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Abstract. The classical Cesàro means of higher order are investigated from the point of view of
saturation theory. In this direction the Cesàro means for power bounded operators were studied
by Butzer-Westphal [1, 2], and certain appropriate results were given by Lin-Sine [6]. In this
paper we prove that the behavior of the Cesàro means of higher order concerning the saturation,
are essentially of the same form, under the boundedness condition of Cesàro means. Also, some
results of Lin-Sine are extended to Cesàro means of higher order.

1. Introduction and preliminaries

Let X be a complex Banach space, and B(X ) be the Banach algebra of all
bounded linear operators on X with the unit element I (the identity operator on X ).
For T ∈ B(X ) we denote by R(T ) , N (T ) and σ(T ) , the range, the null space and
the spectrum of T , respectively.

If {Tn} is a sequence in B(X ) , the notation ||Tn|| = O(1) as n → ∞ means
supn�1 ||Tn|| < ∞ . Also ||Tnx||= o(1) as n → ∞ means Tnx→ 0, and ||Tnx|| = o(n) as
n → ∞ stands for 1

nTnx → 0, for x ∈ X .
Recall ([8], [9, 10], [13]) that for T ∈ B(X ) and p ∈ N , the Cesàro means of

order p of T are defined for n ∈ N by M(p)
0 (T ) = I , M(0)

n (T ) = Tn and in general,

M(p)
n (T ) :=

p
(n+1)...(n+ p)

n

∑
j=0

( j + p−1)!
j!

M(p−1)
j (T ) (1.1)

=
p

(n+1)...(n+ p)

n

∑
j=0

(n+1− j)...(n+ p−1− j)T j.

As usually, we put Mn(T ) := M(1)
n (T ) = 1

n+1 ∑n
j=0 T j .

We say that T is Cesàro ergodic if the sequence {Mn(T )} converges strongly in
B(X ) . Also, T is Cesàro bounded if ||Mn(T )|| = O(1) as n → ∞ . In particular, if T
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is power bounded that is ||Tn|| = O(1) as n → ∞ then T is Cesàro bounded, but it is
not necessarily Cesàro ergodic when X is not reflexive.

We shall frequently need two basic identities on M(p)
n (T ) which are given, for

completeness, in the following

LEMMA 1.1. If T ∈ B(X ) then for p,n � 1 we have

M(p)
n (T )(T − I) =

p
n+1

(M(p−1)
n+1 (T )− I), (1.2)

TM(p)
n (T ) =

n+ p+1
n+1

M(p)
n+1(T )− p

n+1
I. (1.3)

Proof. For T, p,n as above one has

M(p)
n (T )(T − I)

=
p

(n+1)...(n+ p)

n

∑
j=0

(n+1− j)...(n+ p−1− j)(T j+1−T j)

=
p(p−1)

(n+1)...(n+ p)

[ n+1

∑
j=1

(n+2− j)...(n+ p− j)T j − (n+1)...(n+ p−1)
p−1

I
]

=
p

n+1

(
M(p−1)

n+1 (T )− p−1
n+ p

I− n+1
n+ p

I
)

=
p

n+1
(M(p−1)

n+1 (T )− I),

which gives (1.2). For (1.3) we have

TM(p)
n (T ) =

p
(n+1)...(n+ p)

n+1

∑
j=1

(n+2− j)...(n+ p− j)T j

=
p

(n+1)...(n+ p)

( n+1

∑
j=0

(n+2− j)...(n+ p− j)T j − (n+2)...(n+ p)I
)

=
n+ p+1

n+1
M(p)

n+1(T )− p
n+1

I. �

The convergence of Cesàro means of operators (the case p = 1), in different
topologies, was studied by many authors. More recently, such investigations refer also
to the case p > 1 like in [8], where especially the uniform convergence is treated.

Concerning the strong convergence of {Mn(T )} , P.L. Butzer and U. Westphal

described in [1, 2] the order of approximation of Px by M(p)
n (T )x for some x ∈ X ,

when T is power bounded, P being the ergodic projection associated to T that is
the bounded projection on the closed subspace X0 = R(P)⊕N (P) with R(P) =
N (I−T ) and N (P) = R(I−T ) .

The results of [1] and [2] regarding the discrete case, can be connected to certain
results of M. Lin and R. Sine [6] concerning some averages, naturally associated to
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Mn(T ) , and directly related to M(2)
n (T ) . For this reason, the purpose of this paper

is to investigate the mean ergodic theorem for the Cesàro averages of higher order,
from the point of view of saturation theory, under the more general condition of Cesàro
boundedness. We obtain certain versions, or generalizations, of some results from [1, 2]

and [6], which lead to the conclusion that all Cesàro means {M(p)
n (T )}n for p � 1 are

equivalent, in the sense that they have the same saturation class. Recall that a similar
conclusion is also true for Cesàro averages of A-contractions in Hilbert spaces induced
by positive operators A (see [12]). Some facts in this context related to results of [6]
can be also found in [7, 11].

As in [1, 2] our method is based on the concept of relative completion of a sub-
space. More precisely, if Y is a Banach subspace of X , then the completion of Y

relative to X , denoted by ỸX , is the set of all elements x ∈ X for which there exists
a sequence {yn} ⊂ Y with ||yn||Y = O(1) and ||yn − x|| = o(1) , as n → ∞ . Notice
that ỸX = Y if X is reflexive.

2. Ergodic theorem and saturation

The general ergodic theorem for Cesàro averages in the form quoted in [6], can
be extended for the Cesàro averages of higher order as follows (see also [1] for power
bounded operators).

THEOREM 2.1. Let T ∈ B(X ) be such that ||M(p)
n (T )|| = O(1) and

||M(p−1)
n (T )x|| = o(n) , as n → ∞ , for x ∈ X and some positive integer p. Then the

set of all elements x ∈ X for which the sequence {M(q)
n (T )x} converges in the norm

of X for q � p, is precisely equal to the direct sum

X0 := R(I−T )⊕N (I−T), (2.1)

which is a closed subspace in X . Here the limit itself is equal to Px , where P ∈
B(X0) is the projection onto the range R(P) = N (I−T ) parallel to the null space
N (P) = R(I−T) .

Moreover, if either Tm is weakly compact for some m > 0 , or X is reflexive, then
X = X0 , that is the above convergence holds for all x ∈ X .

The proof of the former part can be obtained in the same way as for the mean er-
godic theorem in Krengel [3] (Theorem 2.1.3), using the relation (1.2) and the Banach-
Steinhauss theorem. If Tm is weakly compact for an integer m � 1, then the sequence

{M(q)
n (T )Tmx} is weakly sequentially compact for x ∈X and q � p , so this sequence

has a subsequence which weakly converges to a limit belonging to N (I−T ) . Then as
in [3] it follows that x ∈ X0 , hence X = X0 . When X is reflexive, every bounded
sequence posses a weakly convergent subsequence hence, as above, we infer X = X0 .
We omit the details.

The question which arises now is how rapidly the Cesàro means of an order p � 1
of T on x converge to Px , when x belongs to some subspaces of X0 . The case when



560 LAURIAN SUCIU

T is power bounded was studied by Butzer-Westphal in [1, 2], while we consider in this

paper the general case p � 1 under the boundedness condition of M(p)
n (T ) for n ∈ N .

In this order, we define the operators S(p)
n (T ) , for n, p � 1 by

S(p)
n (T ) :=

n+ p
p

M(p)
n (T ). (2.2)

Clearly, S(1)
n (T ) = ∑n

j=0 T j and, for p � 2, we have

S(p)
n (T ) =

n

∑
j=0

(
1− j

n+1

)
...
(
1− j

n+ p−1

)
T j.

In particular, we get

S(2)
n (T ) =

1
n+1

n

∑
j=0

(n+1− j)T j

=
1

n+1
((n+1)I +nT + ...+Tn)

=
1

n+1

n+1

∑
j=1

(I +T + ...+T j−1) =
1

n+1

n

∑
j=0

j

∑
i=0

T i.

Since the relations (1.2) and (2.2) lead to

S(p+1)
n (T )(I−T ) =

n+ p+1
n+1

(I−M(p)
n+1(T )), (2.3)

we infer that the behavior of M(p)
n (T ) on X (as well convergence, or boundedness) is

the same to that of S(p+1)
n (T ) on R(I−T ) . This fact just motivates the hypotheses of

Theorem 2.1 for the results below.
Notice that X0 from (2.1) is an invariant subspace for T , so we can define the

operator T0 := T |X0 ∈ B(X0) .
We begin to characterize the norm convergence of {S(p+1)

n (T )x} , for x ∈ X .

THEOREM 2.2. Let T ∈ B(X ) be such that ||M(p)
n (T )|| = O(1) and

||M(p−1)
n (T )x|| = o(n) , as n → ∞ , for any x ∈ X and some p � 1 . The following

statements are equivalent:
(i) x ∈ R(I−T0);
(ii) {S(p+1)

n (T )x} converges in the norm of X ;

(iii) {S(p+1)
n (T )x} has a weakly convergent subsequence.

In this case, if x = (I−T0)x0 with x0 ∈ X0 then (I−P)x0 is the limit in (ii) , and
(I−T0)(I−P)x0 = x .

Proof. If x = (I −T0)x0 with x0 ∈ X0 then from relation (2.3) and Theorem 2.1
it follows that Sp+1

n (T )x → x0 −Px0 as n → ∞ , and clearly (I −T0)(I −P)x0 = (I −
T0)x0 = x . So, (i) implies (ii) , and obviously (ii) implies (iii) .
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Suppose now (iii) , that is a subsequence {S(p+1)
nk (T )x} weakly converges to y ∈

X . Then using the relation (2.3) we have (as in Theorem 2.1.3 [3])

(I−T )y = w− lim
k→∞

S(p+1)
nk (T )(I−T)x

= w− lim
k→∞

nk + p+1
nk +1

(x−M(p)
nk+1(T )x)

= x−Px,

hence x = (I−T)y+Px ∈ X0 . Since one has

nk + p+1
p+1

Px =
nk + p+1

p+1
M(p+1)

nk (T )Px = S(p+1)
nk (T )Px

= S(p+1)
nk (T )x+S(p+1)

nk (T )(T − I)y,

or equivalently

M(p+1)
nk (T )(T − I)y = Px− p+1

nk + p+1
S(p+1)

nk (T )x,

we infer (using our assumption) that

w− lim
k→∞

M(p+1)
nk (T )(T − I)y = Px.

On the other hand, by Theorem 2.1 we have M(p+1)
nk (T )(T − I)y→ 0 (k → ∞) in norm,

therefore Px = 0. Then x = (I−T )y which gives

y = w− lim
k→∞

S(p+1)
nk (T )(I−T )y = w− lim

k→∞

nk + p+1
nk +1

(y−M(p)
nk+1(T )y),

whence
w− lim

k→∞
M(p)

nk+1(T )y = 0.

This yields (as in Theorem 2.1.3 [3]) that y ∈ R(I−T ) , and finally we get x = (I −
T0)y ∈ R(I−T0) . In conclusion (iii) implies (i) , which ends the proof. �

Since the hypotheses on T in this theorem ensures also ||M(q)
n (T )|| = O(1) as

n → ∞ and (by (1.2)) ||M(q−1)
n (T )x|| = o(n) as n → ∞ for any x ∈ X and q > p , we

can change p by such a q in the statements (ii) and (iii) . So, we infer immediately
the following

COROLLARY 2.3. Let T ∈ B(X ) be as in Theorem 2.2 relative to an integer

p � 1 . If x ∈ X and ||S(q)
n (T )x|| = o(1) as n → ∞ , for some q > p, then x = 0 .

Proof. By Theorem 2.2 we have x = (I−T0) lim
n→∞

S(q)
n (T )x = 0, if lim

n→∞
S(q)

n (T )x =
0 and q > p . �

Some particular cases of Theorem 2.2 will be discussed in Section 3, these being
related to the results from Lin-Sine [6].
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REMARK 2.4. From the proof of the previous theorem we obtain lim
n→∞

S(p+1)
n (T )x

∈ R(I−T ) if x ∈ R(I−T0) . Thus, for T as in Theorem 2.2 we can define the linear
operator S : R(I−T0) → X0 by

Sx = lim
n→∞

S(p+1)
n (T )x, x ∈ R(I−T0) =: S . (2.4)

Then PS = 0, and by Theorem 2.2 we have (I−T0)Sx = x for x ∈ S . In addition, S
is a closed operator. Indeed, let (x,y) ∈ S ×X0 and {xk} ⊂ S be a sequence such
that xk → x and Sxk → y , k → ∞ . Therefore xk = (I−T0)Sxk → (I−T0)y , and we get
x = (I−T0)y . This yields by (2.3)

Sx = lim
n→∞

S(p+1)
n (T )(I−T )y = y−Py

and, on the other hand, one has Sx = limk→∞ Sxk = y . So, Py = 0 that is y = Sx , hence
S is closed.

This fact ensures that the domain S of the operator S is a Banach space with the
norm

||x||0 := ||x||+ ||Sx|| (x ∈ S ), (2.5)

and we shall use this remark in the sequel.

THEOREM 2.5. Let T ∈ B(X ) be such that ||M(p)
n (T )|| = O(1) and

||M(p−1)
n (T )x|| = o(n) , as n → ∞ , for any x ∈ X and some p � 1 . Then

||S(p+1)
n (T )x|| = O(1) as n → ∞ if and only if x ∈ ˜R(I−T0)X0

(the completion of
S relative to X0 ).

Proof. Suppose ||S(p+1)
n (T )x|| = O(1) as n → ∞ , for some x ∈ X . Then

M(p+1)
n (T )x = p+1

n+p+1S(p+1)
n (T )x → 0 (n → ∞) and by Theorem 2.1 it follows x ∈

R(I−T ) .

We define S(p+1)
n,0 (T )x0 = S(p+1)

n (T )(I − T0)x0 , for x0 ∈ X0 . So, S(p+1)
n,0 (T ) ∈

B(X0) , and by (2.3) and Theorem 2.1 we obtain immediately S(p+1)
n,0 (T )x → x (n →

∞), the convergence being in the norm of X . Using also (2.3) and the hypothesis, we
infer that there exists a constant c > 1 such that, for each y ∈ X0 and n � p− 1, we
have

||S(p+1)
n,0 (T )y|| � n+ p+1

n+1
(1+ ||M(p)

n+1(T )||)||y||

� 2(1+ sup
j�1

||M(p)
j (T )||)||y|| = c||y||.
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Thus, for x as above and n � p−1, we get

||S(p+1)
n,0 (T )x||0 = ||S(p+1)

n,0 (T )x||+ ||SS(p+1)
n,0 (T )x||

� c||x||+ lim
k→∞

||S(p+1)
k (T )S(p+1)

n,0 (T )x||

= c||x||+ lim
k→∞

||S(p+1)
n,0 (T )S(p+1)

k (T )x||

� c(||x||+ limsup
k→∞

||S(p+1)
k (T )x||),

because S(p+1)
k (T )x ∈ X0 , for any k . Hence supn�1 ||S(p+1)

n,0 (T )x|| < ∞ . Now, since

||S(p+1)
n,0 (T )x−x|| → 0 (n→ ∞), while R(S(p+1)

n,0 (T ))⊂S and (S , || · ||0) is a Banach

subspace of X0 , we conclude that x ∈ S̃X0 = ˜R(I−T0)X0
.

Conversely, let x∈ ˜R(I−T0)X0
and let xk ∈R(I−T0) be such that sup

k�1
||xk||0 < ∞

and ||xk − x|| → 0 (k → ∞). Remark firstly that, for y ∈ S of the form y = (I −T0)z
with z ∈ X0 , we obtain by (2.3) and Theorem 2.1 that S(p+1)

n (T )y → z−Pz (n → ∞).
So, we have Sy = z−Pz and also, for n � p−1,

||S(p+1)
n (T )y|| � 2||z−M(p)

n+1(T )z||
= 2||z−Pz+M(p)

n+1(T )(Pz− z)||
� 2(1+ sup

j�1
||M(p)

j (T )||)||Sy|| � c||y||0

with c > 1 as above. Taking y = xk , for k � 1, we find

||S(p+1)
n (T )xk|| � c||xk||0 � csup

j�1
||x j||0 = cc0,

and by passing to limit as k → ∞ we obtain ||S(p+1)
n (T )x|| � cc0 , for n � p−1. This

means ||S(p+1)
n (T )x|| = O(1) as n → ∞ , which ends the proof. �

Notice that Theorem 2.5 is also valid in the case p = 0 under the hypothesis

||Tn|| = ||M(0)
n (T )|| = O(1) as n → ∞ , that is T is power bounded. In fact, this result

is just the version for arbitrary Banach spaces of Proposition 1 (b ) from [2], obtained in
the reflexive spaces. In addition, if T is conditionally weakly compact then X0 = X ,

so T0 = T and ˜R(I−T0)X0
= ˜R(I−T )X . When X is reflexive, every T ∈ B(X )

is conditionally weakly compact and ˜R(I−T )X = R(I−T ) (see [1, 2]). Having in
view these facts, we can give the general saturation theorem, as follows.

THEOREM 2.6. Let T ∈ B(X ) be such that ||M(p)
n (T )|| = O(1) and

||M(p−1)
n (T )x|| = o(n) , as n → ∞ , for any x ∈ X and some p � 1 . The following

statements hold:
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(i) ||M(p+1)
n (T )x−Px||= o( 1

n) as n → ∞ if and only if x ∈ N (I−T );

(ii) ||M(p+1)
n (T )x−Px||= O( 1

n ) as n → ∞ if and only if

(a) x ∈ ˜R(I−T0)X0
⊕N (I−T) , or equivalently

(b) x ∈ ˜R(I−T)X ⊕N (I −T ) , if in addition T is conditionally weakly com-
pact, respectively

(c) x ∈ R(I−T )⊕N (I−T) , if X is reflexive.

Proof. (i) Suppose that ||M(p+1)
n (T )x−Px||= o( 1

n ) as n → ∞ , for some x ∈ X .

So, n(M(p+1)
n (T )x−Px)→ 0 (n → ∞) which implies

S(p+1)
n (T )(x−Px) =

n+ p+1
p+1

(M(p+1)
n (T )x−Px) → 0, n → ∞.

Then by Corollary 2.3 we have x−Px = 0, that is x∈N (I−T ) . The other implication
in (i) is obvious.

(ii) Assume now that ||M(p+1)
n (T )x−Px|| = O( 1

n ) as n → ∞ . This yields that

S(p+1)
n (T )(x−Px) = n+p+1

n(p+1) n(M(p+1)
n (T )x−Px) is a bounded sequence, so by Theorem

2.5 we have x−Px ∈ ˜R(I−T0)X0
, hence x ∈ ˜R(I−T0)X0

⊕N (I−T) .

Conversely, let x ∈ ˜R(I−T0)X0
⊕N (I−T) . Then

n(M(p+1)
n (T )x−Px) =

n(p+1)
n+ p+1

S(p+1)
n (x−Px),

and since x−Px ∈ ˜R(I−T0)X0
by our assumption, from Theorem 2.5 the sequence

{S(p+1)
n (T )(x−Px)} is bounded. So, ||M(p+1)

n (T )x−Px|| = O( 1
n ) as n → ∞ , and (ii)

is established in the general case (a) . The particular cases corresponding to (b) and
(c) being discussed above, the proof is finished. �

Remark that Theorem 2.6 is also true in the case p = 0, that is for Cesàro means
of order 1. This is a generalized version (for arbitrary Banach spaces) of Theorem 1
[1, p. 1173] from reflexive case. Our saturation theorem for Cesàro means of order
p � 1, has the same form like in the case p = 1 in [1] or the case p > 1 in [2], and we
proved the above results by adapting the method from [1] concerning the saturation of
Abel means. In fact, the above saturation theorems extend the similar results from [1,
2] obtained for power bounded operators.

It follows from Theorem 2.1 that, if {M(p)
n (T )} is strongly convergent for some

p � 1, then {M(q)
n (T )} is also strongly convergent for q > p (and the limits are equal).

But the converse is not necessarily true. Since the hypotheses of Theorem 2.6 remain
valid for q > p , we conclude that, from the point of view of saturation, both processes

{M(p)
n (T )} and {M(q)

n (T )} are “equivalent”. So, in the ergodic case, all Cesàro means
(of arbitrary order) are “equivalent”. Concretely, using the terminology of saturation
theory like in [1], we have



SATURATION FOR CESÀRO MEANS OF HIGHER ORDER 565

COROLLARY 2.7. Under the hypotheses of Theorem 2.6, the Cesàro process

{M(p+1)
n (T )} is saturated with order O( 1

n ) as n → ∞ , and the Favard (or saturation)
class is given by the statements (a) , (b) or (c) of Theorem 2.6, depending upon the
quoted hypotheses.

REMARK 2.8. The hypotheses of Theorem 2.6 do not ensure the saturation of

{M(p)
n (T )} , that is the conclusion of this theorem is not necessary true with M(p)

n (T )
instead of M(p+1)

n (T ) in the conditions (i) and (ii) . Indeed, for x ∈ R(I−T ) we have

n||M(p)
n (T )(T − I)x|| =

np
n+1

||M(p−1)
n+1 (T )x− x||

� p
2
(||M(p−1)

n+1 (T )x||− ||x||),

and so the assertions (i) and (ii) are not true for M(p)
n (T )y with y = (T − I)x ∈ R(I−

T0) , if {M(p−1)
n (T )x} is unbounded. We can see such an operator in the following

EXAMPLE 2.9. Let T ∈ B(X ) be a Cesàro ergodic operator which is not power
bounded. Consider the Banach space Y = R(I−T )⊕R(I−T) with the norm of
y = x⊕ z ∈ Y given by

||y|| =
√
||x||2 + ||z||2.

Let T̃ ∈ B(Y ) be the operator defined by the matrix

T̃ =
(

T0 S
0 I

)
,

where T0 = T |R(I−T ) , S = (T0 − I)J and J(0⊕ z) = z⊕ 0 for z ∈ R(I−T ) , I being

the identity operator in the matrix of T̃ . We have

T̃ n =
(

Tn
0 S(1)

n−1(T0)S
0 I

)
, Mn(T̃ ) =

(
Mn(T0) n

n+1S(2)
n−1(T0)S

0 I

)
.

Clearly, 1
nS(1)

n−1(T0)S = Mn−1(T0)S→ 0 strongly on R(I−T ) , hence 1
n T̃ n → 0 strongly

on Y , that is ||T̃ ny||= o(n) as n→∞ for y∈Y . On the other hand, since T0 is Cesàro
ergodic on R(I−T ) and R(S) = R(I −T0) , we infer from Theorem 2.5 for T0 (the

case p = 1) that ||S(2)
n (T0)S|| = O(1) as n → ∞ , hence ||Mn(T̃ )|| = O(1) as n → ∞ .

By the choice T is not power bounded on X = R(I−T)⊕N (I −T ) , so there
exists x0 ∈ R(I−T ) such that supn�1 ||Tn

0 x0|| = ∞ , which means that the sequence

{T̃ nx0} is unbounded. Since R(I − T̃ ) = R(I −T0) (by the definition of T̃ and the
fact that T̃ is an extension of T0 ), and T0 is Cesàro ergodic with N (I−T0) = {0} , we
have

R(I− T̃ ) = R(I−T0) = R(I−T ).
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Thus x0 ∈ R(I− T̃) and {M(0)
n (T̃ )x0} is unbounded, which by the last statement of

Remark 2.8 implies {n||Mn(T̃ )y−Py||} unbounded, where y = (I− T̃ )x0 .
In conclusion, T̃ satisfies the hypotheses of Theorem 2.6 in the case p = 1, but

the assertion (ii) concerning the order of saturation of the process {Mn(T̃ )y} is not
true for some y ∈ R(I− T̃ ) . In fact, it is easy to see that T̃ is Cesàro ergodic on Y ,
namely Mn(T̃ )(x⊕ z) →−z⊕ z (n → ∞) for x,z ∈ R(I−T) .

This example gives also a negative answer to a question of Butzer-Westphal in [1,
p.1173], namely Theorem 1 [1] is not valid, in general, under the hypothesis of Cesàro
ergodicity (even in the reflexive case).

REMARK 2.10. In the above results the hypothesis ||M(p−1)
n (T )x||= o(n) as n→

∞ for x ∈ X can be omitted for T with σ(T )∩T ⊂ {1} , this being a consequence of

the condition ||M(p)
n (T )||= O(1) as n→ ∞ . This fact was proved in Theorem 2.2 [13],

where even a stronger conclusion is obtained, namely that ||M(p)
n (T )|| = O(1) implies

||M(p−1)
n (T )|| = o(n) , as n → ∞ , if σ(T )∩T ⊂ {1} .
In particular, if we choose T in Example 2.9 with σ(T ) = {1} such that 1 is not

an eigenvalue of T , then T = T0 and σ(T̃ ) = {1} . In addition, T̃ is Cesàro ergodic on

Y = X ⊕X , hence {M(p)
n (T̃ )} strongly converges in B(Y ) , for any p � 1.

We can conclude from the above results, roughly speaking, that all Cesàro means
of any order p � 1, have the same behavior from the point of view of saturation theory.

3. Connections with some results of Lin-Sine

Remark now that Theorem 2.2 before is a generalized version for Cesàro means of
higher order of Theorem 1 [6] (see also [4]), the last being obtained from our theorem
for the order p = 1 and T Cesàro ergodic. In fact, for p = 1 we infer from Theorem
2.2 the following result of Lin-Sine [6] (Corollary 3).

COROLLARY 3.1. Let T ∈B(X ) be Cesàro bounded with Tn

n → 0 strongly. The
following statements are equivalent for x ∈ X :

(i) x ∈ R(I−T0);
(ii) xn := 1

n+1 ∑n
j=0 ∑ j

i=0 T ix converges strongly;
(iii) {xn} has a weakly convergent subsequence.
Moreover, if x ∈ R(I−T0) then x = (I−T0)(limn→∞ xn) .

Proof. We know that xn = S(2)
n (T )x , so we can apply Theorem 2.2 in the case

p = 1. �

Another interesting case of Theorem 2.2 is given below.

COROLLARY 3.2. Let T ∈B(X ) be such that ||M(2)
n (T )||= O(1) and ||Mn(T )x||

= o(n) , as n → ∞ , for x ∈ X . The following statements are equivalent for x ∈ X :
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(i) x ∈ R(I−T0);
(ii) x̃n := 2

(n+1)(n+2) ∑n
j=0 ∑ j

i=0 ∑i
k=0 Tkx converges strongly;

(iii) {x̃n} has a weakly convergent subsequence.
Moreover, if x ∈ R(I−T0) then x = (I−T0)(limn→∞ x̃n) .

Proof. We only have to show that x̃n = S(3)
n (T )x and to apply Theorem 2.2 in the

case p = 2. For this one has

(n+1)(n+2)S(3)
n (T )x =

(n+1)(n+2)(n+3)
3

M(3)
n (T )x

=
n

∑
j=0

(n+1− j)(n+2− j)T jx = (n+2)(n+1)I+(n+1)nT + ...+2 ·1Tn

=
n+1

∑
j=1

j−1

∑
i=0

(n+2− i)Tix =
n+1

∑
j=1

[(n+2− j)
j−1

∑
i=0

T ix+
j−1

∑
i=0

( j− i)T ix]

=
n+1

∑
j=1

[(n+2− j)S(1)
j−1(T )x+ jS(2)

j−1(T )x]

=
n

∑
j=0

(n+1− j)S(1)
j (T )x+

n+1

∑
j=1

j

∑
i=1

i−1

∑
k=0

Tkx

=
n+1

∑
j=1

j−1

∑
i=0

S(1)
i (T )x+

n+1

∑
j=1

j−1

∑
i=0

i

∑
k=0

Tkx = 2
n

∑
j=0

j

∑
i=0

i

∑
k=0

Tkx,

having in view the expressions of S(1)
j (T ) and S(2)

j (T ) quoted in the beginning of Sec-

tion 2. Thus we have x̃n = S(3)
n (T )x . �

In Corollary 2 [6] was shown that, in certain cases, the conditions of Corollary 3.1

are equivalent to the boundedness of {S(1)
n (T )x} . The general result corresponding to

Theorem 2.2, which also generalizes Butzer-Westphal’s result [1] (for Cesàro averages)
is the following

PROPOSITION 3.3. Let T ∈ B(X ) be with ||Mn(T )|| = O(1) as n → ∞ , and
assume that Tm is weakly compact, for some m � 1 . Then the three conditions of
Theorem 2.2, for some x ∈ X and p � 2 , are equivalent to the condition

(iv) ||S(2)
n (T )x|| = O(1) as n → ∞ .

Proof. If x = (I−T )y with y ∈ X then, for n � 1 and p � 2, we have

||S(p)
n (T )x|| = n+ p

n+1
||y−M(p−1)

n+1 (T )y|| � c(1+ sup
j�1

||M(p−1)
j (T )||)||y||,

for some constant c > 1 (depending of p ). Hence ||S(p)
n (T )x|| = O(1) as n → ∞ , and

this particularly holds for p = 2.
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Conversely, suppose now (iv) , that is supn�1 ||S(2)
n (T )x|| < ∞. From the proof of

Corollary 3.2 and the expression of S(2)
n (T ) we have

S(3)
n (T ) =

2
(n+1)(n+2)

n

∑
j=0

( j +1)S(2)
j (T ), (3.1)

whence we infer that supn�1 ||S(3)
n (T )x|| � supn�1 ||S(2)

n (T )x|| < ∞ .
Having in view that Tm is weakly compact, we obtain that the sequence

{TmS(3)
n (T )x} = {S(3)

n (T )Tmx} is weakly sequentially compact, hence it has a weakly
convergent subsequence. Since the assumption ||Mn(T )||=O(1) as n→∞ ensures that

||M(p)
n (T )||= O(1) and ||M(p−1)

n (T )y||= o(n) , as n→ ∞ , for y ∈X and p � 2, from
Theorem 2.2 (the case p = 2) it follows that Tmx∈R(I−T0) . So Tmx = (I−T0)z with

z ∈ X0 , and if y = z+ ∑m−1
j=0 T jx then (I−T )y = x . Since supn�1 ||S(3)

n (T )x|| < ∞ we
have x∈X by Theorem 2.5, and also y∈X0 . Finally, x = (I−T0)y so x∈R(I−T0) ,
and using an above remark we conclude that (iv) implies the (equivalent) conditions of
Theorem 2.2, for p � 2. This ends the proof. �

REMARK 3.4. From relation (3.1) we infer that the boundedness of {S(2)
n (T )}

implies the boundedness of {S(3)
n (T )} . But from Theorem 2.5 it follows that

supn�1 ||S(p)
n (T )x|| < ∞ , which ensures that supn�1 ||S(p+1)

n (T )x|| < ∞ , for any p � 1
and x ∈ X . So, Proposition 3.3 remains valid if the Cesàro boundedness of T is re-

placed by the weaker hypothesis ||M(p−1)
n (T )|| = O(1) as n → ∞ , and with S(p)

n (T )
instead of S(2)

n (T ) in the condition (iv) .
As in [6] (in the case p = 1) we mention that (iv) does not imply the conditions

of Theorem 2.2, for p � 2, in general. We see this fact in the following example, which

shows also that (iv) is not equivalent to the convergence of {S(2)
n (T )x} .

EXAMPLE 3.5. Let T ∈ B(X ) be Cesàro bounded which is not Cesàro ergodic,
with σ(T ) = {1} . Therefore X0 � X and let x0 ∈ X , x0 /∈ X0 , and X̂ = ∨n�0Tnx
(the closed linear manifold), where x = (I−T )x0 . We put T̂ = T |

X̂
.

By Remark 2.10, one has 1
nT n → 0 strongly on X , so Mn(T )x → 0 as n → ∞ ,

and since supn�1 ||Mn(T )||< ∞ we infer Mn(T̂ )y→ 0 as n → ∞ for all y ∈ X̂ . Hence

T̂ is Cesàro ergodic on X̂ and we have X̂ = X̂0 =R(I− T̂ ) , T̂ = T̂0 . Now, assuming
x ∈ R(I− T̂ ) we get x1 ∈ X̂ with x = (I− T̂ )x1 . Then (I−T )(x0 − x1) = 0 and we
obtain

Mn(T )x0 = Mn(T )(x0− x1)+Mn(T )x1 → x0 − x1, n → ∞,

and this contradicts the choice of x0 . Hence x /∈ R(I− T̂ ) .
On the other hand, we have

S(2)
n (T̂ )x = S(2)

n (T )x =
n+2
n+1

(x0−Mn+1(T )x0),
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and it follows that ||S(2)
n (T̂ )x|| = O(1) as n → ∞ . Having in view the choice of x0 , we

infer that {S(2)
n (T̂ )x} is not convergent. We conclude that T̂ satisfies the condition (iv)

of Proposition 3.3, but the conditions of Theorem 2.2 are not satisfied for T̂ on x , for
arbitrary p � 2.

Notice that Corollary 2.3 gives an information concerning the norm convergence

of {S(p)
n (T )x} , for x ∈ X .
Next we refer to the weak convergence of this sequence. We have the following

THEOREM 3.6. Let T ∈ B(X ) be such that ||M(p−1)
n (T )|| = O(1) as n → ∞ ,

and assume that Tm is weakly compact, for some p,m � 1 . Then {S(p)
n (T )x} weakly

converges for some x ∈ X if and only if M(p−1)
n (T )x → 0 (n → ∞) weakly and

limsup
n→∞

||S(p)
n (T )x|| < ∞. (3.2)

Moreover, if S(p)
n (T )x → y (n → ∞) weakly, then x = (I−T )y.

Proof. Suppose S(p)
n (T )x → y weakly. This leads to the relation

(I−T )y = w− lim
n→∞

S(p)
n (T )(I−T)x = w− lim

n→∞

n+ p
n+1

(x−M(p−1)
n+1 (T )x)

and we infer that M(p−1)
n (T )x → x− (I−T)y =: z weakly. Using (1.3) we get

(I−T)z = w− lim
n→∞

(
M(p−1)

n (T )x− n+ p
n+1

M(p−1)
n+1 (T )x+

p−1
n+1

x
)

= 0,

that is z ∈ N (I −T) . So x = (I −T)y+ z ∈ X0 and because {S(p)
n (T )x} is bounded

(being weakly convergent), by Theorem 2.5 it follows that x ∈ ˜R(I−T0)X0
. Thus

z∈R(I−T )∩N (I−T ) hence z = 0. We conclude that M(p−1)
n (T )x→ 0 weakly and

the condition (3.2) holds by the boundedness of {S(p)
n (T )x} .

Conversely, assume that M(p−1)
n (T )x → 0 weakly and that (3.2) is satisfied. This

implies that there exists a subsequence {nk} of positive integers such that sup
k�1

||S(p)
nk (T )x||

< ∞ . Since Tm is weakly compact, the sequence {S(p)
nk (T )Tmx} is sequentially weakly

compact, so there exists a subsequence {ki} ⊂ {nk} such that S(p)
ki

(T )Tmx → y weakly
as i → ∞ . Then the limit y will be a norm limit of convex combinations yq of the form

yq =
mq

∑
j=1

λ (q)
j S(p)

k j
(T )Tmx, λ (q)

j � 0,
mq

∑
j=1

λ (q)
j = 1.
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Let ε > 0 and q0 � 1 such that ||yq0 − y|| < ε . For any f ∈ X ∗ and n � 1 we
obtain

| f (M(p−1)
n (T )y)| � | f (M(p−1)

n (T )(y− yq0))|+ | f (M(p−1)
n (T )yq0)|

� ε|| f ||sup
j�1

||M(p−1)
j (T )||+

mq0

∑
j=1

λ (q0)
j |( f ◦ S(p)

k j
(T )Tm)(M(p−1)

n (T )x)|.

So, using the fact that M(p−1)
n (T )x → 0 weakly, we infer

limsup
n→∞

| f (M(p−1)
n (T )y)| � ε|| f ||sup

j�1
||M(p−1)

j (T )||.

Hence limn→∞ f (M(p−1)
n (T )y) = 0 for f ∈ X ∗ , that is M(p−1)

n (T )y → 0 weakly.
Let now z = y+ ∑m−1

j=0 T jx , therefore (I−T)z = x . We have

S(p)
n (T )x =

n+ p
n+1

(z−M(p−1)
n+1 (T )z)

=
n+ p
n+1

(z−M(p−1)
n+1 (T )y−

m−1

∑
j=0

T jM(p−1)
n+1 (T )x),

whence it follows that S(p)
n (T )x → z weakly as n → ∞ . This ends the proof. �

The assumption that Tm is weakly compact was used only in the “if” part of
Theorem 3.6.

The case p = 1 of this theorem gives Corollary 4 [6], and the cases p = 2 and
p = 3 are mentioned below.

COROLLARY 3.7. Let T ∈ B(X ) be Cesàro bounded with Tm weakly compact
for some m � 1 . The following are equivalent for x ∈ X :

(i) xn = 1
n+1 ∑n

j=0 ∑ j
i=0 T ix converges weakly;

(ii) Mn(T )x → 0 weakly, and limsupn→∞ ||xn|| < ∞.
In this case, we have x = (I−T)z, z being the limit of (i) .

COROLLARY 3.8. Let T ∈ B(X ) be with ||M(2)
n (T )|| = O(1) , n → ∞ and with

Tm weakly compact, for some m � 1 . The following are equivalent, for x ∈ X :
(i) x̃n = 2

(n+1)(n+2) ∑n
j=0 ∑ j

i=0 ∑i
k=0 T ix converges weakly;

(ii) M(2)
n (T )x → 0 weakly, and limsupn→∞ ||x̃n|| < ∞.

In this case, we have x = (I−T)z, z being the limit of (i) .

Concerning the remark before Example 3.5, we can see now that if X is a dual
space then the condition (iv) of Proposition 3.3 on some T and x is equivalent to
x ∈ R(I−T ) , a weaker condition than x ∈ R(I−T0) from Theorem 2.2.

In fact, we have the following general result. As usually, for T ∈ B(X ) we
denote by T ∗ ∈ B(X ∗) the adjoint of T on the dual space X ∗ of X .
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THEOREM 3.9. Let T ∈ B(X ) be such that ||M(p−1)
n (T )|| = O(1) as n → ∞ ,

for some p � 1 . The following statements are equivalent, for f ∈ X ∗ :
(i) f ∈ R(I−T ∗);
(ii) ||S(p)

n (T ∗) f || = O(1) as n → ∞;

(iii) ||S(q)
n (T ∗) f || = O(1) as n → ∞ , for all q � p.

Moreover, if the sequence {M(p−1)
n (T ∗)} converges strongly in B(X ∗) , for some

p � 2 , then the conditions (i)− (iii) are also equivalent to

(iv) {S(q)
n (T ∗) f} converges in the norm of X ∗ , for q � p.

In this last case, we have f = (I−T ∗)g, where g is the limit of (iv) .

Proof. The hypothesis on T implies ||M(q)
n (T ∗)||= O(1) as n→∞ , for q � p−1.

Suppose (i) , so f = (I−T ∗)g with g ∈ X ∗ . Then, for q � p we have

S(q)
n (T ∗) f =

n+q
n+1

(g−M(q−1)
n+1 (T ∗)g),

and it follows that ||S(q)
n (T ∗) f || = O(1) as n → ∞ , that is (iii) .

Assume now (ii) . Then {S(p)
n (T ∗) f} is bounded and, because of weak*-com-

pactness, this sequence has a subnet S(p)
nk (T ∗) f → g in the weak*-topology of X ∗ , for

some g ∈ X ∗ . So, for x ∈ X we have

[(I−T ∗)g](x) = g((I−T )x) = lim[S(p)
nk (T ∗) f ]((I −T )x)

= lim(S(p)
nk (T ∗)(I−T ∗) f )(x) = lim

nk + p
nk +1

( f −M(p−1)
nk+1 (T ∗) f )(x),

whence we infer that M(p−1)
nk+1 (T ∗) f → f − (I−T∗)g =: h in the weak*-topology. But

using (1.3) we get (I − T ∗)M(p−1)
nk+1 (T ∗) f → 0 in the weak*-topology, hence (I −

T ∗)h = 0, that is h ∈ N (I − T ∗) . But the assumption (ii) implies by Theorem 2.5
that f ∈ R(I−T ∗) , hence h = f − (I − T ∗)g ∈ R(I−T∗) , and so h = 0. Thus
f = (I − T ∗)g which means (i) . Trivially (iii) implies (ii) , and we conclude that
all conditions (i) , (ii) and (iii) are equivalent.

Now, if {M(p−1)
n (T ∗)} converges strongly in B(X ∗) , for some p � 2, then

X ∗ = X ∗
0 and T = T ∗

0 . We have also { 1
nM(p−2)

n (T ∗)} converges strongly, and ap-
plying Theorem 2.2 to T ∗ we conclude that (i) is equivalent to (iv) , in this case. �

The case p = 1 of Theorem 3.9 is just Theorem 5 [6] (see also [5]) obtained for
power bounded operators. Our version in the case of Cesàro bounded operators, that is
the case p = 2, is the following

COROLLARY 3.10. Let T ∈B(X ) be Cesàro bounded. The following are equiv-
alent for f ∈ X ∗ :

(i) f ∈ R(I−T ∗);
(ii) supn�1 || 1

n+1 ∑n
j=0 ∑ j

i=0 T ∗ j f || < ∞.
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If T is Cesàro ergodic then these conditions are equivalent to the norm conver-
gence of the sequence from (ii) and, in this case, the limit g of this sequence satisfies
(I−T ∗)g = f .

Since Cesàro boundedness (respectively, ergodicity) of T ∗ ensures the bounded-

ness (the strong convergence) of {M(p−1)
n (T ∗)} for all p � 2, we have, in fact, that

the conditions of Corollary 3.10 are equivalent to those of Theorem 3.9, for all p � 2
(respectively).
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Sibiu, 550012, Romania
e-mail: laurians2002@yahoo.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


