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UNITAL FULL AMALGAMATED FREE

PRODUCTS OF MF C*–ALGEBRAS

QIHUI LI AND JUNHAO SHEN

(Communicated by D. Hadwin)

Abstract. In the paper, we consider the question whether a unital full amalgamated free product
of MF algebras is MF. First, we show that, under a natural condition, a unital full free product
of two MF algebras with amalgamation over a finite-dimensional C*-algebra is again an MF
algebra. As an application, we show that a unital full free product of two AF algebras with
amalgamation over an AF algebra is an MF algebra if there are faithful tracial states on each of
these two AF algebras such that the restrictions on the common subalgebra agree.

1. Introduction

The concept of MF algebras was first introduced by Blackadar and Kirchberg in
[3]. If a separable C*- algebra A can be embedded into ∏

k
Mnk (C)/∑k Mnk (C) for a

sequence of positive integers {nk}∞
k=1 , then A is called an MF algebra. Many prop-

erties of MF algebras were discussed in [3]. For example, it was shown there that
an inductive limit of MF algebras is an MF algebra and every subalgebra of an MF
algebra is an MF algebra. This class of C*-algebras is of interest for many reasons.
For example, it plays an important role in the classification of C∗ -algebras and it is
connected to the question whether the Ext semigroup, in the sense of Brown, Douglas
and Fillmore [5], of a unital C∗ -algebra is a group (see the striking result of Haagerup
and Thorbjørnsen on Ext(C∗

r (F2) in [15]). This notion is also closely connected to
Voiculescu’s topological free entropy dimension for a family of self-adjoint elements
x1, · · · ,xn in a unital C*-algebra A [29].

Recall that a C*-algebra is said to be residually finite-dimensional (RFD) if it
has a separating family of finite-dimensional representations. In [24], a necessary and
sufficient condition was given for a unital full free product of RFD C*-algebras with
amalgamation over a finite-dimensional C*-algebra to be RFD again. For MF algebras,
Hadwin, Li and Shen have shown that a unital full free product of MF algebras is MF.
Based on this result and the results on unital full amalgmated free products of RFD C*-
algebras in [24], it is natural to ask whether the similar results hold for MF algebras.
For the case when the common part of two C*-algebras in a unital full amalgamated
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free product is *-isomorphic to a full matrix algebra (Proposition 1, [24]), we know that
this unital full amalgamated free product is MF (respectively, RFD, quasidiagonal) if
and only if these two C*-algebras are both MF (respectively, RFD, quasidiagonal).

In this paper, we consider the case when the common part in a unital full amalg-
mated free product is a finite-dimensional C*-algebra or an AF algebra. First, we show
that, under a natural condition, a unital full free product of two MF algebras with amal-
gamation over a finite-dimensional C*-algebra is MF. As an application, we show that
a unital full free product of two AF algebras with amalgamation over an AF algebra is
an MF algebra if there are faithful tracial states on each of these two AF algebras such
that the restrictions on the common subalgebra agree.

Recall the definition of full amalgamated free product of unital C*-algebras as
follows:

Given C*-algebras A , B and D with unital embeddings (injective ∗ -homo-
morphisms) ψA : D → A and ψB : D → B , the corresponding full amalgamated
free product C*-algebra is the C*-algebra C , equipped with unital embeddings σA :
A → C and σB : B → C such that σA ◦ψA = σB ◦ψB, such that C is generated
by σA (A )∪σB (B) and satisfying the universal property that whenever E is a C*-
algebra and πA : A → E and πB : B → E are ∗ -homomorphisms satisfying πA ◦
ψA = πB ◦ψB, there is a ∗ -homomorphism π : C → E such that π ◦σA = πA and
π ◦σB = πB. The full amalgamated free product C*-algebra C is commonly denoted
by A ∗

D
B.

When D = CI, the above definition is the unital full free product A ∗C B of A
and B . Our main results are as follows:

THEOREM 2. Let A and B be unital MF-algebras and D be a finite-dimensional
C*-algebra. Let ψ1 : D → A and ψ2 : D →B be unital embeddings. Then A ∗

D
B is

an MF algebra if and only if there is a sequence {kn}∞
n=1 of integers with unital embed-

dings q1 : A → ∏∞
n=1 Mkn(C)/

∞
∑

n=1
Mkn(C) and q2 : B → ∏∞

n=1 Mkn(C)/
∞
∑

n=1
Mkn(C)

such that the following diagram commutes

D
ψA
↪→ A

ψB↓ ↓q1

B
q2
↪→ ∏∞

m=1 Mkm(C)/∑Mkm(C)

When the common C*-subalgebra D is an AF algebra, we obtain following re-
sults.

THEOREM 4. Suppose that A ⊃ D ⊂ B are unital inclusions of unital MF alge-
bras where D is an AF algebra. Then the unital full free product A ∗DB of A and
B with amalgamation over D is an MF algebra if and only if there is an MF algebra
E such that

E ⊇ A ⊃ D ⊂ B ⊆ E .
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THEOREM 5. Suppose that A ⊃ D ⊂ B are unital inclusions of AF C∗ -algebras.
If there are faithful tracial states τA and τB on A and B respectively, such that

τA (x) = τB(x), ∀ x ∈ D ,

then A ∗DB is an MF algebra.

COROLLARY 2. Suppose that A ⊇ D ⊆ B are unital inclusions of C*-algebras
where A , B are UHF algebras and D is an AF algebra. Then A ∗

D
B is an MF

algebra if and only if
τA (z) = τB (x) for each z ∈ D ,

where τA and τB are the unique faithful tracial states on A and B respectively.

A brief overview of this paper is as follows. For the sake of completeness, in
Section 2, we fix our notation and recall the basic properties of MF C*-algebras and
quasidiagonal C*-algebras. Section 3 is devoted to results on the full amalgamated free
products of unital MF C*-algebras. We first consider unital full free products of uni-
tal MF algebras with amalgamation over finite-dimensional C*-subalgebras. Then we
consider the case when the common unital C*-subalgebra in a unital full amalgamated
free product is an infinite-dimensional C*-algebra. More precisely, we consider the
case when the common part is an AF algebra.

2. Definitions and preliminaries

2.1. Noncommutative polynomials and MF algebras

In this article, we always assume that all C*-algebras are unital separable C∗ -
algebras. We use notation C*(x1,x2, · · ·) to denote the unital C*-algebra generated
by {x1,x2, · · ·} . Let C〈X1, . . . ,Xn〉 be the set of all noncommutative polynomials in
the indeterminants X1, . . . ,Xn . Let CQ = Q + iQ denote the complex-rational num-
bers, i.e., the numbers whose real and imaginary parts are rational. Then the set
CQ〈X1, . . . ,Xn〉 of noncommutative polynomials with complex-rational coefficients is
countable. Throughout this paper we write

C〈X1,X2, · · · 〉 = ∪∞
m=1C〈X1,X2, · · ·Xm〉

and
CQ〈X1,X2, · · · 〉 = ∪∞

m=1CQ〈X1,X2, · · ·Xm〉.
Let {Pr}∞

r=1 be the collection of all noncommutativepolynomials in CQ〈X1,X2, · · · 〉
with rational complex coefficients.

We need more notation and concepts for recalling a theorem which gives an equiv-
alent condition for the MF property. We assume that H is a separable complex Hilbert
space and B(H ) is the set of all bounded operators on H . Let SOT denote the
strong operator topology on B(H ). A sequence {Tk} of operators converges to an
operator T is the ∗ -strong operator topology (∗ -SOT ) if and only if Tk −→ T (SOT )
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and T ∗
k −→ T ∗ (SOT) . We say that a sequence

{〈
T (k)
1 , · · · ,T (k)

n

〉}
of n -tuples con-

verges to 〈T1, · · · ,Tn〉 if and only if

T (k)
i → Ti ∗ -SOT

as k → ∞.

Suppose A is a separable unital C*-algebra on a Hilbert space H . Let H ∞ =
⊕NH and, for any x ∈ A , let x∞ be the element ⊕Nx = (x,x,x, . . .) in ∏k∈N A (k) ⊂
B(H ∞) , where A (k) is the k -th copy of A .

The following theorem is one of the key ingredients for showing our main results
in this paper.

THEOREM 1. (Theorem 5.1.2, [16]) Suppose that A is a unital C∗ -algebra gen-
erated by a sequence of self-adjoint elements x1,x2, · · · in A . Then the following are
equivalent:

1. A is an MF algebra

2. For each n ∈ N, there are a sequence of positive integers {mk}∞
k=1 and self-

adjoint matrices A(k)
1 , . . . ,A(k)

n in M s.a.
mk

(C) for k = 1,2, . . . , such that, ∀ P ∈
C〈X1, . . . ,Xn〉 ,

lim
k→∞

‖P(A(k)
1 , . . . ,A(k)

n )‖ = ‖P(x1, . . . ,xn)‖.

The examples of MF algebras contain all finite dimensional C*-algebras, AF (ap-
proximatelyfinite dimensional) algebras and quasidiagonalC*-algebras. In [15], Haage-
rup and Thorbjørnsen showed that C∗

r (Fn) is an MF algebra for n � 2. For more ex-
amples of MF algebras, we refer the reader to [3] and [20].

2.2. Basic properties of quasidiagonal algebras

Quasidiagonal operators on separable Hilbert spaces were defined by P. R. Hal-
mos [22] as compact perturbations of block-diagonal operators. A generalized notion
of quasidiagonal operators to sets of operators is the concept of quasidiagonal sets of
operators. A C*-algebra A is quasidiagonal (QD) if there is a faithful representation
ρ such that ρ (A ) is a quasidiagonal set of operators. This class of C*-algebras has
been studied for more than 30 years. In [4], it has been shown that a full free product
of two unital QD C*-algebras amalgamated over units is QD.

The next lemma is a fundamental result about representations of quasidiagonal
C*-algebras. Recall that a faithful representation π : A → B(H ) is called essential if
π (A ) contains no non-zero finite rank operators.

LEMMA 1. (Theorem 1.7, [28]) Let π : A → B(H ) be a faithful essential rep-
resentation. Then A is quasidiagonal if and only if π(A ) is a quasidiagonal set of
operators.
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The following lemma is an important ingredient in the proof of Proposition 1.

LEMMA 2. (Lemma 2.1, [20]) Suppose that A ⊂ B(H ) is a separable unital
quasidiagonal C*-algebra and x1, · · · ,xn are self-adjoint elements in A . For any ε >
0, any finite subset { f1, · · · , fr} of C〈X1, · · · ,Xn〉 and any finite subset {ξ1, · · · ,ξr} of
H , there is a finite rank projection p in B(H ) such that:

(i) ‖ξk − pξk‖ < ε, ‖(pxip− xi)ξk‖ < ε, for all 1 � i � n and 1 � k � r;

(ii)
∣∣∣∥∥ f j (px1p, · · · , pxnp)

∥∥
B(pH )−

∥∥ f j (x1, · · · ,xn)
∥∥∣∣∣< ε, for all 1 � j � r.

Using Lemma 2, it is easy to see that all quasidiagonal C*-algebras are MF alge-
bras.

LEMMA 3. (Proposition 7.4, [7]) If {An} is a sequence of C*-algebras then
∏

n∈N

An is QD if and only if each An is QD.

The examples of quasidiagonal C*-algebras include all abelian C*-algebras and
finite-dimensional C*-algebras as well as residually finite-dimensional C*-algebras.

3. Full amalgamated free product of unital MF-algebras

3.1. D is a finite-dimensional C*-algebra

In this subsection, we will consider unital full free products of unital MF algebras
with amalgamation over finite-dimensional C*-algebras. To state and prove our main
result, we need following lemmas.

LEMMA 4. Suppose A =C*(x1,x2, · · ·) and B =C*(y1,y2, · · ·) are unital C*-
algebras. Then there is a unital *-homomorphism from A to B sending each xk to
yk, if and only if, for each ∗ -polynomial P ∈ CQ 〈X1,X2, · · ·〉 , we have

‖P(x1,x2, · · ·)‖ � ‖P(y1,y2, · · ·)‖ .

LEMMA 5. (Theorem 5.1., [17]) Suppose A is a separable unital C*-algebra,
H1 , H2 are separable infinite-dimensional Hilbert spaces and πi : A → B(H i) are
unital *-representations for i = 1 , 2. If, for each x ∈ A ,

rank(π1(x)) � rank (π2 (x)) ,

then there is a sequence {Un} of unitary operators, Un : H1 →H2, such that, for each
x ∈ A ,

U∗
n π2 (x)Un → π1 (x) ∗ -SOT

as n → ∞.
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The following lemma leads us to ask whether a similar result holds for MF alge-
bras.

LEMMA 6. (Corollary 1, [24]) Let A ⊇ D ⊆ B be unital C*-inclusions of C*-

algebras in
∞
∏

n=1
Mkn (C) and D is a unital finite-dimensional C*-subalgebra. Then

A ∗
D
B is RFD.

The following lemma can be found in [14], which concerns some elementary and
useful facts about elements in ultraproducts of C*-algebras and their representatives.

LEMMA 7. (Proposition 2.1, [14]) Let Ai, i ∈ Z, be unital C*-algebras and α
an ultrafilter on Z. Then

1. If P is a projection in
α
∏Al, then there are projections Pl in Al such that P =

[(Pl)] ;

2. If P = [(Pl)] , Q = [(Ql)] are in
α
∏Al and all Pl, Ql are projections and if

V ∈ α
∏Al is a partial isometry with V ∗V = P and VV ∗ = Q, then there are Vl in

Al such that, eventually along α,V ∗
l Vl = Pl and VlV ∗

l = Ql;

3. If P = [(Pl)] ∈
α
∏Al and each Pl is a projection, and if Q is a projection in

α
∏Al

such that Q � P, then there are projections Ql ∈ Al with Ql � Pl, such that
Q = [(Ql)] .

The next lemma is a technical result.

LEMMA 8. Let A ⊃ D ⊂ B be unital inclusions of MF-algebras. Suppose that
D is a finite-dimensional abelian C*-algebra generated by a family {z1,z2, · · · zl} of
self-adjoint elements , and A is generated by a family {z1,z2, · · · zl ,x1,x2 · · ·} of self-
adjoint elements , B is generated by a family {z1,z2, · · · zl ,y1,y2, · · ·} of self-adjoint
elements. Let ϕ : A ∗

D
B → B (H ) be a faithful representation of the full amalgamated

free product A ∗
D
B on a separable Hilbert space H . Assume that there is a sequence

{kn}∞
n=1 of integers with unital embeddings

q1 : A →
∞

∏
n=1

Mkn(C)/
∞

∑
n=1

Mkn(C),

and

q2 : B →
∞

∏
n=1

Mkn(C)/
∞

∑
n=1

Mkn(C)

such that q1 (zi) = q2 (zi) for each 1 � i � l. Also assume that, for a large enough
r ∈ N,

{P1, · · · ,P2r} ⊂ CQ 〈Z1, · · · ,Zl ,X1, · · · ,Xr〉
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with {Z1, · · · ,Zl,X1, · · · ,Xr} ⊂ {P1, · · · ,P2r} ,and

{Q1, · · · ,Q2r} ⊂ CQ 〈Z1, · · · ,Zl,Y1, · · · ,Yr〉
with {Z1, · · · ,Zl ,Y1, · · · ,Yr} ⊂ {Q1, · · · ,Q2r} . Then there are sequences

{
Ei

m,r

}∞
m=1

,{
Fi

m,r

}∞
m=1

of operators in B (H ) for each i ∈ N, and a sequence
{

Gj
m,r

}∞

m=1
of op-

erators in B (H ) for each j ∈ {1, · · · , l} such that∣∣∣∥∥∥Ps

(
G1

m,r, · · · ,Gl
m,r,E

1
m,r, · · · ,Er

m,r

)∥∥∥−‖Ps (z1,z2, · · · zl,x1, · · · ,xr)‖
∣∣∣< 1

2r
, (5.1)

∣∣∣∥∥∥Qs

(
G1

m,r, · · · ,Gl
m,r,F

1
m,r, · · ·Fr

m,r

)∥∥∥−‖Qs (z1, · · · ,zl ,y1, · · · ,yr)‖
∣∣∣< 1

2r
(5.2)

for each 1 � s � 2r, m ∈ N. We also have that, for a fixed r ,

C∗
(
G1

m,r, · · · ,Gl
m,r,E

1
m,r, · · · ,Er

m,r

)
is an RFD C*-algebra for each m ∈ N , and

Ei
m,r → ϕ(xi) as m → ∞ in *-SOT for i ∈ N; (5.3)

Fi
m,r → ϕ(yi) as m → ∞ in *-SOT for i ∈ N; (5.4)

Gj
m,r → ϕ(z j) as m → ∞ in *-SOT for j ∈ {1, · · · , l} . (5.5)

Proof. Without loss of generality, we suppose that z1, · · · zl are orthogonal projec-

tions with
l
∑
i=1

zi = I and

‖xi‖ = ‖yi‖ = 1 for each i ∈ N.

From Theorem 1, we may assume that for each i ∈ N , j ∈ {1, · · · , l} , there are families

{Am
1 ,Am

2 , · · ·} ,{Dm
1 ,Dm

2 , · · · ,Dm
l } and {Bm

1 ,Bm
2 , · · ·} ⊂ M s.a

km
(C)

for each km ∈ {kn}∞
n=1 satisfying

lim
m→∞

‖P(Dm
1 , · · · ,Dm

l ,Am
1 ,Am

2 . . .)‖ = ‖P(z1,z2, · · · zl ,x1,x2 · · ·)‖ (5.6)

for any P ∈ CQ 〈Z1, · · ·Zl ,X1,X2 · · ·〉 , and

lim
m→∞

‖Q(Dm
1 , · · · ,Dm

l ,Bm
1 ,Bm

2 . . .)‖ = ‖Q(z1, · · · ,zl ,y1,y2 . . .)‖ (5.7)

for any Q ∈ CQ 〈Z1, · · ·Zl,Y1,Y2, · · ·〉 .
If r is large enough, we can assume that Dm

1 ,Dm
2 , · · · ,Dm

l are orthogonal pro-
jections with ∑l

j=1 Dm
j = I ∈ Mkm (C) for m � r by Lemma 7. If {P1, · · · ,P2r} ⊂

CQ 〈Z1, · · · ,Zl ,X1, · · · ,Xr〉 satisfying

{X1, · · · ,Xr,Z1, · · · ,Zl} ⊂ {P1, · · · ,P2r} (5.8)
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and {Q1, · · · ,Q2r} ⊂ CQ 〈Z1, · · · ,Zl ,Y1, · · · ,Yr〉 satisfying

{Y1, · · · ,Yr,Z1, · · · ,Zl} ⊂ {Q1, · · · ,Q2r} (5.9)

then there is an integer Nr such that, for Ai (Nr) = ∏
r�Nr

Ar
i ,Bi (Nr) = ∏

r�Nr

Br
i for each

i ∈ N and Dj (Nr) = ∏
r�Nr

Dr
i for j ∈ {1, · · · , l} , we have

|‖Ps (D1 (Nr) , · · · ,Dl (Nr) ,A1 (Nr) , · · · ,Ar (Nr))‖−‖Ps (z1,z2, · · · zl ,x1, · · · ,xr)‖| < 1
2r

(5.10)
for each 1 � s � 2r by (5.6) , and

|‖Qt (D1 (Nr) , · · · ,Dl (Nr) ,B1 (Nr) , · · ·Br (Nr))‖−‖Qt (z1, · · · ,zl ,y1, · · · ,yr)‖| < 1
2r

(5.11)
for each 1 � t � 2r by (5.7). Combining with (5.8) and (5.9) , we have

‖Ai(Nr)‖ � 1+
1
2r

for 1 � i � r (5.12)

‖Bi(Nr)‖ � 1+
1
2r

for 1 � i � r (5.13)

and

‖Di(Nr)‖ � 1+
1
2r

for 1 � i � l. (5.14)

Let
ANr = C*(A1(Nr),A2(Nr) · · · ,D1(Nr), · · · ,Dl(Nr)) ,

BNr = C*(B1(Nr),B2(Nr) · · · ,D1(Nr), · · · ,Dl(Nr))

be C*-subalgebras in ∏
r�Nr

Mkr (C) and

DNr =C*(D1(Nr), · · · ,Dl(Nr))

be a common unital finite-dimensional C*-subalgebra of ANr and BNr .
Since, by 5.6 and 5.7, we have

‖P(D1(Nr), · · · ,Dl(Nr),A1(Nr),A2(Nr) · · ·)‖∏
r�N

Mkr (C)

= sup
k�Nr

∥∥∥P(Dk
1, · · · ,Dk

l ,A
k
1,A

k
2 · · ·)

∥∥∥
Mkr (C)

� ‖P(z1,z2, · · · zl,x1,x2 · · ·)‖A ∗
D

B

for any P ∈ CQ 〈Z1, · · · ,Zl ,X1,X2 · · ·〉 , and

‖Q(D1(Nr), · · · ,Dl(Nr),B1(Nr),B2(Nr) · · ·)‖∏
r�N

Mkr (C)

= sup
k�Nr

∥∥∥Q(Dk
1, · · · ,Dk

l ,B
k
1,B

k
2 · · ·)

∥∥∥
Mkr (C)

� ‖Q(z1, · · · ,zl ,y1,y2 · · ·)‖A ∗
D

B
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for any Q ∈ CQ 〈Z1, · · · ,Zl ,Y1,Y2 · · ·〉 , there are *-homomorphisms

ρA
Nr

: ANr → ϕ
(

A ∗
D
B

)
;

ρB
Nr

: BNr → ϕ
(

A ∗
D
B

)
.

such that ρA
Nr

(Ai (Nr))= ϕ (xi) , ρB
Nr

(Bi (Nr))= ϕ (yi) and ρA
Nr

(Dj (Nr))= ρB
Nr

(Dj (Nr))
= ϕ (z j) for i ∈ N and j ∈ {1, · · · , l} by Lemma 4. It follows that there is a *-
homomorphism

ρNr : ANr ∗
DNr

BNr → ϕ
(

A ∗
D
B

)
satisfying ρNr (Ai (Nr)) = ϕ (xi) and ρNr (Bi (Nr)) = ϕ (yi) as well as ρNr (Dj (Nr)) =
ϕ (z j) for each i ∈ N and j ∈ {1, · · · , l} . We also know that ANr ∗

DNr

BNr is an RFD

C*-algebra by Lemma 6.
Let πNr : ANr ∗

DNr

BNr →B (HNr ) be a faithful essential representation of ANr ∗
DNr

BNr . Then πNr

(
ANr ∗

DNr

BNr

)
is an RFD C*-algebra and

πNr

(
ANr ∗

DNr

BNr

)
= C∗ (πNr (A1 (Nr)) , · · · ,πNr (B1 (Nr)) , · · · ,πNr (Dl (Nr))) . (5.15)

Since
rank (πNr(x)) � rank (ρNr (x))

for every x∈ANr ∗
DNr

BNr , Lemma 5 implies that there is a sequence of unitary operators{
UNr

m

}∞
m=1 ⊂ B(H ,HNr ) such that

ρNr (x) = ∗-SOT - lim
m→∞

UNr∗
m πNr (x)U

Nr
m (5.16)

for each x ∈ ANr ∗
DNr

BNr . So, for i ∈ N and j ∈ {1, · · · , l} , if we put

Ei
m,r = UNr∗

m πNr (Ai (Nr))UNr
m , (5.17)

Fi
m,r = UNr∗

m πNr (Bi (Nr))UNr
m (5.18)

and
Gj

m,r = UNr∗
m πNr (Dj (Nr))UNr

m , (5.19)

then, for every m ∈ N, i ∈ N, j ∈ {1, · · · , l} , we have∥∥∥P(G1
m,r, · · · ,Gl

m,r,E
1
m,r, · · · ,Er

m,r

)∥∥∥= ‖P(D1 (Nr) , · · · ,Dl (Nr) ,A1 (Nr) , · · · ,Ar (Nr))‖ ,

(5.20)
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for every P ∈ C〈Z1, · · · ,Zl,X1,X2, · · ·〉 , and∥∥∥Q(G1
m,r, · · · ,Gl

m,r,F
1
m,r, · · ·Fr

m,r

)∥∥∥= ‖Q(D1 (Nr) , · · · ,Dl (Nr) ,B1 (Nr) , · · ·Br (Nr) ,)‖
(5.21)

for every Q ∈ C〈Z1, · · · ,Zl ,Y1,Y2, · · ·〉 . It follows that, for each Ps ∈ {P1, · · · ,P2r} ⊆
CQ 〈Z1, · · · ,Zl ,X1, · · · ,Xr〉 and each Qt ∈ {Q1, · · · ,Q2r} ⊆ CQ 〈Z1, · · · ,Zl ,Y1, · · · ,Yr〉∣∣∣∥∥∥Ps

(
G1

m,r, · · · ,Gl
m,r,E

1
m,r, · · · ,Er

m,r

)∥∥∥−‖Ps (z1, · · · ,zl ,x1, · · · ,xr)‖
∣∣∣< 1

2r
,

∣∣∣∥∥∥Qt

(
G1

m,r, · · · ,Gl
m,r,F

1
m,r, · · ·Fr

m,r

)∥∥∥−‖Qt (z1, · · · ,zl ,y1, · · · ,yr)‖
∣∣∣< 1

2r

for each m ∈ N by (5.10), (5.11), and (5.20), (5.21). Since

C∗
(
G1

m,r, · · · ,Gl
m,r,E

1
m,r, · · · ,F1

m,r, · · ·
)

is *-isomorphic to the C*-algebra

C∗ (πNr (πNr (D1 (Nr)) , · · · ,πNr (Dl (Nr)) ,A1 (Nr)) , · · · ,πNr (B1 (Nr)) , · · ·) ,

we have
C∗
(
G1

m,r, · · · ,Gl
m,r,E

1
m,r, · · · ,F1

m,r, · · ·
)

is an RFD C*-algebra for each m ∈ N . We also get

Ei
m,r → ϕ(xi) as m → ∞ in *-SOT for i ∈ N;

Fi
m,r → ϕ(yi) as m → ∞ in *-SOT for i ∈ N;

Gj
m,r → ϕ(z j) as m → ∞ in *-SOT for j ∈ {1, · · · , l} .

from the definition of representation ρNr and equations (5.16), (5.17), (5.18), (5.19).
�

The next proposition is a key ingredient for proving our main theorem in this
subsection.

PROPOSITION 1. Let A ⊃ D ⊂ B be unital inclusions of MF-algebras, where
D is a finite-dimensional abelian C*-algebra. Let ϕ : A ∗

D
B → B (H ) be a faith-

ful representation of the full amalgamated free product A ∗
D
B . Suppose that D is

generated by a family {z1,z2, · · ·zl} of self-adjoint elements , A is generated by a
family {z1,z2, · · · zl ,x1,x2 · · ·} of self-adjoint elements and B is generated by a fam-
ily {z1,z2, · · · zl ,y1,y2, · · ·} of self-adjoint elements. Suppose that there is a sequence

{kn}∞
n=1 of integers with unital embeddings q1 : A →∏∞

n=1 Mkn(C)/
∞
∑

n=1
Mkn(C), and

q2 : B →∏∞
n=1 Mkn(C)/

∞
∑

n=1
Mkn(C) such that q1 (zi) = q2 (zi) for each 1 � i � l. Then
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there is a sequence {tm}∞
m=1 of integers such that, for each tr ∈ {tm}∞

m=1 , there exist
sequences

{Xr
1 ,X

r
2 , · · ·} ,{Yr

1 ,Yr
2 , · · ·} and {Zr

1, · · ·Zr
l }

in Mtr (C) and a unitary operator Wr : H → (Ctr)∞ satisfying

W ∗
r (Xr

i )
(∞)Wr → ϕ (xi) in SOT as r → ∞ for i ∈ N

W ∗
r (Y r

i )(∞)Wr → ϕ (yi) in SOT as r → ∞ for i ∈ N

and
W ∗

r (Zr
i )

(∞)Wr → ϕ (zi) in SOT as r → ∞ for i ∈ {1, · · · , l}
as well as

‖P(z1,z2, · · · zl ,x1,x2 · · ·)‖ = lim
r→∞

‖P(Zr
1, · · · ,Zr

l ,X
r
1 ,X

r
2 , · · ·)‖

‖Q(z1, · · · zl ,y1,y2, · · ·)‖ = lim
r→∞

‖Q(Zr
1, · · · ,Zr

l ,Y
r
1 ,Y r

2 , · · ·)‖

for any P ∈ CQ 〈Z1, · · ·Zl,X1,X2 · · ·〉 and Q ∈ CQ 〈Z1, · · ·Zl,Y1,Y2 · · ·〉 .

Proof. Suppose z1, · · · ,zl are orthogonal projections with
l
∑
i=1

zi = I and

‖xi‖ = ‖yi‖ = 1 for each i ∈ N.

Assume {e1,e2, · · ·} is a family of orthonormal basis of H . With notation as in Lemma
8, for a large enough integer r and a subset {e1, · · · ,er}⊆ {e1,e2 · · ·} , there is an integer
M such that, for 1 � i � r, j ∈ {1, · · · , l} and 1 � k � r

∥∥Ei
M,rek −ϕ(xi)ek

∥∥<
1
2r

(5.22)

∥∥Fi
M,rek −ϕ(y j)ek

∥∥<
1
2r

(5.23)

and ∥∥∥Gj
M,rek −ϕ(z j)ek

∥∥∥<
1
2r

. (5.24)

Note that
{

G1
M,r, · · ·Gl

M,r,E
1
M,r,E

2
M,r, · · · ,F1

M,r, · · ·
}

is a family of self-adjoint el-

ements in B (H ) from the proof of Lemma 8. So, by Lemma 2 and the fact that

C∗
(
G1

M,r , · · ·Gl
M,r,E

1
M,r ,E

2
M,r, · · · ,F1

M,r, · · ·
)

is a quasidiagonal C*-algebra (actually it

is RFD), there is a projection Pr ∈ B(H ) such that, for 1 � i � r, j ∈ {1, · · · , l} ,
1 � k � r,

‖ek −Prek‖ <
1
6r

(5.25)
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and

∥∥PrE
i
M,rPrek −Ei

M,rek
∥∥<

1
6r

(5.26)∥∥PrF
i
M,rPrek −Fi

M,rek

∥∥<
1
6r

(5.27)∥∥∥PrG
j
M,rPrek −Gj

M,rek

∥∥∥<
1
6r

(5.28)

as well as∣∣∣∥∥∥Ps

(
PrG

l
M,rPr, · · · ,PrE

1
M,rPr

)∥∥∥−∥∥∥Ps

(
G1

M,r, · · ·Gl
M,r,E

1
M,r, · · ·Er

M,r

)∥∥∥∣∣∣< 1
2r

for 1 � s � 2r, (5.29)

∣∣∣∥∥∥Qt

(
PrG

l
M,rPr, · · · ,PrF

1
M,rPr

)∥∥∥−∥∥∥Qt

(
G1

M,r, · · ·Gl
M,r,F

1
M,r, · · ·Fr

M,r

)∥∥∥∣∣∣< 1
2r

for 1 � t � 2r. (5.30)

By (5.20), (5.21) and (5.29), (5.30), we have that∣∣∣∥∥∥Ps

(
PrG

1
M,rPr, · · ·PrG

l
M,rPr,PrE

1
M,rPr, · · · ,PrE

r
M,rPr

)∥∥∥
−‖Ps (C1 (Nr) , · · ·Cl (Nr) ,A1 (Nr) , · · · ,Ar (Nr))‖

∣∣∣< 1
2r

for 1 � s � 2r (5.31)

∣∣∣∥∥∥Qt

(
PrG

1
M,rPr, · · ·PrG

l
M,rPr,PrF

1
M,rPr, · · · ,PrF

r
M,rPr,

)∥∥∥
−‖Qt (C1 (Nr) , · · ·Cl (Nr) ,B1 (Nr) , · · ·Br (Nr))‖

∣∣∣< 1
2r

for 1 � t � 2r. (5.32)

Let tr = dimPrH and W̃r : PrH →Ctr be a unitary operator. Putting
Xr

i = W̃rPrEi
M,rPrW̃ ∗

r , Y r
i = W̃rPrFi

M,rPrW̃ ∗
r for i ∈ N and Zr

j = W̃rPrG
j
M,rPrW̃ ∗

r
for j ∈ {1, · · · , l} , and combining (5.31), (5.32) and (5.10), (5.11) , we have

|‖Ps (Zr
1, · · · ,Zr

l ,X
r
1 , · · · ,Xr

r )‖−‖Ps(z1, · · · ,zl ,x1, · · · ,xr‖| < 1
r

(5.33)

|‖Qt (Zr
1, · · · ,Zr

l ,Y
r
1 , · · · ,Yr

r )‖−‖Qt(z1, · · · ,zl ,y1, · · · ,yr‖| < 1
r

(5.34)

for 1 � s, t � 2r. Hence we can find a unitary Wr : H → (Ctr)∞ such that Wr is unitary

equivalent to
(
W̃r

)∞
and WrPr = W̃r . It follows that, for 1 � i � r , j ∈ {1, · · · , l} and
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1 � k � r, we have∥∥W ∗
r (Xr

i )
∞Wrek −Ei

mr
ek
∥∥

� ‖W ∗
r (Xr

i )
∞Wr‖‖ek −Prek‖+

∥∥W ∗
r (Xr

i )
∞WrPrek −Ei

mr
ek
∥∥

�
(

1+
1
2r

)
1
6r

+
∥∥∥W ∗

r

(
W̃rPrE

i
M,rPrW̃

∗
r

)∞
W̃rek −Ei

mr
ek

∥∥∥
=
(

1+
1
2r

)
1
6r

+
∥∥PrE

i
M,rPrek −Ei

M,rek
∥∥

�
(

1+
1
2r

)
1
6r

+
1
6r

<
1
2r

, (5.35)

and

∥∥W ∗
r (Y r

i )∞Wrek −Fi
M,rek

∥∥<
1
2r

, (5.36)∥∥∥W ∗
r

(
Zr

j

)∞
Wrek −Gj

M,rek

∥∥∥<
1
2r

(5.37)

by the definition of Xr
i , Y r

i and Zr
j and (5.25), (5.26), (5.27) and (5.28). Combining

the inequalities from above with (5.22), (5.23) and (5.24), we have, for 1 � i � r ,
j ∈ {1, · · · , l} and 1 � k � r,

‖W ∗
r (Xr

i )
∞Wrek −ϕ (xi)ek‖ <

1
r
;

‖W ∗
r (Yr

i )∞Wrek −ϕ (yi)ek‖ <
1
r
;∥∥W ∗

r

(
Zr

j

)∞
Wrek −ϕ (z j)ek

∥∥<
1
r
.

Therefore
W ∗

r (Xr
i )

(∞)Wr → ϕ (xi) in SOT as r → ∞

W ∗
r (Y r

i )(∞)Wr → ϕ (yi) in SOT as r → ∞

W ∗
r

(
Zr

j

)(∞)
Wr → ϕ (z j) in SOT as r → ∞

for i ∈ N, j ∈ {1, · · · , l} and

‖P(z1,z2, · · · zl,x1,x2 · · ·)‖ = lim
r→∞

‖P(Zr
1, · · · ,Zr

l ,X
r
1 ,X

r
2 , · · ·)‖

‖Q(z1,z2 · · · ,zl,y1,y2, · · ·)‖ = lim
r→∞

‖Q(Zr
1, · · · ,Zr

l ,Y
r
1 ,Y r

2 , · · ·)‖

for any P ∈ CQ 〈Z1, · · · ,Zl ,X1,X2 · · ·〉 and Q ∈ CQ 〈Z1, · · · ,Zl ,Y1,Y2 · · ·〉 as desired.
�

Before giving our main result in this subsection, we need one more lemma.
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LEMMA 9. (Lemma 2.2., [6]) Let A and B be unital C*-algebras having D
embedded as a unital C*-subalgebra of each of them. Let

C = A ∗
D
B

be the full amalgamated free product of A and B over D . If there is a projection

p∈D and there are partial isometries v1, · · · ,vn ∈D such that v∗i vi � p and
n
∑
i=1

viv∗i =

1− p, then

pC p ∼= (pA p) ∗
pD p

(pBp) .

REMARK 1. Suppose A is a unital C*-algebra and suppose there is a projection

p∈A and there are partial isometries v1, · · · ,vn ∈A such that v∗i vi � p and
n
∑
i=1

viv∗i =

1− p. By emulating the argument in the proof of Lemma 2.1 in [6], we know that A
is MF if and only if pA p is MF.

THEOREM 2. Let A and B be unital MF-algebras and D be a finite-dimensional
C*-algebra. Suppose ψ1 : D → A and ψ2 : D → B are unital embeddings. Then
A ∗

D
B is an MF algebra if and only if there are unital embeddings

q1 : A →
∞

∏
n=1

Mkn(C)/
∞

∑
n=1

Mkn(C)

and

q2 : B →
∞

∏
n=1

Mkn(C)/
∞

∑
n=1

Mkn(C)

for a sequence {kn}∞
n=1 of integers such that the following diagram commutes

D
ψA
↪→ A

ψB ↓ ↓q1

B
q2
↪→ ∏∞

m=1 Mkm(C)/∑Mkm(C)

Proof. If A ∗
D
B is an MF algebra, then there is a unital embedding

Φ : A ∗
D
B →

∞

∏
n=1

Mkn(C)/
∞

∑
n=1

Mkn(C)

for a sequence {kn}∞
n=1 of integers. Let q1 and q2 be the restrictions of Φ on A and

B respectively. Then the above diagram is commutative.
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Conversely, suppose D , A and B are generated by families

{z1, · · · ,zl} ,

{ψ1 (z1) , · · · ,ψ1 (zl) ,x1,x2 · · ·}
and

{ψ2 (z1) , · · · ,ψ2 (zl) ,y1,y2, · · ·}
respectively with ‖xi‖= ‖yi‖=

∥∥z j
∥∥= 1 for each i∈N and j ∈ {1, · · · , l} . By Remark

1 and Lemma 9, we may assume that D is a finite-dimensional abelian C*-algebra and

z1, · · · zl are orthogonal projections with
l
∑
i=1

zi = I . Without loss of generality, we may

assume that A ∗
D
B is generated by a sequence {z1, · · · ,zl ,x1,x2 · · · ,y1,y2 · · ·} . Let ϕ :

A ∗
D
B → B (H ) be a faithful representation of full amalgamated free product A ∗

D
B .

Applying Proposition 1, there is a sequence {tm}∞
m=1 of integers such that, for each tr ∈

{tm}∞
m=1 , there exist sequences {Xr

1 ,X
r
2 , · · ·} ,{Yr

1 ,Yr
2 , · · ·} and {Zr

1, · · · ,Zr
2} in Mtr (C)

and a unitary operator Wr : H → (Ctr)∞ such that

W ∗
r (Xr

i )
(∞)Wr → ϕ (xi) in SOT as r → ∞ for i ∈ N

W ∗
r (Yr

i )(∞)Wr → ϕ (yi) in SOT as r → ∞ for i ∈ N

and
W ∗

r

(
Zr

j

)(∞)
Wr → ϕ (z j) in SOT as r → ∞ for j ∈ {1, · · · , l}

as well as

‖P(z1,z2, · · · zl ,x1,x2 · · ·)‖ = lim
r→∞

‖P(Zr
1, · · · ,Zr

l ,X
r
1 ,X

r
2 , · · ·)‖

‖Q(z1,z2, · · · ,zl ,y1,y2, · · ·)‖ = lim
r→∞

‖Q(Zr
1, · · · ,Zr

l ,Y
r
1 ,Y r

2 , · · ·)‖

for any P ∈ CQ 〈Z1, · · · ,Zl ,X1,X2 · · ·〉 and Q ∈ CQ 〈Z1, · · · ,Zl ,Y1,Y2 · · ·〉 . Therefore,
we can define unital embeddings

q1 : A → ∏Mtr (C)/∑Mtr (C)

and
q2 : B → ∏Mtr (C)/∑Mtr (C)

so that q1(xi) = [(Xr
i )] , q1(ψ1 (z j)) =

[(
Zr

j

)]
, and q2(yi) = [(Yr

i )] , q2(ψ2 (z j)) =[(
Zr

j

)]
for i ∈ N, j ∈ {1, · · · , l} . From the definition of full amalgamated free product,

there is a ∗ -homomorphism

Φ : A ∗
D
B →∏Mtr (C)/∑Mtr (C)
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such that Φ(xi) = [(Xr
i )] , Φ(yi) = [(Y r

i )] , Φ(z j) =
[(

Zr
j

)]
where i ∈ N and j ∈

{1, · · · , l} . Furthermore, for any Ψ j ∈ CQ 〈X1,X2 · · · ,Y1,Y2 · · · ,Z1, · · · ,Zl〉 , we have∥∥Ψ j ([(Zr
1)] , · · · , [(Zr

l )] , [(X
r
1)] , [(X

r
2)] · · · , [(Y r

1 )] , [(Y r
2 )] · · ·)∥∥

= limsup
r→∞

∥∥Ψ j (Zr
1, · · · ,Zr

l ,X
r
1 ,X

r
2 · · · ,Y r

1 ,Y r
2 · · ·)

∥∥
Mkr (C)

�
∥∥Ψ j (z1, · · · ,zl,x1,x2 · · · ,y1,y2 · · ·)

∥∥
A ∗

D
B

. (5.38)

Meanwhile,

Ψ j (W ∗
r (Zr

1)
∞Wr, · · · ,W ∗

r (Zr
l )

∞Wr,W
∗
r (Xr

1)
∞Wr, · · · ,W ∗

r (Y r
1 )∞Wr, · · · ,)

→ Ψ j (z1, · · · ,zl ,x1,x2 · · · ,y1,y2 · · ·) in SOT as r → ∞,

and therefore

liminf
r→∞

∥∥Ψ j (Zr
1, · · · ,Zr

l ,X
r
1 ,X

r
2 · · · ,Y r

1 ,Y r
2 · · ·)

∥∥
Mkr (C)

= liminf
r→∞

∥∥Ψ j (W ∗
r (Zr

1)
∞Wr, · · · ,W ∗

r (Zr
l )

∞Wr,W
∗
r (Xr

1)
∞Wr, · · · ,W ∗

r (Y r
1 )∞Wr, · · ·)

∥∥
�
∥∥Ψ j (z1, · · · ,zl ,x1,x2 · · · ,y1,y2 · · ·)

∥∥
A ∗

D
B

. (5.39)

Combining (5.38) and (5.39) , it follows that

‖Ψ(z1, · · · ,zl ,x1,x2 · · · ,y1,y2 · · ·)‖ = lim
r→∞

∥∥Ψ j (Zr
1, · · · ,Zr

l ,X
r
1 ,Xr

2 · · · ,Yr
1 ,Y r

2 · · ·)
∥∥

for any Ψ ∈ CQ 〈Z1, · · · ,Zl ,X1, · · · ,Y1, · · ·〉 . Then Φ is a unital injective ∗ - homomor-
phism. It follows that A ∗

D
B is an MF algebra. �

The following corollary is an easy consequence of Theorem 2.

COROLLARY 1. Let A be an MF algebra and D be a finite-dimensional C*-
algebra. If there is a unital embedding q : D → A , then A ∗

D
A is an MF algebra with

respect to the embedding q.

Applying Theorems 2, we can obtain the following result.

PROPOSITION 2. Let A and B be unital MF algebras and let D be the direct
sum of n copies of the set of all complex numbers, that is,

D = C⊕C⊕·· ·⊕C.

Suppose ψA : D → A and ψB : D → B are unital embeddings. If ψA and ψB

can be extended to unital embeddings ψ̃A : Mn (C) → A and ψ̃B : Mn (C) → B
respectively, then A ∗

D
B is an MF algebra.
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Proof. Let

E1 = 1⊕0⊕·· ·⊕0,E2 = 0⊕1⊕0⊕·· ·⊕0, · · · ,En = 0⊕0⊕·· ·⊕0⊕1

in D . Then D =CE1 + · · ·+ CEn. Suppose C*-algebras A and B are generated by
families

{ψA (E1) , · · · ,ψA (En) ,x1,x2 · · ·}
of self-adjoint elements and

{ψB (E1) , · · · ,ψB (En) ,y1,y2 · · ·}

of self-adjoint elements respectively. Without loss of generality, we may assume that
A and B can be embedded as unital C*-subalgebras of ∏∞

m=1 Mkm(C)/∑Mkm(C) ,
respectively, for a sequence {km}m

m=1 of integers with sequences

{Am
1 ,Am

2 , · · ·} ,{Cm
1 , · · · ,Cm

n } and {Bm
1 ,Bm

2 , · · ·} ,{Dm
1 , · · · ,Dm

n } ⊂ M s.a.
km

(C)

for each km ∈ {kn}∞
n=1 satisfying

lim
m→∞

‖P(Cm
1 , · · · ,Cm

n ,Am
1 ,Am

2 . . . ,)‖ = ‖P(ψA (E1) , · · · ,ψA (En) ,x1,x2 · · ·)‖

for any P ∈ CQ 〈Z1, · · · ,Zn,X1,X2 · · ·〉 , and

lim
m→∞

‖Q(Dm
1 , · · · ,Dm

n ,Bm
1 ,Bm

2 . . .)‖ = ‖Q(ψB (E1) , · · · ,ψB (En) ,y1,y2 · · ·)‖

for any Q ∈ CQ 〈Z1, · · · ,Zn,Y1,Y2, · · ·〉 . Since the images of ψA (E1) , · · · ,ψA (En)
under the embedding from A to ∏∞

m=1 Mkm(C)/∑Mkm(C) are [(Cm
1 )] , · · · , [(Cm

n )] and
ψA can be extended to a unital embedding ψ̃A : Mn (C) → A , it follows that there
are partial isometries [(Vm

1 )] , · · · , [(Vm
n )] in ∏∞

m=1 Mkm(C)/∑Mkm(C) such that
[(Vm

s )]∗ [(Vm
s )] = [(Cm

1 )] and [(Vm
s )] [(Vm

s )]∗ = [(Cm
s )] for each s ∈ {1, · · · ,n} . By Le-

mma 7, we may assume that, Cm
s ∈ Mkm(C) is a projection for each m ∈ N and

s ∈ {1, · · · ,n} . We may conclude further that, when km is large enough, Vm
s is a par-

tial isometry such that Vm∗
s Vm

s = Cm
1 and Vm

s Vm∗
s = Cm

s for 1 � s � n in Mkm (C) by
Lemma 7. So it follows that Cm

1 is equivalent to Cm
s in Mkm(C) for 1 � s � n and

n
∑

s=1
Cm

s = I , Cm
i Cm

j = 0 for 1 � i �= j � n. Similarly, we can assume that Dm
s is a pro-

jection in Mkm(C) for 1 � s � n . When km is large enough, we conclude that Dm
1 is

equivalent to Dm
s for each 1 � s � n, ∑n

s=1 Dm
s = I and Dm

i Dm
j = 0 as 1 � i �= j � n

in Mkm(C). Hence, there exists an integer K such that, for each km > K, there ex-
ists a unitary Um ∈ Mkm (C) satisfying UmCm

s Um∗ = Dm
s for each s ∈ {1,2, · · · ,n} in

Mkm(C) . It follows that there is a unitary [(Um)] ∈ ∏∞
m=1 Mkm(C)/∑Mkm(C) satisfy-

ing [(Um)] [(Cm
i )] [(Um)]∗ = [Dm

i ] for 1 � i � n. Now we define embeddings

q1 : A →
∞

∏
m=1

Mkm(C)/∑Mkm(C)
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so that q1 (xi) = [(Um)] [(Am
i )] [(Um)]∗ for i∈N , q1 (ψA (z j)) =

[(
Dm

j

)]
for 1 � j � n

and

q2 : B →
∞

∏
m=1

Mkm(C)/∑Mkm(C)

so that q2 (yi) = [(Bm
i )] for i ∈ N , q2 (ψB (zi)) =

[(
Dm

j

)]
for1 � j � n. It is clear that

the following diagram is commutative

D
ψA
↪→ A

ψB ↓ ↓q1

B
q2
↪→ ∏∞

m=1 Mkm(C)/∑Mkm(C)

So A ∗
D
B is MF by Theorem 2. �

3.2. D is an infinite-dimensional C*-algebra

In this subsection, we will consider the case when D is an infinite-dimensional
C*-algebra. More precisely, we will consider the case when D can be written as a
norm closure of the union of an increasing sequence of C*-algebras.

THEOREM 3. Suppose that A ⊇D ⊆B are unital inclusions of unital separable
C*-algebras and {Dk}∞

k=1 is an increasing sequence of unital C∗ -subalgebras of D
such that ∪k�1Dk is norm dense in D . Let A ∗D B and A ∗Dk B for k � 1 be the
unital full free products of A and B with amalgamation over D and Dk for k � 1
respectively. If A ∗Dk B is an MF algebra for each k � 1 , then A ∗D B is an MF
algebra.

Proof. Note that A ,B and D are unital separable C∗ -algebras. We might as-
sume that {xn}n∈N ⊆ A , and {yn}n∈N ⊆ B are families of generators of A and B
respectively.

Assume that σ : A →A ∗D B and σk : A →A ∗Dk B are natural unital embed-
dings from A into A ∗D B and A ∗Dk B , respectively, for each k � 1. Assume that
ρ : B → A ∗D B and ρk : B → A ∗Dk B are natural unital embeddings from B into
A ∗D B and into A ∗Dk B , respectively, for each k � 1.

Consider the unital C∗ -algebra

∏
k�1

A ∗Dk B/ ∑
k�1

A ∗Dk B.

From Corollary 3.4.3 in [3] and the fact that, for each k � 1, A ∗Dk B is an MF algebra,
we know that every separable C∗ -subalgebra of

∏
k�1

A ∗Dk B/ ∑
k�1

A ∗Dk B
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is an MF algebra. Let

an = [(σk(xn))k] ∈ ∏
k�1

A ∗Dk B/ ∑
k�1

A ∗Dk B, ∀ n ∈ N

and
bn = [(ρk(yn))k] ∈ ∏

k�1

A ∗Dk B/ ∑
k�1

A ∗Dk B, ∀ n ∈ N.

Let Q be the unital C∗ -subalgebra generated by {an,bn}n∈N in

∏
k�1

A ∗Dk B/ ∑
k�1

A ∗Dk B.

Thus Q is an MF algebra.
Next we shall show that there is a ∗ -isomorphic from Q onto A ∗D B by sending

each an to σ(xn) and bn to ρ(yn) . This will induce that A ∗D B is also an MF algebra.
In order to obtain such ∗ -isomorphism from Q onto A ∗D B , it suffices to show that
∀ N ∈ N and ∀ P ∈ C〈X1, . . ..XN ,Y1, . . .YN〉 , we have

‖P(σ(x1), · · · ,σ(xN),ρ(y1), · · · ,ρ(yN))‖A ∗DB

= ‖P(a1, · · · ,aN ,b1, · · · ,bN)‖ ∏
k�1

A ∗Dk
B/∑A ∗Dk

B (5.40)

By the definition of full amalgamated free product, we know, for each k � 1, there
is a ∗ -homomorphism from A ∗Dk B to A ∗D B , which send σk(xn) to σ(xn) and
ρk(yn) to ρ(yn) respectively, for every n ∈ N . Hence

‖P(σ(x1), · · · ,σ(xN),ρ(y1), · · · ,ρ(yN))‖A ∗DB

� ‖P(σk(x1), · · · ,σk(xN),ρk(y1), · · · ,ρk(yN))‖A ∗Dk
B for all k � 1

and, consequently,

‖P(σ(x1), · · · ,σ(xN),ρ(y1), · · · ,ρ(yN))‖A ∗DB

� ‖P(a1, · · · ,aN ,b1, · · · ,bN)‖ ∏
k�1

A ∗Dk
B/∑k�1 A ∗Dk

B (5.41)

We will show that [(σk(z))k] = [(ρk(z))k] for every z∈D . Suppose z∈D and ε >
0. Then there exist a positive integer p and an element zp in Dp such that ‖z−zp‖< ε.
Since {Dk}k is an increasing sequence of C∗ -algebras, we know that zp ∈ Dk for
k � p . It follows that [(σk(zp))k] = [(ρk(zp))k] . So,

‖[(σk (z))k]− [(ρk (z))k]‖ ∏
k�1

A ∗Dk
B/∑k�1 A ∗Dk

B

= limsup
k

‖σk (z)−ρk (z)‖A ∗Dk
B
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� limsup
k

(
∥∥σk(z)−σk(zp)

∥∥
A ∗Dk

B
+
∥∥σk(zp)−ρk(zp)

∥∥
A ∗Dk

B

+
∥∥ρk(zp)−ρk(z)

∥∥
A ∗Dk

B
)

� 2ε for all ε > 0.

Thus we obtain that [(σk(z))k] = [(ρk(z))k] .
Now it follows from the definitions of full amalgamated free product and of the

C∗ -algebra Q , together with the fact that [(σk(z))k] = [(ρk(z))k] for every z ∈ D , we
know there is a ∗ -homomorphism from A ∗D B onto Q , which maps each σ(xn),ρ(yn)
to an,bn respectively for n ∈ N . Therefore,

‖P(σ(x1), · · · ,σ(xN),ρ(y1), · · · ,ρ(yN))‖A ∗DB

� ‖P(a1, · · · ,aN ,b1, · · · ,bN)‖ ∏
k�1

A ∗Dk
B/∑k�1 A ∗Dk

B (5.42)

Now equation (5.40) follows easily from inequalities (5.41) and (5.42). This ends
our proof. �

Once we get the preceding theorem, we are ready to consider the case when D is
an AF algebra. The following theorem is an analogous result to Theorem 2

THEOREM 4. Suppose that A ⊃ D ⊂ B are unital inclusions of unital MF alge-
bras where D is an AF algebra. Then the unital full free product A ∗D B of A and
B with amalgamation over D is an MF algebra if and only if there is an MF algebra
E such that

E ⊇ A ⊃ D ⊂ B ⊆ E .

Proof. If A ∗D B is MF, then let E = A ∗D B . It is clear that

E ⊇ A ⊃ D ⊂ B ⊆ E .

For another direction, suppose there is an MF algebra E such that E ⊇ A ⊃ D ⊂
B ⊆ E . Note that D is an AF algebra, therefore there is an increasing sequence of uni-
tal finite-dimensional C∗ -subalgebra {Dp}p�1 of D such that ∪pDp is norm dense in
D . Hence we can find a sequnece of positive integers {nk}∞

k=1 and a unital embedding
q : E →∏

k
Mnk (C)/∑k Mnk (C) such that the following diagram

Dp ⊆ A
∩ ↓ q|A
B

q|B−→ ∏
k
Mnk (C)/∑k Mnk (C)

commutes for each p � 1 where q|A and q|B are restrictions of q onto A and B
respectively. By Theorem 2, we obtain that A ∗Dp B is an MF algebra for each p � 1.
Now it follows from Theorem 3 that A ∗D B is an MF algebra. �

Since every AF algebra has a faithful tracial state, we are able to consider the case
when A , B and D are all AF algebras and give a sufficient condition in terms of
faithful tracial states.
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THEOREM 5. Suppose that A ⊃D ⊂B are unital inclusions of AF C∗ -algebras.
If there are faithful tracial states τA and τB on A and B respectively, such that

τA (x) = τB(x), ∀ x ∈ D ,

then A ∗D B is an MF algebra.

Proof. Assume that {xn}∞
n=1 ⊆ A , {yn}∞

n=1 ⊆ B and {zn}∞
n=1 ⊆ D are families

of generators in A , B and D respectively. Note that A ,B and D are AF algebras.
For each N ∈ N , there are finite dimensional C∗ -subalgebras DN ⊆ D , AN ⊆ A and
BN ⊆ B such that

max
1�n�N

{dist(xn,AN),dist(yn,BN),dist(zn,DN)} � 1
N

(5.43)

and
AN ⊃ DN ⊂ BN (5.44)

Note that τA (x) = τB(x), ∀ x ∈ D . From the argument in the proof of Theorem 4.2
[1], there are rational faithful tracial states on AN and BN such that their restrictions
on DN agree. This implies that there is a positive integer kN such that

MkN (C) ⊇ A N⊇ DN⊆ BN⊆ M kN (C). (5.45)

Combining (5.43), (5.44) and (5.45), we know that there is a sequence of positive inte-
gers {kN}∞

N=1 such that

∏
N

MkN (C)/∑
N

MkN (C)⊇ A ⊃ D ⊂ B ⊆∏
N

MkN (C)/∑
N

MkN (C) .

By Theorem 4, we obtain that A ∗D B is an MF algebra. �

It is well-known that the tracial state on each UHF algebra is unique. Therefore
we can restate Theorem 5 when A , B are both UHF algebras and D is an AF algebra.
A necessary and sufficient condition can be given in this case.

COROLLARY 2. Suppose that A ⊇ D ⊆ B are unital inclusions of C*-algebras
where A , B are UHF algebras and D is an AF algebra. Then A ∗

D
B is an MF

algebra if and only if
τA (z) = τB (x) for each z ∈ D ,

where τA and τB are faithful tracial states on A and B respectively.

Proof. From the fact that every MF algebra has a tracial state and the tracial state
on UHF algebra is unique and faithful, one direction of the proof is obvious. Another
direction is followed by applying Theorem 5. �
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