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HYPONORMAL TRIGONOMETRIC TOEPLITZ OPERATORS

IN SUNG HWANG AND AN HYUN KIM

(Communicated by R. Curto)

Abstract. We investigate hyponormal Toeplitz operators Tφ with trigonometric polynomial sym-
bols φ via the Carathéodory-Schur Interpolation Problem. We present several formulae for com-
puting the rank of the selfcommutator [T ∗

φ ,Tφ ] in the cases where Tφ is a hyponormal operator.
In addition we consider the hyponormal extension problem of Toeplitz operators.

Introduction

In 1988, C. Cowen [3] characterized the hyponormality of Toeplitz operators Tφ
on the Hardy space H2(T) of the unit circle T . This theorem makes it possible to
answer an algebraic question coming from operator theory by studying the function
φ itself. K. Zhu [22] noticed that for the cases of trigonometric polynomials φ , this
algebraic question is exactly the Carathéodory–Schur Interpolation Problem. Indeed
the Carathéodory–Schur Interpolation Problem can be carried out to obtain substan-
cial informations about hyponormal Toeplitz operators with trigonometric polynomial
symbols. The goal of the present paper is to investigate the recent development on the
study for hyponormal Toeplitz operators with trigonometric polynomial symbols and to
present some new results on the rank of the self-commutator. Our approach emphasizes
the use of the Carathéodory–Schur Interpolation Problem, and some proofs are done in
a simpler way.

A bounded linear operator A on a complex Hilbert space H is called hyponormal
if [A∗,A] = A∗A−AA∗ � 0. Given φ ∈ L∞(T) , the operator Tφ on the Hardy space
H2(T) of the unit circle T defined by Tφ f = P(φ · f ) (where f ∈H2(T) and P denotes
the orthogonal projection from L2(T) onto H2(T)) is called the Toeplitz operator with
symbol φ . The characterization of hyponormality in [3] requires one to solve a certain
functional equation in the unit ball of H∞(T) . Suppose that φ ∈ L∞(T) is arbitrary and
consider the following subset of the closed unit ball of H∞(T) :

E (φ) = {k ∈ H∞(T) : ||k||∞ � 1 and φ − kφ ∈ H∞(T)} . (1)

Cowen’s theorem states that Tφ is hyponormal if and only if E (φ) is nonempty ([3],
[19]). The hyponormality of Toeplitz operators has been studied by many authors (cf.
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[2], [3], [4], [6], [7], [8], [12], [13], [14], [15], [16], [17], [19], [22] and etc.). K. Zhu
[22] showed that the problem of finding a solution in E (φ) is related to the classical in-
terpolation problem so called Carathéodory–Schur Interpolation Problem and obtained
an abstract characterization of those trigonometric polynomial symbols that correspond
to hyponormal Toeplitz operators.

In Section 1 we investigate the recent development on the study for the hyponor-
mality of trigonometric Toeplitz operators, i.e., Toeplitz operators with trigonometric
polynomial symbols. In particular we focus on the relationship between hyponormality
of trigonometric Toeplitz operators and Carathéodory–Schur Interpolation Problem. In
Section 2 we derive several methods to compute the rank of the selfcommutator of hy-
ponormal trigonometric Toeplitz operators. In Section 3, we consider the hyponormal
extension problem of Toeplitz operators.

1. Basic properties

If φ is a trigonometric polynomial of the form φ(z) = ∑N
n=−m anzn , where a−m

and aN are nonzero, then the nonnegative integers N and m denote the analytic and
co-analytic degrees of φ . If a function k ∈ H∞ satisfies φ − kφ ∈ H∞ , then we have

k
N

∑
n=1

anz
−n −

m

∑
n=1

a−nz
−n ∈ H∞ . (2)

If we write the Fourier coefficient k̂(n) := cn , for n = 0,1, . . . ,N − 1, then by (2),
c0, . . . ,cN−1 are determined uniquely from the coefficients of φ as follows: c0 = c1 =
· · · = cN−m−1 = 0 and⎛⎜⎜⎜⎝

cN−m

cN−m+1
...

cN−1

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
aN−m+1 aN−m+2 . . . aN−1 aN

aN−m+2 aN−m+3 . . . aN 0
...

...
. . .

...
...

aN 0 . . . 0 0

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

a−1

a−2
...

a−m

⎞⎟⎟⎟⎠ . (3)

The function kp(z) := ∑N−1
j=N−m c jz j is the unique analytic polynomial of degree less

than N satisfying φ − kφ ∈ H∞ . Thus the problem of finding a solution in E (φ) is to
find a function k in the closed unit ball of H∞ interpolating kp .

On the other hand, it was shown in [19] that if Tφ is a hyponormal operator such
that its selfcommutator is of finite rank then E (φ) contains a finite Blaschke product
whose degree is exactly the rank of the selfcommutator [T ∗

φ ,Tφ ] .

LEMMA 1.1. (Nakazi-Takahashi’s Theorem) [19] A Toeplitz operator Tφ is hy-
ponormal and the rank of the selfcommutator [T ∗

φ ,Tφ ] is finite (e.g., φ is a trigonomet-
ric polynomial) if and only if there exists a finite Blaschke product k ∈ E (φ) such that
deg(k) = rank [T ∗

φ ,Tφ ] , where deg(k) denotes the degree of k .

If φ is a trigonometric polynomial then there are several conditions that φ must
necessarily satisfy in order for Tφ to be a hyponormal operator.
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LEMMA 1.2. (Conditions Necessary for Hyponormality) [8] Suppose that φ is
a trigonometric polynomial of the form φ(z) = ∑N

n=−m anzn , where a−m and aN are
nonzero. If Tφ is hyponormal then m � N , |a−m| � |aN | , and N−m � rank [T ∗

φ ,Tφ ] �
N .

Lemma 1.2 shows that the cases where |a−m| = |aN | are, in some sense, extremal
among all possibilities for hyponormality. In the below we treat such cases and the
result will show, passing to the normality that one further feature, namely a symmetry
property of the Fourier coefficients, is present. In general if φ(z) = ∑N

n=−m anzn , then
the hyponormality of Tφ is independent of the particular values of the Fourier coeffi-
cients a0,a1, · · · ,aN−m of φ .

We can have more:

LEMMA 1.3. [4, Lemma 1.5] Suppose that φ is a trigonometric polynomial such
that φ := g+ f , where f and g are in H∞(T) . If ψ := g+Tzr f (r � N−m) then Tφ
is hyponormal if and only if Tψ is.

Lemma 1.3 shows that if φ(z)= ∑N
n=−m anzn , then the analytic part of φ , ∑N

n=0 anzn ,
can be “pulled back” to ∑m

n=0 aN−m+nzn when studying the hyponormality of Tφ . For
example, if φ(z) = a−1z−1 +∑N

n=0 anzn and ψ(z) = a−1z−1 +aNz then Tφ is hyponor-
mal if and only if Tψ is.

LEMMA 1.4. (Normality of Tφ ) [7] If φ(z) = ∑N
n=−m anzn then Tφ is normal if

and only if m = N , |a−N | = |aN | , and

aN

⎛⎜⎜⎜⎝
a−1

a−2
...

a−N

⎞⎟⎟⎟⎠= a−N

⎛⎜⎜⎜⎝
a1

a2
...

aN

⎞⎟⎟⎟⎠ .

Proof. We here give a direct proof. By the Brown-Halmos theorem [1] Tφ is
normal if and only if there are scalars α,β ∈ C and a real-valued ψ ∈ L∞ such that
Tφ = αTψ + β I . Hence Tφ is normal if and only if m = N and

an =

{
α ψ̂(n) for n = 1, · · · ,N
α ψ̂(n) for n = −1, · · · ,−m,

or equivalently, a− j = eiθ a j for j = 1, · · · ,N and some fixed θ ∈ [0,2π) . This gives
the desired result. �

In view of Lemma 1.2 the following is a characterization of hyponormality of
trigonometric Toeplitz operators for an extremal case.
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LEMMA 1.5. (Extremal Cases of φ ) [7] Suppose that φ(z) = ∑N
n=−m anzn , where

|a−m| = |aN | . Then Tφ is hyponormal if and only if the following equation holds:

aN

⎛⎜⎜⎜⎝
a−1

a−2
...

a−m

⎞⎟⎟⎟⎠= a−m

⎛⎜⎜⎜⎝
aN−m+1

aN−m+2
...

aN

⎞⎟⎟⎟⎠ .

Furthermore if Tφ is hyponormal then the rank of [T ∗
φ ,Tφ ] is N−m.

Although a proof was given in [7, Lemma 1.4] we give here a simple proof.

Proof. Suppose that Tφ is hyponormal and let c0, · · · ,cN−1 be the solution to the
recurrence relation (3). In view of Lemma 1.1 we assume that k(z) = ∑∞

j=0 c jz j is a
finite Blaschke product in E (φ) . Since c0 = · · · = cN−m−1 = 0, k is of the form

k(z) = eiθ zN−m
r

∏
j=1

z−β j

1−β jz
(r � m, 0 < |β j| < 1).

But since a−m
aN

= cN−m = eiθ ∏r
j=1(−β j) , it follows that ∏r

j=1 |β j|= | a−m
aN

| . Since by our

assumption |a−m| = |aN | , we can see that k(z) = eiθ zN−m . By the Cowen’s theorem,
a− j = eiθ aN−m+ j for j = 1, · · · ,m . The converse follows at once from Theorems 1.3
and 1.4. The second assertion follows at once from Lemma 1.1 together with the fact
that k(z) = eiθ zN−m . �

In the sequel, without loss of generality we may assume m = N when we consider
the hyponormality of Tφ . We now turn our attention to the relationship between the
hyponormality of trigonometric Toeplitz operators and a finite interpolation problem.

From the preceding argument we can see that if k(z) = ∑∞
j=0 c jz j is a function in

H∞ , then φ − kφ ∈ H∞ if and only if c0, · · · ,cN−1 are given by (3). So by the Cowen’s
theorem, if c0, · · · ,cN−1 are given by (3) then the hyponormality of Tφ is equivalent to
the existence of a function k ∈ H∞ satisfying

(i) k̂( j) = c j, j = 0, · · · ,N−1;

(ii) ||k||∞ � 1.

This is exactly the classical interpolation theorem so called Carathéodory–Schur Inter-
polation Problem (CSIP). Thus the problem of hyponormality for Tφ reduces to CSIP.
CSIP is analyzed by Schur numbers. We review here Schur’s algorithm. Suppose that
k(z) = ∑∞

j=0 c jz j is in the closed unit ball of H∞ . Let k0 := k . Define by induction a
sequence {kn} of functions in the closed unit ball of H∞ as follows:

kn+1(z) =
kn(z)− kn(0)

z
(
1− kn(0)kn(z)

) , |z| < 1, n = 0,1,2, · · · .



HYPONORMAL TRIGONOMETRIC TOEPLITZ OPERATORS 577

Then kn(0) only depends on the coefficients c0,c1, · · · ,cn . We write

kn(0) = Φn(c0, · · · ,cn) (n = 0,1,2, · · ·),
where Φn is a function of n+1 complex variables. We call the Φn ’s Schur’s functions
and the |Φn|’s Schur numbers. Then CSIP is solvable if and only if |Φn(c0, · · · ,cn)|� 1
for every n = 0,1, · · · ,N − 1 (cf. [20], [9]). Therefore if φ(z) = ∑N

n=−N anzn and if
c0, · · · ,cN−1 are given by (3), then one can at once see that the following statements are
equivalent (cf. [22]):

1. Tφ is a hyponormal operator.

2. |Φn(c0, · · · ,cn)| � 1 for every n = 0,1, · · · ,N−1.

By a straightforward calculation we can see that

Φ0(c0) = c0, Φ1(c0,c1) =
c1

1−|c0|2 , and Φ2(c0,c1,c2) =
c2(1−|c0|2)+ c0c2

1

(1−|c0|2)2−|c1|2 .

Thus for example, if φ(z) = ∑2
n=−2 anzn then Tφ is hyponormal if and only if |c1| �

1−|c0|2 or equivalently,
∣∣det

( a−1 a−2
a1 a2

)∣∣� |a2|2−|a−2|2 (cf. [6], [22]). However, with
trigonometric polynomials of higher degree, the above criterion would be too compli-
cated to be of much value because no closed-form for Schur’s function Φn is known.

On the other hand, CSIP can be analyzed by a matricial argument (cf. [20]): CSIP
is solvable if and only if the Toeplitz matrix

C :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 0 . . . 0

c1 c0
. . .

...
...

. . .
. . .

. . .
...

cN−2
. . .

. . . 0
cN−1 cN−2 . . . c1 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is a contraction, i.e., ||C|| � 1. Today this result is also called the Carathéodory-Fejér
theorem. A proof of this result can be accomplished by means of the commutant lifting
theorem (cf. [9], [11]). In particular, k is a solution of CSIP if and only if the Toeplitz
operator Tk with symbol k is a contractive lifting of C which commutes with the uni-
lateral shift on �2 . We thus have that Tφ is a hyponormal operator if and only if the
Toeplitz matrix C above is a contraction.

The hyponormality of trigonometric Toeplitz operators Tφ can be also determined
by zeros of an analytic polynomial induced by φ . This was done in the cases where φ
is a circulant polynomial [8] or where zNφ satisfies the condition that the set {ζ , 1/ζ :
ζ and 1/ζ are zeros of zNφ } contains at least (N +1) elements [14]. In [16], this was
accomplished for the general polynomial symbols φ . The main idea runs as follows.
Let f be an anlytic polynomial of the form f (z) = ∑N

j=0 b jz j with bN = 1. Then g :=
f

zN f
∈ E (φ) if and only if (i) g satisfies the interpolation g̃( j) = c j for j = 0, · · · ,N−1,
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where g̃( j) denotes the j -th Taylor coefficient for g and the c j are given in (3); and
(ii) g ∈ H∞ . Then a straightforward calculation and a simplication shows that the first
condition (i) is equivalent to the condition that if we let H denote the block Hankel
matrix given by

H :=

⎛⎜⎜⎜⎝
0 ... ... 0 A0

... 0 A0 A1

... · · ·
...

0 A0 · AN−3
A0 A1 ... AN−3 AN−2

⎞⎟⎟⎟⎠ , where Aj :=
(

Re c j Im c j
Im c j −Re c j

)
( j = 0, · · · ,N−2)

and let V := (Rec1, Imc1,Rec2, Imc2, · · · ,RecN−1, ImcN−1) ∈ R2N−2 , then the linear
system

(I−H)XT = VT (4)

( I is the identity matrix of degree 2N−2 and the unknown is X ∈ R2N−2 ) is solvable.
Also the second condition (ii) is equivalent to the condition that if f denote the analytic
polynomial

f (z) := c0 +
N−1

∑
j=1

(x j + iy j)z j + zN , (5)

where XT := (x1,y1,x2,y2, · · · ,xN−1,yN−1)T is a solution of the system (4) then for
every zero ζ of f such that |ζ | > 1, the number 1/ζ is a zero of f in the open unit
disk D of multiplicity greater than or equal to the multiplicity of ζ . In fact the latter
condition is equivalent to the condition that f

zN f
is a finite Blaschke product.

We can now summarize criteria for the hyponormality of trigonometric Toeplitz
operators.

LEMMA 1.6. Suppose φ(z) = ∑N
n=−N anzn , where aN is nonzero and that c0, · · · ,

cN−1 are given by (3). Then the following statements are equivalent.

1. Tφ is a hyponormal operator.

2. |Φn(c0, · · · ,cn)| � 1 for n = 0,1, · · · ,N−1 .

3. C =

⎛⎜⎜⎜⎜⎜⎝
c0 0 0 ... 0

c1 c0

. . .
...

...
. . .

. . .
. . .

...

cN−2

. . .
. . . 0

cN−1 cN−2 ... c1 c0

⎞⎟⎟⎟⎟⎟⎠ is a contraction.

4. I−CC∗ � 0 .

5. The linear system (I−H)XT =VT in (4) is solvable and if f is given by (5) then
for every zero ζ of f such that |ζ | > 1 , the number 1/ζ is a zero of f in the
open unit disk D of multiplicity greater than or equal to the multiplicity of ζ .
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6. If f is given by (5) then f
zN f

is a finite Blaschke product such that rank [T ∗
φ ,Tφ ] =

deg
(

f
zN f

)
.

It would be interesting to compare the third criterion and the fifth criterion. The
former involves the norm of an m×m Toeplitz matrix C (and in turn, eigenvalues of
C∗C ). By comparison, the latter involves the zeros of an analytic polynomial of degree
N induced by the values of entries of C . So the load of working with each criterion is
on a par.

EXAMPLE 1.7. Consider the trigonometric polynomial

φ(z) = −2z−4 +9z−3−12z−2 +4z−1−2z2 +9z3−12z4 +4z5.

Observe that c0 = 0 and

(
c1
c2
c3
c4

)
=
( −2 9 −12 4

9 −12 4 0
−12 4 0 0
4 0 0 0

)−1( 4
−12
9
−2

)
=

⎛⎜⎝− 1
2

3
4
3
8
3
16

⎞⎟⎠ .

First we use the criterion (5) of Lemma 1.6 to determine the hyponormality of Tφ .
Observe

I6−H =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 1

2 0

0 1 0 0 0 − 1
2

0 0 3
2 0 − 3

4 0

0 0 0 1
2 0 3

4
1
2 0 − 3

4 0 5
8 0

0 − 1
2 0 3

4 0 11
8

⎞⎟⎟⎟⎟⎟⎠ and VT =

⎛⎜⎜⎝
3
4
0
3
8
0
3
16
0

⎞⎟⎟⎠ .

Since rank [I6−H] = 4 = rank [I6−H : VT ] , the system (I6−H)XT = VT is solvable.
If X := (x1,y1,x2,y2,x3,y3) then a solution of this system is given by x1 = 1, x2 = 0,
x3 = − 1

2 , y1 = y2 = y3 = 0. Thus the testing polynomial f is obtained by

f (z) = −1
2

+ z− 1
2
z3 + z4,

which has zeros at z = 1
2 ,−1,(−1)

1
3 ,−(−1)

2
3 . Therefore by the criterion (5), Tφ is

hyponormal. Next we use the criterion (3) of Lemma 1.6. Write

C =

⎛⎜⎜⎝
− 1

2 0 0 0
3
4 − 1

2 0 0
3
8

3
4 − 1

2 0
3
16

3
8

3
4 − 1

2

⎞⎟⎟⎠ .

To determine the hyponormality of Tφ we will check the contractivity of C . Re-
call that the norm of C is the largest singular value of C , i.e., ||C|| = max{√λ :
λ is an eigenvalue of C∗C} . A straightforward calculation shows that eigenvalues of
C∗C are 1

256 ,1, and so ||C|| = 1. Therefore by the criterion (3), Tφ is hyponormal.
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EXAMPLE 1.8. Consider the trigonometric polynomial

φ(z) = z−4 + z−3 +2z−2 + z2 +2z3 +2z4.

Observe (
c0
c1
c2
c3

)
=
(

0 1 2 2
1 2 2 0
2 2 0 0
2 0 0 0

)−1( 0
2
1
1

)
=

⎛⎝ 1
2
0
3
4

− 3
4

⎞⎠ .

First we use the criterion (5) of Lemma 1.6. Observe

I6−H =

⎛⎜⎜⎜⎜⎝
1 0 0 0 − 1

2 0

0 1 0 0 0 1
2

0 0 1
2 0 0 0

0 0 0 3
2 0 0

− 1
2 0 0 0 1

4 0

0 1
2 0 0 0 7

4

⎞⎟⎟⎟⎟⎠ and VT =

⎛⎜⎜⎝
0
0
3
4
0

− 3
4

0

⎞⎟⎟⎠ .

Then a straightforward calculation shows that rank [I6−H]= 5 �= 6 = rank [I6−H :VT ] .
Thus the system Thus the system (5) (I6 −H)XT = VT has no solution, and hence by
the criterion (5), Tφ is not hyponormal. Next we use the criterion (3) of Lemma 1.6.
Write

C =

⎛⎜⎜⎝
1
2 0 0 0
0 1

2 0 0
3
4 0 1

2 0
− 3

4
3
4 0 1

2

⎞⎟⎟⎠ .

Then a straightforward calculation shows that the largest singular value of C is ap-
proximately 1.39299, and so ||C|| ≈ 1.39299. Therefore by the criterion (3), Tφ is not
hyponormal.

2. The set E (φ) and rank of the selfcommutator [T ∗
φ ,Tφ ]

If Tφ is a hyponormal operator then E (φ) is nonempty. Further if [T ∗
φ ,Tφ ] is

of finite rank then by the Nakazi-Takahashi theorem, E (φ) contains a finite Blaschke
product whose degree is equal to rank [T ∗

φ ,Tφ ] . To see more informations on E (φ) ,
we review here the Carathéodory’s theorem (cf. [10, Theorem I.2.1]) which states
that for every function k in the closed unit ball of H∞ there exists a sequence {Bn}
of finite Blaschke products that converges to k(z) pointwise on D . Its proof relies
upon a construction of a sequence {Bn} of finite Blaschke products satisfying that if
k(z) = ∑∞

j=0 c jz j is in the closed unit ball of H∞(T) then

B̂n( j) = c j for j = 0, · · · ,n.

The construction runs as follows. Write Φn for the n -th Schur’s function corresponding
to the function k . Since |Φ0| = |c0| � 1, we can take B0 := z+Φ0

1+Φ0z
. If |Φ0| = 1 then
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B0 = c0 is the Blaschke product such that B0 = k . Write B(0)
0 := B0 . If |Φ j| < 1 for

j = 0, · · · ,n , let

B(0)
n :=

z+ Φn

1+ Φnz

and define by induction

B( j)
n :=

zB( j−1)
n + Φn− j

1+ Φn− j zB( j−1)
n

( j = 1, · · · ,n).

Set Bn := B(n)
n . Then Bn satisfies the interpolation B̂n( j) = c j for j = 0, · · · ,n . If

|Φn|= 1, then Bn is the finite Blaschke product such that Bn = k . This will be referred
to the Carathéodory construction. In particular a careful analysis on the Carathéodory
construction shows that if |Φn|< 1 then deg(Bn) = n+1, and if instead |Φn|= 1 then
deg(Bn) = n (also see [16]).

We also recall the connection between Hankel and Toeplitz operators. For φ in
L∞(T) , the Hankel operator Hφ : H2 → H2 is defined by Hφ f = J(I−P)(φ f ) , where
J : (H2)⊥ →H2 is given by Jz−n = zn−1 for n � 1. The following is a basic connection:

Tφψ −TφTψ = H∗
φ Hψ (φ ,ψ ∈ L∞) and Hφψ = T ∗

h̃
Hφ (h ∈ H∞),

where for ζ ∈ L∞(T) , we define ζ̃ = φ(z) . From this we can see that if k ∈ E (φ) then

[T ∗
φ ,Tφ ] = H∗

φ Hφ −H∗
φHφ = H∗

φ Hφ −H∗
kφHkφ = H∗

φ (1− T̃kT
∗
k̃
)Hφ , (6)

which implies that kerHφ ⊆ ker [T ∗
φ ,Tφ ] .

We now have informations on E (φ) :

LEMMA 2.1. Let φ ∈ L∞(T) be such that Tφ is a hyponormal operator. Then we
have:

1. If φ(z) = ∑N
n=−N anzn (aN �= 0 ) is such that rank [T ∗

φ ,Tφ ] < N then E (φ) has
exactly one element, which is a finite Blaschke product.

2. If φ(z) = ∑N
n=−N anzn (aN �= 0 ) is such that rank [T ∗

φ ,Tφ ] = N then E (φ) contains
infinitely many elements which are finite Blaschke products.

3. If φ is not of bounded type (‘bounded type’ means quotient of two bounded ana-
lytic functions) then E (φ) has exactly one element.

Proof. The assertion (1) follows at once from [18, Corollary 5]. For the assertion
(2), we suppose rank [T ∗

φ ,Tφ ] = N . Then there exists a Blaschke product k ∈ E (φ) of
degree N , namely k = BN−1 in the Carathéodory construction. Therefore by the pre-
ceding considerations on the Carathéodory construction we have |ΦN−1| < 1: indeed
if |ΦN−1| = 1, then there would exist a Blaschke product b ∈ E (φ) of degree N − 1,
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which leads a contradiction by the uniqueness property (cf. [16, Lemma 1]) that if k
and b are Blaschke product of, respectively, degrees m and r such that m + r < 2n
and satisfy the finite interpolation k̂( j) = b̂( j) for j = 0, · · · ,n−1, then k = b . There-
fore we can choose ΦN so that |ΦN | < 1, satisfying the interpolation B̂N( j) = c j for
j = 0, · · · ,N − 1. Then BN is a Blaschke product in E (φ) of degree N + 1. Continu-
ing this process one can get a sequence of Blaschke products Bn (n = N −1,N, · · ·) in
E (φ) of degree n . For the assertion (3), we write φ = g+ f ( f ,g ∈ H∞ ). Then by the
Cowen’s theorem we can easily see that k∈ E (φ) if and only if ||k||∞ � 1 and Hf k = zg̃
(cf. [4], [5, Lemma 1]). But if φ is not of bounded type then kerHf = kerHφ = {0}
(cf. [1, Lemma 3]), so that the solution k of the equation Hf k = zg̃ is unique. This
proves statement (3). �

Note that if φ is of bounded type and is not a trigonometric polynomial then we
have no informations on E (φ) . To see this consider the function

φ(z) = z−1 + zb(z), where b(z) =
z− 1

2

1− 1
2 z

.

Then φ is of bounded type. We now claim that E (φ) has exactly one element k ,
namely k = b . Indeed if h ∈ E (φ) then z−1 −hz−1b ∈ H∞ and so z−1(1−hb) ∈ H∞ .
Thus hb∈ 1+zH∞ and ||hb||∞ � 1, which implies h = b . On the other hand, condisder
the function

ψ(z) =
1
6
z−1 +

∞

∑
n=2

zn

2n−1 .

If k and b are defined by

k(z) =
1
3

z− 1
2

1− 1
2z

and b(z) =
(z− 1

2)(z+ 1
3)

(1− 1
2 z)(1+ 1

3z)

then a straightforward calculation shows that k,b ∈ E (ψ) . Note that b is a Blaschke
product, whereas k is not. Therefore E (ψ) contains at least two elements which in-
cludes a finite Blaschke product.

We now derive several formulae for the rank of the selfcommutator [T ∗
φ ,Tφ ] in the

cases where Tφ is a hyponormal operator

THEOREM 2.2. Suppose that φ(z)= ∑N
n=−manzn , where a−m and aN are nonzero,

is such that Tφ is hyponormal. If c0, · · · ,cN−1 are given by (3) then the following state-
ments are equivalent.

1. rank [T ∗
φ ,Tφ ] = r .

2. There exists a finite Blaschke product k ∈ E (φ) of degree r .

3. |Φr(c0, · · · ,cr)| = 1 if r � N−1 ; |ΦN−1(c0, · · · ,cN−1)| < 1 if r = N .
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4. rank(I−CC∗) = r .

5. If f is given by (5) with m in place of N and φ = g+TzN−mh in place of φ = g+h
(g,h ∈ H∞ ), then

r = N−m+ZD−Z
C\D

,

where ZD and Z
C\D

are the number of zeros of f in D and in C \D counting
multiplicity.

Proof. (1) ⇔ (2): This is Lemma 1.1.
(2) ⇒ (3): Suppose the function k is a finite Blaschke product in E (φ) of degree

r . If r � N − 1, we assume to the contrary that |Φr| < 1. Then by the Carathéodory
construction there exists a Blaschke product b ∈ E (φ) such that deg(b) = r+1. Then
by Lemma 2.1, we have k = b , a contradiction. If instead r = N then we assume to the
contrary that |ΦN−1| = 1. then again by the Carathéodory construction there exists a
Blaschke product b ∈ E (φ) of degree N−1. This leads a contradiction.

(3) ⇒ (2): Immediate from the Carathéodory construction.
(2) ⇔ (4): This follows from Lemma 2.1 together with an argument of S. Taka-

hashi [21, Theorem], which states that if I−CC∗ � 0 then there exists a finite Blaschke
product whose degree is equal to the rank of I−CC∗ .

(1) ⇔ (5): Observe that if

φ(z) :=
N

∑
n=−m

anz
n and ψ(z) :=

−1

∑
n=−m

anz
n +

m

∑
n=0

aN−m+nz
n,

then rank [T ∗
φ ,Tφ ] = N −m+ rank[T ∗

ψ ,Tψ ] and that if f is given by (5) corresponding
to ψ(z) then

rank [T ∗
ψ ,Tψ ] = deg

(
f

zm f

)
= ZD −ZC\D.

Thus we can conclude that rank [T ∗
φ ,Tφ ] = N−m+ZD−Z

C\D
. �

3. A hyponormal extension problem

In this section we consider an extension problem. To do this we need:

LEMMA 3.1. Suppose φ is a trigonometric polynomial such that φ = f + g,
where f and g are analytic polynomials of degree N . Let

g0 := Tzmg, f0 := Tzm f , and ψ := f0 +g0 (m < N).

If Tφ is hyponormal then Tψ is hyponormal.

Proof. Suppose Tφ is hyponormal. By the Cowen’s theorem there exists a func-
tion k ∈ H∞ such that ||k||∞ � 1 and g−k f ∈H∞ . Thus zmg−k zm f ∈H∞ , and hence
g0− k f0 ∈ H∞ , which implies that Tψ is hyponormal. �
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If φ is given as in Lemma 3.1 then we cannot, however, expect that Tφ̃ is hy-

ponormal, where φ̃ = zm f + zmg . For example, if φ(z) = z−2 + z−1 + 4z + 2z2 and
φ̃ = z−3 + z−2 + 4z2 + 2z3 , then a straightforward calculation shows that Tφ is hy-
ponormal, but Tφ̃ is not.

In view of Lemma 3.1, if φ = f + g ( f ∈ H2 , g ∈ zH2 ) is a trigonometric poly-
nomial then it seems to be natural that a hyponormal extension of Tφ is defined by a
Toeplitz operator Tφ̃ with the symbol φ̃ of the form

φ̃ = zmg+q+ p+ zm f ,

where p and q are analytic polynomials of degree m− 1. Therefore the hyponor-
mal extension problem is equivalent to the following completion problem: If φ =
zmg + q + p + zm f (where f and g are analytic polynomials, and p and q are ana-
lytic polynomials of degree m− 1), find necessary and sufficient conditions, in terms
of the coefficients of p and q , for Tφ to be hyponormal when Tg+ f is hyponormal. In
general, for each p , there are many polynomials q for which Tφ is hyponormal when
Tg+ f is hyponormal.

We however have:

THEOREM 3.2. Suppose that φ := zmg+q+ p+zm f , where f and g are analytic
polynomials of degree N , and p and q are analytic polynomials of degree m−1 . Let
ψ := g+ f . If Tψ is a hyponormal operator then for each polynomial p, there exists
a polynomial q for which Tφ is hyponormal. In particular, if rank [T ∗

ψ ,Tψ ] < N −m,
then q is unique.

Proof. If Tψ is hyponormal then by the Cowen’s theorem there exists k ∈ E (φ) ,
i.e., g− k f ∈ H∞ and ||k||∞ � 1. Write k(z) = ∑∞

n=0 cnzn . If p = ∑m−1
n=1 anzn is given

and we write p+ zm f = ∑m+N
n=1 anzn , define a− j (1 � j � m−1) by

⎛⎜⎜⎜⎝
a−1

a−2
...

a−m+1

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎝
a1 . . . . . . am−1 . . . am+N
... · · 0
... · · · ...

am−1 . . . am+N 0 . . . 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c0

c1
...

cm+N−1

⎞⎟⎟⎟⎠ .

Thus if we define q(z) := ∑∞
n=1 a−nz−n then a straightforward calculation shows that

zmg+q− k (p+ zm f ) ∈ H∞.
For the uniqueness, let rank [T ∗

ψ ,Tψ ] < N−m . Assume (q1, p) and (q2, p) (q1 �=
q2 ) are pairs of analytic polynomials of degree m−1 such that the symbols φ1 = zmg+
q1 + p + zm f and φ2 = zmg+ q2 + p + zm f make Tφ1 and Tφ2 hyponormal. Assume
k1 ∈ E (φ1) and k2 ∈ E (φ2) . Then evidently, k1 �= k2 , and zmg+qi−ki(p+ zm f ) ∈H∞

( i = 1,2) and so g+ zmqi− ki(zmp+ f ) ∈ H∞ , and hence g− ki f ∈ H∞ . Thus ki,k2 ∈
E (ψ) , which contradicts the assumption that rank [T ∗

ψ ,Tψ ] < N−m , which by Lemma
2.1, implies that E (ψ) has exactly one element. �
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