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R-ORBIT REFLEXIVE OPERATORS

DoON HADWIN, ILEANA IONASCU AND HASSAN YOUSEFI

(Communicated by H. Bercovici)

Abstract. We completely characterize orbit reflexivity and R-orbit reflexivity for matrices in
A (R) . Unlike the complex case in which every matrix is orbit reflexive and C -orbit reflexivity
is characterized solely in terms of the Jordan form, the orbit reflexivity and R-orbit reflexivity of
a matrix in .y (R) is described in terms of the linear dependence over Q of certain elements
of R/Q. We also show that every n x n matrix over an uncountable field F is algebraically
[F -orbit reflexive.

1. Introduction

The term reflexive operator was coined by P. R. Halmos [20], and studied by many
authors, e.g., [1], [2], [3], [4], [5], [6], [7], [9], [12], [13], [16], [17], [18], [21], [22],
[24], [25], [26], [30], [31], [33]. If &2 (T) denotes the set of all polynomials in the oper-
ator T, we say T is reflexive if S is in the strong operator topology closure & (T)_SOT
whenever S is an operator for which Sx € [Z? (T)x]~ for every vector x. It was proved
by J. Deddens and P. Fillmore [7] that an n X n complex matrix T is reflexive if and
only if, for each eigenvalue A of T, the two largest Jordan blocks corresponding to 4
in the Jordan canonical form of 7 differ in size by at most 1. Later, D. Hadwin [12]
characterized algebraic reflexivity (no closures) for an n X n matrix over an arbitrary
field; in this setting the analog of the Jordan form contains blocks, which we will still
call Jordan blocks, of the form

AT O -0
0A I
InA)=1004 "

)

0
S AT
00---0A

where A is the companion matrix of an irreducible factor of the minimal polynomial for
T . When the irreducible factor has degree 1, the matrix A is 1 x 1 and an eigenvalue of
T. Hadwin [12] proved that an n x n matrix T over a field F is (algebraically) reflexive
if, for each eigenvalue of T, the two largest Jordan blocks differ in size by at most 1,
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and for an irreducible factor of the minimal polynomial of T that has degree greater
than 1, the two largest Jordan blocks have the same size.

In [19] D. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal introduced the
notion of an orbit-reflexive operator, where, in the definition of reflexivity, & (T) is
replaced by

Orb(T)={T":n=0,1,2,...}.

They proved that on a Hilbert space this class includes all normal operators, algebraic
operators, compact operators, contractions and unilateral weighted shift operators. It
was over twenty years before examples were constructed [10] and [29] (see also [8])
of operators that are not orbit reflexive. In [29] V. Miiller and J. VrSovsky proved that
if (T)# 1 (r(T) denotes the spectral radius of T), then 7 is orbit reflexive. In [14]
the authors proved that every polynomially bounded operator on a Hilbert space is orbit
reflexive.

Recently, M. McHugh and the authors [15], [27] introduced the notion of C-orbit
reflexivity, where, in the definition of reflexivity, & (T) is replaced with

C-orb(T)={AT": L €C,n >0},

and they proved that an n x n complex matrix 7 is C-orbit reflexive if and only if
it is nilpotent or, among all the Jordan blocks corresponding to all eigenvalues with
modulus equal to the spectral radius r(T) of T, the two largest blocks differ in size by
at most 1. In [14] null-orbit reflexivity (where Orb (T) is replaced with null-orb (7)) =
Orb (T)U{0} ) was introduced, and it was shown that, while null-orbitreflexivity shares
many nice properties with C-orbit reflexivity, every n x n complex matrix is null-orbit
reflexive.
In this paper we consider R -orbit reflexivity. If T is an operator, we define

R-orb(T) ={AT": A € R,n >0},

and we say that T is R-orbit reflexive if S is in the strong operator topology (SOT)
closure of R-orb(7) whenever S is an operator for which Sx € [R-orb(T)x]™ for
every vector x. In this paper we study R-orbit reflexivity and orbit-reflexivity for a
matrix in .#, (R). As mentioned above, in .#, (C) every matrix is orbit reflexive and
C-orbit reflexivity is characterized solely in terms of the Jordan form. Surprisingly,
neither of these facts remain true for .#, (R); the characterizations involve a little
number theory, i.e., linear dependence over Q of elements in R/Q.

2. Algebraic results

An irreducible factor p(x) of a polynomial in R[x] has degree at most 2. If
p(x) € R[x] is monic and irreducible and degp = 2, then p has roots o % if3 with
a,BeR, B#0, p(x) = (x—0a)*+ B2, and the corresponding companion matrix

. o—B\ [cos® —sinb
looks like ([3 o >_r<sin6 cos 0 ),Where

o+ if = re®
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with r = y/o2 + 2 and 0 < 6 < 27. The matrix
Re — cos@ —sinf
9= \ sin6 cos@
acts on R? as a counterclockwise rotation by the angle 6. More generally, if we iden-

tify R? with C, then (g _aB ) acts as multiplication by o +if8. An m x m Jordan

block corresponding to A = (g _(xﬁ ) ,is given by J,, (A) . However, J,, (A) is similar
to rJ,u (Rg), and we will represent the Jordan blocks this way. A Jordan block J of T
splits, or, is splitting, if the irreducible polynomial associated to it has degree 1, i.e., it
corresponds to a real eigenvalue of 7.

Since a real matrix may have empty spectrum, we let 6, (7) denote the point
spectrum of T , the set of real eigenvalues of T. Note that 0, (T) = @ is possible. We
define the spectral radius to be

. 1
r(T) = lim [[7"[|7,

which is the spectral radius of 7' considered as a matrix in .#, (C). Note that r (J,, (Rg))

=1 and r((a _aﬁ)> = a?+ B2
If X is a vector space over a field I, and 7 is a linear transformation on X, then
Pr(T)={p(T):pcF[t]}. A linear manifold M in X, is the translate of a linear
subspace, i.e., nonempty subset M so that when x € M, M — x is a linear subspace.
We begin with a lemma on the cardinality of the field. In the case where the field
is R or C, the lemma is an immediate consequence of the Baire category theorem.

LEMMA 1. If F is an uncountable field and n is a positive integer, then F" is not
a countable union of proper linear subspaces.

Proof. Let S = {(1,x,x*,...,.x""") :x€F}. Since any n distinct elements of §
are linearly independent, the intersection of any proper linear subspace with S has car-
dinality at most n — 1. However, § is uncountable, so § is not contained in a countable
union of proper linear subspaces of F". [

THEOREM 2. IfF is an uncountablefield, then every T € My (F) is algebraically
I -orbit reflexive and algebraically orbit-reflexive.

Proof. Tt is known from [16] that AlgLaty (T)N{T} = P (T), and that this
algebra of operators has a separating vector e. We know from [15] that every nilpotent
matrix is algebraically F-orbit reflexive. Suppose A is an invertible k£ x k matrix and
S € F-OrbRefy (A). Then, for every x € FX, there isa A € F and an m > 0 such that
Sx = AA™x. Hence,

Fr = U U Ker (A_'"S— l) ,

m=0Aecop(A~"S)
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which, by Lemma 1, implies there is an m > 0 anda A € F such that S = AA™. Hence
A is algebraically F-orbit reflexive. Since every T € ., (F) is the direct sum of a
nilpotent matrix N and an invertible matrix A, it follows that every S € F-OrbRef, (T')
is a direct sum of oN* and BA’ for o, € F and integers s,z > 0. It follows that
S € AlgLato (T)N{T} ; whence there is a polynomial p € F[x] such that § = p(T).
However, there is a A € F and an m > 0 such that

p(T)e=Se=AT"e.

Since e is separating for &2 (T), we see that S = p(T) = AT™, which implies T is
[F-orbit reflexive. The proof that T is algebraically orbit reflexive is very similar. [J

COROLLARY 3. If T € M, (R) and {T* : k > 0} is finite, e.g., TN =1 or TN =0
for some positive integer N, then R-OrbRef(T) = R-OrbRefy (T) =R-Orb(T) and
OrbRef(T) = OrbRefy (T) = Orb (7).

Proof. Since {Tk k> O} is finite, we know, for every vector x, that R-Orb (T) x
and Orb (T)x are closed, implying R-OrbRef (7') = R-OrbRef, (T') and OrbRef(T) =
OrbRefy (7). O

COROLLARY 4. If T € 4, (R), T =A@ B with AN =1 for some minimal N > 1
and r(B) < 1, then T is R-orbit reflexive.

Proof. Suppose S € R-OrbRef (7). Then S = S; @S, and, by Corollary 3, we
know that S; = AA® for some A € R and some s > 0. If S| = 0 it easily follows by
considering x @y with x # 0 and y arbitrary, that S, = 0, which implies S = 0. Hence
we can assume that S| # 0.

Note that

SY =N (aN) =",
Let E = {e*™*/"} :k=1,...,n}. Choose a separating unit vector xo for g (A). If
S1xo = AMA'xp, we have S| = AA’, which implies A; € E. Suppose y is in the domain
of B, then there is a sequence {k,} of positive integers and a sequence {f,,} in R
such that
BnT*" (x0 ©y) — S1x0® Say.

We have B,,A""xy — AA%xo, which implies {Bn} is bounded. If {ky,} is unbounded,
then it has a subsequence diverging to e, which implies Syy = 0, since ||B*|| — 0 as

k — oo. If {ky} is bounded, then it has a subsequence { fB; ¢ with a constant value 7,
and we get ﬁmj — Ay for some A; € E. Hence the domain of B is a countable union,

kerS, U U ker <S2 — yBk> .
keN,yeE

It follows from Lemma [ that S, € &g (B). If we choose a vector yq that is sep-
arating for P (B), we see from S(xo@®yo) € [R-Orb(T) (xo®yo)]” , that S € R-
Orb(T). O
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3. Main results

A key ingredient in our proofs is the following well-known result from number
theory. We sketch the elementary proof for completeness. For notation we let T =
{z € C:|z] = 1} be the unit circle, T* a direct product of k copies of T, and p; =
U X -~ x u be Haar measure on T*, where u is normalized arc length on T. If A =
(z1,-+,2x) € T and we define

At =(Z},....7)
forn=0,1,2,....

LEMMA 5. Suppose 0y,...,6; € R, and let L = (ei917...,ei9k). The following
are equivalent:

1. {l,lz,...} is dense in T,
2. {1,61/2m,...,6¢/2n} is linearly independent over Q,
3. forevery f € C(Tk) we have

Proof. 1f f(z1,...,2) =2, -z, * for integers my,...,my, then statement (2) is
equivalent to saying f(A) # 1 whenever (my,...,my;) # (0,...,0). For such a mono-
mial f we know that [ fd i = 0, and we know that f (A") = f(A)" for n > 1. Thus
statement (2) implies that

1 11—y

Nmf(l)—)():/wfduk

It follows from the Stone-Weierstrass theorem that the span of the monomials is dense

in C(T*), so we see that (2) = (3). On the other hand (3) implies that, for every

nonnegative continuous function f vanishingon {A,A%,...} we musthave [ fdy =

0, which implies f = 0. If x € T\ {1,A%,...} ", there is a nonnegative continuous

function f vanishing on {4,4%,...} with f(x) # 0. Hence (3) => (1). If f isa

nonconstant monomial and f(4) = 1, then the closure of {A,A?%,...} is contained in
~1({1}), which proves that (1) = (2). O

The next two results show that in .#y (R) orbit reflexivity is not the same as in

My (C).

LEMMA 6. Suppose k€N, 0,...,6;, €[0,2n), and T € #y (R) is a direct sum
of Rg, & @& Re, ®B&C with B> =1 and r(C) < 1. (The summands B and C might
not be present.) The following are equivalent:



624 D. HADWIN, I. IONASCU AND H. YOUSEFI

~

. T is orbit reflexive

2. T is R-orbit reflexive

3. There are nonzero integers sy, ...,S; and an integer t such that
k
ZSJ‘GJ'ZZTL'I.
j=1
4. Forevery je{l,...,k}, 0;/2rn € spo ({1} U{6;/2m: 1 <i# j<k}).

Proof. The equivalence of (4) and (3) is easy.
(1) = (4) and (2) = (4). Assume (4) is false. We can assume that

01/21 ¢ spo ({13 U{6;/21: 2 <i <k}).

We can assume that {1,6,/2m,...,0s/21} is a basis for the linear span over Q of
{1}u{6;/2m : 2 < i< k}, whichmakes 6, /2m,6,/2x,...,0;/2m irrational, and makes
{1,61/2m,...,05/2n} linearly independent over Q. Since each 6;/2m, s < j <k is
a rational linear combination of 1,6,/2x,...,0s/2m, there is a positive integer d such
that, for s < j <k, each d6;/2m is an integral linear combinationof 1,6, /2x,...,0s/2mx.
Suppose a € [0,2x). Since {1,6;/4nd,...,0s/4nd} is linearly independent over Q,
it follows from Lemma 5 that there is a sequence {m,} of positive integers such that
my — ©°,

m
Rel" =Ry, — Ra/2d7
m
Rejn = Rmnﬂj —1

for 2 < j <s. This implies that Ré‘llm" = Rodm,6, — Ro and Ré‘;’”” = Raam,0; — I for

S
2 < j<s If s < j <k, there are integers #,...,%; and # such that d0; =27+ Ztﬁh
i=2
which implies

S

2dmy n 2t
RGjm = I2tm H (Rmnei) — I
i=2
Moreover,
(B @ C)den — Bde,, @ C2dm,, N I@ O — P

01
10
every x € R? there is an o € [0,27) such that Fx = Rqx, that S € OrbRef (T) C R-
OrbRef (T). Since FRg, # Rg, F (because sin 6; # 0), it follows that ST # TS, and
we see that both (1) and (2) are false.

(3) = (2). Suppose (3) istrue. If k=1, then 0, /27 € Q, and RN1 =1 for some
positive integer N, which, by Corollary 4, implies T is R-orbit reflexive. Hence we can
assume k > 2, which, by (3), implies 0, /27 ¢ Q. Suppose S € R-OrbRef(T). Since

Let F = ( ) , and define S=F&I1&---&1®P. It follows from the fact that, for
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R-OrbRef(T) is contained in AlgLat(T), we can write S=S,®--- ®S® DDE.
Suppose x # 0 is in the domain of S;. We consider two cases:

Case 1. S;x = 0. If y is any vector orthogonal to the domain of S, there is a se-
quence {m,} of nonnegative integers and a sequence {A,} in R such that S(x®y) =
lHmA, 7™ (x@y). Thus |A,|||x|| — ||S1x]] =0, which implies A, — 0, and since {||T"||}
is bounded, we see that S (x@®y) =0. Thus 0 =S, =---=8; and D=0,E = 0. Since
k > 2, and arguing as above (when we showed S| =0 = S, =0), we know S; =0,
and thus S =0.

Case 2. Six #0. Let x; = x, and choose x; in the domain of §; for 2 < j <k
with each ||x;|| = [lx||, and let u =xGx, & Bx GODO. Since Ry, & --- @ Ry,
is an isometry and S € R-OrbRef(T), it follows that there is a sequence {m,} of
nonnegative integers and a sequence {A,} in R such that 0 # Su = lim,_,e A, 7" u.
Hence, {A,} is bounded, so we can assume that A, — A for some nonzero A € R,
and we can assume that 7" — Ry, @ -+ @ Ro, ®F © G with 0 < oy,..., 04 < 27,
We know that [A| = [[Six[| # 0, and, for 1 < j <k, Sjx; = ||S1x||Reyx; if 2 >0
and Sjx; = ||S1xHRaj+nxj if A < 0. Moreover, since Rg'j" — Ry for 1 < j <k, we

k k
have, from (3), that Y’ s;o;; € 27Z, and thus Y s5; (0 + ) € TZ. Suppose now we
j=1 =1
replace x; with another vector y in the domain of Sy with ||y|| = ||x1||, we get real
numbers fi,..., B such that Sy = [[S1y||Rp,y and Sjx; = [[S1yl[Rp;x; = [[S1y]| Ra,x;
k
for 2 < j < k, and such that Esjﬁj € nZ. However, for 2 < j < k, we must have
=1
Bj— o € nZ. Hence, 511 —s1ou € wZ. Hence the domain of S is the union

U ker (Sl - ||Slx||Roc1+nn/s1) )

nez

which, by Lemma 1, implies that there is a % € [0,27) N (al + ﬁZ—anZ such

that Sy = |[S1x[| Ry, . Similarly, we get, for 2 < j <k, that S; = ||S1x|| Ry, for some
yj €10,2m).

Applying the same reasoning we see that D = ||S;x||B or D = —||S1x|| B. Also,
for every f in the domain of C we get Ef € R-Orb(C) f, so, by Theorem 2, E € R-

Orb(C). We therefore have S; € Pp (R9j> for 1< j<k De Pr(B), and E €

P (C). If we choose separating vectors v; for each Py (Re_/) (1< j<k) and w

for Zr (B) and wy for Zr (C), and we let N =v; @ --- B vy B w; S wa, then there is
a sequence {g,} of nonnegative integers and a sequence {#,} in R such that

t,T"n — Sn,

and it follows that
t, T — §.

Thus S € R-Orb (T) 597
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(2) = (1). Suppose (2) is true, let e be a separating vector for &g (T'), and
suppose S € OrbRef(7) C R-OrbRef(T) = R-Orb(T) C Zr(T) (by (2)). Since
there is a sequence {m,} of nonnegative integers such that 7" ¢ — Se, it follows that
T"n — §. Hence (1) is proved. [

THEOREM 7. A matrix T € #n (R) fails to be orbit reflexive if and only if it is
similar to a matrix of the form in Lemma 6 that is not orbit reflexive.

Proof. We know from [14, Lemma 17] that if one of the sets {x € RV : T*x — 0}
or {x € RN :||T x| — e} is not a countable union of nowhere dense subsets of RY,
then T is orbit reflexive. Thus if »(7) < 1, then T is orbit reflexive. If r(T) > 1,
then the Jordan form shows that {x ERN: || Tka — 00} has nonempty interior, which
implies 7 is orbit reflexive. Hence we are left with the case where r(T) = 1. Moreover,

AL -0
i 0A |
if the Jordan form of T has an m X m block of the form with A = 1
0 "-12
0---0 A

or A = Ry, then for any vector x € RY whose m'" -coordinate relative to this summand

is nonzero, we have ||T*x|| — eo; whence T is orbit reflexive. Thus the Jordan form of
a matrix that is not orbit reflexive must be as the matrix in Lemma 6. [

If X is a Banach space over R, and T € B(RR) is algebraic, i.e., there is a nonzero
polynomial p € R[x] such that p(T) = 0, then, as a linear transformation, 7" has a
Jordan form with finitely many distinct blocks, but possibly with some of the blocks
having infinite multiplicity.

COROLLARY 8. Suppose X is a Banach space over R and T € B(X) is alge-
braic. Then T fails to be orbit-reflexive if and only if r(T) = 1, and the Jordan form
for T has one block Rg, of multiplicity 1, other blocks of the form Rg,,...,Rg, with
01/2n ¢ spo{1,6,...,6}, the remaining blocks of the form £I or blocks with spec-
tral radius less than 1.

Proof. Suppose T has the indicated form. Then there is an invertible operator D €
B(X) suchthat D™'TD =Ry, $A&B with r(A) =1 and r(B) < 1. Let S= F & 160.
Suppose x € X. Choose a finite-dimensional invariant subspace M for T of the form
M = M, & M, ® Mz, with M; equal to the domain of S; such that x € M. It follows
from the assumptions on 7 and the proof of Theorem 7 that S|M € OrbRef (T |M). In
particular, Sx is in the closure Orb (7T)x. Thus S € OrbRef(T), but ST #ATS, so T is
not orbit reflexive.

On the other hand, if T does not have the described form, then, given S € OrbRef (T'),
vectors xp,...,x, and € > 0, there is a finite-dimensional invariant subspace E of X
containing xi,...,x, such that T|E is orbit reflexive because of the conditions in The-
orem 7. Hence, since S|E € OrbRef (T |E), there is an integer m > 0 such that

||ij‘ — me.fH < €
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for 1 < j < n. Thus S is in the strong operator closure of Orb (7). Thus T is orbit
reflexive. [

THEOREM 9. A matrix T € My (R) fails to be R-orbit reflexive if and only if
r(T) # 0 with the largest size of a Jordan block with spectral radius r(T) being m,
and either

1. every Jordan block of T with spectral radius r (T) splits over R, and the largest
two such blocks differ in size by more than 1, or

2. there exist k€N, 0y,...,0; € [0,27) such that the direct sum of the non-splitting
m x m Jordan blocks of T /r(T) that have spectral radius 1 is similar to

Jn (Re,) @ -+ ®Jm (Re,)

with 0,/2m ¢ spg{1,6,/2m,...,6;/2m}.

Proof. We know that if r(7T) =0, then T is nilpotent, which, by Corollary 3,
implies T is R-orbit reflexive. Hence we can assume that r(T) > 0. Replacing T by
T/r(T), we can, and do, assume r(T) = 1.

In the case where every Jordan block of T with spectral radius r(T) splits, the
proof that T is not R-orbit reflexive is equivalent to the condition in (1) is exactly the
same at the proof of Theorem 7 in [15].

Next suppose T satisfies (2). Then, as in the proof of (1) = (4) in Lemma
6, given a € [0,27), we can choose a sequence {s;} of positive integers converging
to e such that s; —m+ 1 is even for each d > 1 and such that R‘;‘i 1, Ry and

Rf;j_""“ — 1 for 2 < j < k. It follows that

0--- 0 Ry
T LI
() SRR
00 - 0

and for any of the other splitting or non-splitting m x m Jordan block J with r(J) =1,
we have

} i 00 ---:
(1) SRR

For any block J with r(J) < 1 or with size smaller than m x m, we have

J — 0.

1
(1)
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Arguing as in the proof of (1) = (4) in Lemma 6, we see that, if F is the flip matrix,

0--0F 0--- 01

. . oo ... . 00 -
and S is the matrix that is on the domain of J,, (Rg, ),

0 s 0

00 ---0 00 ---0

on the domains of each of the remaining m x m blocks J with r(J) =1, and O on the
domains of the remaining blocks, then § € R-OrbRef (T'), but ST # TS. Hence T is
not R-orbit reflexive.
We need to show that if (2) holds with the condition on 6; replaced with condition
(3) in Lemma 6, then T must be R-orbit reflexive. If m = 1, then T has the form as in
0

0
Lemma 6, so we can assume that m > 1. Suppose S € R-OrbRef(7) and 0~ | | | =

X is in the domain of J,, (Rg, ) . We consider three cases.

Case 1. S1(X)=S(X) =0, where S is the restriction of S to the domain of
Ju (Rg,) . Suppose Y is orthogonal to the domain of J,, (Rg, ) , and using the fact that
there is a sequence {m,} of nonnegative integers and a sequence {4,} in R such that

SX+Y)=1limA,T™(X+7Y),
which means that
0=S(X)=lim A, 7™ (X),

n—oo

and
S(Y)=1lim A, 7™ (Y).

n—oo

However, the former implies

1im7L,,< i ):0,
n—oeo m—1

which implies S(Y) = 0. If k > 2, then S, = 0, where S, is the restriction of S to the
domain of J,, (Rez) , so the preceding arguments imply that S; = 0; whence, S = 0.
We therefore suppose k = 1, and it follows from (3) that 6,/27 € Q, i.e., 6, =
2np/q with 1 < p < q relatively prime integers. We can identify R? with C, and
we can write x = re® with r > 0. Since S(X) =0, we have S(1X) =0, so we can

assume x = ¢'*. Then {/leelx: AeR 1<s< q} is the set of all complex numbers

whose argument belongs to {ot+ jp27/q: 1 < j < g} + nZ. Choose numbers  and
y with o < B < y < o+ /8 such that

Hy+ip2m/q: 1< j<q}+rZIN[{B+jp2rn/q: 1< j<q}+nZ]=2.
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Since the argument of ¢'* +te'” ranges over (c,y) as ¢ ranges over (0,), we can
0

. . 0
chose ¢t > 0 so that the argument of ¢'* +r¢'? is B. Now let W = i in the

te'’
domain of J, (Rg,). Then S(X +W) = SX + SW = SW. However, the nonzero co-
ordinates of any vector in the closure of R-Orb (7)) (X + W) are all complex numbers
with arguments in {y+ jp2n/q: 1< j < g} + nZ and the nonzero coordinates of any
vector in the closure of R-Orb(7) (X 4+ W) are all complex numbers with arguments
0

in {f+jp2rn/q: 1< j<q}+nZ Hence S; | . | =0 forevery choice of y. We can
y

apply similar arguments to each of the other coordinates to get S; = 0, which implies
S=0.

X1
x
Case 2. S(X) =Sy (X) = AoT™ (X) # 0. Note that if ATS(X)=| . | #0,
Xm
then
X _
||xm|1|” =y, and Relsxm = Ax.

This means that if {m,} is a sequence of nonnegative integers and {A,} is a sequence
in R, and 7" (X) — S(X), then, eventually m, = ng and 4, — Ag. It follows that
S = AT" on the orthogonal complement of the domain of S;. If k > 2, we can argue
(using S7) that § = AyT™. If k= 1, we can use M|,M,, M5 as in Case 1 to show that
S = AgT".

X1

x
Case 3. S(X)=S81(X)=| . | #0, but x,, =0. If {s,} is a sequence of

Xm
nonnegative integers and {A,} is a sequence in R and A,7* (X) — S(X), we must
X1
] 0
have A, — 0, and thus s, — oo, and {|4,|(,”,)} bounded. Thus S; (X)= | . |.It

0
follows that if J is an m x m Jordan block of T with r(J) = 1 and whose domain is
orthogonal to the domain of S, then the restriction of S to the domain of J is a matrix
whose only nonzero entry is in the first row and /" column. The restriction of S to the

domain of a block J with r(J) < 1 or whose size is smaller than m x m must be 0. If
k > 2, the S| also has an operator matrix whose only nonzero entry is in the first row
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and m" column. If k = 1, then 6; /2 is rational, and we can argue with M, M, M;
as in Case 1 to see that S| has a matrix whose only nonzero entry is in the first row and
m'" column. If the m x m Jordan blocks of T are J, (Rg,) @+ @ (Rg,) DI (L) &
Jm (—Ip) (I, is an a X a identity matrix), then the corresponding decomposition of §

0--- 0 A;

L 00 - : . L

is a direct sum of , 1 < j<k+2. Ttis easily seen that A| G --- &
R ||
00 --- 0

Ajyo is in R-OrbRef (Rg, & -+ & Rg, ®1,® —1,) . Since 6),...,6; satisfy condition
(3) in Lemma 6, it follows from Lemma 6 that Ry @ --- & Rg, ® I, ® —1), is R-orbit
reflexive, so there is a sequence {s,} with s, — o and a sequence {A,} in R such that

Mn(Ro, & B Ry, &1, ® —Ib)xrm+1 — A1 G-~ D Apo. Hence
AT — S,

Hence T is R-orbit reflexive. [

REMARK 10. Using the ideas of the proof of Corollary 8 it is possible to char-
acterize R-orbit reflexivity for an algebraic operator on a Banach space in terms of its
algebraic Jordan form.
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