbf{A}, \Phi)$
in (2), (3), (4) or (4), (5), (6)
WITH CONDITION ON SPECTRA

Figure 2: Regions describing inequalities among power means
where $m^{[r]}, M^{[r]}, m^{[r]} \leqslant M^{[r]}$ and $m^{[s]}, M^{[s]}, m^{[s]} \leqslant M^{[s]}$ are the bounds of $\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi})$ and $\mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})$, respectively, and

Let $\bar{m} \in\left[m_{[r]}, m^{[r]}\right], \bar{M} \in\left[M^{[r]}, M_{[r]}\right], \bar{m}<\bar{M}$, and $\overline{\bar{m}} \in\left[m_{[s]}, m^{[s]}\right], \overline{\bar{M}} \in\left[M^{[s]}, M_{[s]}\right]$, $\overline{\bar{m}}<\overline{\bar{M}}$ be arbitrary numbers.
(i) If $r \leqslant 1 \leqslant s$, then

$$
\begin{align*}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi}) & \leqslant \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-\delta_{r, 1}(\bar{m}, \bar{M}) \widetilde{A}_{r}(\bar{m}, \bar{M}) \leqslant \mathscr{M}_{n}^{[1]}(\mathbf{A}, \boldsymbol{\Phi}) \\
& \leqslant \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-\delta_{s, 1}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \leqslant \mathscr{M}_{n}^{[s]}(\mathbf{A}, \Phi) \tag{4.4}
\end{align*}
$$

holds, where $\delta_{r, 1}(\bar{m}, \bar{M}) \geqslant 0, \widetilde{A}_{r}(\bar{m}, \bar{M}) \geqslant 0, \quad \delta_{s, 1}(\overline{\bar{m}}, \overline{\bar{M}}) \leqslant 0$ and $\widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \geqslant 0$ are defined by (4.2).
(ii) Furthermore if $r \leqslant-1 \leqslant s$, then

$$
\begin{align*}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi}) & \leqslant\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)-\delta_{r,-1}(\bar{m}, \bar{M}) \widetilde{A}_{r}(\bar{m}, \bar{M})\right)^{-1} \leqslant \mathscr{M}_{n}^{[-1]}(\mathbf{A}, \boldsymbol{\Phi}) \\
& \leqslant\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)-\delta_{s,-1}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}})\right)^{-1} \leqslant \mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi}) \tag{4.5}
\end{align*}
$$

holds, where $\delta_{r,-1}(\bar{m}, \bar{M}) \leqslant 0, \widetilde{A}_{r}(\bar{m}, \bar{M}) \geqslant 0, \delta_{s,-1}(\overline{\bar{m}}, \overline{\bar{M}}) \geqslant 0$ and $\widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \geqslant 0$ are defined by (4.2).
(iii) Furthermore if $r \leqslant-1, s \geqslant 1$, then

$$
\begin{align*}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi}) & \leqslant\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)-\delta_{r,-1}(\bar{m}, \bar{M}) \widetilde{A}_{r}(\bar{m}, \bar{M})\right)^{-1} \leqslant \mathscr{M}_{n}^{[-1]}(\mathbf{A}, \boldsymbol{\Phi}) \\
& \leqslant \mathscr{M}_{n}^{[1]}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-\delta_{s, 1}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \tag{4.6}\\
& \leqslant \mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})
\end{align*}
$$

holds, where $\delta_{r,-1}(\bar{m}, \bar{M}) \leqslant 0, \widetilde{A}_{r}(\bar{m}, \bar{M}) \geqslant 0, \delta_{s, 1}(\overline{\bar{m}}, \overline{\bar{M}}) \leqslant 0, \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \geqslant 0$ are defined by (4.2).

Proof. We prove only (4.4). If $r \leqslant 1$, then putting $s=1$ in Corollary 11 (i) we get LHS of (4.4). Also, if $s \geqslant 1$, then putting $r=1$ in Corollary 11 (ii) we get RHS of (4.4).

REMARK 13. Let the assumptions of Corollary 12 be valid. We get refinement of inequalities among power means as follows.

If $r \leqslant 1 \leqslant s$, then

$$
\begin{aligned}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi}) & \leqslant \mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi})+\delta_{r, 1}(\bar{m}, \bar{M}) \widetilde{A}_{r}(\bar{m}, \bar{M})-\delta_{s, 1}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \\
& \leqslant \mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})
\end{aligned}
$$

If $r \leqslant-1 \leqslant s$, then

$$
\begin{aligned}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant & \mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi})+\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)-\delta_{s,-1}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}})\right)^{-1} \\
& -\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)-\delta_{r,-1}(\bar{m}, \bar{M}) \widetilde{A}_{r}(\bar{m}, \bar{M})\right)^{-1} \\
\leqslant & \mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})
\end{aligned}
$$

If $r \leqslant-1, s \geqslant 1$, then

$$
\begin{aligned}
\mathscr{M}_{n}^{[r]}(\mathbf{A}, \mathbf{\Phi}) \leqslant & \mathscr{M}_{n}^{[r]}(\mathbf{A}, \boldsymbol{\Phi})+\mathscr{M}_{n}^{[1]}(\mathbf{A}, \mathbf{\Phi})-\delta_{s, 1}(\overline{\bar{m}}, \overline{\bar{M}}) \widetilde{A}_{s}(\overline{\bar{m}}, \overline{\bar{M}}) \\
& -\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)-\delta_{r,-1}(\bar{m}, \bar{M}) \widetilde{A}_{r}(\bar{m}, \bar{M})\right)^{-1} \\
\leqslant & \mathscr{M}_{n}^{[s]}(\mathbf{A}, \boldsymbol{\Phi})
\end{aligned}
$$

REFERENCES

[1] F. Hansen, J. PečArić and I. Perić, Jensen's operator inequality and it's converses, Math. Scand. 100 (2007), 61-73.
[2] M. Klaričić Bakula, J. Pečarić and J. Perić, On the converse Jensen inequality, manuscript
[3] J. MićIć, Z. PAVIĆ AND J. PEČARIĆ, Jensen's inequality for operators without operator convexity, Linear Algebra Appl. 434 (2011), 1228-1237.
[4] J. MićIĆ, Z. PAVIĆ AND J. PEČARIĆ, Jensen type inequalities on quasi-arithmetic operator means, Sci. Math. Japon. 73 (2011), 183-192.
[5] J. MiĆIĆ, J. PEČARIĆ AND Y. SEO, Converses of Jensen's operator inequality, Oper. Matrices 4 (2010), 385-403.
[6] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., Dordrecht-Boston-London, 1993.
[7] B. Mond and J. Pečarić, Converses of Jensen's inequality for several operators, Revue d'analyse numer. et de théorie de l'approxim. 23 (1994) 179-183.

Jadranka Mićić
Faculty of Mechanical Engineering and Naval Architecture
University of Zagreb
Ivana Lučića 5
10000 Zagreb, Croatia
e-mail: jmicic@fsb.hr
Josip Pečarić
Faculty of Textile Technology
University of Zagreb
Prilaz baruna Filipovića 30
10000 Zagreb, Croatia
e-mail: pecaric@hazu.hr
Jurica Perić
Faculty of Science, Department of Mathematics
University of Split
Teslina 12
21000 Split, Croatia
e-mail: jperic@pmfst.hr

[^0]: Mathematics subject classification (2010): 47A63, 47A64.
 Keywords and phrases: self-adjoint operator, positive linear mapping, convex function, Jensen's operator inequality, quasi-arithmetic mean.

