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Abstract. The notion of weak asymptotic homomorphism property for masas in semifinite fac-
tors is defined and is shown to be equivalent to singularity. The analysis shows that weak asymp-
totic homomorphism property is a ‘spectral phenomenon’.

1. Introduction

This article tries to establish that the techniques developed in [9] for masas in finite
factors can be extended without much difficulty to the semifinite case. It heavily relies
on results in [9]. The idea is to understand singular masas. It is known to experts that
singularity can be very difficult to verify. But as it turned out in [9], both notions singu-
larity and regularity go hand in hand. The notion of weak asymptotic homomorphism
property (WAHP hereafter) for finite factors, a property equivalent to singularity for
masas, was discovered in [14]. This property is easily seen to be stable under tensor
products. In [9], WAHP was explained through measure theoretic ideas and one of
the many reasons for ‘a relative version of WAHP’ being stable under tensor products
was automatic fall out of the techniques developed therein. Moving beyond finite von
Neumann algebras and masas, it was proved in [6] that the (groupoid) normalizing
algebras in many cases are well behaved with respect to tensor products. Very recently,
relative WAHP ( in the finite case) for arbitrary subalgebras was studied in [5] and
many more questions related to normalizers were settled. Keeping the results of [6] in
mind and the relation between (relative) WAHP and normalizers in [9], it is natural to
ask that how far WAHP extends beyond the finite case. The definition of WAHP ( in
the finite case) involves the conditional expectation. Thus, we define WAHP for masas
in the semifinite case assuming the existence of conditional expectation and show that
WAHP is equivalent to singularity. The analysis required to prove this equivalence will
indeed show that WAHP and its opposite i.e., regularity are spectral phenomena.

This article is organized as follows. §2 contains all the preliminary preparation
that is required to address the problem. In §3, we study normalizers of masas and in §4
we prove the equivalence of WAHP and singularity.
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2. Preliminaries

Let M be an infinite dimensional semifinite von Neumann algebra equipped with
a fixed faithful, normal, semifinite, tracial weight τ . Let Mτ = {x ∈ M : τ(x∗x) < ∞} .
Then Mτ is a self-adjoint two sided ideal in M and τ defines a definite inner product
on Mτ by 〈x,y〉τ = τ(y∗x) , x,y∈Mτ . This inner product induces a Hilbert norm on Mτ
which is denoted by ‖·‖τ . The completion of Mτ in ‖·‖τ will be denoted by L2(M,τ) .
Also note that τ can be extended uniquely to a faithful positive functional on M∗

τ Mτ =
span {y∗x : x,y ∈ Mτ} . We consider the representation of M in L2(M,τ) by left mul-
tiplication, which is faithful and normal. We only consider separable semifinite von
Neumann algebras which is equivalent to the separability of L2(M,τ) . Furthermore,
we will assume M is a factor. If p is a projection in Mτ , then τ is a faithful, normal,
finite trace on the corner pMp . We have ‖y‖τ = ‖y∗‖τ and ‖x1yx2‖τ � ‖x1‖‖x2‖‖y‖τ ,
for x1,x2 ∈ M and y ∈ Mτ . The Tomita’s modular operator associated to τ is the ex-
tension of J : Mτ �→ Mτ given by Jx = x∗ and is an anti-linear unitary. The image
of a vector ζ ∈ L2(M,τ) under J will be denoted by ζ ∗ . Let N ⊆ M be a σ -weakly
closed ∗ -subalgebra. Write Nτ =N∩Mτ . Let eN denote the orthogonal projection onto

Nτ
‖·‖τ defn.= L2(N,τ) . If the support projection p of N is such that p ∈ Mτ , then there

is an unique normal τ - preserving conditional expectation from M onto N . This con-
ditional expectation is obtained by restricting the orthogonal projection eN to pMτ p .

Let A ⊂ M be a masa and suppose that there exists a normal conditional expec-
tation EA from M onto A . Then EA is automatically faithful and unique (see Thm.
2.1 [1]) . If M = B(H ) , then there is one such masa up to unitary conjugacy, namely,
�∞ ⊂ B(�2) , which is Cartan and very well understood. Thus we assume M is a II∞
factor. So A is generated by finite projections [1]. The modular automorphism group
associated to τ is trivial and hence fixes A pointwise. The semifinite trace τ restricted
to the lattice of projections of A takes every value in [0,∞] . This just follows because
A is diffuse and if E = {τ(p) : p ∈ A is a projection} , then E is closed connected and
{0,∞} ∈ E . Thus by a theorem of Takesaki (cf. [15], Chap. 2) τ ◦EA = τ . Since every
conditional expectation is a Schwarz mapping ( i.e., EA(x)∗EA(x) � EA(x∗x) for all x ,
see p. 117 [15]) , so EA maps Mτ onto Aτ . Thus there exists a sequence of projections
pi ∈ Aτ such that Api is maximal abelian in piMpi and pi ↑ 1.

The assumption of normal conditional expectation seems necessary to define WAHP.
Note that it is possible to have a masa in any II∞ factor which contains no finite projec-
tions of the factor [8]. For such a masa very little is known.

PROPOSITION 1. Let A ⊂ M be a masa in a II∞ factor M such that there exists
a normal conditional expectation from M onto A. Then there is a ∗ -isomorphism θ
from A onto L∞([0,1],μ) , where μ is a σ -finite, semifinite, nonatomic Borel measure
such that τ(a) =

∫ 1
0 θ (a)dμ for all a ∈ A.

Proof. Follow the proof of Thm. 3.5.2 [13]. �
Henceforth, we will assume A = L∞([0,1],μ) and τ|A = μ . Note that eA ∈ A =

A∨ JAJ . Indeed, note that pnJpnJ
s.o.t→ 1 and pnJpnJeA = eApn . But pnMpn is a
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finite factor and Apn being a masa in pnMpn , the result follows immediately, as
eApn ∈ A (pnJpnJ) by a result of [10]. Also note that A is a diffuse abelian von
Neumann algebra; this is true as there are no one dimensional normal representations
of L∞([0,1],μ) . Thus eA is a central projection of A ′ . Let N(A) denote the group of
unitaries of M that conjugates A to itself. Dixmier was the first to study this group [3].
He defined A to be regular if N(A)′′ = M , semiregular if N(A) acts ergodically on A ,
and, singular if N(A)⊂ A . A regular masa is Cartan if there exists a normal conditional
expectation from M onto A .

LEMMA 1. (i) eN(A)′′ ∈ A ,
(ii) A eN(A)′′ = A ′eN(A)′′ .

Proof. Note that eA ∈ A . The arguments are then essentially mimicking the
original proof of the finite case [10]. By Prop. 1, the left action of A on L2(A,τ)
is unitarily equivalent to L∞(μ) acting on L2(μ) by multiplication, the latter hav-
ing a cyclic vector. Thus L2(A,τ) has a cyclic vector for the left action of A and
hence the same vector is cyclic for A eA . Thus AeA and hence A eA are maximal
abelian in B(L2(A,τ)) . Consequently AeA = A eA = A ′eA . Now it follows that for all
u ∈ N(A) , A ueAu∗ = uA eAu∗ = uA ′eAu∗ = A ′ueAu∗ (since Ad(u) ∈ Aut(A )) . But
ueAu∗ = euA = eAu , eAu denoting the orthogonal projection onto the closed subspace

Aτu
‖·‖τ . Note that ueAu∗ ∈ A . Observe that eN(A)′′ = ∨

u∈N(A)
eAu . This completes the

proof. �
In other words, if A is Cartan then A has a cyclic vector. Following [14] define:

DEFINITION 1. Let A ⊂ M be a masa such that there is a normal conditional
expectation from M onto A . Then A has WAHP, if given ε > 0 and any finite number
of elements xi ∈ Mτ , 1 � i � n with EA(xi) = 0 for all i , there is a unitary u ∈ A such

that
∥∥∥EA(xiux∗j)

∥∥∥
τ
< ε for all i, j .

REMARK 1. Note that in Defn. 1, xiux∗j ∈ Mτ , so EA(xiux∗j) ∈ Aτ and this fact
will be used repeatedly in the subsequent sections. It is to be noted that just obtaining
a desired unitary to satisfy Defn. 1 is not always illuminating. The best choice of the
unitary in Defn. 1 will in fact make much deeper understanding of the situation and
will show that WAHP is a spectral phenomenon. This will be clear in §4.

3. Normalizers

This section is devoted to the structure of the normalizing algebra of a masa. Most
results in this section require measure theory for which a detailed analysis has been
done in [9]. Since the arguments required to establish the desired structure will be
borrowed from [9] and many arguments remain exactly the same, we will present only
those proofs which require amending arguments of [9].

Following [9], consider the conjugacy invariant of A ⊂ M derived from writing
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the direct integral decomposition of its left-right action. Note that C[0,1]⊂ A is unital,
separable and w.o.t dense in A . Using factoriality of M and making arguments similar
to §2.3 [9], one finds that the map C[0,1]⊗algC[0,1] � a⊗ b �→ aJb∗J ∈ B(L2(M,τ))
extends to an injective representation of C[0,1]⊗C[0,1] in L2(M,τ) . Thus, there exists
a complete regular Borel measure η on [0,1]× [0,1] such that L2(M,τ) admits a direct
integral decomposition

∫ ⊕
[0,1]×[0,1]Ht,sdη , for a η -measurable field of Hilbert spaces

(t,s) �→ Ht,s , and, A ∼= L∞([0,1]× [0,1],η) is the algebra of diagonalizable operators
with respect to this decomposition. Note that η is nonatomic, since A is diffuse. We
name [η ] ( the class of measures that have same null sets as η) to be the left-right
measure of A .

For ζ1,ζ2 ∈ L2(M,τ) , let κζ1,ζ2
: C[0,1]⊗C[0,1] �→ C be the linear functional

defined by, κζ1,ζ2
(a⊗ b) = 〈aζ1b,ζ2〉τ , a,b ∈ C[0,1] . Then κζ1,ζ2

induces an unique
complex Radon measure ηζ1,ζ2

on [0,1]× [0,1] given by,

κζ1,ζ2
(a⊗b) =

∫
[0,1]×[0,1]

a(t)b(s)dηζ1,ζ2
(t,s). (1)

We will write ηζ ,ζ = ηζ . Strictly speaking the null sets of η count and not the mea-
sure itself. For an algorithm to compute η from ηζ , ζ ∈ L2(M,τ) see §2.3 [9]. Given
ζ ∈ L2(M,τ) , using Lemma 5.7 [4] and an appropriate member from [η ] , one can al-
ways assume η = ηζ + ν with ν ⊥ ηζ . All statements we make will be independent
of the choice of a particular member from [η ] . This is precisely because the struc-
ture of L2(M,τ) as a A–A bimodule remains unaltered (via an unitary equivalence)
in switching over members of [η ] . However, for demonstration we will often fix one
measure from the measure class such that η([0,1]× [0,1]) < ∞ . We denote by Δ([0,1])
the diagonal of [0,1]× [0,1] .

The left-right measure enjoys some nice properties. We present here some proper-
ties for the sake of convenience.

PROPOSITION 2. (i) [η ] is invariant with respect to the flip of coordinates.
(ii) If πi : [0,1]× [0,1]→ [0,1] , i = 1,2 , denote the coordinate projections then [πi∗η ] =
[μ ] .
(iii) The subspace

∫ ⊕
Δ([0,1]) Ht,t dη(t,t) is identified with L2(A,τ) .

(iv) If E,F are measurable subsets of [0,1] such that μ(E) > 0,μ(F) > 0 , then
η(E ×F) > 0 .

Proof. The proof of these facts are well known. For example, see §2 of [9] and
the references therein. So we just sketch the arguments. For (i) observe that Ad J
implements an automorphism of A . For (ii) note that A,JAJ ⊂ A are faithfully
represented in L2(M,τ) . If p ∈ A is a finite projection, then p corresponds to a mea-
surable set E ⊂ [0,1] of finite μ measure. Working as in the type II1 case it is easy
to see that the subspace

∫⊕
E Ht,sdη(t,s) is identified with L2(Ap,τ) . Thus an easy ap-

proximation argument proves (iii) . For (iv) note that the sets E and F correspond to
nonzero projections p and q respectively in A. If η(E ×F) = 0, then pζq = 0 for all
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ζ ∈ L2(M,τ) . Thus pxq = 0 for all x ∈ Mτ . Thus we have two nonzero projections in
A whose central carriers are orthogonal. This violates that M is a factor. �

In fact, working with self-adjoint vectors (ζ = ζ ∗) one can always produce a
member in [η ] which is symmetric. Prop. 2 allows one to disintegrate η and hence
ηζ , ζ ∈ L2(M,τ) with respect to (πi,μ) , i = 1,2. For more details on disintegration
see §3 [9], [2]. We denote these (π1,μ)-disintegrations by ηt ,ηt

ζ and the (π2,μ)-
disintegrations by ηs,ηs

ζ ; t,s ∈ [0,1] . Note that these disintegrations are uniquely
defined up to an almost sure equivalence. Thus changing the fibres on a set of μ mea-
sure zero does not change the measure η .

Fix a member η from the left-right measure of A and fix a pair of disintegrations
[0,1] � t �→ ηt and [0,1] � s �→ ηs . We assume η is finite. Let S = [0,1]× [0,1] . Let

Sη,1 = {(t,s) | ∃ s ∈ [0,1] : ηt(t,s) > 0},
Sη,2 = {(t,s) | ∃ t ∈ [0,1] : ηs(t,s) > 0}.

From Prop. 3.3 [9] these sets are η -measurable. These sets are not well defined as
we have fixed a disintegration. However, finally our results will be independent of the
above choice. This will be clear soon, as the structural results will involve operator al-
gebraic statements. Write Sη,a = Sη,1 ∩Sη,2 . Then ηa = η|Sη,a has completely atomic
disintegration along both coordinates.

It is not at all obvious that these sets Sη,i , i = 1,2, or Sη,a are measurable equiv-
alence realtions. In fact, transitivity is missing and hence it does not directly fit to the
setup of Feldman-Moore theory. Thus one has to argue otherwise.

The normalizing groupoid of A denoted by G N M(A) is the collection of those
partial isometries v ∈ M such that vAv∗ ⊆ A and v∗Av ⊆ A . As A is a masa, so
v ∈ G N M(A) if and only if v∗v,vv∗ ∈ A and vAv∗ = Avv∗ = vv∗A . The next result
is proved exactly along the same lines of proof of Prop. 3.11 [9].

PROPOSITION 3. Let A ⊂ M be a masa generated by finite projections of M . Let
ζ ∈ L2(N(A)′′,τ) . Then ηt

ζ (as well ηs
ζ ) is completely atomic μ almost all t (and

almost all s) .

Each v ∈ G N M(A) such that v∗v is finite, implements a partial measure preserv-
ing automorphism Tv of L∞(μ) . Such an automorphism is an invertible, bimeasure
preserving, bimeasurable transformation between two measurable subsets E,F ⊂ [0,1]
such that μ(E) = μ(F) < ∞ . Let Γ(v) denote the graph of Tv . Since the measure μ is
σ -finite and semifinite, working with sets of finite μ measure all arguments of Lemma
5.7, 5.8, 5.9 [9] (the ones which involve the measurable selection principle) are still
valid and their proofs go without any change. This is because each time we work on
a cut down of A by a finite projection from A , we are back to the setup of finite von
Neumann algebras. Thus we deduce the following theorem.

THEOREM 4. There is an index set Λ (could be empty but atmost countable) and
a family {v0}∪{vλ}λ∈Λ ⊂ G N M(A) of nonzero partial isometries with v0 = 1 and
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τ(v∗λ vλ ) < ∞ for all λ ∈ Λ such that,

(i) Γ(vλ )∩Γ(vλ ′) = /0 for λ �= λ ′,
(ii) Γ(vλ )∩Γ(v0) = /0 for all λ ,

(iii) ηa([0,1]× [0,1]\Δ([0,1]))= ηa(∪λ∈ΛΓ(vλ ))

(iv) ⊕
λ∈Λ

Avλ
‖·‖τ ⊕Aτv0

‖·‖τ ∼=
∫ ⊕

∪λ∈ΛΓ(vλ )∪Δ([0,1])
Ct,sdηa(t,s) ∼= L2(N(A)′′,τ), Ct,s = C,

and A restricted to ⊕λ∈ΛAvλ
‖·‖τ ⊕Aτv0

‖·‖τ is diagonalizable with respect to the de-
composition in (iv) .

REMARK 2. Notice that the first and the third expressions in (iv) of Thm. 4 forces
that the choice of η and its disintegrations are no obstacle at all. Off course, we do not
claim uniqueness of the partial isometries involved. In changing η or its disintegrations
on sets of measure zero (possibly) affects the measurable selection principle involved
in the proof (of the finite case) and the partial isometries might change. Nevertheless,
L2(N(A)′′,τ) will ever decompose as a direct sum of ‘discrete bimodules’ (see §5 [9]
for definition of discrete bimodules, also see [11]) .

Proof of Thm. 4. Since many details remain exactly similar to the II1 case, we
only sketch the proof. Write S0 = S \Δ([0,1]) . If ηa(S0) = 0, choose the indexing
set to be empty. Otherwise argue as follows. Let ηa(S0) > 0. Arguing as in Lemma
5.7, 5.8, 5.9 of [9], choose a maximal family of partial isometries vλ ∈ G N M(A) ,
λ ∈ Λ , for some index set Λ such that τ(v∗λ vλ ) < ∞ , Γ(vλ ) ⊆ Sη,a \ Δ([0,1]) and

Γ(vλ )∩Γ(vλ ′) = /0 for λ �= λ ′ . This forces Avλ
‖·‖τ ⊥ Avλ ′

‖·‖τ for all λ �= λ ′ . Thus Λ
must be atmost countable by the separability assumption of L2(M,τ) . It is clear that∫ ⊕

Γ(vλ )
Ct,sdη(t,s) ∼=

∫ ⊕

Γ(vλ )
Ct,sdηa(t,s) ∼=

∫ ⊕

Γ(vλ )
Ct,sdηvλ

(t,s) = Avλ
‖·‖τ , Ct,s = C,

ηvλ
denoting the completion of ηvλ .
By maximality, ηa(S0 \∪λ∈ΛΓ(vλ )) = 0. Indeed, if this were not the case, then

ηa(S0 \∪λ∈ΛΓ(vλ )) > 0. Write N = S0 \∪λ∈ΛΓ(vλ ) . We can assume that N is Borel.
Then μ(πi(N)) > 0 for i = 1,2. If for every pair of sets (E1,E2) such that Ei ⊆ πi(N) ,
0 < μ(Ei) < ∞ , one has ηa((E1 × E2)∩N) = 0, then ηa(N) = 0, which is not the
case. Thus choose a pair of measurable sets (E1,E2) such that 0 < μ(Ei) < ∞ and
ηa((E1×E2)∩N) > 0. The sets Ei correspond to finite projections qi ∈ A , i = 1,2.

Considering A(q1∨q2)⊂ (q1∨q2)M(q1∨q2) we are back to the finite case. Note
that the left-right measure of A(q1 ∨q2) ⊂ (q1 ∨q2)M(q1 ∨q2) is the restricition of η
to (E1∪E2)× (E1∪E2) . Applying Lemma 5.7, 5.8, 5.9 of [9] to the set N∩(E1×E2) ,
find a nonzero v ∈ G N M(A) such that Γ(v) ⊆ N ∩ (E1 ×E2) . Note that τ(v∗v) < ∞ .
Then {vλ}λ∈Λ ∪{v} violates the maximality of {vλ}λ∈Λ .

Let v0 = 1. Then (i),(ii) and (iii) follows. Note that

⊕λ∈ΛAvλ
‖·‖τ ⊕Aτv0

‖·‖τ ∼=
∫ ⊕

∪λ∈ΛΓ(vλ )∪Δ([0,1])
Ct,sdηa(t,s) ⊆ L2(N(A)′′,τ).
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Finally, let 0 �= ζ ∈ L2(N(A)′′,τ)�
(
⊕λ∈ΛAvλ

‖·‖τ ⊕Aτv0
‖·‖τ

)
. So ηζ will admit com-

pletely atomic disintegrations along both coordinates (Prop. 3) . Then by Lemma 5.7
[4], there is finite measure ν singular to ηζ such that [ηζ +ν] is the left-right measure
of A . By uniqueness of direct integrals, there is an isomorphism T of measure spaces
(S,η) and (S,ηζ +ν) which implements a unitary between L2(M,τ) to itself that pre-
serves the structure of L2(M,τ) as the natural A–A bimodule. Via this unitary one can
assume that ηζ � η . But then L2(N(A)′′,τ) will admit a direct integral with respect
to ηa with multiplicity strictly bigger than one on some set of positive ηa measure
(see Lemma 5.7 [4]) . This violates A eN(A)′′ is maximal abelian in B(L2(N(A)′′,τ))
(Lemma 1) . This completes the argument. �

REMARK 3. The above proof and the statement shows that the choice of disin-
tegrations by changing the fibres on sets of zero measure makes no difference. If
[η ] = [η ′] , then there exist a unitary U : L2(M,τ) �→ L2(M,τ) which intertwines A
to itself and preserves the structure of L2(M,τ) as the natural A–A bimodule. This

unitary is the one that sends
∫⊕
[0,1]×[0,1] ξt,sdη(t,s) to

∫ ⊕
[0,1]×[0,1] ξt,s

√
dη
dη ′ dη ′(t,s) . Thus

the conclusions of Thm. 4 remain unaltered by choosing different members from [η ] .

THEOREM 5. If ζ ∈ L2(M,τ)�L2(N(A)′′,τ) , then the (πi,μ)-disintegration of
ηζ is completely non atomic μ almost everywhere for i = 1,2 .

Proof. The proof of Thm. 4 and the discussion preceeding it show that L2(N(A)′′,τ)
is the maximal A–A bimodule in Cd(A) (see Defn. 5.1 of [9] and the discussions
following it, also see [11]) , when we restrict ourselves to A–A sub bimodules of
L2(M,τ) . Suppose to the contrary the (πi,μ)-disintegration of ηζ is not completely
non atomic μ almost everywhere for i = 1,2. Then using the measurable selection

principle (see §5 of [9] for details) , one finds that AζA
‖·‖τ contains a sub bimodule

which belongs to Cd(A) . Note that AζA
‖·‖τ is orthogonal to L2(N(A)′′,τ) . But then

maximality of L2(N(A)′′,τ) is violated. �

There are several instances where Thm. 4, 5 are useful. For instance when one
tensors two masas, analyze Dye-type theorems on normalizing groupoids etc. Since
these facts have been proved using different arguments and such results are known in
greater generality, we do not prove them here. Note that the ball ( in ‖·‖) of Mτ is
closed in ‖·‖τ . This is because if xn ∈ Mτ with ‖xn‖ � 1 and xn → ξ ∈ L2(M,τ) ,
then ξ is a bounded vector ( i.e., ‖ξ x‖τ � ‖x‖τ for all x ∈ Mτ) , forcing ξ ∈ Mτ . Also

if Mτ � xn
‖·‖τ→ x ∈ Mτ and xn ’s are bounded, then xn

s.o.t→ x . If v ∈ G N M(A) , then

Aτv
‖·‖τ = L2(A,τ)v . Following Thm. 4, let Λ∪{0}= Λ′ . Let

∑
λ∈Λ′

Avλ =

{
∑

λ∈Λ′
aλ vλ ∈ M : aλ ∈ A, ∑

λ∈Λ′
‖aλ vλ‖2

τ < ∞

}
,
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where vλ ∈ G N M(A) are as in Thm. 4. Then

∑
λ∈Λ′

Avλ =

{
∑

λ∈Λ′
aλ vλ ∈ M : aλ ∈ Aτ , ∑

λ∈Λ′
‖aλ vλ‖2

τ < ∞

}
.

PROPOSITION 6. Under the above setup

∑
λ∈Λ′

Avλ
‖·‖τ ∩Mτ = ∑

λ∈Λ′
Avλ .

Proof. Indeed, if x ∈ ∑λ∈Λ′ Avλ
‖·‖τ ∩Mτ , then from Thm. 4 we have

x = ∑
λ∈Λ′

ξλ vλ , ξλ ∈ L2(A,τ),

where this series converges in ‖·‖τ . But for ν ∈ Λ′ ,

xv∗ν = ∑
λ∈Λ′

ξλ vλ v∗ν forces that

eA(xv∗ν ) = ∑
λ∈Λ′

ξλ eA(vλ v∗ν ) = ξνvνv∗ν .

Consequently, x = ∑λ∈Λ′ eA(xv∗λ )vλ = ∑λ∈Λ′ EA(xv∗λ )vλ ∈ ∑λ∈Λ′ Avλ as xv∗λ ∈ Mτ .
The reverse inclusion is obvious. �

COROLLARY 1. (i) N(A)′′ ∩Mτ = ∑λ∈Λ′ Avλ .
(ii) There exists an unique faithful normal conditional expectation from M onto N(A)′′
preserving τ .

Proof. (i) follows from Thm. 4 and Prop. 6. From (i) τ restricted to N(A)′′+ is
semifinite, as the trace restricted to A+ is semifinite. The modular automorphism group
with respect to τ is trivial. Thus by a well known theorem of Takesaki Chap. 2 [15],
there is an unique faithful normal τ -preserving conditional expectation onto N(A)′′ . It
is easy to see that, for x ∈ Mτ one has EN(A)′′(x) = ∑λ∈Λ′ EA(xv∗λ )vλ ∈ N(A)′′τ , where
vλ ’s are as in Thm. 4. �

REMARK 4. If A ⊂ B ⊂N(A)′′ is an intermediate von Neumann subalgebra, then
there exists an unique faithful normal τ -preserving conditional expectation onto B .
This will follow because L2(B,τ) will have a decomposition as in Thm. 4, with pos-
sibly different partial isometries. However, it is not true that if there exists a normal
conditonal expectation onto N(A)′′ , then there is a normal conditonal expectation onto
A . In the I∞ case this is clear, as the continuous masa L∞([0,1],λ ) ⊂ B(L2[0,1],λ ) is
regular but not Cartan ( i.e., N(L∞([0,1],λ ))′′ = B(L2[0,1],λ ) but there are no normal
conditional expectations onto L∞([0,1],λ )) , where λ is Lebesgue measure. In the II∞
setting, write M = N⊗B(L2[0,1],λ ) , where N is a type II1 factor with a Cartan masa
B . Consider A = B⊗L∞([0,1],λ ) ⊂ M . Then B is a regular masa in M . However,
there are no normal conditional expectations from M onto A .
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COROLLARY 2. If A ⊂ M is a Cartan masa, then there is an unique normal τ -
preserving conditional expectation from M onto any von Neumann subalgebra contain-
ing A.

4. Singularity

In this section we prove the equivalence of WAHP and singularity. We need some
preparation.

LEMMA 2. (i) Let x ∈ Mτ . Then ηx admits (πi,μ)-disintegrations t �→ ηt
x and

s �→ ηs
x , i = 1,2 . Moreover, ηt

x([0,1]× [0,1]) = EA(xx∗)(t) and ηs
x([0,1]× [0,1]) =

EA(x∗x)(s) almost everywhere.
(ii) Let x ∈ Mτ and a ∈ C[0,1] ⊂ A. Then the functions t �→ ηt

x(1⊗ a) and s �→
ηs

x(a⊗1) are in Aτ .
(iii) If x ∈ Mτ and a ∈C[0,1] ⊂ A, then ηt

x(1⊗a) = EA(xax∗)(t) almost every t and
ηs

x(a⊗1) = EA(x∗ax)(s) almost every s.

Proof. (i) The associated disintegrations exist because one can assume ηx � η
(Lemma 5.7 [4]) and η admits the disintegrations (see Lemma 3.6 [9]) . Let a ∈
Aτ ∩C[0,1] . Then using Prop. 8.5.1 [7] we have

ηx(a⊗1) = 〈ax,x〉τ = τ(x∗ax) = τ(axx∗) = 〈EA(xx∗),a∗〉τ = τ(aEA(xx∗)).

Since t �→ ηt
x([0,1]× [0,1]) is μ -measurable, we have

∫ 1

0
a(t)ηt

x([0,1]× [0,1])dμ(t) =
∫ 1

0
a(t)EA(xx∗)(t)dμ(t).

Thus for any μ -measurable set E one has∫
E

ηt
x([0,1]× [0,1])dμ(t) =

∫
E

EA(xx∗)(t)dμ(t). (2)

Indeed, first choose E to be a compact set of finite positive measure. Pointwise approx-
imate χE from above by a monotone decreasing sequence of continuous functions fn
such that 0 � fn � 1 and the support of fn for all n is contained in a larger compact
set of finite measure. Note that t �→ ηt

x([0,1]× [0,1]) is μ -integrable. Use dominated
convergence to conclude that Eq. (2) holds for all compact sets of finite measure. Thus
Eq. (2) holds when E is a measurable set of finite measure (by regularity of μ|E) .
Finally use σ -finiteness. The arguments for the (π2,μ)-disintegration are similar.
(ii) Note that the stated functions are measurable. Now for almost all t we have
|ηt

x(1⊗a)| � ‖a‖ηt
x([0,1]× [0,1]) = ‖a‖EA(xx∗)(t) . Note that EA(xx∗) ∈ Aτ . Simi-

larly argue for the (π2,μ)-disintegration.
(iii) For b ∈C[0,1]∩Aτ , we have

ηx(b⊗a) = 〈bxa,x〉τ = τ(x∗bxa) = τ(bxax∗) = 〈xax∗,b∗〉τ = 〈EA(xax∗),b∗〉τ .
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Thus taking disintegrations we have

∫ 1

0
b(t)ηt

x(1⊗a)dμ(t) =
∫ 1

0
b(t)EA(xax∗)(t)dμ(t), (EA(xax∗) ∈ Aτ).

Consequently, the result follows by standard density arguments. The arguments for the
(π2,μ)-disintegration are similar. �

THEOREM 7. Let A ⊂ M be a masa generated by finite projections. Let x,y ∈ Mτ
be such that EN(A)′′(x) = 0 and EN(A)′′(y) = 0 . Then

1
N +1

N

∑
k=0

∥∥∥EA(xuky∗)
∥∥∥2

τ
→ 0 as N → ∞,

where u ∈ A corresponds to the unitary [0,1] � t �→ e2π it .

Proof. Note that by Cor. 1, EN(A)′′ is defined. By Lemma 5.7 [4], the left-right
measure of A is [ηx + ν] where ν is singular to ηx . Since EN(A)′′(x) = 0, so by Thm.
5 the disintegrations t �→ ηt

x and s �→ ηs
x are non atomic for almost all t and almost

all s respectively. Choose a Borel μ null set F so that for t ∈ Fc the measure ηt
x is

nonatomic. Enlarging this null set by another Borel μ null set and renaming it to F
again, we can assume that ηt

x is finite for all t ∈ Fc (Lemma 2) . By a result of Wiener
on Fourier coefficients of finite measures one has

1
N +1

N

∑
k=0

∣∣∣ηt
x(1⊗uk)

∣∣∣2 → 0 as N → ∞ for each t ∈ Fc. (3)

Fix t ∈ Fc . Then from Lemma 2 we have∣∣∣ηt
x(1⊗uk)

∣∣∣2 � ηt
x([0,1]× [0,1])2 = |EA(xx∗)(t)|2

for all k ∈ N . Thus 1
N+1 ∑N

k=0

∣∣ηt
x(1⊗uk)

∣∣2 � |EA(xx∗)(t)|2 . As x ∈ Mτ , so EA(xx∗) ∈
Aτ . Noting that the semifinite trace τ restricted to C[0,1] ⊂ A is the measure μ , use
dominated convergence theorem to conclude that

lim
N

∫ 1

0

1
N +1

N

∑
k=0

∣∣∣ηt
x(1⊗uk)

∣∣∣2 dμ(t) = 0.

Switching the integral and the sum, and, using Lemma 2 we get

lim
N

1
N +1

N

∑
k=0

∥∥∥EA(xukx∗)
∥∥∥2

τ
= 0.

Finally, use the polarization identity for conditional expectations to finish the proof. �
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COROLLARY 3. Let A ⊂ M be a masa generated by finite projections. A is sin-
gular if and only if for x ∈ Mτ and EA(x) = 0 one has

1
N +1

N

∑
k=0

∥∥∥EA(xukx∗)
∥∥∥2

τ
→ 0 as N → ∞,

where u ∈ A corresponds to the unitary [0,1] � t �→ e2π it .

Proof. One way follows directly from Thm. 7. For the reverse direction, suppose
to the contrary A � N(A)′′ . Then from Thm. 4 there is a nonzero v ∈ G N M(A)∩Mτ
orthogonal to Aτ . The measure ηv disintegrates as completely atomic measures with
atoms (one atom on t × [0,1] for almost every t on the domain of Tv) located on the
partial automorphism graph. By Wiener’s theorem,

1
N +1

N

∑
k=0

∣∣∣∣
∫ 1

0
e−2π iksdηt

v(s)
∣∣∣∣
2

→ ∑
s∈[0,1]

ηt
v({s})2.

Thus by using Lemma 2 it follows that 1
N+1 ∑N

k=0

∥∥EA(vukv∗)
∥∥2

τ → τ(v∗v) �= 0, which
is a contradiction. �

Recall that a subset S ⊆ N∪{0} is said to be of full density or density one if

lim
n

#(S∩ [0,n])
n+1

= 1.

COROLLARY 4. Let A ⊂ M be a masa generated by finite projections. A is sin-
gular if and only if A has WAHP.

Proof. A bounded sequence of positive real numbers {an}n∈N converges to zero
in the sense of Cesàro if and only if there is a set P ⊆ N of density 1 such that an → 0
along P (see Prop. 6.1.2 [12]) . This shows that if A is singular, then A has WAHP
(from Cor. 3) . The other direction is also easy. If to the contrary A � N(A)′′ , then from
Thm. 4 there is a nonzero v ∈ G N M(A)∩Mτ orthogonal to Aτ . Let v∗v = p . Then
p ∈ Aτ . For any unitary u ∈ A , one has ‖EA(vuv∗)‖2

τ = ‖vuv∗‖2
τ = τ(vu∗v∗vuv∗) =

τ(vpv∗) = τ(p) , which cannot be made arbitrarily small by varying u over the unitaries
of A . This completes the argument. �

The next two results characterize the normalizing algebra of a masa. We just state
them here, as their proofs are easy exercises and follows from the results in §4.

THEOREM 8. Let A ⊂ M be a masa generated by finite projections. Let u ∈ A be
the unitary generator corresponding to the function [0,1] � t �→ e2π it . Let x ∈ Mτ be
such that EA(x) = 0 . Then the following are equivalent.

(i) limN→∞
1

N+1 ∑N
k=0

∥∥EA(xukx∗)
∥∥2

τ = 0 .
(ii) EN(A)′′(x) = 0 .
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THEOREM 9. Let A ⊂ B ⊂ M be an inclusion of von Neumann algebras, where
A is a masa in M generated by finite projections. Suppose there is an unique faithful
normal conditional expectation from M onto B preserving τ . Also suppose that for
each x ∈ Mτ with EB(x) = 0 , one has

lim
N→∞

1
N +1

N

∑
k=0

∥∥∥EA(xukx∗)
∥∥∥2

τ
= 0,

where u is the unitary generator of A corresponding to the function t �→ e2π it . Then
N(A)′′ ⊆ B.

REMARK 5. It is easy to see that the statements in §4 are valid if the special uni-
tary u in the statements is replaced by unitaries that generate the masa.
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