THE SIMILARITY DEGREE OF APPROXIMATELY DIVISIBLE C*-ALGEBRAS

WEIHUA LI

(Communicated by L. Rodman)

Abstract. Let \mathscr{A} be a unital approximately divisible C*-algebra. We show that the similarity degree of \mathscr{A} is at most 5.

1. Introduction

In 1955, R. Kadison [6] formulated the following conjecture: If \mathscr{A} is a unital C*-algebra and $\pi : \mathscr{A} \to \mathscr{B}(\mathscr{H})$ (\mathscr{H} is a Hilbert space) is a unital bounded homomorphism, then π is similar to a *-homomorphism, that is, there exists an invertible operator $S \in \mathscr{B}(\mathscr{H})$ such that $S^{-1}\pi(\cdot)S$ is a *-homomorphism.

This conjecture remains unproved, although many partial results are known. U. Haagerup [5] proved that π is similar to a *-homomorphism if and only if it is completely bounded. Moreover,

$$\|\pi\|_{cb} = \inf\{\|S\| \cdot \|S^{-1}\|\}$$

where the infimum runs over all invertible *S* such that $S^{-1}\pi(\cdot)S$ is a *-homomorphism. By definition, $\|\pi\|_{cb} = \sup_{n \ge 1} \|\pi_n\|$ where $\pi_n : \mathcal{M}_n(\mathscr{A}) \to \mathcal{M}_n(\mathscr{B}(\mathscr{H}))$ is the mapping taking *n* by *n* matrix $[a_{ij}]_{n \times n}$ to matrix $[\pi(a_{ij})]_{n \times n}$. U. Haagerup [5] also proved that π is similar to a *-homomorphism whenever π is finitely cyclic, i.e., there are vectors $e_1, \ldots, e_n \in \mathscr{H}$ such that $\pi(\mathscr{A})e_1 + \ldots + \pi(\mathscr{A})e_n$ is dense in \mathscr{H} .

G. Pisier [8] proved that if a unital C*-algebra \mathscr{A} verifies Kadison's conjecture, then there is a number α for which there exists a constant K so that any bounded homomorphism $\pi : \mathscr{A} \to \mathscr{B}(\mathscr{H})$ satisfies $\|\pi\|_{cb} \leq K \|\pi\|^{\alpha}$. Moreover, the smallest number α with the property is an integer denoted by $d(\mathscr{A})$ and called *the similarity degree*. It is clear that a C*-algebra \mathscr{A} verifies Kadison's conjecture if and only if $d(\mathscr{A}) < \infty$.

REMARK 1.1. When determining $d(\mathscr{A})$, it is only necessary to consider unital bounded homomorphisms that are one-to-one. To see this, let π_0 be a unital *isomorphism from \mathscr{A} to $\mathscr{B}(\mathscr{K})$ for some Hilbert space \mathscr{K} . It is not difficult to see that $\pi \oplus \pi_0$ is one-to-one and $\|\pi \oplus \pi_0\| = \|\pi\|$ and $\|\pi \oplus \pi_0\|_{cb} = \|\pi\|_{cb}$.

Keywords and phrases: Approximately divisible C*-algebra, similarity degree, subrank.

Mathematics subject classification (2010): Primary 46L05.

There are few concrete examples of C*-algebras known to verify Kadison's conjecture. We list them below, together with their respective degrees:

(1) \mathscr{A} is nuclear if and only if $d(\mathscr{A}) = 2$ ([2], [3], [11]);

(2) if $\mathscr{A} = \mathscr{B}(\mathscr{H})$, then $d(\mathscr{A}) = 3$ ([10]);

(3) $d(\mathscr{A} \otimes \mathscr{K}(\mathscr{H})) \leq 3$ for any C^{*}-algebra \mathscr{A} ([5], [9]);

(4) if \mathscr{M} is a factor of type II₁ with property Γ , then $d(\mathscr{M}) = 3$ ([4]);

(5) if \mathscr{A} is nuclear and contains unital matrix algebras of any order, then $d(\mathscr{A} \otimes \mathscr{B}) \leq 5$ for any unital C*-algebra \mathscr{B} ([12]).

The class of approximately divisible C*-algebras was introduced by B. Blackadar, A. Kumjian and M. Rørdam [1], where they constructed a large class of simple C*-algebras having trivial non-stable K-theory. They showed that the class of approximately divisible C*-algebras contains all simple unital AF-algebras and most of the simple unital AH-algebras with real rank 0, including every nonrational noncommutative torus.

In this paper, we show that the similarity degree of every unital approximately divisible C*-algebra is at most 5.

2. Notation and preliminaries

Let $\mathscr{M}_k(\mathbb{C})$ be the $k \times k$ full matrix algebra with entries in \mathbb{C} and $\mathscr{M}_k(\mathbb{C})^n$ be the direct sum of *n* copies of $\mathscr{M}_k(\mathbb{C})$. Suppose \mathscr{B} is a finite-dimensional C*-algebra. Then there exist *r* positive integers k_1, \ldots, k_r such that

$$\mathscr{B} \cong \mathscr{M}_{k_1}(\mathbb{C}) \oplus \cdots \oplus \mathscr{M}_{k_r}(\mathbb{C}).$$

Define the *subrank* of \mathcal{B} to be

$$\operatorname{SubRank}(\mathscr{B}) = \min\{k_1, \ldots, k_r\}.$$

Let $\{e_{ii}^{(s)}: 1 \le i, j \le k_s, 1 \le s \le r\}$ be a set of matrix units for \mathscr{B} . That is,

$$(e_{ij}^{(s)})^* = e_{ji}^{(s)}, \quad \sum_{1 \leq s \leq r} \sum_{1 \leq i \leq k_s} e_{ii}^{(s)} = I$$

and

$$e_{ij}^{(s)}e_{i_1,j_1}^{(s_1)} = \begin{cases} e_{ij_1}^{(s)}, \text{ if } s = s_1, j = i_1 \\ 0, \text{ otherwise} \end{cases}$$

We define approximately divisibility for (nonseparable) C*-algebras by removing the separability assumption in the definition 1.2 in [1].

DEFINITION 2.1. A unital C*-algebra \mathscr{A} with unit $I_{\mathscr{A}}$ is approximately divisible if, for every $x_1, \ldots, x_n \in \mathscr{A}$ and $\varepsilon > 0$, there is a finite-dimensional C*-subalgebra \mathscr{B} of \mathscr{A} such that

(1) $I_{\mathscr{A}} \in \mathscr{B}$, (2) SubRank $(\mathscr{B}) \ge 2$, (3) $||x_iy - yx_i|| < \varepsilon$ for i = 1, ..., n and all $y \in \mathscr{B}$ with $||y|| \le 1$. The following proposition is taken from Theorem 1.3 and Corollary 2.10 in [1].

PROPOSITION 2.2. ([1]) Let \mathscr{A} be a unital separable approximately divisible C*algebra with the unit $I_{\mathscr{A}}$. Then there exists an increasing sequence $\{\mathscr{A}_m\}_{m=1}^{\infty}$ of subalgebras of \mathscr{A} such that

(1) $\mathscr{A} = \overline{\bigcup_m \mathscr{A}_m},$

(2) for any positive integer m, $\mathscr{A}'_m \cap \mathscr{A}_{m+1}$ contains a finite-dimensional C*-subalgebra \mathscr{B} with $I_{\mathscr{A}} \in \mathscr{B}$ and SubRank $(\mathscr{B}) \ge 2$,

(3) for any positive integers *m* and *k*, there is a finite-dimensional C*-subalgebra \mathscr{B} of $\mathscr{A}'_m \cap \mathscr{A}$ with $I_{\mathscr{A}} \in \mathscr{B}$ and SubRank $(\mathscr{B}) \ge k$.

3. Similarity degree

We will show that the similarity degree of every unital approximately divisible C^* -algebra is at most 5. To do that, we need the following lemmas.

LEMMA 3.1. Let \mathscr{A} be a C^* -algebra with unit $I_{\mathscr{A}}$, \mathscr{A}_0 and \mathscr{B} be commuting C^* -subalgebras of \mathscr{A} that contain $I_{\mathscr{A}}$. Suppose $\mathscr{B} \cong \mathscr{M}_{k_1}(\mathbb{C}) \oplus \cdots \oplus \mathscr{M}_{k_r}(\mathbb{C})$ with $k_1, \ldots, k_r \ge n \ge 2$ for some positive integer n, and $\{e_{ij}^{(s)} : 1 \le i, j \le k_s, 1 \le s \le r\}$ is a set of matrix units for \mathscr{B} . If $\{a_{ij} : 1 \le i, j \le n\} \subseteq \mathscr{A}_0$, then

$$\|\sum_{1\leqslant s\leqslant r}\sum_{1\leqslant i,j\leqslant n}a_{ij}e_{ij}^{(s)}\|=\|[a_{ij}]_{n\times n}\|.$$

Proof. Let $p_1 = I_{k_1} \oplus \cdots \oplus \oplus \dots, p_r = 0 \oplus \cdots \oplus 0 \oplus I_{k_r}$ be the projections in \mathscr{B} , where I_{k_s} is the unit of $\mathscr{M}_{k_s}(\mathbb{C})$ $(1 \leq s \leq r)$. Then it is clear that $p_1 + \cdots + p_r = I_{\mathscr{A}}$ and for any $1 \leq s \leq r$, $1 \leq i, j \leq k_s$, $e_{ij}^{(s)} = p_s e_{ij}^{(s)}$.

Define

$$\pi:\mathscr{M}_{k_1}(p_1\mathscr{A}_0)\oplus\cdots\oplus\mathscr{M}_{k_r}(p_r\mathscr{A}_0)\to C^*(\mathscr{A}_0,\mathscr{B})$$

by

$$\pi([p_1a_{ij}^{(1)}]_{k_1\times k_1}\oplus\cdots\oplus[p_ra_{ij}^{(r)}]_{k_r\times k_r})=\sum_{s=1}^r\sum_{i,j=1}^{k_s}a_{ij}^{(s)}e_{ij}^{(s)},$$

for any $a_{ij}^{(s)} \in \mathscr{A}_0$. It is clear that π is a *-isomorphism.

Thus, in $\mathcal{M}_n(\mathcal{A})$,

$$\begin{split} \|[a_{ij}]_{n \times n}\| &= \|\sum_{s=1}^r \begin{pmatrix} p_s & 0\\ \ddots \\ 0 & p_s \end{pmatrix} [a_{ij}]_{n \times n}\| \\ &= \max\{\|[p_s a_{ij}]_{n \times n}\| : 1 \leqslant s \leqslant n\}. \end{split}$$

On the other hand,

$$\begin{split} &\|\sum_{1\leqslant s\leqslant r}\sum_{1\leqslant i,j\leqslant n}a_{ij}e_{ij}^{(s)}\|\\ &=\|\pi\left(\left(\begin{bmatrix} p_{1}a_{ij}\end{bmatrix}_{n\times n} 0\\ 0 & 0 \end{bmatrix}\oplus\cdots\oplus\left(\begin{bmatrix} p_{r}a_{ij}\end{bmatrix}_{n\times n} 0\\ 0 & 0 \end{bmatrix}\right)\right)\|\\ &=\max\{\|[p_{s}a_{ij}]_{n\times n}\|:1\leqslant s\leqslant r\}. \quad \Box \end{split}$$

LEMMA 3.2. Suppose \mathscr{A} is a unital approximately divisible C*-algebra and $E \subseteq \mathscr{A}$ is countable. Then there is a unital separable approximately divisible C*-subalgebra \mathscr{D} of \mathscr{A} such that $E \subseteq \mathscr{D}$.

Proof. Suppose \mathcal{W} is a unital separable C*-subalgebra of \mathscr{A} . Choose a countable dense subset *S* of \mathcal{W} and let Λ be the (countable) set of all pairs (F,k) with $F \subseteq S$ finite and $k \in \mathbb{N}$. It follows from the approximate divisibility of \mathscr{A} that there is a finite-dimensional unital C*-subalgebra \mathscr{B}_{λ} of \mathscr{A} such that

$$\|xy - yx\| < 1/k$$

for all $x \in F$ and $y \in \mathscr{B}_{\lambda}$ with $||y|| \leq 1$. We define $\widehat{\mathscr{W}} = C^*(\mathscr{W} \cup \bigcup_{\lambda \in \Lambda} \mathscr{B}_{\lambda})$. If we define $\mathscr{D}_0 = C^*(E)$ and, for each positive integer *n*, we define $\mathscr{D}_{n+1} = \widehat{\mathscr{D}}_n$, then it is clear that $\mathscr{D} = [\bigcup_{n=1}^{\infty} \mathscr{D}_n]^-$ is the required separable approximately divisible C*subalgebra. \Box

THEOREM 3.3. If \mathscr{A} is a unital approximately divisible C*-algebra, then

 $d(\mathscr{A}) \leq 5.$

Proof. Note that given a bounded homomorphism π , there is a countable subset E of \mathscr{A} that determines both $\|\pi\|$ and $\|\pi\|_{cb}$. By Lemma 3.2, there is a unital separable approximately divisible C*-subalgebra \mathscr{D} of \mathscr{A} such that $E \subseteq \mathscr{D}$. Therefore, without loss of generality, we can assume that \mathscr{A} is separable.

Let $\mathscr{A} = \overline{\bigcup_m \mathscr{A}_m}$ with \mathscr{A}_m defined in Proposition 2.2. By Remark 1.1, let $\pi : \mathscr{A} \to \mathscr{B}(\mathscr{H})$ be a one-to-one unital bounded homomorphism, where \mathscr{H} is a Hilbert space. It is sufficient to prove that

$$\|\pi|_{\cup_m\mathscr{A}_m}\|_{cb}\leqslant K\|\pi\|^5$$

for some constant *K*.

For any positive integer n, let $\{a_{ij}: 1 \le i, j \le n\}$ be a family of elements in $\bigcup_m \mathscr{A}_m$. Then there exists some positive integer m_0 such that $\{a_{ij}: 1 \le i, j \le n\}$ is in \mathscr{A}_{m_0} . From Proposition 2.2, there exists a finite-dimensional C*-subalgebra \mathscr{B} containing the unit of \mathscr{A} with SubRank $(\mathscr{B}) \ge n$ and $\mathscr{B} \subset \mathscr{A}'_{m_0} \cap \mathscr{A}$. Let $\{e_{ij}^{(s)}: 1 \le i, j \le k_s, 1 \le s \le r\}$ be a set of matrix units for \mathscr{B} .

Since \mathscr{B} is finite-dimensional, it follows that \mathscr{B} is nuclear. Therefore, from [5], there exists an invertible operator *S* in $\mathscr{B}(\mathscr{H})$, such that $||S|| \cdot ||S^{-1}|| \leq C ||\pi||^2$ for some

constant *C*, and $S^{-1}\pi|_{\mathscr{B}}(\cdot)S$ is a *-isomorphism. Let $\rho = S^{-1}\pi(\cdot)S$. Then $\{\rho(e_{ij}^{(s)}): 1 \leq i, j \leq k_s, 1 \leq s \leq r\}$ is a set of matrix units for the C*-algebra $\rho(\mathscr{B})$. Hence, by Lemma 3.1,

$$\|\rho(\sum_{1\leqslant s\leqslant r}\sum_{1\leqslant i,j\leqslant n}a_{ij}e_{ij}^{(s)})\|\leqslant \|\rho\|\cdot\|\sum_{1\leqslant s\leqslant r}\sum_{1\leqslant i,j\leqslant n}a_{ij}e_{ij}^{(s)}\|=\|\rho\|\cdot\|[a_{ij}]_{n\times n}\|$$

On the other hand, by Lemma 3.1,

$$\begin{aligned} \|\rho(\sum_{1\leqslant s\leqslant r}\sum_{1\leqslant i,j\leqslant n}a_{ij}e_{ij}^{(s)})\| \\ &=\|\sum_{s=1}^{r}\sum_{1\leqslant i,j\leqslant n}\rho(a_{ij})\rho(e_{ij}^{(s)})\| \\ &=\|[\rho(a_{ij})]_{n\times n}\|. \end{aligned}$$

Therefore we get

$$\|[\rho(a_{ij})]_{n \times n}\| \leq \|\rho\| \cdot \|[a_{ij}]_{n \times n}\| \leq \|S\| \cdot \|S^{-1}\| \cdot \|\pi\| \cdot \|[a_{ij}]_{n \times n}\| \leq C \|\pi\|^3 \|[a_{ij}]_{n \times n}\|$$

That means that $\|\rho\|_{\cup_m \mathscr{A}_m}\|_{cb} \leq C \|\pi\|^3$, then

$$\|\pi|_{\cup_m \mathscr{A}_m}\|_{cb} = \|S\rho|_{\cup_m \mathscr{A}_m} S^{-1}\|_{cb} \leqslant \|S^{-1}\| \cdot \|S\| \cdot \|\rho|_{\cup_m \mathscr{A}_m}\|_{cb} \leqslant C^2 \|\pi\|^5. \quad \Box$$

F. Pop [12] proved that if \mathscr{A} is a unital C^{*}-algebra, \mathscr{B} is a unital nuclear C^{*}algebra and contains unital matrix algebras of any order, then the similarity degree of $\mathscr{A} \otimes \mathscr{B}$ is at most 5. Below we give a generalization of F. Pop's result.

To prove our result, we need the following lemma (Corollary 2.3 in [12]).

LEMMA 3.4. Let \mathscr{A} and \mathscr{B} be unital C*-algebras and \mathscr{B} nuclear. If π is a unital bounded homomorphism of $\mathscr{A} \otimes \mathscr{B}$ such that $\pi|_{\mathscr{A}}$ is completely bounded and $\pi|_{\mathscr{B}}$ is a *-homomorphism, then π is completely bounded and $\|\pi\|_{cb} \leq \|\pi|_{\mathscr{A}}\|_{cb}$.

Using Lemma 3.4 and the idea in the proof of Theorem 3.3, we can get the following theorem:

THEOREM 3.5. Let \mathscr{A} be a unital nuclear C*-algebra such that for any positive integer N, there is a finite-dimensional subalgebra in \mathscr{A} containing the unit of \mathscr{A} with subrank at least N. Then for any unital C*-algebra \mathscr{B} , $d(\mathscr{A} \otimes \mathscr{B}) \leq 5$.

Note. The original version of this paper was included in [7].

WEIHUA LI

REFERENCES

- [1] B. BLACKADAR, A. KUMJIAN AND M. RØRDAM, Approximately central matrix units and the structure of noncommutative tori, K-theory 6 (1992), 267–284.
- J. W. BUNCE, The similarity problem for representations of C*-algebras, Proc. Amer. Math. Soc. 81 (1981), 409–414.
- [3] E. CHRISTENSEN, Extensions of derivations II, Math. Scand. 50 (1982), 111-122.
- [4] E. CHRISTENSEN, *Finite von Neumann algebra factors with property* Γ, J. Funct. Anal. 186 (2001), 366–380.
- [5] U. HAAGERUP, Solution of the similarity problem for cyclic representations of C*-algebras, Ann. Math. 118 (1983), 215–240.
- [6] R. KADISON, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600– 622.
- [7] W. LI AND J. SHEN, A note on approximately divisible C*-algebras, preprint, arXiv 0804.0465.
- [8] G. PISIER, The similarity degree of an operator algebra, St. Petersburg Math. J. 10 (1999), 103–146.
- [9] G. PISIER, Remarks on the similarity degree of an operator algebra, Internat. J. Math. 12 (2001), 403–414.
- [10] G. PISIER, Similarity problems and length, Taiwanese J. Math. 5 (2001), 1-17.
- [11] G. PISIER, A similarity degree characterization of nuclear C*-algebras, Publ. Res. Inst. Math. Sci. 42, 3 (2006), 691–704.
- [12] F. POP, *The similarity problem for tensor products of certain C* -algebras*, Bull. Austral. Math. Soc. **70** (2004), 385–389.

(Received April 6, 2012)

Weihua Li Science and Mathematics Department Columbia College Chicago Chicago, IL 60605 USA e-mail: wli@colum.edu