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NUMERICAL RANGES AND COMPRESSIONS OF Sn –MATRICES

HWA-LONG GAU AND PEI YUAN WU

(Communicated by H. Bercovici)

Abstract. Let A be an n -by-n (n � 2) Sn -matrix, that is, A is a contraction with eigenvalues
in the open unit disc and with rank (In −A∗A) = 1 , and let W (A) denote its numerical range.
We show that (1) if B is a k -by-k (1 � k < n ) compression of A , then W(B) � W(A) , (2) if
A is in the standard upper-triangular form and B is a k -by-k (1 � k < n ) principal submatrix
of A , then ∂W (B)∩∂W(A) = /0 , and (3) the maximum value of k for which there is a k -by-k
compression of A with all its diagonal entries in ∂W(A) is equal to 2 if n = 2 , and �n/2� if
n � 3 .

1. Introduction

Let A be an n -by-n complex matrix. Its numerical range W (A) is, by definition,
the set {〈Ax,x〉 : x ∈ Cn,‖x‖ = 1} , where 〈·, ·〉 and ‖ · ‖ denote the standard inner
product and its associated norm of vectors in Cn , respectively. It is well known that
W (A) is a nonempty compact convex subset of the complex plane. For other properties
of the numerical range, we refer the reader to [14, Chapter 1]. A k -by-k matrix B is
a compression of A if B = V ∗AV for some n -by-k matrix V with V ∗V = Ik . In this
case, we also say that A is a dilation of B or B dilates to A .

An n -by-n matrix A is said to be of class Sn if it is a contraction, that is, ‖A‖ ≡
max‖x‖=1‖Ax‖ � 1, has all its eigenvalues in the open unit disc D = {z ∈ C : |z| < 1} ,
and satisfies rank(In −A∗A) = 1. Such matrices are finite-dimensional versions of the
so-called S(φ)-contractions, first studied by Sarason [20] back in 1967. Their many
nice properties have been explored since then. For the past 15 years or so, the focus of
investigations was shifted to their numerical ranges. These were mainly done by three
groups of researchers, namely, the present authors [6, 7, 8, 9, 10, 11, 12, 21], Mirman
et al. [15, 16, 17, 18, 19] and Gorkin et al. [2, 3, 4].

In this paper, we obtain further properties of the numerical range W (A) of an Sn -
matrix A by relating it to the compression of A . We start, in Section 2 below, by review-
ing some results on such numerical ranges which will be needed in later discussions.
The main result in Section 3, Theorem 3.3, says that (a) if B is a k -by-k (1 � k < n )
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compression of the Sn -matrix A , then W (B) is properly contained in W (A) , and (b) if
A is represented as the standard upper-triangular form as specified in Theorem 2.1 and
B is any k -by-k (1 � k < n ) principal submatrix of A , then W (B) is even contained
in the interior of W (A) . As a consequence, in the case of (b), a unit vector x in Cn

for which 〈Ax,x〉 belongs to the boundary ∂W (A) of W (A) can have only nonzero
components (Corollary 3.4). Then in Section 4, we consider, for an Sn -matrix A , its
compressions B with all the diagonal entries in the boundary of W (A) . We show that
the maximum size of B is 2 if n = 2, and is �n/2� if n � 3 (Proposition 4.3 and Theo-
rem 4.4). This is the same as the maximum number of orthonormal vectors x for which
〈Ax,x〉 belongs to ∂W (A) . This is proven via the inscribing-circumscribing property,
as described in Section 2, between the unit circle ∂D and the boundary ∂W (A) of the
(n+1)-gons formed by the eigenvalues of (n+1)-by-(n+1) unitary dilations of A .

2. Numerical range of Sn -matrix

In this section, we briefly review the basic ingredients which we would need for
the proofs of our results in Sections 3 and 4. The first one is from [8, Corollary 1.3].

THEOREM 2.1. An n-by-n matrix A is of class Sn if and only if it is unitarily
equivalent to the upper-triangular matrix [ai j]ni, j=1 with |aii| < 1 for all i and

ai j = (1−|aii|2)1/2(1−|a j j|2)1/2
j−1

∏
k=i+1

(−akk)

for j > i .

Such a matrix is said to be in a standard upper-triangular form.
The next two theorems are concerned with (n+ 1)-by-(n+ 1) unitary dilations

of an Sn -matrix, the first of which is from [6, Theorem 2.1 and Lemma 2.2] while the
second is essentially proven in [6, Theorems 3.1 and 3.2].

THEOREM 2.2. If A is an Sn -matrix, then for any point λ in ∂D , there is a
unique (n + 1)-gon P such that λ is a vertex of P, and P is inscribed on ∂D and
circumscribed about W (A) with each edge tangent to ∂W (A) at exactly one point.
Moreover, such (n+1)-gons are in one-to-one correspondence with (n+1)-by-(n+1)
unitary dilations U (up to unitary equivalence) of A under which the vertices of P are
exactly the eigenvalues of U . In particular, every point a on ∂W (A) has a unique
supporting line of W (A) which passes through it and is an extreme point of W (A) with
its associated set {x ∈ Cn : 〈Ax,x〉 = a‖x‖2} a one-dimensional subspace of Cn .

THEOREM 2.3. Let A be an Sn -matrix with the (n+1)-by-(n+1) unitary dila-
tion U = diag(λ1, . . . ,λn+1) , where the λ j ’s are arranged counterclockwise around
∂D . Let a j = t jλ j + (1 − t j)λ j+1 , where 0 < t j < 1 , be the tangent point of the
edge [λ j,λ j+1] of the (n + 1)-gon λ1 . . .λn+1 with the boundary ∂W (A) of W (A) ,
1 � j � n+1 (λn+2 ≡ λ1 ), and let

x j = [0 . . . 0
√

t j

jth

√
1− t j 0 . . . 0]T
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for 1 � j � n, and xn+1 = [
√

1− tn+1 0 . . . 0
√

tn+1]T in Cn+1 . If V is the (n+ 1)-
by-n matrix [y1 . . . yn] , where y1, . . . ,yn are the orthonormal vectors obtained from
x1, . . . ,xn via the Gram-Schmidt process, and A′ = V ∗UV , then A′ is of class Sn and
is unitarily equivalent to A.

In the next two sections, we use these results to prove certain properties relating
the numerical ranges and compressions of Sn -matrices.

3. Compression of Sn -matrix

We start with a general criterion for a compression B of a matrix A to have W (B)
properly contained in (resp., contained in the interior of) W (A) . Note that if B is a
compression of A , then W (B) is always contained in W (A) .

For an n -by-n matrix A and a point a in ∂W (A) , let Ka denote the set {x ∈ Cn :
〈Ax,x〉 = a‖x‖2} and let Ha be the subspace generated by Ka . It is known from [5,
Theorem 1] that (1) a is an extreme point of the convex set W (A) if and only if Ka is a
subspace of Cn , and (2) if a is not an extreme point of W (A) , then Ha =∪{Kb : b∈ L} ,
where L is the supporting line of W (A) at a .

LEMMA 3.1. Let A be an n-by-n matrix.
(a) If dimHa = 1 for all a in ∂W (A) and Cn is generated by ∪{Ka : a∈ ∂W (A)} ,

then W (B) � W (A) for any k -by-k (1 � k < n) compression B of A.
(b) If, for all a in ∂W (A) , the vectors in Ha have only nonzero components, then

∂W (B)∩∂W (A) = /0 for any k -by-k (1 � k < n) principal submatrix B of A.

For any n -by-n matrix A , let Aj , 1 � j � n , denote the (n−1)-by-(n−1) prin-
cipal submatrix of A obtained by deleting the j th row and j th column of A .

Proof of Lemma 3.1. (a) Let B be a k -by-k (1 � k < n ) compression of A with
W (B) =W (A) , and let V be an n -by-k matrix with V ∗V = Ik and B =V ∗AV . For any
a in ∂W (B) , let x be a unit vector in Ck such that 〈Bx,x〉 = a . Then

a = 〈Bx,x〉 = 〈V ∗AVx,x〉 = 〈A(Vx),Vx〉.
This shows that Vx is a unit vector in Ha . Since the latter is of dimension one, it
consists of scalar multiples of Vx . It then follows from our assumption that Cn is
generated by all the Vx ’s with 〈Bx,x〉 ∈ ∂W (B) . This is absurd since the latter space is
of dimension at most k . Our assertion that W (B) � W (A) follows.

(b) Let B = Aj , 1 � j � n , be such that ∂W (B)∩∂W (A) �= /0 , and let a = 〈Bx,x〉
be in ∂W (B)∩ ∂W (A) , where x = [x1 . . . xn−1]T is a unit vector in Cn−1 . Since
a = 〈Ax′,x′〉 , where x′ = [x′1 . . . x′n]T is such that

x′i =

⎧⎨
⎩

xi if 1 � i < j,
0 if i = j,
xi−1 if j < i � n,

x′ is a unit vector in Ha . This contradicts our assumption on the nonzeroness of the
components of x′ . Hence ∂W (B)∩∂W (A) = /0 as asserted. �

We also need the following lemma.
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LEMMA 3.2. If λ1 and λ2 are two scalars such that |λ1| � |λ2| , then

W

([
A λ1B
0 C

])
⊆W

([
A λ2B
0 C

])
.

Proof. We may assume that λ2 �= 0. If λ = λ1/λ2 , then |λ |� 1 and we need only
check that

W

([
A λB
0 C

])
⊆W

([
A B
0 C

])
.

Since [
A λB
0 C

]
and

[
A |λ |B
0 C

]

are unitarily equivalent, we may further assume that 0 � λ � 1. Thus

W

([
A λB
0 C

])
= W

(
λ

[
A B
0 C

]
+(1−λ )

[
A 0
0 C

])

⊆ λW

([
A B
0 C

])
+(1−λ )W

([
A 0
0 C

])

⊆ λW

([
A B
0 C

])
+(1−λ )W

([
A B
0 C

])

⊆ W

([
A B
0 C

])
,

completing the proof. �

Using these, we are able to prove the main result of this section.

THEOREM 3.3. Let A be an Sn -matrix (n � 2 ).
(a) If B is a k -by-k (1 � k < n) compression of A, then W (B) � W (A) .
(b) If A = [ai j]ni, j=1 is of the standard upper-triangular form in Theorem 2.1, and

B is a k -by-k (1 � k < n) principal submatrix of A, then ∂W (B)∩∂W (A) = /0 .

Note that assertions (a) and (b) above are comparable to the result that if A is
an Sn -matrix, K is a proper invariant subspace of A , and B = A|K , then ∂W (B)∩
∂W (A) = /0 (cf. [7, Corollary 3.4] or [1, Proposition 2 (1)]).

Proof of Theorem 3.3. (a) Let U , λ j ’s, a j ’s, t j ’s, x j ’s, V and A′ be as in Theorem
2.3, and let x′j = V ∗x j for 1 � j � n . Then

a j = 〈Uxj,x j〉 = 〈A′(V ∗x j),V ∗x j〉 = 〈A′x′j,x
′
j〉

for each j . This shows that x′j is a unit vector in Haj = {x ∈ Cn : 〈A′x,x〉 = a j‖x‖2} .
Since the x′j ’s are linearly independent, we obtain that Cn is generated by ∪{Ha : a ∈
∂W (A)} . This, together with the fact from Theorem 2.2 that dimHa = 1 for all a in
∂W (A) , yields, via Lemma 3.1 (a), that W (B) � W (A) .
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(b) We may assume that k = n− 1 and B = Aj (1 � j � n ). If j = n , then B is
the restriction of A to its invariant subspace Cn−1⊕{0} and thus ∂W (B)∩∂W (A) = /0
follows from [7, Corollary 3.4]. Applying this to the Sn -matrix A∗ and its restriction to
the invariant subspace {0}⊕Cn−1 yields our assertion for B = A1 . Thus we need only
consider for B = Aj , 2 � j � n−1. For this, we express B as[

B11 B12

0 B22

]
,

where B11 and B22 are of sizes j−1 and n− j , respectively. If a j j = 0, then B12 = 0
and hence B = B11⊕B22 . By [7, Corollary 3.4] again, we have ∂W (Bii)∩∂W (A) = /0
for i = 1,2. Since W (B) = (W (B11) ∪W (B22))∧ , the convex hull of W (B11) and
W (B22) , it follows that ∂W (B)∩∂W (A) = /0 as asserted. On the other hand, for a j j �=
0, let B′

12 = (−1/aj j)B12 and

B′ =
[

B11 B′
12

0 B22

]
.

Since |−1/aj j| > 1, we have W (B) � W (B′) by Lemma 3.2. Note that if A′ denotes
the Sn -matrix [a′i j]ni, j=1 , where

a′ii =

⎧⎨
⎩

aii if 1 � i � j−1,
ai+1 i+1 if j � i � n−1,
a j j if i = n,

and

a′i j =
{

(1−|a′ii|2)1/2(1−|a′j j|2)1/2 ∏ j−1
k=i+1(−a′kk) if j > i,

0 if j < i

(cf. Theorem 2.1), then B′ = A′
n . From what was proven before, we have ∂W (B′)∩

∂W (A′) = /0 . Since A′ and A are both of class Sn and have the same eigenvalues, they
are unitarily equivalent. Thus W (A′) = W (A) . Combining these together, we obtain
∂W (B)∩∂W (A) = /0 as asserted. �

COROLLARY 3.4. If A = [ai j]ni, j=1 is an Sn -matrix of the standard upper-triangular

form in Theorem 2.1, and x = [x1 . . . xn]T is a unit vector in Cn such that 〈Ax,x〉 ∈
∂W (A) , then x j �= 0 for all j .

Proof. Assume that x j = 0 for some j , 1 � j � n . Let Aj be the j th (n−1)-by-
(n−1) principal submatrix of A . Then x′ ≡ [x1 . . . x j−1 x j+1 . . . xn]T is a unit vector in
Cn−1 such that 〈Ajx′,x′〉 = 〈Ax,x〉 is in ∂W (A) . This shows that ∂W (Aj)∩∂W (A) �=
/0 , contradicting Theorem 3.3 (b). Hence we must have x j �= 0 for all j . �

In case A = Jn , the n -by-n Jordan block⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎥⎦ ,
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it is known that W (A) = {z ∈ C : |z| � cos(π/(n+ 1))} and a unit vector x in Cn is
such that 〈Ax,x〉 = eiθ cos(π/(n+1)) for some real θ if and only if

x = λ
√

2
n+1

[
eiθ sin

(
π

n+1

)
e2iθ sin

(
2π

n+1

)
. . . eniθ sin

(
nπ

n+1

)]T

for some scalar λ with |λ | = 1 (cf. [13, Proposition 1 (3)] or [22, p. 134, Lemma 7]).
This confirms the assertion in Corollary 3.4 for this case.

4. Diagonal of Sn -matrix

For any n -by-n matrix A , let k(A) denote the maximum size k of a compression
B of A for which the diagonal eatries of B are all in ∂W (A) . Equivalently, k(A) equals
the maximum number of orthonormal vectors x1, . . . ,xk in Cn for which 〈Ax j,x j〉 is in
∂W (A) for all j . It is obvious that 1 � k(A) � n . The next lemma says that we even
have k(A) � 2 for n � 2.

For any matrix A or scalar a , ReA (resp., Rea ) denotes its real part (A+A∗)/2
(resp., (a+a)/2).

LEMMA 4.1. If A is an n-by-n matrix with n � 2 , then 2 � k(A) � n.

Proof. For any point a in ∂W (A) , let La be a supporting line of W (A) which
passes through a , and Ra be the ray from the origin which is perpendicular to La . If
θ ∈ [0,2π) is the angle from the positive x -axis to Ra and x is a unit vector in Cn

with 〈Ax,x〉 = a , then it is easily seen that Re(e−iθ a) is the maximum eigenvalue of
the Hermitian matrix Re (e−iθ A) with the eigenvector x . Let Lb be the supporting line
of W (A) which is parallel to La and which passes through a point, say, b in ∂W (A)
(cf. Figure 4.2). If y is a unit vector in Cn such that 〈Ay,y〉 = b , then, similarly,
Re(e−iθ b) is the minimum eigenvalue of Re (e−iθ A) with the eigenvector y . Thus,
in case Re (e−iθ a) �= Re (e−iθ b) , x and y are orthogonal to each other and, therefore,
k(A) � 2. On the other hand, if Re(e−iθ a) = Re (e−iθ b) , then W (e−iθ A) is a line seg-
ment. In this case, A is a normal matrix and thus k(A) � 2 obviously. This completes
the proof. �

An easy corollary of the above is that k(A) = 2 for any 2-by-2 matrix A . The
next proposition gives more precise information on a 2-by-2 A with diagonal entries in
∂W (A) .

PROPOSITION 4.3. The following conditions are equivalent for A =
[

a b
c d

]
:

(a) a ∈ ∂W (A) ,
(b) be−iθ + ceiθ = 0 for some real θ ,
(c) |b| = |c| , and
(d) d ∈ ∂W (A) .

Under these conditions, if A is not normal, then the tangent lines to the (nondegenerate)
ellipse ∂W (A) at a and d are parallel to each other while if A is normal and W (A)
equals the line segment [a,d] , then b = c = 0 .
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y

x

La

a Ra
b

0

Lb

W(A)

Figure 4.2

This appeared in [23] as a consequence of a more general result [23, Theorem 2].
Here we give a simple computational proof.

Proof of Proposition 4.3. (a) ⇒ (b). Considering A− ((a+d)/2)I2 instead of A ,

we may assume that A =
[

a b
c −a

]
. As in the proof of Lemma 4.1, a ∈ ∂W (A) implies

that, for some real θ , Re(e−iθ a) is the maximum eigenvalue of Re(e−iθ A) . Since a
simple computation yields that the eigenvalues of Re(e−iθ A) are

±1
2
(4(Re (e−iθ a))2 + |be−iθ + ceiθ |2)1/2,

we have

Re(e−iθ a) =
1
2
(4(Re(e−iθ a))2 + |be−iθ + ceiθ |2)1/2,

from which we obtain be−iθ + ceiθ = 0 as required.
(b) ⇒ (c). Trivial.

(c) ⇒ (a). As in the proof above, we may assume that A =
[

a b
c −a

]
with |b| = |c| .

Since A is unitarily equivalent to
[√

a2 +bc α
0 −√

a2 +bc

]
,

where |α|=√
2(|a|2+ |b|2−|a2+bc|)1/2 , and ∂W (A) is the ellipse with foci ±√

a2 +bc
and minor axis of length |α| , to prove a ∈ ∂W (A) we need only check that

|a−
√

a2 +bc|+ |a+
√

a2 +bc| = 2(|a2 +bc|+ 1
4
|α|2)1/2.

Since the square of the left-hand side (resp., right-hand side) of the above equality
equals

|a−
√

a2 +bc|2 + |a+
√

a2 +bc|2 +2|a2− (a2 +bc)|
= 2(|a|2 + |a2 +bc|)+2|bc|
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(resp.,

4(|a2 +bc|+ 1
4
|α|2)

= 4|a2 +bc|+2(|a|2+ |b|2−|a2 +bc|)
= 2(|a2 +bc|+ |a|2 + |b|2)),

they are indeed equal.
(d) ⇔ (c). This follows by symmetry of the equivalence of (a) and (c).
Assume that these conditions hold. If A is not normal. then a and d form a chord

of the (nondegenerate) ellipse ∂W (A) which passes through its center and hence their
tangent lines are parallel. On the other hand, if A is normal and W (A) = [a,d] , then
a and d are eigenvalues of A . Thus a,d = (a+d± ((a+d)2 −4(ad−bc))1/2)/2. A
simple computation then yields bc = 0 and hence b = c = 0. �

We remark that the implication (c) ⇒ (b) in the preceding proposition can be
interpreted geometrically as saying that if b = |b|eiθ1 and c = |c|eiθ2 (θ1 and θ2 real)
are such that |b|= |c| , then the rotation around the origin by the angle −(θ1+θ2+π)/2
transforms b and c to the symmetric, relative to the y-axis, points |b|ei(θ1−θ2−π)/2 and
−|c|e−i(θ1−θ2−π)/2 , respectively.

The main result of this section is the following theorem, which determines k(A)
for any Sn -matrix A .

THEOREM 4.4. If A is a matrix of class Sn (n � 3 ), then k(A) = �n/2� , the
ceiling of n/2 . Moreover, if k = k(A) , then there are a1, . . . ,ak in ∂W (A) such that
diag(a1, . . . ,ak) dilates to A.

To prove this theorem, we need the following two lemmas, the first of which is an
improvement of [12, Corollary 4.2].

LEMMA 4.5. Let A be an Sn -matrix (n � 2 ), U = diag(λ1, . . . ,λn+1) be an (n+
1)-by-(n + 1) unitary dilation of A with the λ j ’s arranged counterclockwise around
∂D , and a j = t jλ j +(1−t j)λ j+1 , 0 < t j < 1 , be the tangent point of the edge [λ j,λ j+1]
of the (n+1)-gon λ1 . . .λn+1 with ∂W (A) , 1 � j � n+1 (λn+2 ≡ λ1 ). If

x j = [0 . . . 0
√

t j

jth

√
1− t j 0 . . . 0]T

for 2 � j � n, V is the (n + 1)-by-(n− 1) matrix [y2 . . . yn] , where y2, . . . ,yn are
the orthonormal vectors obtained from x2, . . . ,xn via the Gram-Schmidt process, and
B = V ∗UV , then B is an Sn−1 -matrix and ∂W (B)∩∂W (A) = {a2, . . . ,an} .

Proof. That B is of class Sn−1 follows from [12, Corollary 4.2]. For the proof
of ∂W (B)∩ ∂W (A) = {a2, . . . ,an} , note that one containment is trivial. To prove the
other, assume that a is in ∂W (B)∩ ∂W (A) is such that a �= a j for all j , 2 � j �
n . Let L be the common supporting line of W (A) and W (B) at the point a , and
let z1 and z2 be the intersection points of L and ∂D . Since a �= a j for 2 � j � n
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by our assumption, z1 and z2 are distinct from all the λ j ’s. Let α1, . . . ,αn (resp.,
β1, . . . ,βn−1 ) be the eigenvalues of A (resp., B), and let φ(z) = ∏n

j=1(z−α j)/(1−α jz)
(resp., ψ(z) = ∏n−1

j=1(z−β j)/(1−β jz)) be the corresponding finite Blaschke product.
Applying condition (6) of [10, Theorem 2.1] to A (resp., B) yields that

φ(z)
zφ(z)− (−1)n ∏n

j=1 λ j
=

n+1

∑
j=1

mj

z−λ j
, z �= λ1, . . . ,λn+1, (1)

(resp.,
ψ(z)

zψ(z)− (−1)n−1 ∏n
j=2 λ j

=
n+1

∑
j=2

m′
j

z−λ j
, z �= λ2, . . . ,λn+1), (2)

where

mj =
t1 · · ·t j−1(1− t j) · · · (1− tn)

∑n+1
k=1 t1 · · · tk−1(1− tk) · · · (1− tn)

, 1 � j � n+1

(resp.,m′
j =

t2 · · · t j−1(1− t j) · · · (1− tn)

∑n+1
k=2 t2 · · · tk−1(1− tk) · · · (1− tn)

, 2 � j � n+1).

Since m′
j = mj/(1−m1) for 2 � j � n+ 1, we may combine (1) and (2) together to

obtain

φ(z)
zφ(z)− (−1)n ∏n

j=1 λ j
=

m1

z−λ1
+(1−m1)

ψ(z)
zψ(z)− (−1)n−1 ∏n

j=2 λ j
(3)

for z �= λ1, . . . ,λn+1 . Plugging z1 and z2 into (3), dividing the resulting equalities, and
noting that z1φ(z1) = z2φ(z2) (by [10, Theorem 2.1 (8)]) yield that

z2

z1
=

φ(z1)
φ(z2)

=

m1
z1−λ1

+(1−m1)
ψ(z1)

z1ψ(z1)−(−1)n−1 ∏ j λ j

m1
z2−λ1

+(1−m1)
ψ(z2)

z2ψ(z2)−(−1)n−1 ∏ j λ j

.

Since z1ψ(z1) = z2ψ(z2) by [10, Theorem 2.1 (8)] and m1 > 0, we cross-multiply the
above fractions to obtain, after cancellation, z1(z2−λ1) = z2(z1−λ1) or z1 = z2 , which
contradicts our assumption. Thus a must be equal to some a j , 2 � j � n , completing
the proof. �

We remark that the key equality (3) above was first proven in [3, Theorem 6 (a)].

LEMMA 4.6. Let A be an Sn -matrix (n � 2 ), a be a point in ∂W (A) and x be
a unit vector in Cn such that 〈Ax,x〉 = a. Let U = diag(λ1, . . . ,λn+1) be the (n+1)-
by-(n+1) unitary dilation of A with the λ j ’s arranged counterclockwise around ∂D
such that the edge [λ1,λ2] contains a, and let a j , 1 � j � n+1 , be the tangent point
of [λ j,λ j+1] with ∂W (A) (λn+2 ≡ λ1 and a1 = a). Then a point b in ∂W (A) is such
that the unit vector y with 〈Ay,y〉 = b is orthogonal to x if and only if b is either

(a) the tangent point a′ of the supporting line, parallel to [λ1,λ2] , of W (A) with
∂W (A) , or
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(b) one of the tangent points a3, . . . ,an .

Note that in the case of A = Jn , for any point a in ∂W (Jn) , the number of points
b with the asserted property is n−1 or n−2 depending on whether n is even or odd.
This is because, in this case, the eigenvalues λ1, . . . ,λn+1 of the unitary dilation U
form a regular (n + 1)-gon, and thus a′ is distinct from a3, . . . ,an for n even while
a′ = a(n+3)/2 for n odd.

Proof of Lemma 4.6. Let t j ’s, x j ’s, V and A′ be as in Theorem 2.3. Since A′ and
A are unitarily equivalent, we may assume that A = A′ and x = V ∗x1 . To prove one
direction, if b = a′ , then the orthogonality of y and x follows as in the proof of Lemma
4.1. On the other hand, if b = a j for some j , 3 � j � n , then, since x1 and x j are
obviously orthogonal, the same is true for V ∗x1 and V ∗x j or x and y .

For the other direction, let b = 〈Ay,y〉 in ∂W (A) with ‖y‖ = 1 and 〈x,y〉 = 0,
and let L be the supporting line of W (A) which passes through b . Assume that b �=
a′ . Then L is not parallel to the edge [λ1,λ2] of the (n + 1)-gon λ1 . . .λn+1 . Let

M be the n -by-2 matrix [x y] and let B = M∗AM . Then B is of the form
[

a ∗
∗ b

]
. If

W (B) is a (nondegenerate) elliptic disc, then [λ1,λ2] and L , being tangent lines of the
ellipse ∂W (B) at a and b , respectively, are parallel by Proposition 4.3, contradicting

our assumption. Thus B =
[

a 0
0 b

]
by Proposition 4.3 again. This implies that

〈BM∗x,M∗y〉 =
〈

B

[
x∗
y∗

]
x,

[
x∗
y∗

]
y

〉
=

〈
B

[
1
0

]
,

[
0
1

]〉
= 0.

Since

MM∗x = [x y]
[

x∗
y∗

]
x = [x y]

[
1
0

]
= x

and, similarly, MM∗y = y , we obtain

〈Ax,y〉 = 〈AMM∗x,MM∗y〉 = 〈MM∗AMM∗x,y〉 = 〈BM∗x,M∗y〉 = 0.

In a similar fashion, x′ ≡ Vx and y′ ≡ Vy are orthonormal vectors in Cn+1 satisfying
〈Ux′,x′〉 = a = a1 , 〈Uy′,y′〉 = b and 〈Ux′,y′〉 = 0. Since 〈Ax,x〉 = a , we may assume
that x′ = x1 = [

√
t1
√

1− t1 0 . . . 0]T . If y′ = [y1 y2 . . . yn+1]T , then we obtain from
〈x′,y′〉 = 〈Ux′,y′〉 = 0 that

y1
√

t1 + y2

√
1− t1 = 0 (4)

and
y1λ 1

√
t1 + y2λ 2

√
1− t1 = 0. (5)

Multiplying (4) by λ 1 and then subtracting (5) from it result in (λ 1−λ 2)y2
√

1− t1 = 0
or y2 = 0 (since λ1 �= λ2 and

√
1− t1 > 0). From (4), we then also have y1 = 0 (since√

t1 > 0). Thus y′ = [0 0 y3 . . . yn+1]T . Let N1 be the (n + 1)-by-(n− 1) matrix
[u2 . . . un] , where u2, . . . ,un are the orthonormal vectors obtained from x2, . . . ,xn via
the Gram-Schmidt process, and let C1 = N∗

1UN1 . Then C1 is an Sn−1 -compression
of A by Theorem 2.3. Note that b = 〈Uy′,y′〉 = 〈C1N∗

1 y′,N∗
1 y′〉 , showing that b is
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in ∂W (C1)∩ ∂W (A) . Hence, by Lemma 4.5, b is equal to some a j1 , 2 � j1 � n .
Analogously, considering N2 = [v3 . . . vn+1] , where v3, . . . ,vn+1 are obtained from
x3, . . . ,xn+1 as above and C2 = N∗

2UN2 , we also obtain b = a j2 for some j2 , 3 � j2 �
n+1. Thus b equals one of the points a3, . . . ,an , completing the proof. �

Now we are finally ready to prove Theorem 4.4.

Proof of Theorem 4.4. Let k = k(A) and let B be a k -by-k compression of A with
diagonal entries b1, . . . ,bk in ∂W (A) . According to Lemma 4.6, we may assume that
b1 = a1 = a and {b2, . . . ,bk} is a subset of {a′,a3, . . . ,an} . In the following, we show
that the latter b j ’s can all be chosen from a3, . . . ,an .

Indeed, following the proof of Lemma 4.6, let x′j = V ∗x j for 3 � j � n . Then x′j
is a unit vector in Cn satisfying 〈Ax′j,x

′
j〉 = a j for each j . Also, let a′ = 〈Au′,u′〉 for

some unit vector u′ in Cn and let u = Vu′ . Since the supporting lines of W (A) at b1

(= a1 ) and a′ are parallel, a′ is inbetween, say, a j and a j+1 for some j , 2 � j � n ,
around ∂W (A) . If Q is the (n+1)-by-3 matrix [y j y j+1 y j+2] , where y j,y j+1,y j+2 are
the orthonormal vectors obtained from x j,x j+1,x j+2 (xn+2 ≡ x1 ) via the Gram-Schmidt
process, and D = Q∗UQ , then a′ is in the numerical range of D and hence u is of the
form [0 . . . 0 u j u j+1 u j+2 0 . . . 0]T . Assume first that j is odd. If u is orthogonal to
x j+2 , then u j+2 = 0. Hence

a′ = 〈Au′,u′〉 = 〈Uu,u〉= λ j|u j|2 + λ j+1|u j+1|2

with |u j|2 + |u j+1|2 = ‖u‖2 = 1, which shows that a′ lies on the edge [λ j,λ j+1] . Since
a′ is also on ∂W (A) , it thus coincides with a j . Similarly, if j is even, then we can also
deduce from the orthogonality of u and x j−1 that a′ = a j+1 . This means that a′ and
either of its neighboring a j and a j+1 cannot both belong to the set {b1, . . . ,bk} unless
they coincide. Hence to achieve the maximum value of k , we need only choose the b j ’s
to be a1,a3,a5, . . . ,an (resp., a1,a3,a5, . . . ,an−1 ) if n is odd (resp., even). Therefore,
k(A) = �n/2� as asserted. In this case, {x′j : j = 1,3,5, . . . ,n (resp., 1,3,5, . . . ,n−1)}
is an orthonormal set of vectors in Cn with

〈Ax′j,x
′
i〉 = 〈Uxj,xi〉 =

{
a j if i = j,
0 otherwise,

which shows that diag(a1,a3, . . . ,an) (resp., diag(a1,a3, . . . ,an−1)) dilates to A , com-
pleting the proof. �

We end this paper by remarking that, in Theorem 4.4, the maximum value of k can
be achieved by different choices of the diagonal entries b1, . . . ,bk of B even when one
of them, say, b1 is fixed. For example, if A = J4 and b1 = cos(π/5) , then k(A) = 2
and b2 can be any one of −cos(π/5) , ei(4π/5) cos(π/5) and ei(6π/5) cos(π/5) .
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