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Abstract. We present some general bounds for the algebraic and geometric multiplicity of eigen-
values of second order elliptic operators on finite networks under continuity and weighted Kirch-
hoff flow conditions at the vertices. In particular the algebraic multiplicity of an eigenvalue is
shown to be strictly bounded from above by the number of vertices if there are no eigenfunctions
vanishing in all nodes, and to be bounded from above by the number of edges if there are such
eigenfunctions.

1. Introduction

The present paper deals with the algebraic and geometric eigenvalue multiplicities
of second order elliptic edge operators

Lj = a j∂ 2
j +b j∂ j +q j

on a finite network with arbitrary edge lengths under continuity condition and general
weighted Kirchhoff flow conditions

N

∑
j=1

di jci j∂ ju j(vi)+ ρiu(vi) = 0

at all vertices vi . Results for the geometric multiplicity have been obtained in [1]–[4],
[13], [14]–[16], and [19] for finite networks and in [5]–[8] for the infinite case. The
algebraic multiplicities of all eigenvalues of the canonical Laplacian under weighted
homogeneous Kirchhoff laws have been determined in [9]. They play a key role in the
determination of the asymptotic behavior of the eigenvalues in the general case. More
general classes of linear vertex transition conditions as Kuchment conditions e.a. that
lead to a variational setting and to self–adjoint operators have been treated by many
authors, see e.g. [3, 11, 18] and the references therein.

It has been shown in [2]–[4] that in the case of consistent Kirchhoff conditions,
the eigenvalue problem corresponds to a S–hermitian boundary eigenvalue problem
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that leads to a Hilbert space approach with real eigenvalues and coincidence of geo-
metric and algebraic eigenvalue multiplicity. Thus, in the inconsistent case, i.e. when
the conductivities ci j in the Kirchhoff flow condition cannot be adapted to the princi-
pal part of the elliptic edge operators evaluated at the nodes, nonreal eigenvalues and
multiplicity disparity can occur. We note in passing that by suitable tensor products
of circuits of length 3 nonreal eigenvalues of arbitrarily high geometric and algebraic
multiplicity can be found, see [7].

The present paper is organized as follows. After some graph theoretical prelimi-
naries in Section 2, some basic upper bounds for the geometric eigenvalue multiplicity
are presented for general elliptic edge operators of the form Lj = a j∂ 2

j + b j∂ j + q j in
Section 3. The transition at the vertices is governed by a Kirchhoff flow condition (2)
and by the continuity condition at ramification nodes (1). In Section 4 the adjacency
calculus developed in [1, 4, 6] for weighted Laplacians is extended to general elliptic
operators of second order. In particular, this calculus enables to deduce that the al-
gebraic multiplicity of an eigenvalue is bounded from above either by the number of
vertices minus 1 if there are no eigenfunctions vanishing in all nodes, or by the number
of edges if there are such eigenfunctions, see Theorem 4.3. In Section 5 we recall that
on trees, the algebraic and geometric multiplicities always coincide by showing that
the operator becomes hermitian with respect to a suitable scalar product. Finally, some
examples are presented in Section 6, in particular to illustrate the optimality of some of
the established upper bounds.

2. Graphs and networks

For any graph Γ = (V,E,∈) , the vertex set is denoted by V = V (Γ) , the edge set
by E = E(Γ) and the incidence relation by ∈⊂V ×E . The valency of each vertex v is
denoted by γ(v) = card{e ∈ E v ∈ e} . Unless otherwise stated, all graphs considered
in this paper are assumed to be nonempty, simple, connected and finite with

n = #V, N = #E.

The simplicity property means that Γ contains no loops, and at most one edge can join
two vertices in Γ . By definition, a circuit is a connected and regular graph of valency
2. Number the vertices by v1, . . . ,vn , the respective valencies by γ1, . . . ,γn , and the
edges by e1, . . . ,eN . The adjacency matrix A (Γ) = (eih)n×n of the graph is defined by

eih =

{
1 if vi and vh are adjacent in Γ
0 else

Note that A (Γ) is indecomposable iff Γ is connected. By simplicity, any two adjacent
vertices vi and vh determine uniquely the edge es joining them, and we can set

s(i,h) =

{
s if es∩V = {vi,vh},
1 otherwise.
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For further graph theoretical terminology we refer to [20], and for the algebraic graph
theory to [10] and [12].

Moreover, we consider each graph as a connected topological graph in Rm , i.e.
V (Γ) ⊂ Rm and the edge set consists of a collection of Jordan curves

E(Γ) = {π j : [0, � j] → R
m 1 � j � N}

with the following properties: Each support e j := π j ([0, � j]) has its endpoints in the
set V (Γ) , any two vertices in V (Γ) can be connected by a path with arcs in E(Γ) ,
and any two edges e j �= eh satisfy e j ∩ eh ⊂ V (Γ) and #(e j ∩ eh) � 1. The arc length
parameter of an edge e j is denoted by x j . Unless otherwise stated, we identify the
graph Γ = (V,E,∈) with its associated network

G =
N⋃

j=1

π j ([0, � j]) ,

especially each edge π j with its support e j . G is called a C 2 -network, if all π j ∈
C 2([0, � j],Rm) . Thus, endowed with the induced topology G is a connected and com-
pact space in Rm . We shall distinguish the boundary vertices Vb = {vi ∈ V γi = 1}
from the ramification nodes Vr = {vi ∈ V γi � 2} . The orientation of the graph Γ is
given by the incidence matrix D(Γ) = (dik)n×N with

di j =

⎧⎪⎨
⎪⎩

1 if π j(� j) = vi,

−1 if π j(0) = vi,

0 otherwise.

For a function u : G → C we set u j := u ◦π j : [0, � j] → C and use the abbreviations

u j(vi) := u j(π−1
j (vi)), ∂ ju j(vi) :=

∂
∂x j

u j(x j)
∣∣∣
π−1

j (vi)
etc.

3. Vertex transition conditions and elliptic edge operators

As the basic geometric transition condition at ramification nodes we impose the
continuity condition

∀vi ∈Vr : e j ∩ es = {vi} =⇒ u j(vi) = us(vi), (1)

that clearly is contained in the condition u∈C (G) . Moreover, at all vertices we impose
a weighted generalized Kirchhoff flow condition

N

∑
j=1

di jci j∂ ju j(vi)+ ρiu(vi) = 0 for 1 � i � n (2)
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with weights ci j > 0 and potential terms ρi ∈ R . Note that this nonhomogeneous
condition does not depend on the orientation. The validity of (2) in a function space
will be indicated by the subscript GK .

On each edge we consider an elliptic differential operator of the form

Lj = a j∂ 2
j +b j∂ j +q j (3)

with continuous real coefficients a j,b j and q j , where

a j � δ > 0 for all 1 � j � N (4)

with some constant δ . Sometimes, it will be useful to consider on each edge the oper-
ator Lj in its formally self-adjoint form leading to the equivalent eigenvalue equation

1
r j

∂ j (p j∂ ju j)+q ju j = −λu j (5)

on the same interval [0, � j] with

p j(x j) = η j exp

(∫ x j

0

b j(ξ j)
a j(ξ j)

dξ j

)
, r j(x j) =

p j

a j
(6)

and with some parameter η j > 0. Then consistency of the Kirchhoff conditions (2)
means that, by a suitable parameter choice, each weight ci j coincides with p j(vi) .

All together the Lj define the operator

L =
(
u 
→ (Lju j)N×1

)
: C 2

GK(G) →
N

∏
j=1

C [0, � j] (7)

on the C 2 –network G with the domain

C 2
GK(G) = {u ∈ C (G) ∀ j ∈ {1, . . . ,N} : u j ∈ C 2([0, � j]), u satisfies (2)}.

Note that a corresponding weak setting leads to a sufficiently high regularity due to
classical regularity results in one dimension. Thus, working in spaces of continuous
functions does not constitute an essential restriction.

The main concern of our investigation are upper bounds for the algebraic multi-
plicity ma(λ ) of the eigenvalues λ of −L in C 2

GK(G) . The eigenvalue problem in
question reads

0 �= u ∈ C 2
GK(G) and Lju j = −λu j for 1 � j � N. (8)

Recall that the geometric multiplicity mg(λ ) of an eigenvalue λ ∈ C is defined by

mg(λ ) = dimC ker
(
L+ λ IC 2

GK(G)

)
, while its algebraic multiplicity ma(λ ) is defined

as
ma(λ ) = dimC Ec(λ ), Ec(λ ) := ker

(
L+ λ IC 2

GK(G)

)κ
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with

κ = κ(λ ) = min

{
k ∈ N ker

(
L+ λ IC 2

GK(G)

)k+1
= ker

(
L+ λ IC 2

GK(G)

)k
}

.

The elements of ker
(
L+ λ IC 2

GK(G)

)k
are called principal functions of order k belong-

ing to λ . Note that the kernel sequence becomes stationary since L has some compact
resolvent, see e.g. [17]. Moreover,

L(Ec(λ )) ⊂ Ec(λ ) ⊂ C 2
GK(G). (9)

In order to show the second inclusion, suppose that u∈ Ec(λ ) . If u is an eigenfunction,

then Lu ∈ C 2
GK(G)∩ker

(
L+ λ IC 2

GK(G)

)
. By induction assume that Lu,L2u, . . . ,Lk−1u

∈ C 2
GK(G)∩Ec(λ ) . Then

0 =
(
L+ λ IC 2

GK(G)

)k
u = Lku+

k−1

∑
h=0

(
k
h

)
λ hLk−hu,

which shows that Lku ∈ C 2
GK(G)∩Ec(λ ) and (9).

Let Φ j = Φ j(·;λ ) =
(

ϕ j1 ϕ j2

ϕ ′
j1 ϕ ′

j2

)
denote the fundamental matrix associated to the

first order system defined by the matrix

(
0 1

− q j+λ
a j

− b j
a j

)
on each k j and satisfying

Φ j(0) =
(

1 0
0 1

)
. By using the variation of constants formula, the solutions of the edge

equation
Lju j + λu j = f j with f j ∈ C [0, � j] (10)

are given by the formula

u j(x j) =ϕ j1(x j)u j(0)+ ϕ j2(x j)∂ ju j(0) (11)

+
∫ x j

0

ϕ j2(x j)ϕ j1(s)−ϕ j1(x j)ϕ j2(s)
ϕ j1(s)ϕ ′

j2(s)−ϕ ′
j1(s)ϕ j2(s)

f j(s)
a j(s)

ds

=ϕ j1(x j)u j(0)+ ϕ j2(x j)∂ ju j(0)

+
∫ x j

0

(
ϕ j2(x j)ϕ j1(s)−ϕ j1(x j)ϕ j2(s)

) f j(s)
a j(s)

exp

(∫ s

0

b j(τ)
a j(τ)

dτ
)

ds.

Clearly, prescribing u j(0) and ∂ ju j(0) determines uniquely the solution and leads to
the following

LEMMA 3.1. Suppose that λ ∈ C is not an eigenvalue of any −Lj under 0–
Dirichlet boundary conditions on [0, � j] . Then the dimension of the affine subspace S
of C 2(G) defined by the functions u satisfying (10) on each edge for fixed f j ∈C [0, � j] ,
is given by the number of vertices n. In addition, those functions belonging to S that
fulfill (2) form an affine subspace of dimension at most n−1 .
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Proof. By construction all ϕ j2(0) = 0, thus, by hypothesis, each ϕ j2(� j) �= 0, and
each derivative ∂ ju j(0) is uniquely determined by u j(0),u j(� j),ϕ j1, ϕ j2, f j and by
the coefficients of Lj . Under the continuity condition (1), the n values in the nodes
determine uniquely the solution u ∈ S . As for Condition (2), choose some ramification
node vi of valency γi . Then the γi neighboring values are uniquely determined by the
value in vi and the γi derivatives in vi . Among these, only γi −1 can be chosen freely
under (2). �

As for the geometric multiplicity, we note first that mg(λ ) � N , since for an eigen-
function u∈C 2

GK(G) , n among the N values of u1(0), . . . ,uN(0) determine all of them
uniquely by (1). Moreover, at most N derivatives among the 2N ones can be chosen
freely. The Kirchhoff condition (2) in turn implies that at each node at least one inci-
dent derivative is determined by the others and/or the value at the node. This reduces
the maximal number of derivatives to choose freely to at most N−n .

Secondly, let us recall the optimal estimate for the geometric multiplicity given in
[14]. For that purpose recall the construction of the parameter T of the graph Γ . If
Γ has no bridges, then we put T = 2. If Γ has bridges, then contract the connected
components among the edges that are not bridges to single vertices and get a reduced
tree. Then T denotes the number of boundary vertices of this tree.

THEOREM 3.2. ([14]) The eigenvalues of (8) satisfy mg(λ ) � N−n+T.

For the reader’s convenience, a short proof will be given for trees in Lemma 5.2.
In the case of nonreal eigenvalues this bound can be improved as follows.

THEOREM 3.3. If λ is a nonreal eigenvalue of (8), then

mg(λ ) � N−n+1 = corank(Γ).

Proof. Suppose that there are N −n+2 or more linearly independent eigenfunc-
tions. Then there is also an eigenfunction belonging to λ having zero derivatives at
m := N − n + 1 arbitrary given points p1, . . . , pm in the network G . Thus, as the di-
mension of the circuit space amounts to m , see [10], we can choose p1, . . . , pm to be
situated on suitable edge interiors of the circuits forming a basis of the circuit space of
the graph such that, omitting these edges, the remaining graph is a forest. As a vanish-
ing derivative at pi corresponds to two Neumann boundary conditions at two boundary
vertices identified with pi , λ possesses an eigenfunction on a tree. But then λ must
be real according to Theorem 5.1 below, which is impossible. �

On trees all eigenvalues are real under real coefficients, see Section 5. The smallest
simple graph that displays nonreal eigenvalues for the canonical Laplacian is the circuit
C3 of equal lengths 1 with the Kirchhoff condition given by a row–stochastic matrix

C =

⎛
⎝ 0 c12 c13

c21 0 c23

c31 c32 0

⎞
⎠ .
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For detC � 1
4 , all eigenvalues are real, while for detC > 1

4 nonreal eigenvalues occur,
see [1]. Moreover, for detC �= 1

4 all algebraic multiplicities amount to 1. But for
detC = 1

4 , the operator can be non symmetrizable. E.g. if C has the elements⎛
⎝ 0 1

4
3
4

2
5 0 3

5
1
3

2
3 0

⎞
⎠ ,

then C is not diagonalizable and has the simple eigenvalue 1 and the eigenvalue − 1
2

with mg(− 1
2 ;C ) = 1 and ma(− 1

2 ;C ) = 2. The canonical Laplacian on C3 has the

eigenvalues satisfying cos
√

λ = − 1
2 with mg(λ ) = 1, ma(λ ) = 2 and ker(Δ + λ I)2 ∼=

〈(−3,0,2)t ,(6,0,−4)t〉
R

.

4. The adjacency calculus

Following the transformations in [1, 4] the eigenvalue problem for L in question is
equivalent to a matrix differential boundary eigenvalue problem incorporating the adja-
cency structure of the network. For that purpose we recall that the Hadamard product
of matrices of the same size is defined as (aik)n×n � (bik)n×n = (aikbik)n×n . The vectors
with constant entries equal to 1 are denoted by e . Set ρ = (ρi)n×1 and define the
diagonal matrix having ρ as principal diagonal by

Diag(ρ) = (δikρi)n×n .

For a function u : G → C denote its value distribution in the nodes by

ϕ = n(u) = (u(vi))n×1 . (12)

For x ∈ [0,1] define

ξih = �s(i,h)

(
1+dis(i,h)

2
− xdis(i,h)

)
and the matrices

U(x) = (uih(x))n×n , A(x) = (aih(x))n×n ,

B(x) = (bih(x))n×n , Q(x) = (qih(x))n×n ,

the length adjacency matrix L = (�ih)n×n , and the adjacency conductivity matrix C =
(cih)n×n by

uih(x) = eihus(i,h) (ξih) , aih(x) = eihas(i,h) (ξih) , bih(x) = eihbs(i,h) (ξih) ,

qih(x) = eihqs(i,h) (ξih) , �ih = eih�s(i,h), cih = eihci s(i,h),

respectively. Then the eigenvalue problem (8) reads:

uih ∈C2([0,1]) for all i,h ∈ N (13)

eih = 0 ⇒ uih = 0 for all i,h ∈ N (14)
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L (−2) �A(x)�U′′+L (−1) �B(x)�U′+Q(x)�U = −λU in [0,1] (15)

U(0) = ϕ e∗ �A (continuity in Vr(Γ)) (16)

U∗(x) = U(1− x) for x ∈ [0,1] (17)(
C �L (−1) �U′(0)

)
e+Diag(ρ)ϕ = 0 (GK) (18)

Furthermore, introduce

Φ := U(0) = ϕ e∗ �A , Ψ := U′(0)

and, using the fundamental solutions Φ j on each edge, define

ΘΘΘΘ(x) = (θih(x))n×n , ΣΣΣΣ(x) = (σih(x))n×n , K(x,s) = (kih(x,s))n×n

by
θih(x) = eihϕs(i,h)1 (ξih) , σih(x) = eihϕs(i,h)2 (ξih)

and

kih(x,s) =
σih(x)θih(s)−θih(x)σih(s)

aih(s)
exp

(∫ s

0

bih(τ)
aih(τ)

dτ
)

.

Using (11), the solution of (10) reads

U(x) = Φ� Θ(x)+ Ψ� Σ(x)+
∫ x

0
K(x,s)�F(s)ds (19)

with F(x) =
(
fs(i,h) (ξih)

)
n×n

.
Before establishing a general upper bound for the algebraic multiplicity, we con-

sider the case of the 0–Dirichlet condition at all vertices. For that purpose, a circuit ζ
in Γ is said to be compatible with the operator L if ζ is the support of an eigenfunction
of L belonging to C 2

GK(G)∩{u n(u) = 0} . Evidently, there is at most one indepen-
dent eigenfunction vanishing at all nodes on the circuit ζ , since the eigenvalues under
0–Dirichlet condition on an interval are simple. E.g. for the canonical Laplacian (see
6.1) an odd circuit cannot be compatible for eigenvalues of the form cos

√
λ = −1.

LEMMA 4.1. If λ ∈ C is an eigenvalue of the problem

0 �= u ∈ C 2(G)∩{u n(u) = 0} and Lju j = −λu j for 1 � j � N, (20)

then λ ∈ R and
ma(λ ) = mg(λ ) = N. (21)

If, in addition, the Kirchhoff law (2) is imposed, then

N−n � ma(λ ) = mg(λ ) � corank(Γ) = N−n+1. (22)

Moreover, ma(λ ) = mg(λ ) = N−n+1 holds if and only if the graph Γ contains only
circuits that are compatible with L.
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Proof. Using (5), the problem (20) corresponds to a selfadjoint one. This shows
λ ∈ R and ma(λ ) = mg(λ ) on Γ , as well as on any subgraph of Γ . Since the multi-
plicities on a single interval amount to 1, (21) is plain.

The Kirchhoff conditions (2) define n linear conditions whose rank amounts at
least to n−1 = rank(D) . Thus, at least n−1 of the N values are uniquely determined
by the remaining ones. This shows the right inequality in (22).

As for the left inequality in (22), we reason by induction on the Euler charac-
teristic e := e(Γ) = N − n . If e = 0, then the graph contains exactly one circuit and
mg(λ ) = 1 or mg(λ ) = 0 according to whether the circuit is compatible or not. Next,
suppose that e > 0. Let ζ be a circuit in Γ . For k ∈ E(ζ ) define the subgraph Πk by

E(Πk) = E(Γ)\{k} and V (Πk) = V (Γ).

As Γ cannot be a circuit, and as no Πk can be a tree, no edge of ζ can lie on all circuits
of Γ . By induction

e(Πk) = N−1−n � mg(λ ;L,Πk).

If there is some eigenfunction w ∈ C 2
GK(G)∩{u n(u) = 0} that does not vanish iden-

tically on some k ∈ E(ζ ) , then by simplicity of λ on k under 0–Dirichlet conditions,

Eλ (L;Γ) = 〈w〉⊕Eλ (L;Πk)

and
mg(λ ;L,Γ) = mg(λ ;L,Πk)+1 � N−1−n+1= N−n = e.

Thus we are led to the case that all eigenfunctions vanish on ζ , as well as on all other
circuits of Γ , since ζ has been chosen arbitrarily. But this is impossible, since λ is
supposed to be an eigenvalue of L in C 2

GK(G)∩{u n(u) = 0} , and since an eigenfunc-
tion has to vanish on edges incident to boundary vertices and cannot have forest–like
support, but, must contain a circuit in its support.

As for the claimed equivalence, if all the circuits in Γ are compatible with L ,
then, in fact, the eigenspace is isomorphic to the circuit space of Γ , whose dimension
amounts to dimkerD = N − n+ 1, see e.g. [10]. Conversely, we suppose that Γ has
an incompatible circuit ζ . For e = 0, as above, mg(λ ) = 0 = N−n �= corank(Γ) . For
e > 0, there must be some edge k �∈ E(ζ ) allowing a non vanishing restriction of some
eigenfunction defined on the whole graph, since ζ is incompatible. Reasoning again by
induction on e , we conclude as above that mg(λ ;L,Γ) = 1+mg(λ ;L,Πk)= N−n . �

If the graph contains incompatible circuits, these can nevertheless be contained in
the supports of some eigenfunction by means of dumbbell–like connected subgraphs δ
in Γ . By definition, such a graph δ consists of two edge disjoint circuits ζ1 and ζ2

that are connected by some path π of length m that has exactly one vertex in common
with each ζi . Note that m = 0 is admissible. It is easy to construct an eigenfunction
C 2

GK(G)∩{u n(u) = 0} , whose support coincides with δ . Moreover, if ζ1 and ζ2 are
incompatible, then ma(λ ;L,δ ) = mg(λ ;L,δ ) = 1.

The upper bound corank(Γ) = N − n + 1 in (22) is optimal, since it is attained
for any circuit and the canonical Laplacian −Δ (see Section 6.1) in the case cos

√
λ =
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1 bearing in mind that the eigenfunctions having non zero node distributions do not
contribute here, see [1] and Theorems 6.1 and 6.2. The same holds for the lower bound
e = N − n , take again the canonical Laplacian on a graph containing an odd circuit
that cannot be compatible with −Δ for eigenvalues of the form cos

√
λ = −1. Using

Lemma 4.1, we conclude mg(λ ) = N − n . E.g. the graphs Y1 and Y2 in Fig. 1 have
corank 2 and mg(λ ) = 1. The square in Y1 is compatible with −Δ and the unique
support of an eigenfunction, while the triangles are always incompatible for cos

√
λ =

−1. The dumbbell graph Y2 and the graph Y3 do not contain any compatible circuit.
The support of an eigenfunction on Y2 is necessarily the whole graph. The corank of
Y3 amounts to 3 while mg(λ ) = 2, and its eigenspace can only be generated by two
eigenfunctions having dumbbell–like support.

3Y Y Y1 2

Figure 1: Circuits that are incompatible with −Δ for cos
√

λ = −1 .

LEMMA 4.2. If λ ∈ C is an eigenvalue of Problem (8) and has no principal func-
tion vanishing in all nodes, then ma(λ ) � n−1 .

Proof. By hypothesis, n defines an injective application from Ec(λ ) into Cn .
Thus, ma(λ ) � n . In order to refine this estimate, note that, again by hypothesis Σ(1) �=
0, since otherwise, using Σ(0) = 0, λ ∈ C would be an eigenvalue under 0–Dirichlet
boundary conditions on all the edges. By (19) a principal matrix solution satisfies

U(1) = Φt = Φ� Θ(1)+ Ψ� Σ(1)+T, (23)

where T =
∫ 1
0 K(1,s) � F(s)ds stems from some iterated principal function matrix

belonging to the characteristic space. Using Hadamard powers denoted by Σ(k) =(
σ (k)

ih

)
n×n

for k ∈ Z and defined by

σ (k)
ih =

{
σ k

ih if σih �= 0,

0 otherwise,

we get

Ψ = Σ(1)(−1) �
(
Φt −Φ� Θ(1)

)−Σ(1)(−1) �T

= Σ(1)(−1) �
(
eϕt �A −ϕ e∗ �A � Θ(1)

)−Σ(1)(−1) �T.

Set

M = Σ(1)(−1) �C �L (−1)−Diag
(
[Σ(1)(−1) �C �L (−1) � Θ(1)] e+ ρ

)
.
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Then (18) implies

Mϕ = [Σ(1)(−1) �T ] e,

and the eigenfunctions correspond exactly to the node vectors belonging to kerM . As
the coefficients ci j and ρi in the Kirchhoff law (2) at each node vi can be multiplied
by a positive constant αi without altering the condition, a suitable choice of α1, . . . ,αn

leads to a non zero trace of M . This shows that M possesses eigenvalues different from
0 and that ma(0;M) � n− 1. On the other hand, by hypothesis, independent princi-
pal functions belonging to λ lead to independent node distributions that are principal
vectors for M belonging to 0. Thus ma(λ ;L) � ma(0;M) � n−1. �

The upper bound in Lemma 4.2 is optimal as displayed by the first example in 6.2.
Without the exclusion of 0–Dirichlet eigenvalues, the above estimate is false, see the
second example in 6.2. Combining Lemmata 4.1 and 4.2 leads to the following

THEOREM 4.3. The eigenvalues λ ∈ C of Problem (8) satisfy

ma(λ ) � n−1,

if λ ∈ C has no eigenfunction vanishing in all nodes, and satisfy

ma(λ ) � N,

if λ ∈ R has some eigenfunction vanishing in all nodes.

Proof. The first assertion follows directly from Lemma 4.2. Decompose Ec(λ ) =
E0 ⊕ Ẽ with E0 = {u ∈ Ec(λ ) n(u) = 0} . By Lemma 4.1, the dimension of E0 is
bounded from above by N−n+1, while by Lemma 4.2, the dimension of Ẽ is bounded
from above by n−1. �

As already pointed out above, the first estimate is optimal. As for the second one, it
is not clear in general whether it is optimal or not. The geometric multiplicity is always
bounded by N−n+T , see Theorem 3.2, that reduces to the upper bound N−n+2 in
the presence of eigenfunctions vanishing in all vertices, see [14, 15]. In particular, if the
operator L is selfadjoint, the second bound N can never be attained. Thus, an example
of optimality of the second bound would have to implicate the algebraic multiplicity
of a real eigenvalue of a non selfadjoint operator L . For the canonical Laplacian (see
Section 6.1), the upper bound N is never attained in the presence of eigenfunctions
vanishing in all nodes, since λ could neither fulfill sin

√
λ = 0, nor be a network

immanent eigenvalue satisfying sin
√

λ �= 0 and N = ma(cos
√

λ ,Z ) � n− 1. In the
latter case Γ would have to be a tree, that leads necessarily to ma(λ ) � n−2, since in
that case the matrix Z has at least the eigenvalues 1 �= cos

√
λ and −1 �= cos

√
λ , see

[1].
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5. Trees

It has been shown in [9] that for operators of the form (3) on a tree, the algebraic
eigenvalue multiplicity coincides with the geometric one. This result was applied in the
proof of Theorem 3.3. For the reader’s convenience we repeat the arguments here.

THEOREM 5.1. Let T be a tree. Then, for each eigenvalue of Problem (8), the
algebraic and geometric multiplicities coincide. More precisely, the operator L =(
u 
→ (Lju j)N×1

)
is hermitian on C 2

GK(T ) with respect to a suitable hermitian scalar
product defined in (24) below. In particular, its eigenvalues are real.

Proof. Without restriction, we can confine ourselves to the symmetric form (5) of
the differential operators on the edges with parameters η1, . . . ,ηN to be specified later
on. Next, orientate T such that some boundary vertex v1 is a source, incident to e1 and
such that, at all other vertices, the indegree amounts to 1:

γ+
i := card{ j ∈ N di j = 1} = 1,

γ−i := card{ j ∈ N di j = −1} = γi −1.

Put η1 = 1 and, following the orientation, recursively at each node vi with incoming
edge em , set

p j(0) = η j =
ci j

cim
pm(�m) if di j = −1, dim = 1, vi ∈V.

Let mi denote the edge index with dimi = 1. Then, introducing the scalar product on T

〈u,w〉 =
N

∑
j=1

∫ � j

0
r ju jw j dx j, (24)

L is hermitian with respect to 〈·, ·〉 on C 2
K(T ;C) , since the boundary terms stemming

from integrations by parts match to 0:

N

∑
j=1

[p j ∂ ju j w j]
� j
0 =

n

∑
i=1

w(vi)

[
pmi(�mi)∂miumi(�mi)− ∑

di j=−1

p j(0)∂ ju j(0)

]

=
n

∑
i=1

w(vi)
pmi(�mi)

cimi

[
cimi∂miumi(�mi)− ∑

di j=−1

ci j∂ ju j(0)

]

= −
n

∑
i=1

w(vi)
pmi(�mi)

cimi

ρiu(vi) =
N

∑
j=1

[p j u j ∂ jw j]
� j
0 .

This shows that the eigenvalues are real, and, in turn, permits to follow a classical
argument: For an eigenvalue λ of L on T and for w ∈ ker(L−λ I)2 , it holds

0 =
〈
(L−λ I)2w,w

〉
= 〈(L−λ I)w,(L−λ I)w〉 ,

which shows that w is an eigenfunction. This permits to conclude. �
Now we can present an easy proof of Theorem 3.2 for ma(λ ) on trees.
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LEMMA 5.2. The eigenvalues λ of (8) on a tree T satisfy

ma(λ ) = mg(λ ) � #Vb−1.

Proof. Choose a boundary vertex v1 at which we prescribe the value of a pre-
sumed eigenfunction. This defines the value at the other node v2 of the incident edge,
as well as its derivative there. Thus, at v2 , we can prescribe exactly γ2 −2 derivatives
imposing (2). Recursively, the number of free parameters to choose is bounded from
above by

1+ ∑
vi∈Vr

(γi −2) = 1+2N−2n+#Vb = #Vb−1. �

This upper bound is optimal, see 6.3. Moreover, if the tree is not just an interval,
then the multiplicities are always bounded from above by N − 1 = n− 2. Combining
(5.1) with the results from [1] or Theorems 6.1 and 6.2 below, we obtain

COROLLARY 5.3. All principal functions of −ΔK
T on a tree T are eigenfunctions.

The node distributions of eigenfunctions of −ΔK
T in C 2

K(T ) either vanish and sin
√

λ =
0 or are eigenvectors belonging to cos

√
λ of the matrix Z . The multiplicities satisfy

ma(λ ) = mg(λ ) =

{
1 if sin

√
λ = 0,

mg(cos
√

λ ,Z ) if sin
√

λ �= 0.

6. Examples and remarks

6.1. The canonical Laplacian

For the canonical Laplacian Δ

Δ = ΔK
G =

(
u 
→ (

�2
j∂

2
j u j
)
N×1

)
: C 2

K(G) →
N

∏
j=1

C [0, � j]

under the weighted homogeneous Kirchhoff law (K)

N

∑
j=1

di jci j�
2
j∂ ju j(vi) = 0 for 1 � i � n (25)

with weights ci j > 0 the multiplicities can be determined with the aid of the row–
stochastic transition matrix Z = Diag((C �L ) e)−1 (C �L ) .

THEOREM 6.1. ([1, 4])

mg(λ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if λ = 0,

mg(cos
√

λ ,Z ) if sin
√

λ �= 0,

N−n+2 if cos
√

λ = 1,

N−n+2 if cos
√

λ = −1, Γ bipartite,

N−n if cos
√

λ = −1, Γ not bipartite.
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THEOREM 6.2. ([9])

ma(λ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mg(0) = 1 if λ = 0,

ma(cos
√

λ ,Z ) if sin
√

λ �= 0,

mg(λ ) = N−n+2 if cos
√

λ = 1,

mg(λ ) = N−n+2 if cos
√

λ = −1, Γ bipartite,

mg(λ ) = N−n if cos
√

λ = −1, Γ not bipartite.

6.2. Optimal character of Lemma 4.2

For the canonical Laplacian on the complete graph Kn with equal edge lengths
with n � 2 vertices under the classical Kirchhoff law

N

∑
j=1

di j∂ ju j(vi) = 0 for 1 � i � n,

the eigenvalues satisfying cos
√

λ = −1
n−1 have multiplicities mg(λ ) = ma(λ ) = n− 1

and do not allow eigenfunctions vanishing in all nodes, see 6.1. This shows that the
upper bound (4.2) is optimal in general. Without the exclusion of 0–Dirichlet eigen-
values, the estimate can be false. Take e.g. the canonical Laplacian on Kn as above
with n � 4 that possesses the eigenvalues λ > 0 with cos

√
λ = 1 and, according to

Theorems 6.1 and 6.2, ma(λ ) = mg(λ ) = n(n−1)
2 −n+2 > n−1.

6.3. Optimal character of Lemma 5.2

For the canonical Laplacian on a star graph under (25) the eigenvalues of the form
sin

√
λ �= 0 always satisfy ma(λ ) = mg(λ ) = N − 1 = #Vb − 1 for sin

√
λ �= 0, since

the matrix Z has the form

Z =

⎛
⎜⎜⎜⎝

0 z12 · · · z1n

1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

⎞
⎟⎟⎟⎠

and the multiplicities ma(1) = ma(−1) = 1 and mg(0) = ma(0) = n−2.

6.4. Another example with multiplicity disparity

Another example of multiplicity disparity can be constructed as follows. On
[0,2π ] consider the operator

Lu = u′′ − (sin2 x)u′ +(sinxcosx)u,

under periodic boundary conditions

u(0) = u(2π), u′(0) = u′(2π).
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This corresponds to the same operator on a loop, see [15]. Then λ = 1 is an eigenvalue
of geometric multiplicity 1, while the algebraic one amounts to 2, since (L+ I)sinx =
0 and (L+ I)cosx = sinx . Next, inserting at least two supplementary vertices on the
loop and, thereby, creating a simple graph in the form of a circuit, we define the new
edge operators by restriction of L and the new Kirchhoff laws by the C 1 –character.
Then the multiplicities pertain since in fact, the eigensolutions are twice differentiable
at the nodes.
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