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OPERATOR–VALUED FRAME GENERATORS

FOR GROUP–LIKE UNITARY SYSTEMS
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(Communicated by P.-Y. Wu)

Abstract. We investigate operator-valued frames with the structure of group-like unitary sys-
tems. We show that the commutant of a group-like unitary system can be characterized in terms
of the analysis operators associated with all the operator-valued Bessel generators and give some
sufficient and necessary conditions to describe when an operator-valued frame generator admits
a Parseval dual. This extends work of J.Gabardo and D.Han but the proofs turn out to be more
complicated. Then we characterize the Parseval operator-valued frame generators for certain
unitary systems on a finite dimensional Hilbert space.

1. Introduction

Frames in a Hilbert space have been used to capture significant signal character-
istics, provide numerical stability of reconstruction, and enhance resilience to additive
noise etc. Motivated by these applications the theory has developed rapidly in the past
decade. Important examples of frames are Gabor frames and wavelet frames [7]. Re-
cently, many generalized versions of frames have appeared, e.g. g-frames [21], modu-
lar frames [8], fusion frames [5, 6] and operator-valued frames [12, 17]. Among these,
operator-valued frames can be used in quantum communication and packets encoding
theory [1]. So operator-valued frame theory becomes attractive. In fact, designing var-
ious quantum channels is an essential issue in quantum communication theory and we
found that this issue is equivalent to the design of operator-valued frames [1, 12].

Frames with special structures are very important since most of the useful frames
in theory and in applications are of this kind, including Gabor frames and wavelet
frames [10, 13]. Motivated by Gabor analysis, one often considers group-like unitary
systems or projective unitary representation for a countable group. On the other hand,
operator-valued frames are the dual maps of quantum channels. In applications one
would require the quantum channels to have some additional structures (e.g. parame-
terized quantum channels). So it is natural to consider operator-valued frames with the
structure of group-like unitary systems. Some results about structured operator-valued
frames have appeared in [12, 17], such as the Dilation Theorem, dual frame generators
and orthogonality, etc. However in the present paper, we give a more systematic inves-
tigation and obtain more results which generalize their counterpart in classical frame
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theory [10, 13, 15]. Although most of the results of the vector-valued case can be gen-
eralized to the operator-valued case, there are some essential differences between them.
For examples, the local commutant of an operator-valued orthonormal generator is in
general not the commutant of the corresponding unitary system. The commutant of a
unitary system which admits an operator-valued frame generator may not be a finite
von Neumann algebra.

Finite frames, that is, frames in finite dimensional Hilbert spaces, play a funda-
mental role in a variety of important areas including multiple antenna coding, perfect
reconstructionfilter banks, etc.. In this paper we will consider structured finite operator-
valued frames. The main results are the characterization of Parseval operator-valued
frame generators for a unitary system generated by one or more unitary operators.

The paper is organized as follows:
In section 2 we revisit operator-valued frames and obtain some results about Par-

seval dual frames and the excess of an operator-valued frame.
In section 3 we study the operator-valued frame generators for a group-like unitary

system and describe the set of all Bessel generators.
In section 4 we study when a frame generator has a Parseval dual under the same

unitary system.
In section 5 we study operator-valued frame generators for unitary systems on

a finite dimensional Hilbert space. We show that the Parseval operator-valued frame
generators for a unitary system generated by one unitary operator are isometric up to
a constant. Then we characterize them for a unitary system generated by two or more
generators using projections.

2. (OPV)-frames

In this section we review some notions about operator-valued frames ((OPV)-
frames) and point out when an (OPV)-frame admits a Parseval dual. This problem
for the case of vector-valued frames has been considered in [13, 15] and here, although
the proofs are similar, we need to deal with some details carefully. Throughout this pa-
per the Hilbert spaces are at most countably dimensional and J is a finite or countable
index set. We use B(H,H0) to denote the set of all bounded operators from H into H0 ,
where H,H0 are Hilbert spaces.

DEFINITION 1. [17] Let H and H0 be Hilbert spaces, and let Vj ∈ B(H,H0) . If
there exist positive constants a and b such that

aI � ∑
j∈J

V ∗
j Vj � bI,

then {Vj} j∈J is called an operator-valued frame ((OPV)-frame) for H with range in H0 .
The optimal a,b are called the lower frame bound and upper frame bound respectively.
{Vj} j∈J is called Parseval if a = b = 1 and Bessel if we only require the right side
inequality.
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Throughout this paper, when we speak of an (OPV)-frame for a Hilbert space, we
always suppose its range is in H0 .

In the study of frame theory, operator theoretic methods are the main tools. Analy-
sis operators and frame operators are the most important operators in frame theory. Let
Vj ∈ B(H,H0)( j ∈ J) such that {Vj} j∈J is a Bessel (OPV)-frame for H . The analysis
operator θV for {Vj} j∈J is an operator from H to l2 ⊗H0 defined by

θV (x) = ∑
j∈J

e j ⊗Vj(x),∀x ∈ H

where {e j} j∈J is the standard orthonormal basis for l2 . One can check

θ ∗
V (e j ⊗h) = V ∗

j (h),∀ j ∈ J,h ∈ H0.

S := θ ∗
V θV = ∑

j∈J
V ∗

j Vj will be called the frame operator for {Vj} j∈J . Obviously,

when {Vj} j∈J is an (OPV)-frame, θV is bounded invertible (not necessarily onto).
If {Vj} j∈J is Parseval, then θV is isometric, i.e. θ ∗

V θV = I . We call two (OPV)-
frames {Vj} j∈J , {Wj} j∈J similar if there is an onto invertible operator T ∈ B(H) such
that Wj = VjT,∀ j ∈ J . Letting θV ,θW be their analysis operators respectively then
Range(θV ) = Range(θW ) .

DEFINITION 2. [12, 17] Let {Vj} j∈J be an (OPV)-frame for H with Vj ∈B(H,H0)
( j ∈ J) . If Range(θV ) = l2 ⊗H0 then {Vj} j∈J will be called a Riesz (OPV)-frame. A
Parseval Riesz (OPV)-frame will be called an orthonormal (OPV)-frame.

If {Vj} j∈J is an orthonormal (OPV)-frame, then θV is unitary. When {Vj} j∈J ,
{Wj} j∈J ⊆ B(H,H0) are both orthonormal (OPV)-frames, there exists a unitary opera-
tor U such that Wj = VjU,∀ j ∈ J .

DEFINITION 3. [17] Let {Vj} j∈J ⊆B(H,H0) , {Wj} j∈J ⊆B(K,H0) be two Bessel
(OPV)-frames for H,K respectively. If θ ∗

V θW = 0, we call {Vj} j∈J orthogonal to
{Wj} j∈J . If {Vj} j∈J , {Wj} j∈J ⊆B(H,H0) are Bessel (OPV)-frames satisfying θ ∗

V θW =
I , we call {Vj} j∈J dual to {Wj} j∈J .

Obviously, {VjS−1} j∈J is dual to {Vj} j∈J where S is the frame operator for
{Vj} j∈J . It is easy to observe that {Wj} j∈J is dual to {Vj} j∈J if and only if Wj =
VjS−1 +Uj, j ∈ J for some Bessel (OPV)-frame {Uj} j∈J orthogonal to {Vj} j∈J .

The following theorem is the Dilation Theorem for (OPV)-frames which has been
given in [12, 17].

THEOREM 4. (Dilation Theorem) [12, 17] Let Vj ∈ B(H,H0) such that {Vj} j∈J

is a Parseval (OPV)-frame for H . Then there exist a Hilbert space K ⊇ H and Wj :
K → H0, j ∈ J such that {Wj} j∈J is an orthonormal (OPV)-frame for K and Vj =
Wj|H , j ∈ J .

In fact, in the above theorem, we can take K = l2 ⊗H0 .
The following result is well known in the vector-valued frame case and for the

(OPV)-case it has appeared in [17]. Here we give a quite direct proof.
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PROPOSITION 5. Let {Vj} j∈J ⊆B(H,H0) be an (OPV)-frame for H . Then {Vj} j∈J

admits only one dual if and only if {Vj} j∈J is a Riesz (OPV)-frame.

Proof. Let {Vj} j∈J be a Riesz (OPV)-frame. Let Wj := VjS−1 +Tj, j ∈ J be a
dual for {Vj} j∈J where S is the frame operator for {Vj} j∈J and {Tj} j∈J is a Bessel
(OPV)-frame orthogonal to {Vj} j∈J . Since {Vj} j∈J is a Riesz (OPV)-frame, we know
θV (H) = l2⊗H0 . By θ ∗

T θV = 0, where θT is the analysis operator for {Tj} j∈J , we get
θT = 0 and thus Tj = 0, j ∈ J .

For the converse, we first consider the case of {Vj} j∈J Parseval. Assuming {Vj} j∈J

admits only one dual but that {Vj} j∈J is not a Riesz (OPV)-frame we deduce a con-
tradiction. In fact, since {Vj} j∈J is not a Riesz (OPV)-frame, Range(θV ) is a proper
subspace of l2 ⊗H0 . Then we have the orthogonal decomposition

l2⊗H0 = Range(θV )⊕M,

for a certain nonzero subspace M . By Theorem 4, we know there is an orthonormal
(OPV)-frame {Uj} j∈J for l2 ⊗H0 such that Vj = Uj|P , where P is the orthogonal
projection from l2 ⊗H0 onto Range(θV ) . {UjP⊥} j∈J can be viewed as a Parseval
(OPV)-frame for M . We show {Vj} j∈J is orthogonal to {UjP⊥} . In fact,

∑
j∈J

V ∗
j UjP

⊥

= ∑
j∈J

(UjP)∗UjP
⊥

= ∑
j∈J

PU∗
j UjP

⊥

= PP⊥ = 0.

Thus {Vj +UjP⊥} j∈J is dual to {Vj} j∈J . Therefore {Vj} j∈J admits two dual frames
{Vj} j∈J and {Vj +UjP⊥} j∈J which contradicts to the assumption.

Now suppose {Vj} j∈J is a general (OPV)-frame, let S be the frame operator

for {Vj} j∈J and then {VjS−
1
2 } j∈J is Parseval. Assuming {Tj} j∈J is orthogonal to

{VjS−
1
2 } j∈J , then ∑

j∈J
T ∗

j VjS−
1
2 = 0. Since S is onto invertible, we get ∑

j∈J
T ∗

j Vj = 0. On

the other hand, since {Vj} j∈J has only one dual, we know Tj = 0, j ∈ J . So {VjS−
1
2 } j∈J

has only one dual and thus {VjS−
1
2 } j∈J is a Riesz (OPV)-frame. Hence {Vj} j∈J is a

Riesz (OPV)-frame. �
In the following, we study when an (OPV)-frame admits Parseval dual (OPV)-

frames. The vector-valued frame case has been treated in [13, 15]. The proofs are
slightly different here.

PROPOSITION 6. Let {Vj} j∈J be an (OPV)-frame for H with range in H and
suppose there exists a {Wj} j∈J ⊆ B(H) which is a Parseval dual (OPV)-frame for
{Vj} j∈J . Then the lower frame bound of {Vj} j∈J is greater than or equal 1.
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Proof. Obviously, since {Vj} j∈J , {Wj} j∈J are (OPV)-frames, we can regard
{Vj} j∈J , {Wj} j∈J as vectors in l2⊗B(H) . We define an operator-valued inner product
on l2 ⊗B(H) by

〈X ,Y 〉 := ∑
j∈J

X∗
j Yj,

where X = {Xj} j∈J , Y = {Yj} j∈J ∈ l2⊗B(H) . Then 〈 , 〉 is a B(H)-valued inner prod-
uct and l2 ⊗B(H) becomes a inner product module equipped with this inner product
[20]. For such an operator-valued inner product, Cauchy-Schwarz inequality still holds
[20]. So we have

I = ∑
j∈J

VjW
∗
j � (∑

j∈J

V ∗
j Vj)

1
2 (∑

j∈J

W ∗
j Wj)

1
2

= (∑
j∈J

V ∗
j Vj)

1
2 .

Therefore, the lower frame bound of {Vj} j∈J is greater than or equal 1. �
The following theorem is well known in vector-valued frame theory [11].

THEOREM 7. Let Vj ∈ B(H,H0) be such that {Vj} j∈J is an (OPV)-frame with the
frame operator S > I . Then {Vj} j∈J admits a Parseval dual if and only if dim(θV (H)⊥)
� dimH where θV is the analysis operator for {Vj} j∈J .

Proof. For the necessity, we refer to [12].
For the sufficiency, we suppose {Vj} j∈J admits a Parseval dual {Wj} j∈J and let

Zj = VjS−
1
2 , j ∈ J . Then {Zj} j∈J is Parseval. By the Dilation Theorem, we know

there is an orthonormal (OPV)-frame {Uj} j∈J for H ⊕M such that Uj|H = Zj, j ∈ J
where M = θZ(H)⊥ . It follows that {Zj ⊕Uj|M} j∈J is an orthonormal (OPV)-frame
for H⊕M .

Let T : H → H ⊕M defined by T := ∑
j∈J

(Zj ⊕Uj|M)∗Wj . It is easy to see T is

isometric since {Wj} j∈J is Parseval. On the other hand,

T = ∑
j∈J

(Zj ⊕Uj|M)∗Wj

= ∑
j∈J

Z∗
jWj ⊕Uj|∗MWj

= ∑
j∈J

S−
1
2V ∗

j Wj ⊕Uj|∗MWj

= S−
1
2 ⊕ ∑

j∈J

Uj|∗MWj,

and for x ∈ H,y ∈ M ,

T ∗(x⊕ y) = ∑
j∈J

W ∗
j (Zj ⊕Uj|M)(x⊕ y)

= ∑
j∈J

W ∗
j [Zjx+Uj|My]
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= ∑
j∈J

W ∗
j VjS

− 1
2 x+ ∑

j∈J

W ∗
j Uj|My

= S−
1
2 x+ ∑

j∈J
W ∗

j Uj|My.

Therefore we get

I = T ∗T = S−1 +(∑
i∈J

W ∗
i Ui|M)(∑

j∈J
Uj|∗MWj).

We denote ∑
j∈J

Uj|∗MWj by D . Since ‖S−1‖ < 1, we know D∗D is invertible and we

infer D : H → M is injective. Hence dimH � dimM . �
In the following, we call dim(θV (H)⊥) the excess of {Vj} j∈J .

PROPOSITION 8. Let Vj ∈ B(H,H0) such that {Vj} j∈J is an (OPV)-frame for H
and let θV be its analysis operator with (θ ∗

V θV )−1 � I . If the excess of {Vj} j∈J is
infinite, then {Vj} j∈J admits a Parseval dual.

Proof. Since dim(θV (H)⊥) = ∞ � dimH , there is a subspace N ⊆ θV (H)⊥ such
that dimN = dimH . Let W : N → H be the unitary operator identifying N with H
and let P : l2 ⊗H0 → N be the orthogonal projection onto N . By the Dilation Theo-
rem, we know there is an orthonormal (OPV)-frame {Uj} j∈J for some Hilbert space
K ⊇ H such that Uj|H = Vj, j ∈ J . It is easy to check that {Uj|NW−1} j∈J is a Par-
seval (OPV)-frame for H which is orthogonal to {Vj} j∈J . Let B :=

√
I−S−1 . Then

{Uj|NW−1B} is still orthogonal to {Vj} j∈J and so {VjS−1 +Uj|NW−1B} j∈J is dual to
{Vj} j∈J . Simultaneously, {VjS−1 +Uj|NW−1B} j∈J is Parseval since

∑
j∈J

(VjS
−1 +Uj|NW−1B)∗(VjS

−1 +Uj|NW−1B)

= ∑
j∈J

S−1V ∗
j VjS

−1 + ∑
j∈J

B∗WUj|∗NUj|NW−1B

= S−1 +B∗B = I. �

3. group-like unitary systems

In this section, we consider (OPV)-frames with group-like structures. This is the
theoretical foundations for structured quantum channels.

DEFINITION 9. [10] Let U be a countable set of unitary operators acting on a
separable Hilbert space H containing the identity operator. Then U is called a unitary
system. Letting group(U ) denote the group generated by U and T := {λ ∈ C : |λ |=
1} , we call U a group-like unitary system if

group(U ) ⊆ TU := {λU : λ ∈ T,U ∈ U }
and U is linearly independent in the sense that TU �= TV whenever U and V are
different elements of U .
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If U is a group-like unitary system, then there exist a function f : group(U )→T

and a mapping σ : group(U )→U such that W = f (W )σ(W ) for all W ∈ group(U ) .
For a unitary system U , A ∈ B(H,H0) is called a frame generator (respectively a

Parseval frame generator or a Bessel generator) for U if {AU}U∈U is an (OPV)-frame
(respectively a Parseval (OPV)-frame or a Bessel (OPV)-frame) for H . If {AU}U∈U

is an orthonormal (OPV)-frame (respectively a Riesz (OPV)-frame) A will be called an
orthonormal generator (respectively a Riesz generator).

PROPOSITION 10. [10] Let U , f and σ be as the above.
(i) f (Uσ(VW )) f (VW ) = f (σ(UV )W ) f (UV ) , U,V,W ∈ group(U );
(ii) σ(Uσ(VW )) = σ(σ(UV )W ),U,V,W ∈ group(U );
(iii) σ(U) = U and f (U) = 1,∀U ∈ U ;
(iv) ∀V,W ∈ group(U ) , we have

U = {σ(UV) : U ∈ U } = {σ(VU−1) : U ∈ U }
= {σ(VU−1W ) : U ∈ U } = {σ(V−1U) : U ∈ U }.

A unitary representation π of a group-like unitary system U is a one-to-one
mapping from U into the set of all unitary operators on some Hilbert space K such
that

π(U)π(V) = f (UV )π(σ(UV)), π(U)−1 = f (U−1)π(σ(U−1)),

where f and σ are the corresponding mappings associated with U . If π(U ) admits
a frame generator, then π will be called an (OPV)-frame representation.

Note that π(U ) := {π(U) :U ∈U } is also a group-like unitary system. Let eU be
the element in l2(U ) which takes value 1 at U and zero everywhere else. Then {eU :
U ∈U } is the standard orthonormal basis for l2(U ) . For each fixed U ∈U , we define
LU ,RU ∈ B(l2(U )) by LUeV = f (UV )eσ(UV ) and RUeV = f (VU−1)eσ(VU−1),∀V ∈
U . We also introduce unitary representations L̃ and R̃ for U on l2(U )⊗H0 by
L̃U := LU ⊗ I0 and R̃V := RV ⊗ I0 , where I0 is the identity on H0 . In the following, let
L̃U := {L̃U : U ∈ U } and R̃U := {R̃U : U ∈ U } .

The following proposition has appeared in [17]. However here we give a more
explicit proof.

PROPOSITION 11. [17] {L̃U}U∈U and {R̃V}V∈U admit orthonormal generators.

Proof. For any V ∈ U , let PV : l2(U )⊗H0 → H0 defined by

PV (eW ⊗h) =

{
h, V = W

0 V �= W
,∀W ∈ U ,

where {eW}W∈U is the standard orthonormal basis for l2(U ) . We show PV is an
orthonormal generator for both L̃U and R̃U .
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First, we show PV is a Parseval frame generator for L̃U . For any W ∈ U ,h ∈ H0 ,
we have

∑
U∈U

(PV L̃U )∗(PV L̃U)(eW ⊗h)

= ∑
U∈U

L̃U
∗
P∗
VPV L̃U (eW ⊗h)

= L̃U
∗
P∗
V f (UW )h(where V = σ(UW ))

= f (UW )L̃U
∗
(eV ⊗h)

= f (UW ) f (U−1)L̃σ(U−1)(eV ⊗h)
= eW ⊗h.

It is easy to check (PV L̃U )(PV L̃W )∗ = δUW I0 and thus {PV L̃U}U∈U is an orthonor-
mal (OPV)-frame.

For the case of R̃U , we can prove it similarly. �

For A∈ B(H) , we denote the set {T ∈ B(H) : ATU = AUT,∀U ∈U } by CA(U ) .
Obviously U ′ ⊆ CA(U ) where U ′ is the commutant of U . In the following ( ·)′
always denotes the commutant of a set in B(H) .

PROPOSITION 12. Let U be a unitary system on H and let A ∈ B(H) satisfy
Range(A∗) = H . Then CA(U ) = U ′ .

Proof. We only need to show CA(U ) ⊆ U ′ . For any T ∈ CA(U ) , we have
ATU = AUT,∀U ∈ U , i.e.

U∗T ∗A∗ = T ∗U∗A∗.

For all W ∈ U and y ∈ H , we get A∗x = y for some x ∈ H and

W ∗T ∗(y) = W ∗T ∗A∗(x) = T ∗W ∗A∗(x) = T ∗W ∗y.

Thus W ∗T ∗ = T ∗W ∗ , i.e. TW = WT , that is, T ∈ U ′ . �

Obviously, CA(U ) is an analogue of the local commutant in vector-valued frame
theory [11]. In that case, the local commutant at a wandering vector is just the com-
mutant U ′ . However, in the (OPV)-case, CA(U ) is in general not equal to U ′ , even
if A is an orthonormal generator. On the other hand, supposing U admits an (OPV)-
frame generator A , U ′ is in general not a finite von Neumann algebra unless A is of
finite rank. These lead to more complicated proofs in the (OPV)-case than those in the
vector-valued case.

PROPOSITION 13. Let U be a group-like unitary system on H and let W1 ∈
B(H,H0) be an orthonormal generator for U . Then W2 ∈ B(H,H0) is an orthonormal
generator for U if and only if there is a unitary operator T ∈U ′ such that W2 =W1T .
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Proof. Suppose W2 ∈ B(H,H0) is an orthonormal generator for U . Let θW1 ,θW2

be the analysis operators for {W1U}U∈U ,{W2U}U∈U respectively. Then

Range(θW1) = Range(θW2) = l2(U )⊗H0

and there exists an onto bounded invertible T such that W2U = W1UT , ∀U ∈ U .
Observing θW1 ,θW2 are isometric, we know T is unitary. Choosing U = I , we get
W2 = W1T and so W1TU = W1UT . Now we show T ∈ U ′ . For any U,V ∈ U ,

W1VUT = f (VU)W1σ(VU)T = f (VU)W1Tσ(VU) = W1TVU = W1VTU.

and thus

∑
V∈U

V ∗W ∗
1 W1VUT = ∑

V∈U

V ∗W ∗
1 W1VTU.

It follows UT = TU , that is T ∈ U ′ .
The converse is obvious. �

PROPOSITION 14. Let U be a group-like unitary system on H . π1,π2 are uni-
tary representations of U which admit orthonormal generators in B(H,H0) . Then
π1,π2 are unitarily equivalent.

Proof. Let A1,A2 ∈ B(H,H0) be the orthonormal generators for π1(U ),π2(U )
respectively. Then there exists a unitary operator T such that

A2π2(U) = A1π1(U)T,∀U ∈ U .

Taking any V ∈ U , we have

A1π1(V )π1(U)T
= A1 f (VU)π1(σ(VU))T
= f (VU)A2π2(σ(VU))
= A2π2(V )π2(U)
= A1π1(V )Tπ2(U).

So π1(U)T = Tπ2(U),∀U ∈ U . �

PROPOSITION 15. Let U be a group-like unitary system on H which admits a
Bessel generator B. Then for any U ∈ U , L̃uθB = θBU∗ , where θB,θBU∗ are the
analysis operators for BU ,BU∗U respectively.

Proof. Let x ∈ H . Then

L̃UθB(x) = L̃U( ∑
V∈U

eV ⊗BV(x))

= ∑
V∈U

f (UV )eσ(UV )⊗BV(x).
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Letting σ(UV ) = V ′ , one gets V = f (UV )U∗V ′ . Then

L̃UθB(x) = ∑
V∈U

f (UV )eV ′ ⊗ f (UV)BU∗V ′(x)

= ∑
V ′∈U

eV ′ ⊗BU∗V ′(x)

= θBU∗ �

LEMMA 16. [17] Let A be a frame generator for U and let SA be the frame
operator for {AU}U∈U . Then SA ∈ U ′ .

The following theorem tells us that any (OPV)-frame representation can be viewed
as a sub-representation of R̃ .

THEOREM 17. Let U be a group-like unitary system on H which admits frame
generators. Then there is a unitary operator W such that

WV = R̃V |PW, ∀V ∈ U ,

where P is an orthogonal projection from l2(U ) onto a certain subspace isomorphic
to H .

Proof. Let A be a frame generator for U . By Lemma 16, we know that

{AS
− 1

2
A U}U∈U = {AUS

− 1
2

A }U∈U is a Parseval (OPV)-frame. Let θ be a mapping from

H to l2(U )⊗H defined by θ (x) = ∑
U∈U

eU ⊗AS
− 1

2
A Ux . Then θ is isometric and

θV (x) = ∑
U∈U

eU ⊗AS
− 1

2
A UVx.

On the other hand,

R̃V θ (x) = R̃V ( ∑
U∈U

eU ⊗AUS
− 1

2
A x)

= ∑
U∈U

f (UV−1)eσ(UV−1)⊗AUS
− 1

2
A x

= ∑
U ′∈U

eU ′ ⊗AS
− 1

2
A U ′Vx(letting U ′ = σ(UV−1)).

So we get θV (x) = R̃V θ (x) .
Let W be a mapping from H onto θ (H) satisfying W (x) = θ (x),∀x ∈ H . Then

W is unitary and WVW ∗ = R̃V |P where P is the orthogonal projection from l2(U )⊗H
onto θ (H) . �
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THEOREM 18. (Dilation Theorem for unitary system)[12] Let U be a unitary
system on H . Let π be a unitary representation of U on H and A be a Parseval
frame generator for π(U ) . Then there exist a unitary representation σ of U on a
Hilbert space K and an orthonormal generator B for σ(U ) such that

(i) K ⊇ H ;
(ii) H is invariant under σ and π = σ |H ;
(iii) A = B|H

In fact we can choose K = l2(U )⊗H , σ = R̃ .

PROPOSITION 19. Let U be a group-like unitary system on H . Let π be a uni-
tary representation of U on H and A be a Bessel generator for π(U ) . Then

(1) for any V ∈ U , Aπ(V) is a Bessel generator for π(U );
(2) for any T ∈ π(U )′ , AT is a Bessel generator for π(U ) .

Proof. (1) Let V ∈ U . The result follows from

∑
U∈U

[Aπ(V )π(U)]∗[Aπ(V)π(U)]

= ∑
U∈U

π(U)∗π(V)∗A∗Aπ(V)π(U)

= ∑
U∈U

[π(V )π(U)]∗A∗Aπ(V)π(U)

= ∑
U∈U

[ f (VU)π(σ(VU))]∗A∗A[ f (VU)π(σ(VU))]

= ∑
U∈U

π(σ(VU))∗A∗Aπ(σ(VU))

= ∑
U ′∈U

π(U ′)∗A∗Aπ(U ′)

� bI

where b is the upper frame bound of {Aπ(U)}U∈U .
(2) is proved similarly. �

In the following, we denote the set of all Bessel generators for π(U ) by Bπ .

THEOREM 20. Let U be a group-like unitary system on H . Let π be a unitary
representation of U . Then π is an (OPV)-frame representation if and only if

π(U )′ = {θ ∗
AθB : A,B ∈ Bπ},

where θA,θB are the analysis operators for Aπ(U ),Bπ(U ) respectively.
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Proof. Suppose π is an (OPV)-frame representation. We show θ ∗
AθB ∈ π(U )′ for

any Bessel generators A,B . In fact, for arbitrary π(V) ∈ π(U ) and x ∈ H , we have

θ ∗
AθBπ(V )x

= θ ∗
A [ ∑

U∈U

eU ⊗Bπ(U)π(V)x]

= ∑
U∈U

θ ∗
A [eU ⊗Bπ(U)π(V)x]

= ∑
U∈U

(Aπ(U))∗(Bπ(U)π(V)x)

= ∑
U∈U

π(U)∗A∗Bπ(U)π(V)x

= ∑
U∈U

π(U)∗A∗B f (UV )π(σ(UV ))x

= ∑
U∈U

f (U−1)π(σ(U−1))A∗B f (UV )π(σ(UV))x

= ∑
U∈U

f (U−1)π(σ( f (UV )−1VU ′∗))A∗B f (UV )π(U ′)x (letting σ(UV ) = U ′)

= ∑
U∈U

f (U−1)π(σ(VU ′∗))A∗B f (UV )π(U ′)x

= ∑
U∈U

f (U−1) f (VU ′∗)−1π(V)π(U ′∗)A∗B f (UV )π(U ′)x

= ∑
U∈U

f (U−1) f (VU ′∗)−1 f (UV )π(V )π(U ′)∗A∗Bπ(U ′)x

= ∑
U ′∈U

π(V )π(U ′)∗A∗Bπ(U ′)x

= π(V )θ ∗
AθBx.

So {θ ∗
AθB : A,B ∈ Bπ} ⊆ π(U )′ .

On the other hand, let T ∈ π(U )′ . Since π is an (OPV)-frame representation, we
know there is a Parseval frame generator S for π(U ) . It is easy to see ST∗ is a Bessel
generator. We have

θ ∗
ST ∗θS(x)

= θ ∗
ST ∗( ∑

U∈U

eU ⊗Sπ(U)x)

= ∑
U∈U

θ ∗
ST ∗(eU ⊗Sπ(U)x)

= ∑
U∈U

[ST ∗π(U)]∗[Sπ(U)x]

= ∑
U∈U

π(U)∗TS∗Sπ(U)x

= T ( ∑
U∈U

π(U)∗S∗Sπ(U)x)

= Tx.
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So π(U )′ ⊆ {θ ∗
AθB : A,B ∈ Bπ} .

Thus π(U )′ = {θ ∗
AθB : A,B ∈ Bπ} .

For the sufficiency, since I ∈ π(U )′ and I = θ ∗
AθB for some Bessel generators

A,B , we have for any x ∈ H :

x = θ ∗
AθB(x)

= θ ∗
A( ∑

U∈U

eU ⊗Bπ(U)x)

= ∑
U∈U

θ ∗
A(eU ⊗Bπ(U)x)

= ∑
U∈U

(Aπ(U))∗(Bπ(U)x)

= ∑
U∈U

π(U)∗A∗Bπ(U)x.

From this, one knows A∗B is a frame generator for π(U ) and thus π is an (OPV)-
frame representation. �

PROPOSITION 21. Let U be a group-like unitary system on H and let π be a
unitary representation of U . Then

span{θ ∗
AθB : A,B ∈ Bπ}

is a two-sided ideal in π(U )′ , where θA , θB are the analysis operators for Aπ(U ) ,
Bπ(U ) respectively.

Proof. By the proof of Theorem 20, θ ∗
AθB ∈ π(U )′ for any Bessel generators A,B

and thus
span{θ ∗

AθB : A,B ∈ Bπ} ⊆ π(U )′.

For arbitrary T ∈ π(U )′ , we have

Tθ ∗
AθB(x)

= Tθ ∗
A( ∑

U∈U

eU ⊗Bπ(U)x)

= T ∑
U∈U

θ ∗
A(eU ⊗Bπ(U)x)

= T ∑
U∈U

(Aπ(U))∗(Bπ(U)x)

= T ∑
U∈U

π(U)∗A∗Bπ(U)x

= ∑
U∈U

π(U)∗TA∗Bπ(U)x

= ∑
U∈U

π(U)∗(AT ∗)∗Bπ(U)x

= θAT ∗θBx.
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Since AT ∗ is a Bessel generator, we know span{θ ∗
AθB : A,B ∈ Bπ} is a left ideal in

π(U )′ . Similarly, we can prove that span{θ ∗
AθB : A,B ∈ Bπ} is also a right ideal in

π(U )′ . �

COROLLARY 22. Let U be a group-like unitary system on H . Assume that

πi, i = 1,2, · · · ,n are (OPV)-frame representations of U and π :=
n⊕

i=1
πi . Then

π(U )′ = {θ ∗
A1

θB1 + · · ·+ θ ∗
An

θBn : Ai,Bi ∈ Bπi}.

Proof. π(U )′ ⊇ {θ ∗
A1

θB1 + · · ·+ θ ∗
An

θBn : Ai,Bi ∈ Bπi} is obvious.
Conversely, let Ai be a Parseval frame generator for πi(U ) , i = 1,2, · · · ,n . Then

for any T ∈ π(U )′ ,

θ ∗
A1

θA1 + θ ∗
A2

θA2 + · · ·+ θ ∗
An

θAn = IH1⊕···⊕Hn ,

and thus

T = T (θ ∗
A1

θA1 + θ ∗
A2

θA2 + · · ·+ θ ∗
An

θAn)
= θ ∗

A1T ∗θA1 + · · ·+ θ ∗
AnT ∗θAn

and we get the result. �

4. Dual frame generators

We know a ”structured” frame AU , in most cases, admits Parseval dual (OPV)-
frames. However the dual frames may not preserve the structure. In this section we
mainly study when a frame generators admits a Parseval dual generator, that is, the dual
frame is Parseval and preserves the same structure.

THEOREM 23. Let U be a group-like unitary system on H with f : U → R, σ :
group(U ) → U satisfying W = f (W )σ(W ), ∀W ∈ group(U ) . Suppose there exists
U0 ∈ U such that σ(Uk

0 ) �= I,∀k ∈ N . Let π be a unitary representation of U on H .
If {Aπ(U)}U∈U is an (OPV)-frame, then its excess is infinite.

Proof. Define θA : H → l2(U )⊗H by θA(x) = ∑
V∈U

eV ⊗AV(x) for any x ∈ H .

We show that θA(H) is invariant under R̃U ,U ∈ U . In fact,

R̃UθA = R̃U( ∑
V∈U

eV ⊗AV)

= ∑
V∈U

R̃U(eV ⊗AV)

= ∑
V∈U

f (VU−1)eσ(VU−1) ⊗AV
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= ∑
V∈U

eσ(VU−1)⊗ f (VU−1)AV

= ∑
V∈U

eV ⊗AVU.

At the same time θA(H)⊥ is invariant under π(U) . Since σ(Uk
0 ) �= I for all k ∈ N , we

see that R̃U0 has no eigenvalues. Thus dimM = ∞ , since otherwise the restriction of
π(U0) to M would have an eigenvalue. �

In the following, denote by M the von Neumann algebra generated by {R̃U}u∈U .

LEMMA 24. Let U be a group-like unitary system and let π be a unitary repre-
sentation for U which admits a Parseval frame generator A. Denote the orthogonal
projection from l2(U )⊗H onto θA(H) by PA , where θA is the analysis operator for
Aπ(U ) . Then PA ∈ M ′ .

Proof. Since A is a Parseval frame generator, we have θ ∗
AθA = I and θAθ ∗

A = PA .
For any eW ⊗h ∈ l2(U )⊗H , we have

R̃UPA(eW ⊗h)

= R̃UθAθ ∗
A(eW ⊗h)

= R̃UθA[(Aπ(W))∗(h)]

= R̃U [ ∑
V∈U

eV ⊗Aπ(V)π(W )∗A∗h]

= ∑
V∈U

f (VU−1)eσ(VU−1)⊗Aπ(V)π(W )∗A∗h

= ∑
V∈U

f (VU−1) f (Vσ(W−1))eσ(VU−1) ⊗Aπ(σ(VW−1))A∗h

= ∑
V∈U

f (VU−1) f (Vσ(W−1))eV ′ ⊗Aπ(σ(V ′UW−1))A∗h (letting V ′ = σ(VU−1))

= ∑
V ′∈U

f (V ′Uσ(W−1))eV ′ ⊗Aπ(σ(V ′UW−1))A∗h

= ∑
V ′∈U

f (V ′UW−1)eV ′ ⊗Aπ(σ(V ′UW−1))A∗h.

On the other hand

PAR̃U(eW ⊗h) = θAθ ∗
A [ f (WU−1)eσ(WU−1) ⊗h]

= f (WU−1)θAθ ∗
A(eσ(WU−1)⊗h)

= f (WU−1)θA[π(σ(WU−1))∗A∗h]
= f (WU−1) ∑

V∈U

eV ⊗Aπ(V)π(σ(WU−1))∗A∗h
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= ∑
V∈U

f (WU−1) f (V σ(WU−1)−1)eV ⊗Aπ(σ(Vσ(WU−1)−1)A∗h

= ∑
V∈U

f (WU−1) f (V σ(WU−1)−1)eV ⊗Aπ(σ(VUW−1))A∗h

= ∑
V∈U

f (VUW−1)eV ⊗Aπ(σ(VUW−1))A∗h. �

THEOREM 25. Let U be a group-like unitary system which admits a Parseval
frame generator B. Denote the set of all Bessel generators for U by BU . Then
BU = {BA : A ∈ w∗(U )} , where w∗(U ) is the von Neumann algebra generated by
U .

Proof. Let θB be the analysis operator for {BU}U∈U and let P be the orthogonal
projection from l2(U )⊗H onto θB(H) . Then by Theorem 17, we have {R̃U |P : U ∈
U }≈U . Letting WI : l2(U )⊗H →HI := span{eI}⊗H be the orthogonal projection,
we infer WI is an orthonormal generator for R̃U . Without loss of generality, we let
B = WI |P , where P is the orthogonal projection from l2(U )⊗H onto θB(H) . Then
P ∈ M ′ . For any A ∈ w∗(U ) , we have A = PTP for some T ∈ M and so BA =
WI|PPTP = WI|PTP . Following we show that BA is a Bessel generator. In fact,

∑
U∈U

(BAR̃U |P)∗(BAR̃U |P)

= ∑
U∈U

R̃U |∗PA∗B∗BAR̃U |P

= ∑
U∈U

R̃U |∗P(WI |PTP)∗WI|PTPR̃U |P

= ∑
U∈U

R̃U |∗PPT ∗WI |PTPR̃U |P

= PT ∗TP

� ‖T‖2I

Conversely, let V ∈ BU . Then {VU}U∈U is a Bessel (OPV)-frame. We can view
{VU}U∈U as an (OPV)-frame for H1 := Range(θ ∗

V ) . Without loss of generality, we
may suppose {VU}U∈U is Parseval. Then there are a Hilbert space K and a group-like
unitary system W on K , such that W |H1 = U . Let PH1 be the orthogonal projection
from K onto H1 . By Theorem 18, we know there are two orthonormal generators
W1,W2 such that V =W1|H1 ,B =W2|H1 . There is a unitary operator T such that W1W =
W2W T and thus W1 = W2T . It follows that

V = W1|H1 = W2T |H1 = W2TPH1

= W2PH1T |H1

= W2PH1PH1T |H1

= BPH1T |H1PH1 .

Since PH1T |H1PH1 ∈ w∗(U ) , we get the desired result. �
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THEOREM 26. Let U be a group-like unitary system on H and π be a unitary
representation of U . Let A be a Parseval generator for π(U ) and PA be the orthog-
onal projection from l2(U )⊗H onto θA(H) . Then the following are equivalent:

(1) For any Parseval frame generator B ∈ B(H) for π(U ) , there is a unitary
operator V ∈ π(U )′ such that B = AV ;

(2) A admits an unique dual (OPV)-frame generator;
(3) PA ∈ M

⋂
M ′ .

Proof. (1) ⇒ (2) . Suppose A1 ∈ B(H) is a dual frame generator to A . Then

∑
U∈U

π(U)∗A∗
1Aπ(U) = I.

Since A1S
− 1

2
1 is a Parseval frame generator for π(U ) , there exists a unitary operator

V ∈ π(U )′ , such that A1S
− 1

2
1 = AV , where S1 is the frame operator for A1π(U ) . Thus

∑
U∈U

π(U)∗S−
1
2

1 A∗
1Aπ(U) = ∑

U∈U

π(U)∗V ∗A∗Aπ(U) = V ∗.

On the other hand,

∑
U∈U

π(U)∗S−
1
2

1 A∗
1Aπ(U) = S

− 1
2

1 .

So we get V ∗ = S
− 1

2
1 . Observing that V is unitary and S1 is positive, we know V =

S1 = I . Hence A admits only one dual frame generator, itself.
(2) ⇒ (3) . Assuming PA is not in M , then there is a unitary operator V ∈ M ′

such that VPA �= PAV , that is, H is not an invariant subspace for V . It is easy to see
that (I−PA)V |H �= 0 and

∑
U∈U

π(U)∗V ∗(I−PA)Aπ(U) = 0,

that is, (I −PA)V |Hπ(U ) is orthogonal to Aπ(U ) and so A+(I −PA)V |H is a dual
frame generator for A which contradicts (2) .

(3)⇒ (1) . By the Dilation Theorem, there are W1,W2 ∈ B(l2(U )⊗H) which are
orthonormal generators for σ1(U ),σ2(U ) respectively, where σ1,σ2 are two unitary
representation for U which are equivalent to R̃ . Then there exists a unitary operator
V ∈ M ′ such that W2 = W1V . Since W1V = APA,W2 = BPB and PA ∈ M , we have
AVPA = BPB and so AV |H = B . We infer V |H is unitary on H from PA ∈ M . �

LEMMA 27. Let U be a group-like unitary system on H . Let π be a unitary rep-

resentation of U and Q ∈ R̃U
′
be an orthogonal projection. Suppose {Aπ(U)}U∈U

is an (OPV)-frame and P : l2(U )⊗H → θA(H) is an orthogonal projection. Then the
following are equivalent

(1) Q ∼ P in R̃U
′
;

(2) there exists a Parseval frame generator B such that Q is the orthogonal pro-
jection from l2(U ) onto θB(H) .
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Proof. Since θA(H) = θ
AS−

1
2
(H) , we may suppose A is a Parseval frame genera-

tor for π(U ) .
(1) ⇒ (2) . Without loss of generality, we assume π = R̃|P , H = P(l2(U )⊗H) .

Then there exists W ∈ B(l2(U )⊗H) such that A = W |H . Since Q ∼ P , there exist

V ∈ R̃U
′
such that V ∗V = P , VV ∗ = Q and a unitary operator U : H → Range(Q) in

R′
U . Letting B = W |HU−1V |H , we have

∑
U∈U

(BRU |P)∗(BRU |P) = ∑
U∈U

(RU |P)∗B∗BRU |P

= ∑
U∈U

(RU |P)∗(V |H)∗U(W |H)∗W |HU−1V |HRU |P

= (V |H)∗V |H = P.

Thus B is a Parseval frame generator for π(U ) .
Therefore for any x ∈ H ,

θB(x) = ∑
U∈U

eU ⊗Bπ(U)(x)

= ∑
U∈U

eU ⊗W |HU−1V |Hπ(U)(x)

= ∑
U∈U

eU ⊗W |Hπ(U)U−1V |H(x)

= U−1V |H ,

so θB(H) = U−1V (H) = Q(l2(U )⊗H) .
(2) ⇒ (1) . By the decomposition l2(U ⊗H) = H ⊕H⊥ , we can define a partial

isometry V on l2(U ⊗H) such that V |H = θB and V (H⊥) = 0. Then VV ∗ = Q ,

V ∗V = P and it is easy to see V ∈ R̃′
U . �

A unitary representation π is said to have frame multiplicity n if n is the supre-
mum of all natural numbers k with the property that there are frame generators Ai ,
i = 1,2, · · · ,k such that {Aiπ(U )}k

i=1 are mutual orthogonal.

LEMMA 28. Let U be a group-like unitary system and let π be a unitary repre-
sentation of U with frame multiplicity greater than or equal 2. Then for any (OPV)-
frame {Aπ(U)}U∈U , there exists a Parseval (OPV)-frame {Bπ(U)}U∈U which is or-
thogonal to {Aπ(U)}U∈U .

Proof. Since the frame multiplicity is greater than or equal 2, there exist X ,Y ∈
B(H) such that Xπ(U ) , Yπ(U ) are orthogonal Parseval (OPV)-frames. Let P,Q be
the orthogonal projections from l2(U )⊗H onto θX (H) , θY (H) respectively. Obvi-
ously, Range(P)⊥ Range(Q) and by Lemma 27, P ∼ Q .

Let Aπ(U ) be an (OPV)-frame and let R be the orthogonal projection from
l2(U )⊗H onto θA(H) . Then R ∼ P ∼ Q in M ′ and thus R⊥ ∼ P⊥ . Since Q is
a sub-projection of P⊥ , there is a sub-projection D of R⊥ such that D ∼ Q ∈ M ′ .
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Using Lemma 27 again, there is a Parseval (OPV)-frame Bπ(U ) such that D is the
orthogonal projection from l2(U )⊗H onto θB(H) . Since Range(D)⊥ Range(R) , we
get that Aπ(U ) is orthogonal to Bπ(U ) . �

THEOREM 29. Let U be a group-like unitary system on H and let π be a unitary
representation of U . Then the following are equivalent

(1) π has frame multiplicity greater than or equal 2;
(2) any (OPV)-frame Aπ(U ) with lower frame bound greater than or equal 1

admits a Parseval dual Bπ(U ) .

Proof. (1) ⇒ (2) . Suppose π has frame multiplicity greater than or equal 2
and Aπ(U ) is an (OPV)-frame with lower frame bound greater than or equal 1. Let
S = θ ∗

AθA be the frame operator and ‖S−1‖ � 1. Thus I − S−1 is positive and T =√
I−S−1 ∈ π(U )′ . By Lemma 28, there exists a Parsveal (OPV)-frame Bπ(U ) or-

thogonal to AS−1π(U ) . Then θ ∗
BθB = I , θ ∗

AS−1 = θ ∗
AθB = 0.

Let C = AS−1 +BT . Since T is onto invertible in π(U )′ and θ ∗
AθB = 0, we get

θAθ ∗
BT = 0. Thus Cπ(U ) is dual to Aπ(U ) . We claim that Cπ(U ) is Parseval. In

fact,

∑
U∈U

(Cπ(U))∗(Cπ(U))

= ∑
U∈U

[AS−1π(U)+BTπ(U)]∗[AS−1π(U )+BTπ(U)]

= ∑
U∈U

π(U)∗S−1A∗AS−1π(U)+ π(U)∗S−1A∗BTπ(U)

+π(U)∗TB∗AS−1π(U)+ π(U)∗T ∗B∗BTπ(U)
= S−1 +0+0+T2 = I.

The desired result follows.
(2) ⇒ (1) . Choosing an (OPV)-frame Aπ(U ) with frame operator S satisfying

‖S−1‖ < 1, then Aπ(U ) admits a Parseval dual Bπ(U ) . Let C = B−AS−1 . Then

∑
U∈U

[Cπ(U)]∗[Aπ(U)]

= ∑
U∈U

[π(U)∗B∗ −π(U)∗S−1A∗][Aπ(U)]

= ∑
U∈U

π(U)∗B∗Aπ(U)−π(U)∗S−1A∗Aπ(U)

= I− I = 0

On the other hand,

∑
U∈U

[Cπ(U)]∗[Cπ(U)]

= ∑
U∈U

[(B−AS−1)π(U)]∗[(B−AS−1)π(U)]
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= ∑
U∈U

[π(U)∗(B∗ −S−1A∗)][Bπ(U)−AS−1π(U)]

= ∑
U∈U

[π(U)∗B∗ −π(U)∗S−1A∗][Bπ(U)−AS−1π(U)]

= ∑
U∈U

π(U)∗B∗Bπ(U)−π(U)∗B∗AS−1π(U)

−π(U)∗S−1A∗Bπ(U)+ π(U)∗S−1A∗AS−1π(U)
= I−0−0+S−1.

Since I +S−1 is onto invertible, we know C is an (OPV)-frame generator for π(U ) .
�

5. Unitary systems on finite dimensional Hilbert spaces

Finite frame theory has developed almost as a separate theory in itself. This the-
ory has applications on several areas including multiple antenna coding, perfect recon-
struction filter banks, and quantum theory. It is also useful to consider structured finite
frames when one wants to get a parameterized frame. In this section we want to de-
scribe the (OPV)-frame generators for the unitary systems generated by one or more
unitary operators which acting on a finite dimensional Hilbert space H .

Since the dimension of H is finite, we identify H with Cn . We often fix an or-
thonormal basis and regard vectors as columns and operators as matrices. Let {Vj}m

j=1
be a finite (OPV)-frame for H , that is, {Vj}m

j=1 is an (OPV)-frame with dim(H) < ∞ ,
dim(H0) < ∞ .

For Vj : H → H0 , j = 1,2, · · · ,m , we write the analysis operator for {Vj}m
j=1 as

θV =

⎛⎜⎜⎜⎝
V1

V2
...

Vm

⎞⎟⎟⎟⎠ .

Obviously, {Vj}m
j=1 is an (OPV)-frame if and only if θV has full column rank. For a

general {Vj}m
j=1 ⊆ B(H,H0) , supposing the column rank of θV is k � n , then {Vj}m

j=1
is an (OPV)-frame for some subspace of H with dimension k . This subspace will be
called the spanning subspace for {Vj}m

j=1 .

Let U be a unitary operator on H . Then U = {Uk}m−1
k=0 is a unitary system. We

will describe the (OPV)-frame generators for U .

THEOREM 30. Let U ∈ B(H) be unitary. Suppose Um has pairwise distinct
eigenvalues and {AUk}m−1

k=1 is a Parseval (OPV)-frame. Then 1√
mA is an isometry.

Proof. Since {AUk}m−1
k=0 is Parseval, we have

I =
m−1

∑
k=0

(AUk)∗(AUk) =
m−1

∑
k=0

(Uk)∗A∗AUk.
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So,

U =
m−1

∑
k=0

(U∗)k−1A∗AUk

=
m−1

∑
k=0

(U∗)k−1A∗AUk−1U

=
m−2

∑
k=−1

(U∗)kA∗AUk)U

It follows that
m−2
∑

k=−1
(U∗)kA∗AUk = I and hence

m−1

∑
k=0

(U∗)kA∗AUk =
m−2

∑
k=−1

(U∗)kA∗AUk.

We get UA∗AU−1 = (U∗)m−1A∗AUm−1 , therefore

A∗A = (U∗)mA∗AUm. (1)

Since A∗A is self-adjoint, there exists a unitary matrix V such that

A∗A = V ∗diag(a1,a2, · · · ,an)V. (2)

From this and (1), we get

V ∗diag(a1,a2, · · · ,an)V = (U∗)mV ∗diag(a1,a2, · · · ,an)VUm,

i.e.
diag(a1,a2, · · · ,an) = W ∗diag(a1,a2, · · · ,an)W (3)

where W = VUmV ∗ := (wi j)n
i, j=1 . So, for any i �= j , we get (ai − a j)wi j = 0, i.e.

ai = a j or wi j = 0.

Case 1. There exist i, j with i �= j satisfying ai = a j .
From (3) we have ai = a j , for any i �= j ∈ {1,2, · · · ,n} and thus from (2), A∗A =

aI , for some a � 0.
Since {AUk}m−1

k=0 is Parseval, we have

m−1

∑
k=0

(Uk)∗A∗AUk = I,

and thus a =
1
m

. Hence A∗A =
1
m

I , that is
1√
m

A is isometric.

Case 2. For any i �= j , ai �= a j .
In this case, wi j = 0,∀i �= j and W = diag(w11,w22, · · · ,wnn) .
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So Um = V ∗diag(w11,w22, · · · ,wnn)V i.e.

(VUV ∗)m = diag(w11,w22, · · · ,wnn)

Since Um has pairwise distinct eigenvalues, from matrix theory (see for instance [14,
p. 60] or [9, p. 232]), we have

VUV ∗ = T ∗diag(w
1
m
11,w

1
m
22, · · · ,w

1
m
nn)T (4)

for some unitary matrix T with Tdiag(w11,w22, · · · ,wnn) = diag(w11,w22, · · · ,wnn)T .
From [19, Proposition 1], we know T is a polynomials in diag(w11,w22, · · · ,wnn) .

Thus T commutes with diag(w
1
m
11,w

1
m
22, · · · ,w

1
m
nn) and

U = V ∗diag(w
1
m
11,w

1
m
22, · · · ,w

1
m
nn)V.

Again since {AUk}m−1
k=0 is Parseval, we have

I =
m−1

∑
k=0

U∗kA∗AUk

=
m−1

∑
k=0

U∗kV ∗diag(a1,a2, · · · ,an)VUk

=
m−1

∑
k=0

V ∗diag(w
k
m
11,w

k
m
22 · · · ,w

k
m
nn)

VV ∗diag(a1,a2, · · · ,an)VV ∗diag(w
k
m
11,w

k
m
22, · · · ,w

k
m
nn)V

=
m−1

∑
k=0

V ∗diag(w
k
m
11,w

k
m
22 · · · ,w

k
m
nn)diag(a1,a2, · · · ,an)diag(w

k
m
11,w

k
m
22, · · · ,w

k
m
nn)V

=
m−1

∑
k=0

V ∗diag(a1,a2, · · · ,an)V = mA∗A

Thus
1√
m

A is isometric. �

The following proposition can be inferred quickly.

PROPOSITION 31. Let U be a unitary operator on H and let A be a Parseval
frame generator for {V i}m−1

i=0 . Then for any l ∈ N , A is a Parseval frame generator for

the unitary system {V iUk}m−1,l−1
i=0,k=0 .

COROLLARY 32. Let A be a Parseval frame generator for {V iUk}m−1,l−1
i=0,k=0 . Then

for any M ∈ N , A is a Parseval frame generator for {ViUk+M}m−1,l−1
i=0,k=0 .



OPERATOR-VALUED FRAME GENERATORS FOR GROUP-LIKE UNITARY SYSTEMS 463

THEOREM 33. Let A ∈ B(H,H0) and let U,V ∈ B(H) be unitary. Suppose
{AV j}l−1

j=1 is a Parseval (OPV)-frame for its spanning subspace HA , P is the orthogonal

projection from H onto HA and Pi is the orthogonal projection from H onto U−iHA ,
i = 0,1, · · · ,m−1 . Then {AV jUi}m−1,l−1

i=0, j=0 is a Parseval (OPV)-frame for H if and only

if
m−1
∑
i=0

Pi = I .

Proof. Supposing {AV jUi}m−1,l−1
i=0, j=0 is a Parseval (OPV)-frame for H then Pi =

U−iPUi , i = 0,1, · · · ,m−1. We have

m−1

∑
i=0

Pi =
m−1

∑
i=0

U−iPUi

=
m−1

∑
i=0

U−i(
l−1

∑
j=0

(V j)∗A∗AV j)Ui

=
m−1

∑
i=0

l−1

∑
j=0

(U∗)i(V j)∗A∗AV jUi

= I.

Conversely, suppose
m−1
∑
i=0

Pi = I . We get

m−1

∑
i=0

l−1

∑
j=0

(U∗)i(V ∗) jA∗AV jUi

=
m−1

∑
i=0

(U∗)iPUi

=
m−1

∑
i=0

Pi

= I.

Thus {AV jUi}m−1,l−1
i=0, j=0 is a Parseval (OPV)-frame for H . �
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