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(Communicated by Richard A. Brualdi)

Abstract. The topic considered in this paper falls under the general heading of automorphisms
of structural matrix algebras. Herein we wish to give an answer to an open question given in [4].
We also would like to reprove of Theorem A and Theorem C in [6], a version of the principal
results, by using the structure of the algebra in the block upper triangular case.

1. Introduction

Automorphisms of certain subalgebras of matrix algebras have been studied in
several papers. In 1980, Isaacs [8] showed that the automorphisms of an n×n matrix
algebra over a commutative ring can fail to be inner. The extent of this failure, however,
is under control. For instance, the commutator of any two automorphisms and the nth

power of each of them are necessarily inner. In 1987, Barker and Kezlan [3] proved
that every R-automorphism of the algebra of upper triangular matrices with the entries
from an integral domain is inner. In the same year, Jondrup [9] showed that if a finite
dimensional algebra A over its center K is simple, then all K -automorphisms of the
algebra of upper triangular matrices over the algebra A are inner.

In 1989, Barker continued his work [4] on automorphism groups of the algebra of
upper triangular matrices and he considered an algebra A of n× n matrices over an
integral domain. He associated with A a graph whose edges are the pairs (i, j) such
that the (i, j) entry of every element of A is zero. The graph in turn defines a group
of permutations and automorphisms of A which are conjugations by permutation ma-
trices. He showed that, for a suitably restricted class of algebras A , the automorphism
group of A is the semidirect product of this group of permutation matrices with the
subgroup of inner automorphism. Following Barker’s work, in 1993 Coelho [6], us-
ing graph theory, characterized the group of K -automorphisms of certain subalgebras
of matrix algebra over the field K , which is known as the structural matrix algebra.
These include the algebra of upper triangular matrices. Coelho also gave necessary and
sufficient conditions for every K -automorphism of a subalgebra to be inner.

At the end of Barker’s paper [4], he left an interesting open question which lead
us to consider this problem as a starting point.

Open Question of Barker: Let A be an algebra of matrices over a field. Using
Jordan-Holder theorem, or (if A contains a matrix with distinct diagonal entries) using
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the results of Laffey [10], we may choose a basis so that A is in block triangular form.
To what extent can Theorem 2 of [4] be generalized to the block case and combined
with knowledge of the automorphism groups of the diagonal blocks, which blocks are
isomorphic to full matrix algebras, to obtain structure of Aut(A )?

Let Mn(F) be the algebra of all n×n matrices over a field F and let ({1, . . . ,n},ρ)
be a quasi-ordered set (i.e. ρ is reflexive and transitive relation on the set {1, . . . ,n} ).
The set

Mn(F,ρ) = {A ∈ Mn(F) : ai j = 0 whenever (i, j) /∈ ρ}
is a subalgebra of Mn(F) (see [2]) and we call Mn(F,ρ) the algebra of n×n structural
matrices over F (with identity I ).

Let Mn (F,ρ) be a structural matrix algebra for the quasi-order ρ where F is a
field. We wish to study the group Aut(Mn (F,ρ)) of automorphism of Mn (F,ρ) . For
simplicity, we write Mn when the order ρ and the field F are clear. The group of inner
automorphism is a normal subgroup of Aut(Mn) , but in general it is a proper subgroup.
For some special cases such as upper triangular matrices (see [4, 5]) we know that an
automorphism is a composition of an inner automorphismwith a permutation similarity.
Coelho [6] shows that any automorphism is a composition of an inner automorphism, a
permutation similarity, and an automorphism generated by a transitive function g on ρ
(definition will be given shortly). Since a structural matrix algebra is isomorphic with a
block upper triangular matrix algebra which we shall describe below and this similarity
is a conjugation by a permutation matrix, a block triangular algebra is also a structural
algebra. We would like to reprove a version of the Coelho’s principal results by using
the structure of the algebra in the block upper triangular case. We begin by describing
the block triangular form.

2. Block triangular form of structural matrix algebras and automorphisms

For a structural matrix algebra Mn (F,ρ) we define an equivalence relation ρ by

(i, j) ∈ ρ if and only if (i, j) ,( j, i) ∈ ρ .

Let [r1] , [r2] , . . . , [rp] denote the distinct equivalence classes of ρ with representatives
r1,r2, . . . ,rp. Construct a permutation π as follows. Note that π is not unique would
possibly be in order. For

[r1] = {r11,r12, . . . ,r1m1}
let

π (1) = π (r11) = 1,π (r12) = 2, . . . ,π (r1m1) = m1

and in general if
[rk] =

{
rk1,rk2, . . . ,rkmk

}
then

π
(
rk j

)
= m1 +m2 + · · ·+mk−1 + j.

If we apply this permutation similarity to Mn (F,ρ) we have the following relation ρ ′
where

(i, j) ∈ ρ ′ ⇐⇒ (
π−1 (i) ,π−1 ( j)

) ∈ ρ
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and Mn (F,ρ ′) consists of all matrices of the form
⎡
⎢⎢⎢⎣

Mm1 (F) Mm1×m2 (R) · · · Mm1×mp (R)
0 Mm2 (F) · · · Mm2×mp (R)
... 0

. . .
...

0 · · · 0 Mmp (F)

⎤
⎥⎥⎥⎦ ,

where R is either F or 0.
Now, we define

[i]ρ ′ � [ j]ρ ′ (1)

to mean (i, j) ∈ ρ ′ . Then ∀p1 ∈ [i] , p2 ∈ [ j] ,

(p1, p2) ∈ ρ ′ if and only if (i, j) ∈ ρ ′.

Let [t1] , [t2] , . . . , [tq] be the classes which are incomparable with any other class,
that is if r j /∈ [tk] then neither (r j,tk) ∈ ρ ′ nor (tk,r j) ∈ ρ ′. We now relable indices ( a
permutation similarity of Mn (F,ρ)) so that the classes comparable to another class are
[r1] , [r2] , . . . , [rl ] so l +q = p , and

(i) each r j and each tk is minimal in its class,

(ii) r1 < .. . < rl and t1 < .. . < tq,

(iii) for each class [r j] =
{
r j1,r j2, . . . ,r jmj

}
and [tk] =

{
tk1,tk2, . . . ,tkmk

}
we have r j = r j1 < r j2 < .. . < r jmj and tk = tk1 < tk2 < .. . < tkmk . Note: r js + 1 =
r js+1 etc.

If ρ ′ is the quasi-order corresponding to the this relabeling, then Mn (F,ρ ′) con-
sists of all matrices of the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mm1(F) Mm1xm2(R) · · · Mm1xml (R) 0 · · · 0
0 Mm2(F) · · · Mm2xml (R) 0 · · · 0
...

. . .
. . .

...
...

...
...

0 0 · · · Mml (F) 0 · · · 0
0 0 0 0 Mml+1(F) 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · Mmp(F)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where R is 0 or F. Specifically if we consider a block Mmaxmb(R) we know that the
row indices are a ρ ′ class and likewise for the column indices. If these classes are
[ra] and [rb] respectively with a < b � l, then if [ra] � [rb] we have R = F, otherwise
R = 0.

From this point on, we shall assume that the structural matrix algebra is in the
form of (2). For notational simplicity, we may write Mi and Mij for Mmi and Mmi×mj

respectively . The subset of Mn (F,ρ) which has elements of Mij (or Mi) in the i-th
block row and j -th block column (or i-th block diagonal) and zero elsewhere will
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be denoted by Mij. Analogously we let Ai j denote an mi ×mj matrix in Mij while
Ai j is the corresponding element of Mij. If i = j we write Mi , Ai , Mi , Ai, for the
corresponding sets and matrices.

We have two special subsets of Mn (F,ρ) . Let D denote the subset of all block
diagonal elements. That is

D =
{
diag(A1, . . . ,Ap) : Aj ∈ Mj

}
.

Next, let J be the set of block strictly upper triangular matrices in Mn (F,ρ) . Any A∈ J
is properly nilpotent (see Farenick, [7, p. 120]), and conversely we can show that any
properly nilpotent element in Mn (F,ρ) is actually an element of J. But the radical
consists of all properly nilpotent elements, whence J is a radical of Mn (F,ρ) . If Φ
is any automorphism of Mn (F,ρ) and T ∈ J, then Φ(T ) is properly nilpotent. Thus
Φ(J) ⊆ J. Since Φ is one to one, it is necessarily onto so that Φ(J) = J.

Next, note that Mn (F,ρ) = D when and only when the radical J is zero, that is
when and only when Mn (F,ρ) is semisimple. However, Mn (F,ρ) = D if and only if
ρ is symmetric. Thus ρ is symmetric if and only if Mn (F,ρ) is semisimple.

First, let us consider the case Mn (F,ρ) is semisimple and Φ ∈Aut(Mn) .

THEOREM 2.1. If Mn (F,ρ) is semisimple and if Φ ∈Aut(Mn) , then we can write

Φ = Ψ◦Pτ ,

where Ψ is an inner automorphism, and Pτ is a permutation similarity which is in
Aut(Mn) .

Proof. Note that
Mn (F,ρ) = M1⊕·· ·⊕Mp

and each M j is an ideal. Thus Φ
(
M j

)∩Mt is an ideal in Mt which is simple. If
the intersection is not {0} , then Φ

(
M j

) ⊇ Mt . By considering Φ−1
(
Mt

)∩M j we
conclude that the equality holds. This is possible if and only if mj = mt . This gives a
bijection f on {1, . . . , p} where

Φ
(
Mi

)
= M f (i).

Now, extend f to a permutation π on {1, . . . ,n} by the way of (ii) above. If Mi

corresponds to [ri] and M f (i) corresponds to
[
r f (i)

]
, then we set

π (r js) = rπ( j)s (3)

and similarly for [tk] . If Pπ is the corresponding permutation matrix then

π (A) = Pπ−1APπ

is an automorphism of Mn (F,ρ) while Ψ = Φ◦π−1 is an automorphism of Mn (F,ρ)
for which

Ψ
(
M j

)
= M j , j = 1, . . . , p.
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This induces an automorphism ψ j of Mj such that

Ψ(Mn (F,ρ)) = diag(ψ1 (M1) , . . .ψp (Mp)) .

At this point, one could appeal to the Skolem-Noether theorem. However, there is an
elementary proof in [1, p. 90], that any automorphism of the full algebra of matrices
over a field is inner. Hence there are nonsingular matrices Aj ∈ Mj such that for every
B ∈ Mn (F,ρ) , B = diag(B1, . . . ,Bp) , we have

Ψ(B) = diag
(
A−1

1 B1A1, . . . ,A
−1
p BpAp

)

so Ψ is inner. �
We can now utilize the lemma in [4, p. 210] or the argument in [6] to obtain the

factorization in [6, theorem A]. Compare this also with [4, theorem 2].
As a final note, suppose that Mn (F,ρ) is simple. It is therefore semisimple whence

it is block diagonal. If there were more than one block, the algebra could have a non-
trivial ideal contrary to the hypothesis of simplicity. Thus, the algebra is the full matrix
algebra over F.

We now consider the general case of a structural matrix algebra Mn = Mn (F,ρ)
which we take to be in block upper triangular form of (2) and an automorphism
Φ ∈Aut(Mn) . We shall see in the course of the factorization theorem that a special
type of function arises which generates a special type of automorphism. For the next
definition we follow Coelho [6]. Let F∗ = F�{0} .

DEFINITION 1. A function g : ρ → F∗ is transitive if and only if

g(i, j)g( j,k) = g(i,k)

for all (i, j) ,( j,k) ∈ ρ .

Every transitive function g : ρ → F∗ determines an automorphism
G ∈ Aut(Mn(F,ρ)) by defining

G
(
Ei j) = g(i, j)Ei j, (i, j) ∈ ρ ,

where Ei j is the n× n matrix with a 1 in position (i, j) and zeros elsewhere, if we
consider i = j then the matrix Eii is written simple Ei .

THEOREM 2.2. (Factorization Theorem) If Φ ∈Aut(Mn) then we can write

Φ = ΨA ◦G◦Pτ,

where ΨA is an inner automorphism induced by A, G is an automorphism defined by
transitive function g on ρ and Pτ is a permutation similarity which is in Aut(Mn) .

In the course of the proof of the Factorization Theoremwe shall need some lemmas
and corollaries from Coelho.
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LEMMA 2.3. Let E = Ei, η ∈ J, and let E = E +η be idempotent of Mn (F,ρ) .
Then for all i � 3 we have that

E = E +
(
η + η2 + · · ·+ η i−1)E + E

(
η + η2 + · · ·+ η i−1)

+
i−2

∑
k=1

(
η + η2 + · · ·+ η i−1−k

)
Eηk + η i.

COROLLARY 2.4. With the notation of Lemma 2.3, we have that:

(i) if the index of the nilpotency of η is 2, then E = E + ηE +Eη ;

(ii) if the index of the nilpotency of η is s > 2, then

E =E +
(
η + η2 + · · ·+ ηs−1)E + E

(
η + η2 + · · ·+ ηs−1)

+
s−2

∑
k=1

(
η + η2 + · · ·+ ηs−1−k

)
Eηk.

COROLLARY 2.5. Let E be an idempotent of Mn (F,ρ) under the conditions of
Lemma 2.3. Then there exists θ ∈ J such that

E = E +Eθ + θE + θEθ .

Conversely, if θ ∈ J and E = E j ( j ∈ {1,2, . . . ,n}) , then

E = E +Eθ + θE + θEθ

is an idempotent of Mn (F,ρ) .

LEMMA 2.6. Let θ ∈ J, E = E j ( j ∈ {1,2, . . . ,n}) , and let E be idempotent

E = E +Eθ + θE + θEθ .

Then
U = (In +Eθ )(In−θE) ∈ Mn (F,ρ)

is invertible, and
U E U −1 = E.

Now, for each j ∈ {1,2, . . . ,n} , pick θ j ∈ J and consider

E j = E j +E jθ j + θ jE
j + θ jE

jθ j,

U j =
(
In +E jθ j

)(
In−θ jE

j) .

Let A be an invertible matrix in Mn (F,ρ) , we denote by CA the inner automor-
phism of Mn (F,ρ) induced by A .

LEMMA 2.7. With the notation above, we have
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(i) CU j = 1 for all ( j ∈ {1,2, . . . ,n}) , where CU j is the inner automorphism of
Mn (F,ρ)�J induced by the invertible matrix U j.

(ii) If EiE j = E jEi = 0, where i, j ∈ {1,2, . . . ,n} , i �= j then EiU j = U jEi = Ei.

LEMMA 2.8. Let ϕ be an automorphism of Mn (F,ρ) such that there exits a per-
mutation σ of {1,2, . . . ,n} satisfying

ϕ
(
E j + J

)
= Eσ( j) + J for all j ∈ {1,2, . . . ,n} .

Then there exists an invertible element U of Mn (F,ρ) such that CU = 1 and

(CU ◦ϕ)
(
E j) = Eσ( j) for all j ∈ {1,2, . . . ,n} .

For the proofs of above lemmas and corrolaries see [6].

Proof of Factorization Theorem. Let Φ be an automorphism of Mn . The auto-
morphism Φ determines an automorphism Φ on the equivalence classes

[
A

]
= A+ J

by
Φ

([
A

])
=

[
Φ

(
A

)]
= Φ

(
A

)
+ J.

Since J is the radical, Mn�J is semisimple. Recall that Φ(J) = J. Note also that each
equivalence class

[
A

]
contains a unique element of D . If

[
A

] ∈ Mn�J with A ∈ D
then the map

ϕ : Mn�J → D

defined by ϕ
([

A
])

= A is an isomorphism and

ϕ
(
A

)
=

(
ϕ ◦Φ

)([
A

])

is an automorphism of D . If f = ϕ−1 then

Φ
([

A
])

= ( f ◦ϕ)
(
A

)
.

But ϕ factors as
ϕ = Ψ D ◦Pτ ,

where D ∈ D , Ψ(D ) is the inner automorphism determined by D and Pτ is a per-

mutation similarity of D which permutes diagonal blocks. Observe that

f ◦Ψ D = Ψ[ D ],

that is
f ◦Ψ D = Ψ f( D ),

where Ψ[ D ] is the inner automorphism of Mn�J determined by
[
D

]
. Note that τ

must take an equivalence class of ρ to an equivalence class of ρ so that (τ (i) ,τ ( j)) ∈
ρ for every (i, j) ∈ ρ . Let

P = f ◦Pτ .
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Then
P

(
Ei j + J

)
= Eτ(i)τ( j) + J

for all (i, j) ∈ ρ .
Recall that Ei j is the element of Mn (F,ρ) with a 1 in position (i, j) and zero

elsewhere for (i, j) ∈ ρ . Recall also the construction of τ in the semisimple case. On
each equivalence class by (3) if (a,b) ∈ ρ and a < b, then τ (a) < τ (b) . Thus

Φ = Ψ[D ] ◦P.

Next, we have
[
Ψ

D−1 ◦Φ
]

= Ψ[
D−1

] ◦Φ = Ψ[
D−1

] ◦Ψ[D ] ◦P = P.

Consequently
(

Ψ[
D−1

] ◦Φ
)(

E j + J
)
= P

(
E j + J

)
= Eτ( j) + J, j = 1,2, . . . ,n

so Ψ
D−1 ◦Φ = Θ satisfies the conditions of lemma 2.8. Hence there exist an invertible

matrix U ∈ Mn (F,ρ) such that

(ΨU ◦Θ)
(
E j) = Eτ( j) for j = 1,2, . . . ,n.

Then we have Ψ[U] = 1. Take

Γ = ΨU ◦Θ = Ψ
UD−1 ◦Φ.

So Γ
(
Ei j

)
= Γ

(
Ei

)
Γ

(
Ei j

)
Γ

(
E j

)
= Eτ(i)Γ

(
Ei j

)
Eτ( j) = cτ(i)τ( j)E

τ(i)τ( j), where
cτ(i)τ( j) ∈ F∗. Then (τ (i) ,τ ( j)) ∈ ρ for all (i, j) ∈ ρ . Hence, this gives us an au-
tomorphism of ρ which we also denote by τ.

Let g : ρ → F∗ be a function defined by

g(τ(i),τ( j)) = cτ(i)τ( j)

since Γ is an automorphism, it follows that g is transitive. Now define G by

G
(
Ei j) = g(i, j)Ei j , (i, j) ∈ ρ .

We extend G by linearity to obtain an automorphism of Mn (F,ρ) .

Γ
(
Ei j) = G

(
Eτ(i)τ( j)

)
= (G◦Pτ)

(
Ei j) =⇒ Γ = G◦Pτ

so Ψ
UD−1 ◦Φ = G◦Pτ =⇒ Φ = Ψ

D U−1 ◦G◦Pτ as we desired. �

The heart of the matter is the proof of the factorization theorem (theorem C of
Coelho [6] and Theorem 2.2 of this paper). Both approaches start by dealing with the
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semisimple case. These approaches are via graph theory in Coelho and via the block
diagonal form in this paper. Then the question is how to lift the factorization in the
semisimple case to the general case. The resolution involves neither graph theory nor
the block triangular form, so from this point forward there is no further contrast between
the two approaches. What is done is to find a suitable inner automorphism (see Lemma
2.8) so that the resulting composition takes each of the unit matrices Ei j onto a multiple
of another unit matrix. This yields that the composition is an automorphism determined
by a transitive function, and thus the proof is complete. This last part which is certainly
clever is independent of the approach used upto this point.

The purpose of the second approach is to give an alternative and more intuitive
proof to the theorems. The proof via graph theory is also interesting and relates to
some important work in linear algebra currently being done. Both have value for un-
derstanding the factorization theorems.
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