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R–ORBIT REFLEXIVE OPERATORS

DON HADWIN, ILEANA IONAŞCU AND HASSAN YOUSEFI

(Communicated by H. Bercovici)

Abstract. We completely characterize orbit reflexivity and R -orbit reflexivity for matrices in
MN (R) . Unlike the complex case in which every matrix is orbit reflexive and C -orbit reflexivity
is characterized solely in terms of the Jordan form, the orbit reflexivity and R -orbit reflexivity of
a matrix in MN (R) is described in terms of the linear dependence over Q of certain elements
of R/Q . We also show that every n× n matrix over an uncountable field F is algebraically
F -orbit reflexive.

1. Introduction

The term reflexive operator was coined by P. R. Halmos [20], and studied by many
authors, e.g., [1], [2], [3], [4], [5], [6], [7], [9], [12], [13], [16], [17], [18], [21], [22],
[24], [25], [26], [30], [31], [33]. If P (T ) denotes the set of all polynomials in the oper-
ator T, we say T is reflexive if S is in the strong operator topology closure P (T )−SOT

whenever S is an operator for which Sx ∈ [P (T )x]− for every vector x . It was proved
by J. Deddens and P. Fillmore [7] that an n× n complex matrix T is reflexive if and
only if, for each eigenvalue λ of T , the two largest Jordan blocks corresponding to λ
in the Jordan canonical form of T differ in size by at most 1. Later, D. Hadwin [12]
characterized algebraic reflexivity (no closures) for an n× n matrix over an arbitrary
field; in this setting the analog of the Jordan form contains blocks, which we will still
call Jordan blocks, of the form

Jm (A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A I 0 · · · 0

0 A I
. . .

...

0 0 A
. . . 0

...
...

. . . A I
0 0 · · · 0 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where A is the companion matrix of an irreducible factor of the minimal polynomial for
T . When the irreducible factor has degree 1, the matrix A is 1×1 and an eigenvalue of
T. Hadwin [12] proved that an n×n matrix T over a field F is (algebraically) reflexive
if, for each eigenvalue of T , the two largest Jordan blocks differ in size by at most 1,
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and for an irreducible factor of the minimal polynomial of T that has degree greater
than 1, the two largest Jordan blocks have the same size.

In [19] D. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal introduced the
notion of an orbit-reflexive operator, where, in the definition of reflexivity, P (T ) is
replaced by

Orb(T ) = {Tn : n = 0,1,2, . . .} .

They proved that on a Hilbert space this class includes all normal operators, algebraic
operators, compact operators, contractions and unilateral weighted shift operators. It
was over twenty years before examples were constructed [10] and [29] (see also [8])
of operators that are not orbit reflexive. In [29] V. Müller and J. Vršovský proved that
if r (T ) �= 1 (r (T ) denotes the spectral radius of T ), then T is orbit reflexive. In [14]
the authors proved that every polynomially bounded operator on a Hilbert space is orbit
reflexive.

Recently, M. McHugh and the authors [15], [27] introduced the notion of C-orbit
reflexivity, where, in the definition of reflexivity, P (T ) is replaced with

C-orb(T ) = {λTn : λ ∈ C,n � 0} ,

and they proved that an n× n complex matrix T is C-orbit reflexive if and only if
it is nilpotent or, among all the Jordan blocks corresponding to all eigenvalues with
modulus equal to the spectral radius r (T ) of T , the two largest blocks differ in size by
at most 1. In [14] null-orbit reflexivity (where Orb(T ) is replaced with null-orb(T ) =
Orb(T )∪{0} ) was introduced, and it was shown that, while null-orbit reflexivity shares
many nice properties with C-orbit reflexivity, every n×n complex matrix is null-orbit
reflexive.

In this paper we consider R-orbit reflexivity. If T is an operator, we define

R-orb(T ) = {λTn : λ ∈ R,n � 0} ,

and we say that T is R-orbit reflexive if S is in the strong operator topology (SOT)
closure of R-orb(T ) whenever S is an operator for which Sx ∈ [R-orb(T )x]− for
every vector x . In this paper we study R-orbit reflexivity and orbit-reflexivity for a
matrix in Mn (R) . As mentioned above, in Mn (C) every matrix is orbit reflexive and
C-orbit reflexivity is characterized solely in terms of the Jordan form. Surprisingly,
neither of these facts remain true for Mn (R) ; the characterizations involve a little
number theory, i.e., linear dependence over Q of elements in R/Q .

2. Algebraic results

An irreducible factor p(x) of a polynomial in R [x] has degree at most 2. If
p(x) ∈ R [x] is monic and irreducible and deg p = 2, then p has roots α ± iβ with
a,β ∈ R , β �= 0, p(x) = (x−α)2 + β 2 , and the corresponding companion matrix

looks like

(
α −β
β α

)
= r

(
cosθ −sinθ
sinθ cosθ

)
, where

α + iβ = reiθ
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with r =
√

α2 + β 2 and 0 � θ < 2π . The matrix

Rθ =
(

cosθ −sinθ
sinθ cosθ

)

acts on R2 as a counterclockwise rotation by the angle θ . More generally, if we iden-

tify R2 with C , then

(
α −β
β α

)
acts as multiplication by α + iβ . An m×m Jordan

block corresponding to A =
(

α −β
β α

)
, is given by Jm (A) . However, Jm (A) is similar

to rJm (Rθ ) , and we will represent the Jordan blocks this way. A Jordan block J of T
splits, or, is splitting, if the irreducible polynomial associated to it has degree 1, i.e., it
corresponds to a real eigenvalue of T.

Since a real matrix may have empty spectrum, we let σp (T ) denote the point
spectrum of T , the set of real eigenvalues of T . Note that σp (T ) = ∅ is possible. We
define the spectral radius to be

r (T ) = lim
n→∞

‖Tn‖ 1
n ,

which is the spectral radius of T considered as a matrix in Mn (C) . Note that r (Jm (Rθ ))

= 1 and r

((
α −β
β α

))
=

√
α2 + β 2 .

If X is a vector space over a field F , and T is a linear transformation on X , then
PF (T ) = {p(T ) : p ∈ F [t]} . A linear manifold M in X , is the translate of a linear
subspace, i.e., nonempty subset M so that when x ∈ M , M− x is a linear subspace.

We begin with a lemma on the cardinality of the field. In the case where the field
is R or C , the lemma is an immediate consequence of the Baire category theorem.

LEMMA 1. If F is an uncountable field and n is a positive integer, then Fn is not
a countable union of proper linear subspaces.

Proof. Let S =
{(

1,x,x2, . . . ,xn−1
)

: x ∈ F
}

. Since any n distinct elements of S
are linearly independent, the intersection of any proper linear subspace with S has car-
dinality at most n−1. However, S is uncountable, so S is not contained in a countable
union of proper linear subspaces of Fn . �

THEOREM 2. If F is an uncountablefield, then every T ∈MN (F) is algebraically
F-orbit reflexive and algebraically orbit-reflexive.

Proof. It is known from [16] that AlgLat0 (T )∩ {T}′ = PF (T ) , and that this
algebra of operators has a separating vector e. We know from [15] that every nilpotent
matrix is algebraically F-orbit reflexive. Suppose A is an invertible k× k matrix and
S ∈ F-OrbRef0 (A) . Then, for every x ∈ Fk , there is a λ ∈ F and an m � 0 such that
Sx = λAmx . Hence,

Fk =
∞⋃

m=0

⋃
λ∈σp(A−mS)

Ker
(
A−mS−λ

)
,
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which, by Lemma 1, implies there is an m � 0 and a λ ∈ F such that S = λAm . Hence
A is algebraically F-orbit reflexive. Since every T ∈ Mn (F) is the direct sum of a
nilpotent matrix N and an invertible matrix A , it follows that every S ∈ F-OrbRef0 (T )
is a direct sum of αNs and βAt for α,β ∈ F and integers s,t � 0. It follows that
S ∈AlgLat0 (T )∩{T}′ ; whence there is a polynomial p ∈ F [x] such that S = p(T ) .
However, there is a λ ∈ F and an m � 0 such that

p(T )e = Se = λTme.

Since e is separating for P (T ) , we see that S = p(T ) = λTm, which implies T is
F-orbit reflexive. The proof that T is algebraically orbit reflexive is very similar. �

COROLLARY 3. If T ∈Mn (R) and
{
Tk : k � 0

}
is finite, e.g., TN = I or TN = 0

for some positive integer N, then R-OrbRef(T ) = R-OrbRef0 (T ) = R-Orb(T ) and
OrbRef(T ) = OrbRef0 (T ) = Orb(T ) .

Proof. Since
{
Tk : k � 0

}
is finite, we know, for every vector x , that R-Orb(T )x

and Orb(T )x are closed, implying R-OrbRef(T )= R-OrbRef0 (T ) and OrbRef(T )=
OrbRef0 (T ) . �

COROLLARY 4. If T ∈Mn (R) , T = A⊕B with AN = I for some minimal N � 1
and r (B) < 1 , then T is R-orbit reflexive.

Proof. Suppose S ∈ R-OrbRef(T ) . Then S = S1 ⊕ S2 and, by Corollary 3, we
know that S1 = λAs for some λ ∈ R and some s � 0. If S1 = 0 it easily follows by
considering x⊕ y with x �= 0 and y arbitrary, that S2 = 0, which implies S = 0. Hence
we can assume that S1 �= 0.

Note that
SN

1 = λ N (
AN)s = λ N .

Let E =
{
e2π ik/nλ : k = 1, . . . ,n

}
. Choose a separating unit vector x0 for PR (A) . If

S1x0 = λ1Atx0, we have S1 = λ1At , which implies λ1 ∈ E . Suppose y is in the domain
of B , then there is a sequence {km} of positive integers and a sequence {βm} in R

such that
βmTkm (x0⊕ y) → S1x0⊕S2y.

We have βmAkmx0 → λAsx0, which implies {βm} is bounded. If {km} is unbounded,
then it has a subsequence diverging to ∞ , which implies S2y = 0, since

∥∥Bk
∥∥ → 0 as

k → ∞ . If {km} is bounded, then it has a subsequence
{

βk j

}
with a constant value t ,

and we get βmj → λ1 for some λ1 ∈ E . Hence the domain of B is a countable union,

kerS2∪
⋃

k∈N,γ∈E

ker
(
S2− γBk

)
.

It follows from Lemma 1 that S2 ∈ PR (B) . If we choose a vector y0 that is sep-
arating for PR (B) , we see from S (x0⊕ y0) ∈ [R-Orb(T)(x0 ⊕ y0)]

− , that S ∈ R-
Orb(T). �
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3. Main results

A key ingredient in our proofs is the following well-known result from number
theory. We sketch the elementary proof for completeness. For notation we let T =
{z ∈ C: |z| = 1} be the unit circle, Tk a direct product of k copies of T , and μk =
μ × ·· ·× μ be Haar measure on Tk , where μ is normalized arc length on T . If λ =
(z1, · · · ,zk) ∈ Tk and we define

λ n = (zn
1, . . . ,z

n
k)

for n = 0,1,2, . . . .

LEMMA 5. Suppose θ1, . . . ,θk ∈ R , and let λ =
(
eiθ1 , . . . ,eiθk

)
. The following

are equivalent:

1.
{

λ ,λ 2, . . .
}

is dense in Tk ,

2. {1,θ1/2π , . . . ,θk/2π} is linearly independent over Q ,

3. for every f ∈C
(
Tk

)
we have

lim
N→∞

1
N

N

∑
n=1

f (λ n) =
∫

Tk
f dμk.

Proof. If f (z1, . . . ,zk) = zm1
1 · · ·zmk

k for integers m1, . . . ,mk , then statement (2) is
equivalent to saying f (λ ) �= 1 whenever (m1, . . . ,mk) �= (0, . . . ,0) . For such a mono-
mial f we know that

∫
Tk f dμk = 0, and we know that f (λ n) = f (λ )n for n � 1. Thus

statement (2) implies that

lim
N→∞

1
N

N

∑
n=1

f (λ n) = lim
N→∞

1
N

1− f (λ )N

1− f (λ )
f (λ ) → 0 =

∫
Tk

f dμk.

It follows from the Stone-Weierstrass theorem that the span of the monomials is dense
in C

(
Tk

)
, so we see that (2) =⇒ (3) . On the other hand (3) implies that, for every

nonnegative continuous function f vanishing on
{

λ ,λ 2, . . .
}

we must have
∫
Tk f dμk =

0, which implies f = 0. If x ∈ Tk\{
λ ,λ 2, . . .

}−
, there is a nonnegative continuous

function f vanishing on
{

λ ,λ 2, . . .
}

with f (x) �= 0. Hence (3) =⇒ (1) . If f is a
nonconstant monomial and f (λ ) = 1, then the closure of

{
λ ,λ 2, . . .

}
is contained in

f−1 ({1}) , which proves that (1) =⇒ (2) . �
The next two results show that in MN (R) orbit reflexivity is not the same as in

MN (C) .

LEMMA 6. Suppose k ∈ N , θ1, . . . ,θk ∈ [0,2π), and T ∈MN (R) is a direct sum
of Rθ1 ⊕·· ·⊕Rθk ⊕B⊕C with B2 = 1 and r (C) < 1 . (The summands B and C might
not be present.) The following are equivalent:
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1. T is orbit reflexive

2. T is R-orbit reflexive

3. There are nonzero integers s1, . . . ,sk and an integer t such that

k

∑
j=1

s jθ j = 2πt.

4. For every j ∈ {1, . . . ,k} , θ j/2π ∈ spQ ({1}∪{θi/2π : 1 � i �= j � k}) .

Proof. The equivalence of (4) and (3) is easy.
(1) =⇒ (4) and (2) =⇒ (4) . Assume (4) is false. We can assume that

θ1/2π /∈ spQ ({1}∪{θi/2π : 2 � i � k}) .

We can assume that {1,θ2/2π , . . . ,θ s/2π} is a basis for the linear span over Q of
{1}∪{θi/2π : 2 � i � k} , which makes θ1/2π ,θ2/2π , . . . ,θs/2π irrational, and makes
{1,θ1/2π , . . . ,θ s/2π} linearly independent over Q . Since each θ j/2π , s < j � k is
a rational linear combination of 1,θ2/2π , . . . ,θ s/2π , there is a positive integer d such
that, for s < j � k , each dθ j/2π is an integral linear combination of 1,θ2/2π , . . . ,θ s/2π .
Suppose α ∈ [0,2π) . Since {1,θ1/4πd, . . . ,θ s/4πd} is linearly independent over Q ,
it follows from Lemma 5 that there is a sequence {mn} of positive integers such that
mn → ∞,

Rmn
θ1

= Rmnθ1 → Rα/2d,

Rmn
θ j

= Rmnθ j → I

for 2 � j � s. This implies that R2dmn
θ1

= R2dmnθ1 → Rα and R2dmn
θ j = R2dmnθ j → I for

2 � j � s. If s < j � k , there are integers t2, . . . ,ts and t such that dθ j = t2π +
s

∑
i=2

tiθi,

which implies

R2dmn
θ j = I2tmn

s

∏
i=2

(
Rmnθi

)2ti → I.

Moreover,
(B⊕C)2dmn = B2dmn ⊕C2dmn → I⊕0 = P.

Let F =
(

0 1
1 0

)
, and define S = F ⊕ I⊕·· ·⊕ I⊕P . It follows from the fact that, for

every x ∈ R2 there is an α ∈ [0,2π) such that Fx = Rαx, that S ∈ OrbRef(T ) ⊆ R-
OrbRef(T ) . Since FRθ1 �= Rθ1F (because sinθ1 �= 0), it follows that ST �= TS, and
we see that both (1) and (2) are false.

(3) =⇒ (2) . Suppose (3) is true. If k = 1, then θ1/2π ∈Q , and RN
θ1

= I for some
positive integer N, which, by Corollary 4, implies T is R-orbit reflexive. Hence we can
assume k � 2, which, by (3) , implies θ1/2π /∈ Q . Suppose S ∈ R-OrbRef(T ) . Since
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R-OrbRef(T ) is contained in AlgLat(T ) , we can write S = S1 ⊕ ·· · ⊕ Sk⊕ D⊕E .
Suppose x �= 0 is in the domain of S1 . We consider two cases:

Case 1. S1x = 0. If y is any vector orthogonal to the domain of S1 , there is a se-
quence {mn} of nonnegative integers and a sequence {λn} in R such that S (x⊕ y) =
limλnTmn (x⊕ y) . Thus |λn|‖x‖→‖S1x‖= 0, which implies λn → 0, and since {‖Tn‖}
is bounded, we see that S (x⊕ y) = 0. Thus 0 = S2 = · · ·= Sk and D = 0,E = 0. Since
k � 2, and arguing as above (when we showed S1 = 0 =⇒ S2 = 0), we know S1 = 0,
and thus S = 0.

Case 2. S1x �= 0. Let x1 = x, and choose x j in the domain of S j for 2 � j � k
with each

∥∥x j
∥∥ = ‖x‖ , and let u = x⊕ x2 ⊕ ·· · ⊕ xk ⊕ 0⊕ 0. Since Rθ1 ⊕ ·· · ⊕Rθk

is an isometry and S ∈ R-OrbRef(T ) , it follows that there is a sequence {mn} of
nonnegative integers and a sequence {λn} in R such that 0 �= Su = limn→∞ λnTmnu.
Hence, {λn} is bounded, so we can assume that λn → λ for some nonzero λ ∈ R ,
and we can assume that Tmn → Rα1 ⊕ ·· · ⊕Rαk ⊕F ⊕G with 0 � α1, . . . ,αk < 2π .
We know that |λ | = ‖S1x‖ �= 0, and, for 1 � j � k, S jx j = ‖S1x‖Rα j x j if λ > 0
and S jx j = ‖S1x‖Rα j+πx j if λ < 0. Moreover, since Rmn

θ j
→ Rα j for 1 � j � k, we

have, from (3) , that
k

∑
j=1

s jα j ∈ 2πZ , and thus
k

∑
j=1

s j (α j + π) ∈ πZ . Suppose now we

replace x1 with another vector y in the domain of S1 with ‖y‖ = ‖x1‖ , we get real
numbers β1, . . . ,βk such that S1y = ‖S1y‖Rβ1

y and S jx j = ‖S1y‖Rβ j
x j = ‖S1y‖Rα j x j

for 2 � j � k, and such that
k

∑
j=1

s jβ j ∈ πZ . However, for 2 � j � k, we must have

β j −α j ∈ πZ . Hence, s1β1− s1α1 ∈ πZ . Hence the domain of S1 is the union
⋃
n∈Z

ker
(
S1−‖S1x‖Rα1+nπ/s1

)
,

which, by Lemma 1, implies that there is a γ1 ∈ [0,2π)∩
(

α1 + π
s1

Z+2πZ

)
such

that S1 = ‖S1x‖Rγ1 . Similarly, we get, for 2 � j � k, that S j = ‖S1x‖Rγ j for some
γ j ∈ [0,2π) .

Applying the same reasoning we see that D = ‖S1x‖B or D = −‖S1x‖B . Also,
for every f in the domain of C we get E f ∈ R-Orb(C) f , so, by Theorem 2, E ∈ R-

Orb(C) . We therefore have S j ∈ PR

(
Rθ j

)
for 1 � j � k, D ∈ PR (B) , and E ∈

PR (C) . If we choose separating vectors v j for each PR

(
Rθ j

)
(1 � j � k) and w1

for PR (B) and w2 for PR (C) , and we let η = v1⊕·· ·⊕ vk ⊕w1⊕w2 , then there is
a sequence {qn} of nonnegative integers and a sequence {tn} in R such that

tnT
qnη → Sη ,

and it follows that
tnT

qn → S.

Thus S ∈ R-Orb(T )−SOT .
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(2) =⇒ (1) . Suppose (2) is true, let e be a separating vector for PR (T ) , and
suppose S ∈ OrbRef(T ) ⊆ R-OrbRef(T ) = R-Orb(T ) ⊆ PR (T ) (by (2)). Since
there is a sequence {mn} of nonnegative integers such that Tmne → Se , it follows that
Tmn → S . Hence (1) is proved. �

THEOREM 7. A matrix T ∈ MN (R) fails to be orbit reflexive if and only if it is
similar to a matrix of the form in Lemma 6 that is not orbit reflexive.

Proof. We know from [14, Lemma 17] that if one of the sets
{
x ∈ RN : Tkx → 0

}
or

{
x ∈ RN :

∥∥Tkx
∥∥ → ∞

}
is not a countable union of nowhere dense subsets of RN ,

then T is orbit reflexive. Thus if r (T ) < 1, then T is orbit reflexive. If r (T ) > 1,
then the Jordan form shows that

{
x ∈ RN :

∥∥Tkx
∥∥ → ∞

}
has nonempty interior, which

implies T is orbit reflexive. Hence we are left with the case where r (T ) = 1. Moreover,

if the Jordan form of T has an m×m block of the form

⎛
⎜⎜⎜⎜⎝

A I2 · · · 0

0 A
. . .

...
... 0

. . . I2
0 · · · 0 A

⎞
⎟⎟⎟⎟⎠ with A = ±I

or A = Rθ , then for any vector x ∈ RN whose mth -coordinate relative to this summand
is nonzero, we have

∥∥Tkx
∥∥ → ∞; whence T is orbit reflexive. Thus the Jordan form of

a matrix that is not orbit reflexive must be as the matrix in Lemma 6. �
If X is a Banach space over R , and T ∈ B(R) is algebraic, i.e., there is a nonzero

polynomial p ∈ R [x] such that p(T ) = 0, then, as a linear transformation, T has a
Jordan form with finitely many distinct blocks, but possibly with some of the blocks
having infinite multiplicity.

COROLLARY 8. Suppose X is a Banach space over R and T ∈ B(X) is alge-
braic. Then T fails to be orbit-reflexive if and only if r (T ) = 1, and the Jordan form
for T has one block Rθ1 of multiplicity 1 , other blocks of the form Rθ2 , . . . ,Rθk with
θ1/2π /∈ spQ {1,θ2, . . . ,θk} , the remaining blocks of the form ±I or blocks with spec-
tral radius less than 1 .

Proof. Suppose T has the indicated form. Then there is an invertible operator D∈
B(X) such that D−1TD = Rθ1 ⊕A⊕B with r (A) = 1 and r (B) < 1. Let S = F⊕1⊕0.
Suppose x ∈ X . Choose a finite-dimensional invariant subspace M for T of the form
M = M1 ⊕M2 ⊕M3 , with M1 equal to the domain of S1 such that x ∈ M . It follows
from the assumptions on T and the proof of Theorem 7 that S|M ∈ OrbRef(T |M) . In
particular, Sx is in the closure Orb(T )x . Thus S ∈ OrbRef(T ) , but ST �= TS, so T is
not orbit reflexive.

On the other hand, if T does not have the described form, then, given S∈OrbRef(T ) ,
vectors x1, . . . ,xn and ε > 0, there is a finite-dimensional invariant subspace E of X
containing x1, . . . ,xn such that T |E is orbit reflexive because of the conditions in The-
orem 7. Hence, since S|E ∈ OrbRef(T |E) , there is an integer m � 0 such that∥∥Sx j −Tmx j

∥∥ < ε
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for 1 � j � n . Thus S is in the strong operator closure of Orb(T ) . Thus T is orbit
reflexive. �

THEOREM 9. A matrix T ∈ MN (R) fails to be R-orbit reflexive if and only if
r (T ) �= 0 with the largest size of a Jordan block with spectral radius r (T ) being m,
and either

1. every Jordan block of T with spectral radius r (T ) splits over R , and the largest
two such blocks differ in size by more than 1, or

2. there exist k ∈N , θ1, . . . ,θk ∈ [0,2π) such that the direct sum of the non-splitting
m×m Jordan blocks of T/r (T ) that have spectral radius 1 is similar to

Jm
(
Rθ1

)⊕·· ·⊕ Jm
(
Rθk

)

with θ1/2π /∈ spQ {1,θ2/2π , . . . ,θk/2π} .

Proof. We know that if r (T ) = 0, then T is nilpotent, which, by Corollary 3,
implies T is R-orbit reflexive. Hence we can assume that r (T ) > 0. Replacing T by
T/r (T ) , we can, and do, assume r (T ) = 1.

In the case where every Jordan block of T with spectral radius r (T ) splits, the
proof that T is not R-orbit reflexive is equivalent to the condition in (1) is exactly the
same at the proof of Theorem 7 in [15].

Next suppose T satisfies (2) . Then, as in the proof of (1) =⇒ (4) in Lemma
6, given α ∈ [0,2π), we can choose a sequence {sd} of positive integers converging
to ∞ such that sd −m + 1 is even for each d � 1 and such that Rsd−m+1

θ1
→ Rα and

Rsd−m+1
θ j

→ I for 2 � j � k . It follows that

1( sd
m−1

)Jsd
m

(
Rθ1

) →

⎛
⎜⎜⎜⎜⎝

0 · · · 0 Rα

0 0 · · · ...
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

and for any of the other splitting or non-splitting m×m Jordan block J with r (J) = 1,
we have

1( sd
m−1

)Jsd →

⎛
⎜⎜⎜⎜⎝

0 · · · 0 I

0 0 · · · ...
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ .

For any block J with r (J) < 1 or with size smaller than m×m , we have

1( sd
m−1

)Jsd → 0.
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Arguing as in the proof of (1) =⇒ (4) in Lemma 6, we see that, if F is the flip matrix,

and S is the matrix that is

⎛
⎜⎜⎜⎜⎝

0 · · · 0 F

0 0 · · · ...
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ on the domain of Jm

(
Rθ1

)
,

⎛
⎜⎜⎜⎜⎝

0 · · · 0 I

0 0 · · · ...
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

on the domains of each of the remaining m×m blocks J with r (J) = 1, and 0 on the
domains of the remaining blocks, then S ∈ R-OrbRef(T ) , but ST �= TS. Hence T is
not R-orbit reflexive.

We need to show that if (2) holds with the condition on θ1 replaced with condition
(3) in Lemma 6, then T must be R-orbit reflexive. If m = 1, then T has the form as in

Lemma 6, so we can assume that m > 1. Suppose S∈R-OrbRef(T ) and 0 �=

⎛
⎜⎜⎜⎝

0
0
...
x

⎞
⎟⎟⎟⎠ =

X is in the domain of Jm
(
Rθ1

)
. We consider three cases.

Case 1. S1 (X) = S (X) = 0, where S1 is the restriction of S to the domain of
Jm

(
Rθ1

)
. Suppose Y is orthogonal to the domain of Jm

(
Rθ1

)
, and using the fact that

there is a sequence {mn} of nonnegative integers and a sequence {λn} in R such that

S (X +Y ) = lim
n→∞

λnT
mn (X +Y ) ,

which means that

0 = S (X) = lim
n→∞

λnT
mn (X) ,

and

S (Y ) = lim
n→∞

λnT
mn (Y ) .

However, the former implies

lim
n→∞

|λn|
(

mn

m−1

)
= 0,

which implies S (Y ) = 0. If k � 2, then S2 = 0, where S2 is the restriction of S to the
domain of Jm

(
Rθ2

)
, so the preceding arguments imply that S1 = 0; whence, S = 0.

We therefore suppose k = 1, and it follows from (3) that θ1/2π ∈ Q , i.e., θ1 =
2π p/q with 1 � p < q relatively prime integers. We can identify R2 with C , and
we can write x = reα with r > 0. Since S (X) = 0, we have S

(1
r X

)
= 0, so we can

assume x = eiα . Then
{

λRs
θ1

x : λ ∈ R,1 � s � q
}

is the set of all complex numbers

whose argument belongs to {α + jp2π/q : 1 � j � q}+ πZ . Choose numbers β and
γ with α < β < γ < α + π/8 such that

[{γ + jp2π/q : 1 � j � q}+ πZ]∩ [{β + jp2π/q : 1 � j � q}+ πZ] = ∅.
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Since the argument of eiα + teiγ ranges over (α,γ) as t ranges over (0,∞) , we can

chose t > 0 so that the argument of eiα + teiγ is β . Now let W =

⎛
⎜⎜⎜⎝

0
0
...

teiγ

⎞
⎟⎟⎟⎠ in the

domain of Jm
(
Rθ1

)
. Then S (X +W) = SX + SW = SW. However, the nonzero co-

ordinates of any vector in the closure of R-Orb(T )(X +W) are all complex numbers
with arguments in {γ + jp2π/q : 1 � j � q}+ πZ and the nonzero coordinates of any
vector in the closure of R-Orb(T )(X +W ) are all complex numbers with arguments

in {β + jp2π/q : 1 � j � q}+πZ Hence S1

⎛
⎜⎜⎜⎝

0
0
...
y

⎞
⎟⎟⎟⎠ = 0 for every choice of y. We can

apply similar arguments to each of the other coordinates to get S1 = 0, which implies
S = 0.

Case 2. S (X) = S1‘ (X) = λ0Tn0 (X) �= 0. Note that if λT s (X) =

⎛
⎜⎜⎜⎝

x1

x2
...

xm

⎞
⎟⎟⎟⎠ �= 0,

then
‖xm−1‖
‖xm‖ = s, and R−s

θ1
xm = λx.

This means that if {mn} is a sequence of nonnegative integers and {λn} is a sequence
in R , and Tmn (X) → S (X) , then, eventually mn = n0 and λn → λ0 . It follows that
S = λ0Tn0 on the orthogonal complement of the domain of S1 . If k � 2, we can argue
(using S2 ) that S = λ0Tn0 . If k = 1, we can use M1,M2,M3 as in Case 1 to show that
S = λ0Tn0 .

Case 3. S (X) = S1 (X) =

⎛
⎜⎜⎜⎝

x1

x2
...

xm

⎞
⎟⎟⎟⎠ �= 0, but xm = 0. If {sn} is a sequence of

nonnegative integers and {λn} is a sequence in R and λnT sn (X) → S (X) , we must

have λn → 0, and thus sn → ∞, and
{|λn|

( sn
m−1

)}
bounded. Thus S1 (X) =

⎛
⎜⎜⎜⎝

x1

0
...
0

⎞
⎟⎟⎟⎠ . It

follows that if J is an m×m Jordan block of T with r (J) = 1 and whose domain is
orthogonal to the domain of S1 , then the restriction of S to the domain of J is a matrix
whose only nonzero entry is in the first row and mth column. The restriction of S to the
domain of a block J with r (J) < 1 or whose size is smaller than m×m must be 0. If
k � 2, the S1 also has an operator matrix whose only nonzero entry is in the first row
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and mth column. If k = 1, then θ1/2π is rational, and we can argue with M1,M2,M3

as in Case 1 to see that S1 has a matrix whose only nonzero entry is in the first row and
mth column. If the m×m Jordan blocks of T are Jm

(
Rθ1

)⊕·· ·⊕ Jm
(
Rθk

)⊕ Jm (Ia)⊕
Jm (−Ib) ( Ia is an a× a identity matrix), then the corresponding decomposition of S

is a direct sum of

⎛
⎜⎜⎜⎜⎝

0 · · · 0 Aj

0 0 · · · ...
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ , 1 � j � k + 2. It is easily seen that A1 ⊕ ·· · ⊕

Ak+2 is in R-OrbRef
(
Rθ1 ⊕·· · ⊕Rθk ⊕ Ia⊕−Ib

)
. Since θ1, . . . ,θk satisfy condition

(3) in Lemma 6, it follows from Lemma 6 that Rθ1 ⊕ ·· ·⊕Rθk ⊕ Ia ⊕−Ib is R-orbit
reflexive, so there is a sequence {sn} with sn → ∞ and a sequence {λn} in R such that

λn
(
Rθ1 ⊕·· ·⊕Rθk ⊕ Ia⊕−Ib

)sn−m+1 → A1⊕·· ·⊕Ak+2 . Hence

λnT
sn → S.

Hence T is R-orbit reflexive. �

REMARK 10. Using the ideas of the proof of Corollary 8 it is possible to char-
acterize R-orbit reflexivity for an algebraic operator on a Banach space in terms of its
algebraic Jordan form.
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