R-ORBIT REFLEXIVE OPERATORS

Don Hadwin, Ileana Ionaşcu and Hassan Yousefi

(Communicated by H. Bercovici)

Abstract

We completely characterize orbit reflexivity and \mathbb{R}-orbit reflexivity for matrices in $\mathscr{M}_{N}(\mathbb{R})$. Unlike the complex case in which every matrix is orbit reflexive and \mathbb{C}-orbit reflexivity is characterized solely in terms of the Jordan form, the orbit reflexivity and \mathbb{R}-orbit reflexivity of a matrix in $\mathscr{M}_{N}(\mathbb{R})$ is described in terms of the linear dependence over \mathbb{Q} of certain elements of \mathbb{R} / \mathbb{Q}. We also show that every $n \times n$ matrix over an uncountable field \mathbb{F} is algebraically \mathbb{F}-orbit reflexive.

1. Introduction

The term reflexive operator was coined by P. R. Halmos [20], and studied by many authors, e.g., [1], [2], [3], [4], [5], [6], [7], [9], [12], [13], [16], [17], [18], [21], [22], [24], [25], [26], [30], [31], [33]. If $\mathscr{P}(T)$ denotes the set of all polynomials in the operator T, we say T is reflexive if S is in the strong operator topology closure $\mathscr{P}(T)^{-S O T}$ whenever S is an operator for which $S x \in[\mathscr{P}(T) x]^{-}$for every vector x. It was proved by J. Deddens and P. Fillmore [7] that an $n \times n$ complex matrix T is reflexive if and only if, for each eigenvalue λ of T, the two largest Jordan blocks corresponding to λ in the Jordan canonical form of T differ in size by at most 1. Later, D. Hadwin [12] characterized algebraic reflexivity (no closures) for an $n \times n$ matrix over an arbitrary field; in this setting the analog of the Jordan form contains blocks, which we will still call Jordan blocks, of the form

$$
J_{m}(A)=\left(\begin{array}{ccccc}
A & I & 0 & \cdots & 0 \\
0 & A & I & \ddots & \vdots \\
0 & 0 & A & \ddots & 0 \\
\vdots & \vdots & \ddots & A & I \\
0 & 0 & \cdots & 0 & A
\end{array}\right),
$$

where A is the companion matrix of an irreducible factor of the minimal polynomial for T. When the irreducible factor has degree 1 , the matrix A is 1×1 and an eigenvalue of T. Hadwin [12] proved that an $n \times n$ matrix T over a field \mathbb{F} is (algebraically) reflexive if, for each eigenvalue of T, the two largest Jordan blocks differ in size by at most 1 ,

[^0]and for an irreducible factor of the minimal polynomial of T that has degree greater than 1, the two largest Jordan blocks have the same size.

In [19] D. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal introduced the notion of an orbit-reflexive operator, where, in the definition of reflexivity, $\mathscr{P}(T)$ is replaced by

$$
\operatorname{Orb}(T)=\left\{T^{n}: n=0,1,2, \ldots\right\}
$$

They proved that on a Hilbert space this class includes all normal operators, algebraic operators, compact operators, contractions and unilateral weighted shift operators. It was over twenty years before examples were constructed [10] and [29] (see also [8]) of operators that are not orbit reflexive. In [29] V. Müller and J. Vršovský proved that if $r(T) \neq 1(r(T)$ denotes the spectral radius of $T)$, then T is orbit reflexive. In [14] the authors proved that every polynomially bounded operator on a Hilbert space is orbit reflexive.

Recently, M. McHugh and the authors [15], [27] introduced the notion of \mathbb{C}-orbit reflexivity, where, in the definition of reflexivity, $\mathscr{P}(T)$ is replaced with

$$
\mathbb{C}-\operatorname{orb}(T)=\left\{\lambda T^{n}: \lambda \in \mathbb{C}, n \geqslant 0\right\},
$$

and they proved that an $n \times n$ complex matrix T is \mathbb{C}-orbit reflexive if and only if it is nilpotent or, among all the Jordan blocks corresponding to all eigenvalues with modulus equal to the spectral radius $r(T)$ of T, the two largest blocks differ in size by at most 1. In [14] null-orbit reflexivity (where $\operatorname{Orb}(T)$ is replaced with null-orb $(T)=$ $\operatorname{Orb}(T) \cup\{0\}$) was introduced, and it was shown that, while null-orbit reflexivity shares many nice properties with \mathbb{C}-orbit reflexivity, every $n \times n$ complex matrix is null-orbit reflexive.

In this paper we consider \mathbb{R}-orbit reflexivity. If T is an operator, we define

$$
\mathbb{R}-\operatorname{orb}(T)=\left\{\lambda T^{n}: \lambda \in \mathbb{R}, n \geqslant 0\right\}
$$

and we say that T is \mathbb{R}-orbit reflexive if S is in the strong operator topology (SOT) closure of \mathbb{R}-orb (T) whenever S is an operator for which $S x \in[\mathbb{R}-\operatorname{orb}(T) x]^{-}$for every vector x. In this paper we study \mathbb{R}-orbit reflexivity and orbit-reflexivity for a matrix in $\mathscr{M}_{n}(\mathbb{R})$. As mentioned above, in $\mathscr{M}_{n}(\mathbb{C})$ every matrix is orbit reflexive and \mathbb{C}-orbit reflexivity is characterized solely in terms of the Jordan form. Surprisingly, neither of these facts remain true for $\mathscr{M}_{n}(\mathbb{R})$; the characterizations involve a little number theory, i.e., linear dependence over \mathbb{Q} of elements in \mathbb{R} / \mathbb{Q}.

2. Algebraic results

An irreducible factor $p(x)$ of a polynomial in $\mathbb{R}[x]$ has degree at most 2 . If $p(x) \in \mathbb{R}[x]$ is monic and irreducible and $\operatorname{deg} p=2$, then p has roots $\alpha \pm i \beta$ with $a, \beta \in \mathbb{R}, \beta \neq 0, p(x)=(x-\alpha)^{2}+\beta^{2}$, and the corresponding companion matrix looks like $\left(\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right)=r\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, where

$$
\alpha+i \beta=r e^{i \theta}
$$

with $r=\sqrt{\alpha^{2}+\beta^{2}}$ and $0 \leqslant \theta<2 \pi$. The matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

acts on \mathbb{R}^{2} as a counterclockwise rotation by the angle θ. More generally, if we identify \mathbb{R}^{2} with \mathbb{C}, then $\left(\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right)$ acts as multiplication by $\alpha+i \beta$. An $m \times m$ Jordan block corresponding to $A=\left(\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right)$, is given by $J_{m}(A)$. However, $J_{m}(A)$ is similar to $r J_{m}\left(R_{\theta}\right)$, and we will represent the Jordan blocks this way. A Jordan block J of T splits, or, is splitting, if the irreducible polynomial associated to it has degree 1, i.e., it corresponds to a real eigenvalue of T.

Since a real matrix may have empty spectrum, we let $\sigma_{p}(T)$ denote the point spectrum of T, the set of real eigenvalues of T. Note that $\sigma_{p}(T)=\varnothing$ is possible. We define the spectral radius to be

$$
r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}
$$

which is the spectral radius of T considered as a matrix in $\mathscr{M}_{n}(\mathbb{C})$. Note that $r\left(J_{m}\left(R_{\theta}\right)\right)$ $=1$ and $r\left(\left(\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right)\right)=\sqrt{\alpha^{2}+\beta^{2}}$.

If X is a vector space over a field \mathbb{F}, and T is a linear transformation on X, then $\mathscr{P}_{\mathbb{F}}(T)=\{p(T): p \in \mathbb{F}[t]\}$. A linear manifold M in X, is the translate of a linear subspace, i.e., nonempty subset M so that when $x \in M, M-x$ is a linear subspace.

We begin with a lemma on the cardinality of the field. In the case where the field is \mathbb{R} or \mathbb{C}, the lemma is an immediate consequence of the Baire category theorem.

Lemma 1. If \mathbb{F} is an uncountable field and n is a positive integer, then \mathbb{F}^{n} is not a countable union of proper linear subspaces.

Proof. Let $S=\left\{\left(1, x, x^{2}, \ldots, x^{n-1}\right): x \in \mathbb{F}\right\}$. Since any n distinct elements of S are linearly independent, the intersection of any proper linear subspace with S has cardinality at most $n-1$. However, S is uncountable, so S is not contained in a countable union of proper linear subspaces of \mathbb{F}^{n}.

THEOREM 2. If \mathbb{F} is an uncountable field, then every $T \in \mathscr{M}_{N}(\mathbb{F})$ is algebraically \mathbb{F}-orbit reflexive and algebraically orbit-reflexive.

Proof. It is known from [16] that $\operatorname{AlgLat}_{0}(T) \cap\{T\}^{\prime}=\mathscr{P}_{\mathbb{F}}(T)$, and that this algebra of operators has a separating vector e. We know from [15] that every nilpotent matrix is algebraically \mathbb{F}-orbit reflexive. Suppose A is an invertible $k \times k$ matrix and $S \in \mathbb{F}-\operatorname{OrbRef}_{0}(A)$. Then, for every $x \in \mathbb{F}^{k}$, there is a $\lambda \in \mathbb{F}$ and an $m \geqslant 0$ such that $S x=\lambda A^{m} x$. Hence,

$$
\mathbb{F}^{k}=\bigcup_{m=0}^{\infty} \bigcup_{\lambda \in \sigma_{p}\left(A^{-m} S\right)} \operatorname{Ker}\left(A^{-m} S-\lambda\right)
$$

which, by Lemma 1, implies there is an $m \geqslant 0$ and a $\lambda \in \mathbb{F}$ such that $S=\lambda A^{m}$. Hence A is algebraically \mathbb{F}-orbit reflexive. Since every $T \in \mathscr{M}_{n}(\mathbb{F})$ is the direct sum of a nilpotent matrix N and an invertible matrix A, it follows that every $S \in \mathbb{F}$ - $\operatorname{OrbRef}_{0}(T)$ is a direct sum of αN^{s} and βA^{t} for $\alpha, \beta \in \mathbb{F}$ and integers $s, t \geqslant 0$. It follows that $S \in \operatorname{AlgLat}_{0}(T) \cap\{T\}^{\prime} ;$ whence there is a polynomial $p \in \mathbb{F}[x]$ such that $S=p(T)$. However, there is a $\lambda \in \mathbb{F}$ and an $m \geqslant 0$ such that

$$
p(T) e=S e=\lambda T^{m} e
$$

Since e is separating for $\mathscr{P}(T)$, we see that $S=p(T)=\lambda T^{m}$, which implies T is \mathbb{F}-orbit reflexive. The proof that T is algebraically orbit reflexive is very similar.

Corollary 3. If $T \in \mathscr{M}_{n}(\mathbb{R})$ and $\left\{T^{k}: k \geqslant 0\right\}$ is finite, e.g., $T^{N}=I$ or $T^{N}=0$ for some positive integer N, then $\mathbb{R}-\operatorname{OrbRef}(T)=\mathbb{R}-\operatorname{OrbRef}_{0}(T)=\mathbb{R}-\operatorname{Orb}(T)$ and $\operatorname{OrbRef}(T)=\operatorname{OrbRef}_{0}(T)=\operatorname{Orb}(T)$.

Proof. Since $\left\{T^{k}: k \geqslant 0\right\}$ is finite, we know, for every vector x, that \mathbb{R} - $\operatorname{Orb}(T) x$ and $\operatorname{Orb}(T) x$ are closed, implying $\mathbb{R}-\operatorname{OrbRef}(T)=\mathbb{R}-\operatorname{OrbRef}_{0}(T)$ and $\operatorname{OrbRef}(T)=$ $\operatorname{OrbRef}_{0}(T)$.

Corollary 4. If $T \in \mathscr{M}_{n}(\mathbb{R}), T=A \oplus B$ with $A^{N}=I$ for some minimal $N \geqslant 1$ and $r(B)<1$, then T is \mathbb{R}-orbit reflexive.

Proof. Suppose $S \in \mathbb{R}-\operatorname{OrbRef}(T)$. Then $S=S_{1} \oplus S_{2}$ and, by Corollary 3, we know that $S_{1}=\lambda A^{s}$ for some $\lambda \in \mathbb{R}$ and some $s \geqslant 0$. If $S_{1}=0$ it easily follows by considering $x \oplus y$ with $x \neq 0$ and y arbitrary, that $S_{2}=0$, which implies $S=0$. Hence we can assume that $S_{1} \neq 0$.

Note that

$$
S_{1}^{N}=\lambda^{N}\left(A^{N}\right)^{s}=\lambda^{N}
$$

Let $E=\left\{e^{2 \pi i k / n} \lambda: k=1, \ldots, n\right\}$. Choose a separating unit vector x_{0} for $\mathscr{P}_{R}(A)$. If $S_{1} x_{0}=\lambda_{1} A^{t} x_{0}$, we have $S_{1}=\lambda_{1} A^{t}$, which implies $\lambda_{1} \in E$. Suppose y is in the domain of B, then there is a sequence $\left\{k_{m}\right\}$ of positive integers and a sequence $\left\{\beta_{m}\right\}$ in \mathbb{R} such that

$$
\beta_{m} T^{k_{m}}\left(x_{0} \oplus y\right) \rightarrow S_{1} x_{0} \oplus S_{2} y
$$

We have $\beta_{m} A^{k_{m}} x_{0} \rightarrow \lambda A^{s} x_{0}$, which implies $\left\{\beta_{m}\right\}$ is bounded. If $\left\{k_{m}\right\}$ is unbounded, then it has a subsequence diverging to ∞, which implies $S_{2} y=0$, since $\left\|B^{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. If $\left\{k_{m}\right\}$ is bounded, then it has a subsequence $\left\{\beta_{k_{j}}\right\}$ with a constant value t, and we get $\beta_{m_{j}} \rightarrow \lambda_{1}$ for some $\lambda_{1} \in E$. Hence the domain of B is a countable union,

$$
\operatorname{ker} S_{2} \cup \bigcup_{k \in \mathbb{N}, \gamma \in E} \operatorname{ker}\left(S_{2}-\gamma B^{k}\right)
$$

It follows from Lemma 1 that $S_{2} \in \mathscr{P}_{\mathbb{R}}(B)$. If we choose a vector y_{0} that is separating for $\mathscr{P}_{\mathbb{R}}(B)$, we see from $S\left(x_{0} \oplus y_{0}\right) \in\left[\mathbb{R}-\operatorname{Orb}(\mathrm{T})\left(x_{0} \oplus y_{0}\right)\right]^{-}$, that $S \in \mathbb{R}$ $\operatorname{Orb}(\mathrm{T})$.

3. Main results

A key ingredient in our proofs is the following well-known result from number theory. We sketch the elementary proof for completeness. For notation we let $\mathbb{T}=$ $\{z \in \mathbb{C}:|z|=1\}$ be the unit circle, \mathbb{T}^{k} a direct product of k copies of \mathbb{T}, and $\mu_{k}=$ $\mu \times \cdots \times \mu$ be Haar measure on \mathbb{T}^{k}, where μ is normalized arc length on \mathbb{T}. If $\lambda=$ $\left(z_{1}, \cdots, z_{k}\right) \in \mathbb{T}^{k}$ and we define

$$
\lambda^{n}=\left(z_{1}^{n}, \ldots, z_{k}^{n}\right)
$$

for $n=0,1,2, \ldots$.
Lemma 5. Suppose $\theta_{1}, \ldots, \theta_{k} \in \mathbb{R}$, and let $\lambda=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{k}}\right)$. The following are equivalent:

1. $\left\{\lambda, \lambda^{2}, \ldots\right\}$ is dense in \mathbb{T}^{k},
2. $\left\{1, \theta_{1} / 2 \pi, \ldots, \theta_{k} / 2 \pi\right\}$ is linearly independent over \mathbb{Q},
3. for every $f \in C\left(\mathbb{T}^{k}\right)$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(\lambda^{n}\right)=\int_{\mathbb{T}^{k}} f d \mu_{k}
$$

Proof. If $f\left(z_{1}, \ldots, z_{k}\right)=z_{1}^{m_{1}} \cdots z_{k}^{m_{k}}$ for integers m_{1}, \ldots, m_{k}, then statement (2) is equivalent to saying $f(\lambda) \neq 1$ whenever $\left(m_{1}, \ldots, m_{k}\right) \neq(0, \ldots, 0)$. For such a monomial f we know that $\int_{\mathbb{T}^{k}} f d \mu_{k}=0$, and we know that $f\left(\lambda^{n}\right)=f(\lambda)^{n}$ for $n \geqslant 1$. Thus statement (2) implies that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(\lambda^{n}\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \frac{1-f(\lambda)^{N}}{1-f(\lambda)} f(\lambda) \rightarrow 0=\int_{\mathbb{T}^{k}} f d \mu_{k}
$$

It follows from the Stone-Weierstrass theorem that the span of the monomials is dense in $C\left(\mathbb{T}^{k}\right)$, so we see that $(2) \Longrightarrow(3)$. On the other hand (3) implies that, for every nonnegative continuous function f vanishing on $\left\{\lambda, \lambda^{2}, \ldots\right\}$ we must have $\int_{\mathbb{T}^{k}} f d \mu_{k}=$ 0 , which implies $f=0$. If $x \in \mathbb{T}^{k} \backslash\left\{\lambda, \lambda^{2}, \ldots\right\}^{-}$, there is a nonnegative continuous function f vanishing on $\left\{\lambda, \lambda^{2}, \ldots\right\}$ with $f(x) \neq 0$. Hence $(3) \Longrightarrow(1)$. If f is a nonconstant monomial and $f(\lambda)=1$, then the closure of $\left\{\lambda, \lambda^{2}, \ldots\right\}$ is contained in $f^{-1}(\{1\})$, which proves that $(1) \Longrightarrow(2)$.

The next two results show that in $\mathscr{M}_{N}(\mathbb{R})$ orbit reflexivity is not the same as in $\mathscr{M}_{N}(\mathbb{C})$.

Lemma 6. Suppose $k \in \mathbb{N}, \theta_{1}, \ldots, \theta_{k} \in[0,2 \pi)$, and $T \in \mathscr{M}_{N}(\mathbb{R})$ is a direct sum of $R_{\theta_{1}} \oplus \cdots \oplus R_{\theta_{k}} \oplus B \oplus C$ with $B^{2}=1$ and $r(C)<1$. (The summands B and C might not be present.) The following are equivalent:

1. T is orbit reflexive

2. T is \mathbb{R}-orbit reflexive
3. There are nonzero integers s_{1}, \ldots, s_{k} and an integer t such that

$$
\sum_{j=1}^{k} s_{j} \theta_{j}=2 \pi t
$$

4. For every $j \in\{1, \ldots, k\}, \theta_{j} / 2 \pi \in \operatorname{sp}_{\mathbb{Q}}\left(\{1\} \cup\left\{\theta_{i} / 2 \pi: 1 \leqslant i \neq j \leqslant k\right\}\right)$.

Proof. The equivalence of (4) and (3) is easy.
$(1) \Longrightarrow(4)$ and $(2) \Longrightarrow(4)$. Assume (4) is false. We can assume that

$$
\theta_{1} / 2 \pi \notin s p_{\mathbb{Q}}\left(\{1\} \cup\left\{\theta_{i} / 2 \pi: 2 \leqslant i \leqslant k\right\}\right) .
$$

We can assume that $\left\{1, \theta_{2} / 2 \pi, \ldots, \theta s / 2 \pi\right\}$ is a basis for the linear span over \mathbb{Q} of $\{1\} \cup\left\{\theta_{i} / 2 \pi: 2 \leqslant i \leqslant k\right\}$, which makes $\theta_{1} / 2 \pi, \theta_{2} / 2 \pi, \ldots, \theta_{s} / 2 \pi$ irrational, and makes $\left\{1, \theta_{1} / 2 \pi, \ldots, \theta s / 2 \pi\right\}$ linearly independent over \mathbb{Q}. Since each $\theta_{j} / 2 \pi, s<j \leqslant k$ is a rational linear combination of $1, \theta_{2} / 2 \pi, \ldots, \theta s / 2 \pi$, there is a positive integer d such that, for $s<j \leqslant k$, each $d \theta_{j} / 2 \pi$ is an integral linear combination of $1, \theta_{2} / 2 \pi, \ldots, \theta s / 2 \pi$. Suppose $\alpha \in[0,2 \pi)$. Since $\left\{1, \theta_{1} / 4 \pi d, \ldots, \theta s / 4 \pi d\right\}$ is linearly independent over \mathbb{Q}, it follows from Lemma 5 that there is a sequence $\left\{m_{n}\right\}$ of positive integers such that $m_{n} \rightarrow \infty$,

$$
\begin{gathered}
R_{\theta_{1}}^{m_{n}}=R_{m_{n} \theta_{1}} \rightarrow R_{\alpha / 2 d} \\
R_{\theta_{j}}^{m_{n}}=R_{m_{n} \theta_{j}} \rightarrow I
\end{gathered}
$$

for $2 \leqslant j \leqslant s$. This implies that $R_{\theta_{1}}^{2 d m_{n}}=R_{2 d m_{n} \theta_{1}} \rightarrow R_{\alpha}$ and $R_{\theta j}^{2 d m_{n}}=R_{2 d m_{n} \theta_{j}} \rightarrow I$ for $2 \leqslant j \leqslant s$. If $s<j \leqslant k$, there are integers t_{2}, \ldots, t_{s} and t such that $d \theta_{j}=t 2 \pi+\sum_{i=2}^{s} t_{i} \theta_{i}$, which implies

$$
R_{\theta j}^{2 d m_{n}}=I^{2 t m_{n}} \prod_{i=2}^{s}\left(R_{m_{n} \theta_{i}}\right)^{2 t_{i}} \rightarrow I
$$

Moreover,

$$
(B \oplus C)^{2 d m_{n}}=B^{2 d m_{n}} \oplus C^{2 d m_{n}} \rightarrow I \oplus 0=P
$$

Let $F=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and define $S=F \oplus I \oplus \cdots \oplus I \oplus P$. It follows from the fact that, for every $x \in \mathbb{R}^{2}$ there is an $\alpha \in[0,2 \pi)$ such that $F x=R_{\alpha} x$, that $S \in \operatorname{OrbRef}(T) \subseteq \mathbb{R}$ $\operatorname{OrbRef}(T)$. Since $F R_{\theta_{1}} \neq R_{\theta_{1}} F$ (because $\sin \theta_{1} \neq 0$), it follows that $S T \neq T S$, and we see that both (1) and (2) are false.
$(3) \Longrightarrow(2)$. Suppose (3) is true. If $k=1$, then $\theta_{1} / 2 \pi \in \mathbb{Q}$, and $R_{\theta_{1}}^{N}=I$ for some positive integer N, which, by Corollary 4, implies T is \mathbb{R}-orbit reflexive. Hence we can assume $k \geqslant 2$, which, by (3), implies $\theta_{1} / 2 \pi \notin \mathbb{Q}$. Suppose $S \in \mathbb{R}$ - $\operatorname{OrbRef}(T)$. Since
$\mathbb{R}-\operatorname{OrbRef}(T)$ is contained in $\operatorname{AlgLat}(T)$, we can write $S=S_{1} \oplus \cdots \oplus S_{k} \oplus D \oplus E$. Suppose $x \neq 0$ is in the domain of S_{1}. We consider two cases:

Case 1. $S_{1} x=0$. If y is any vector orthogonal to the domain of S_{1}, there is a sequence $\left\{m_{n}\right\}$ of nonnegative integers and a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{R} such that $S(x \oplus y)=$ $\lim \lambda_{n} T^{m_{n}}(x \oplus y)$. Thus $\left|\lambda_{n}\right|\|x\| \rightarrow\left\|S_{1} x\right\|=0$, which implies $\lambda_{n} \rightarrow 0$, and since $\left\{\left\|T^{n}\right\|\right\}$ is bounded, we see that $S(x \oplus y)=0$. Thus $0=S_{2}=\cdots=S_{k}$ and $D=0, E=0$. Since $k \geqslant 2$, and arguing as above (when we showed $S_{1}=0 \Longrightarrow S_{2}=0$), we know $S_{1}=0$, and thus $S=0$.

Case 2. $S_{1} x \neq 0$. Let $x_{1}=x$, and choose x_{j} in the domain of S_{j} for $2 \leqslant j \leqslant k$ with each $\left\|x_{j}\right\|=\|x\|$, and let $u=x \oplus x_{2} \oplus \cdots \oplus x_{k} \oplus 0 \oplus 0$. Since $R_{\theta_{1}} \oplus \cdots \oplus R_{\theta_{k}}$ is an isometry and $S \in \mathbb{R}-\operatorname{OrbRef}(T)$, it follows that there is a sequence $\left\{m_{n}\right\}$ of nonnegative integers and a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{R} such that $0 \neq S u=\lim _{n \rightarrow \infty} \lambda_{n} T^{m_{n}} u$. Hence, $\left\{\lambda_{n}\right\}$ is bounded, so we can assume that $\lambda_{n} \rightarrow \lambda$ for some nonzero $\lambda \in \mathbb{R}$, and we can assume that $T^{m_{n}} \rightarrow R_{\alpha_{1}} \oplus \cdots \oplus R_{\alpha_{k}} \oplus F \oplus G$ with $0 \leqslant \alpha_{1}, \ldots, \alpha_{k}<2 \pi$. We know that $|\lambda|=\left\|S_{1} x\right\| \neq 0$, and, for $1 \leqslant j \leqslant k, S_{j} x_{j}=\left\|S_{1} x\right\| R_{\alpha_{j}} x_{j}$ if $\lambda>0$ and $S_{j} x_{j}=\left\|S_{1} x\right\| R_{\alpha_{j}+\pi} x_{j}$ if $\lambda<0$. Moreover, since $R_{\theta_{j}}^{m_{n}} \rightarrow R_{\alpha_{j}}$ for $1 \leqslant j \leqslant k$, we have, from (3), that $\sum_{j=1}^{k} s_{j} \alpha_{j} \in 2 \pi \mathbb{Z}$, and thus $\sum_{j=1}^{k} s_{j}\left(\alpha_{j}+\pi\right) \in \pi \mathbb{Z}$. Suppose now we replace x_{1} with another vector y in the domain of S_{1} with $\|y\|=\left\|x_{1}\right\|$, we get real numbers $\beta_{1}, \ldots, \beta_{k}$ such that $S_{1} y=\left\|S_{1} y\right\| R_{\beta_{1}} y$ and $S_{j} x_{j}=\left\|S_{1} y\right\| R_{\beta_{j}} x_{j}=\left\|S_{1} y\right\| R_{\alpha_{j}} x_{j}$ for $2 \leqslant j \leqslant k$, and such that $\sum_{j=1}^{k} s_{j} \beta_{j} \in \pi \mathbb{Z}$. However, for $2 \leqslant j \leqslant k$, we must have $\beta_{j}-\alpha_{j} \in \pi \mathbb{Z}$. Hence, $s_{1} \beta_{1}-s_{1} \alpha_{1} \in \pi \mathbb{Z}$. Hence the domain of S_{1} is the union

$$
\bigcup_{n \in \mathbb{Z}} \operatorname{ker}\left(S_{1}-\left\|S_{1} x\right\| R_{\alpha_{1}+n \pi / s_{1}}\right)
$$

which, by Lemma 1 , implies that there is a $\gamma_{1} \in[0,2 \pi) \cap\left(\alpha_{1}+\frac{\pi}{s_{1}} \mathbb{Z}+2 \pi \mathbb{Z}\right)$ such that $S_{1}=\left\|S_{1} x\right\| R_{\gamma_{1}}$. Similarly, we get, for $2 \leqslant j \leqslant k$, that $S_{j}=\left\|S_{1} x\right\| R_{\gamma_{j}}$ for some $\gamma_{j} \in[0,2 \pi)$.

Applying the same reasoning we see that $D=\left\|S_{1} x\right\| B$ or $D=-\left\|S_{1} x\right\| B$. Also, for every f in the domain of C we get $E f \in \mathbb{R}-\operatorname{Orb}(C) f$, so, by Theorem $2, E \in \mathbb{R}$ $\operatorname{Orb}(C)$. We therefore have $S_{j} \in \mathscr{P}_{\mathbb{R}}\left(R_{\theta_{j}}\right)$ for $1 \leqslant j \leqslant k, D \in \mathscr{P}_{\mathbb{R}}(B)$, and $E \in$ $\mathscr{P}_{\mathbb{R}}(C)$. If we choose separating vectors v_{j} for each $\mathscr{P}_{\mathbb{R}}\left(R_{\theta_{j}}\right)(1 \leqslant j \leqslant k)$ and w_{1} for $\mathscr{P}_{\mathbb{R}}(B)$ and w_{2} for $\mathscr{P}_{\mathbb{R}}(C)$, and we let $\eta=v_{1} \oplus \cdots \oplus v_{k} \oplus w_{1} \oplus w_{2}$, then there is a sequence $\left\{q_{n}\right\}$ of nonnegative integers and a sequence $\left\{t_{n}\right\}$ in \mathbb{R} such that

$$
t_{n} T^{q_{n}} \eta \rightarrow S \eta
$$

and it follows that

$$
t_{n} T^{q_{n}} \rightarrow S
$$

Thus $S \in \mathbb{R}-\operatorname{Orb}(T)^{-S O T}$.
$(2) \Longrightarrow(1)$. Suppose (2) is true, let e be a separating vector for $\mathscr{P}_{\mathbb{R}}(T)$, and suppose $S \in \operatorname{OrbRef}(T) \subseteq \mathbb{R}-\operatorname{OrbRef}(T)=\mathbb{R}-\operatorname{Orb}(T) \subseteq \mathscr{P}_{\mathbb{R}}(T)$ (by (2)). Since there is a sequence $\left\{m_{n}\right\}$ of nonnegative integers such that $T^{m_{n}} e \rightarrow S e$, it follows that $T^{m_{n}} \rightarrow S$. Hence (1) is proved.

THEOREM 7. A matrix $T \in \mathscr{M}_{N}(\mathbb{R})$ fails to be orbit reflexive if and only if it is similar to a matrix of the form in Lemma 6 that is not orbit reflexive.

Proof. We know from [14, Lemma 17] that if one of the sets $\left\{x \in \mathbb{R}^{N}: T^{k} x \rightarrow 0\right\}$ or $\left\{x \in \mathbb{R}^{N}:\left\|T^{k} x\right\| \rightarrow \infty\right\}$ is not a countable union of nowhere dense subsets of \mathbb{R}^{N}, then T is orbit reflexive. Thus if $r(T)<1$, then T is orbit reflexive. If $r(T)>1$, then the Jordan form shows that $\left\{x \in \mathbb{R}^{N}:\left\|T^{k} x\right\| \rightarrow \infty\right\}$ has nonempty interior, which implies T is orbit reflexive. Hence we are left with the case where $r(T)=1$. Moreover, if the Jordan form of T has an $m \times m$ block of the form $\left(\begin{array}{cccc}A & I_{2} & \cdots & 0 \\ 0 & A & \ddots & \vdots \\ \vdots & 0 & \ddots & I_{2} \\ 0 & \cdots & 0 & A\end{array}\right)$ with $A= \pm I$ or $A=R_{\theta}$, then for any vector $x \in \mathbb{R}^{N}$ whose $m^{\text {th }}$-coordinate relative to this summand is nonzero, we have $\left\|T^{k} x\right\| \rightarrow \infty$; whence T is orbit reflexive. Thus the Jordan form of a matrix that is not orbit reflexive must be as the matrix in Lemma 6.

If X is a Banach space over \mathbb{R}, and $T \in B(\mathbb{R})$ is algebraic, i.e., there is a nonzero polynomial $p \in \mathbb{R}[x]$ such that $p(T)=0$, then, as a linear transformation, T has a Jordan form with finitely many distinct blocks, but possibly with some of the blocks having infinite multiplicity.

Corollary 8. Suppose X is a Banach space over \mathbb{R} and $T \in B(X)$ is algebraic. Then T fails to be orbit-reflexive if and only if $r(T)=1$, and the Jordan form for T has one block $R_{\theta_{1}}$ of multiplicity 1 , other blocks of the form $R_{\theta_{2}}, \ldots, R_{\theta_{k}}$ with $\theta_{1} / 2 \pi \notin s p_{\mathbb{Q}}\left\{1, \theta_{2}, \ldots, \theta_{k}\right\}$, the remaining blocks of the form $\pm I$ or blocks with spectral radius less than 1.

Proof. Suppose T has the indicated form. Then there is an invertible operator $D \in$ $B(X)$ such that $D^{-1} T D=R_{\theta_{1}} \oplus A \oplus B$ with $r(A)=1$ and $r(B)<1$. Let $S=F \oplus 1 \oplus 0$. Suppose $x \in X$. Choose a finite-dimensional invariant subspace M for T of the form $M=M_{1} \oplus M_{2} \oplus M_{3}$, with M_{1} equal to the domain of S_{1} such that $x \in M$. It follows from the assumptions on T and the proof of Theorem 7 that $S \mid M \in \operatorname{OrbRef}(T \mid M)$. In particular, $S x$ is in the closure $\operatorname{Orb}(T) x$. Thus $S \in \operatorname{OrbRef}(T)$, but $S T \neq T S$, so T is not orbit reflexive.

On the other hand, if T does not have the described form, then, given $S \in \operatorname{OrbRef}(T)$, vectors x_{1}, \ldots, x_{n} and $\varepsilon>0$, there is a finite-dimensional invariant subspace E of X containing x_{1}, \ldots, x_{n} such that $T \mid E$ is orbit reflexive because of the conditions in Theorem 7. Hence, since $S \mid E \in \operatorname{OrbRef}(T \mid E)$, there is an integer $m \geqslant 0$ such that

$$
\left\|S x_{j}-T^{m} x_{j}\right\|<\varepsilon
$$

for $1 \leqslant j \leqslant n$. Thus S is in the strong operator closure of $\operatorname{Orb}(T)$. Thus T is orbit reflexive.

Theorem 9. A matrix $T \in \mathscr{M}_{N}(\mathbb{R})$ fails to be \mathbb{R}-orbit reflexive if and only if $r(T) \neq 0$ with the largest size of a Jordan block with spectral radius $r(T)$ being m, and either

1. every Jordan block of T with spectral radius $r(T)$ splits over \mathbb{R}, and the largest two such blocks differ in size by more than 1 , or
2. there exist $k \in \mathbb{N}, \theta_{1}, \ldots, \theta_{k} \in[0,2 \pi)$ such that the direct sum of the non-splitting $m \times m$ Jordan blocks of $T / r(T)$ that have spectral radius 1 is similar to

$$
J_{m}\left(R_{\theta_{1}}\right) \oplus \cdots \oplus J_{m}\left(R_{\theta_{k}}\right)
$$

with $\theta_{1} / 2 \pi \notin s p_{\mathbb{Q}}\left\{1, \theta_{2} / 2 \pi, \ldots, \theta_{k} / 2 \pi\right\}$.

Proof. We know that if $r(T)=0$, then T is nilpotent, which, by Corollary 3, implies T is \mathbb{R}-orbit reflexive. Hence we can assume that $r(T)>0$. Replacing T by $T / r(T)$, we can, and do, assume $r(T)=1$.

In the case where every Jordan block of T with spectral radius $r(T)$ splits, the proof that T is not \mathbb{R}-orbit reflexive is equivalent to the condition in (1) is exactly the same at the proof of Theorem 7 in [15].

Next suppose T satisfies (2). Then, as in the proof of $(1) \Longrightarrow(4)$ in Lemma 6 , given $\alpha \in[0,2 \pi)$, we can choose a sequence $\left\{s_{d}\right\}$ of positive integers converging to ∞ such that $s_{d}-m+1$ is even for each $d \geqslant 1$ and such that $R_{\theta_{1}}^{s_{d}-m+1} \rightarrow R_{\alpha}$ and $R_{\theta_{j}}^{s_{d}-m+1} \rightarrow I$ for $2 \leqslant j \leqslant k$. It follows that

$$
\frac{1}{\binom{s_{d}}{m-1}} J_{m}^{s_{d}}\left(R_{\theta_{1}}\right) \rightarrow\left(\begin{array}{cccc}
0 & \cdots & 0 & R_{\alpha} \\
0 & 0 & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

and for any of the other splitting or non-splitting $m \times m$ Jordan block J with $r(J)=1$, we have

$$
\frac{1}{\binom{s_{d}}{m-1}} J^{s_{d}} \rightarrow\left(\begin{array}{cccc}
0 & \cdots & 0 & I \\
0 & 0 & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

For any block J with $r(J)<1$ or with size smaller than $m \times m$, we have

$$
\frac{1}{\binom{s_{d}}{m-1}} J^{s_{d}} \rightarrow 0
$$

Arguing as in the proof of $(1) \Longrightarrow(4)$ in Lemma 6, we see that, if F is the flip matrix, and S is the matrix that is $\left(\begin{array}{cccc}0 & \cdots & 0 & F \\ 0 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0\end{array}\right)$ on the domain of $J_{m}\left(R_{\theta_{1}}\right),\left(\begin{array}{cccc}0 & \cdots & 0 & I \\ 0 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0\end{array}\right)$ on the domains of each of the remaining $m \times m$ blocks J with $r(J)=1$, and 0 on the domains of the remaining blocks, then $S \in \mathbb{R}-\operatorname{OrbRef}(T)$, but $S T \neq T S$. Hence T is not \mathbb{R}-orbit reflexive.

We need to show that if (2) holds with the condition on θ_{1} replaced with condition (3) in Lemma 6, then T must be \mathbb{R}-orbit reflexive. If $m=1$, then T has the form as in Lemma 6, so we can assume that $m>1$. Suppose $S \in \mathbb{R}-\operatorname{OrbRef}(T)$ and $0 \neq\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ x\end{array}\right)=$ X is in the domain of $J_{m}\left(R_{\theta_{1}}\right)$. We consider three cases.

Case 1. $S_{1}(X)=S(X)=0$, where S_{1} is the restriction of S to the domain of $J_{m}\left(R_{\theta_{1}}\right)$. Suppose Y is orthogonal to the domain of $J_{m}\left(R_{\theta_{1}}\right)$, and using the fact that there is a sequence $\left\{m_{n}\right\}$ of nonnegative integers and a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{R} such that

$$
S(X+Y)=\lim _{n \rightarrow \infty} \lambda_{n} T^{m_{n}}(X+Y)
$$

which means that

$$
0=S(X)=\lim _{n \rightarrow \infty} \lambda_{n} T^{m_{n}}(X)
$$

and

$$
S(Y)=\lim _{n \rightarrow \infty} \lambda_{n} T^{m_{n}}(Y)
$$

However, the former implies

$$
\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|\binom{m_{n}}{m-1}=0
$$

which implies $S(Y)=0$. If $k \geqslant 2$, then $S_{2}=0$, where S_{2} is the restriction of S to the domain of $J_{m}\left(R_{\theta_{2}}\right)$, so the preceding arguments imply that $S_{1}=0$; whence, $S=0$.

We therefore suppose $k=1$, and it follows from (3) that $\theta_{1} / 2 \pi \in \mathbb{Q}$, i.e., $\theta_{1}=$ $2 \pi p / q$ with $1 \leqslant p<q$ relatively prime integers. We can identify \mathbb{R}^{2} with \mathbb{C}, and we can write $x=r e^{\alpha}$ with $r>0$. Since $S(X)=0$, we have $S\left(\frac{1}{r} X\right)=0$, so we can assume $x=e^{i \alpha}$. Then $\left\{\lambda R_{\theta_{1}}^{s} x: \lambda \in \mathbb{R}, 1 \leqslant s \leqslant q\right\}$ is the set of all complex numbers whose argument belongs to $\{\alpha+j p 2 \pi / q: 1 \leqslant j \leqslant q\}+\pi \mathbb{Z}$. Choose numbers β and γ with $\alpha<\beta<\gamma<\alpha+\pi / 8$ such that

$$
[\{\gamma+j p 2 \pi / q: 1 \leqslant j \leqslant q\}+\pi \mathbb{Z}] \cap[\{\beta+j p 2 \pi / q: 1 \leqslant j \leqslant q\}+\pi \mathbb{Z}]=\varnothing
$$

Since the argument of $e^{i \alpha}+t e^{i \gamma}$ ranges over (α, γ) as t ranges over $(0, \infty)$, we can chose $t>0$ so that the argument of $e^{i \alpha}+t e^{i \gamma}$ is β. Now let $W=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ t e^{i \gamma}\end{array}\right)$ in the domain of $J_{m}\left(R_{\theta_{1}}\right)$. Then $S(X+W)=S X+S W=S W$. However, the nonzero coordinates of any vector in the closure of $\mathbb{R}-\operatorname{Orb}(T)(X+W)$ are all complex numbers with arguments in $\{\gamma+j p 2 \pi / q: 1 \leqslant j \leqslant q\}+\pi \mathbb{Z}$ and the nonzero coordinates of any vector in the closure of $\mathbb{R}-\operatorname{Orb}(T)(X+W)$ are all complex numbers with arguments in $\{\beta+j p 2 \pi / q: 1 \leqslant j \leqslant q\}+\pi \mathbb{Z}$ Hence $S_{1}\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ y\end{array}\right)=0$ for every choice of y. We can apply similar arguments to each of the other coordinates to get $S_{1}=0$, which implies $S=0$.

Case 2. $S(X)=S_{1} \cdot(X)=\lambda_{0} T^{n_{0}}(X) \neq 0$. Note that if $\lambda T^{s}(X)=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right) \neq 0$,
then

$$
\frac{\left\|x_{m-1}\right\|}{\left\|x_{m}\right\|}=s, \text { and } R_{\theta_{1}}^{-s} x_{m}=\lambda x
$$

This means that if $\left\{m_{n}\right\}$ is a sequence of nonnegative integers and $\left\{\lambda_{n}\right\}$ is a sequence in \mathbb{R}, and $T^{m_{n}}(X) \rightarrow S(X)$, then, eventually $m_{n}=n_{0}$ and $\lambda_{n} \rightarrow \lambda_{0}$. It follows that $S=\lambda_{0} T^{n_{0}}$ on the orthogonal complement of the domain of S_{1}. If $k \geqslant 2$, we can argue (using S_{2}) that $S=\lambda_{0} T^{n_{0}}$. If $k=1$, we can use M_{1}, M_{2}, M_{3} as in Case 1 to show that $S=\lambda_{0} T^{n_{0}}$ 。

Case 3. $S(X)=S_{1}(X)=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right) \neq 0$, but $x_{m}=0$. If $\left\{s_{n}\right\}$ is a sequence of nonnegative integers and $\left\{\lambda_{n}\right\}$ is a sequence in \mathbb{R} and $\lambda_{n} T^{s_{n}}(X) \rightarrow S(X)$, we must have $\lambda_{n} \rightarrow 0$, and thus $s_{n} \rightarrow \infty$, and $\left\{\left|\lambda_{n}\right|\binom{s_{n}}{m-1}\right\}$ bounded. Thus $S_{1}(X)=\left(\begin{array}{c}x_{1} \\ 0 \\ \vdots \\ 0\end{array}\right)$. It follows that if J is an $m \times m$ Jordan block of T with $r(J)=1$ and whose domain is orthogonal to the domain of S_{1}, then the restriction of S to the domain of J is a matrix whose only nonzero entry is in the first row and $m^{t h}$ column. The restriction of S to the domain of a block J with $r(J)<1$ or whose size is smaller than $m \times m$ must be 0 . If $k \geqslant 2$, the S_{1} also has an operator matrix whose only nonzero entry is in the first row
and $m^{t h}$ column. If $k=1$, then $\theta_{1} / 2 \pi$ is rational, and we can argue with M_{1}, M_{2}, M_{3} as in Case 1 to see that S_{1} has a matrix whose only nonzero entry is in the first row and $m^{\text {th }}$ column. If the $m \times m$ Jordan blocks of T are $J_{m}\left(R_{\theta_{1}}\right) \oplus \cdots \oplus J_{m}\left(R_{\theta_{k}}\right) \oplus J_{m}\left(I_{a}\right) \oplus$ $J_{m}\left(-I_{b}\right)$ (I_{a} is an $a \times a$ identity matrix), then the corresponding decomposition of S is a direct sum of $\left(\begin{array}{cccc}0 & \cdots & 0 & A_{j} \\ 0 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0\end{array}\right), 1 \leqslant j \leqslant k+2$. It is easily seen that $A_{1} \oplus \cdots \oplus$ A_{k+2} is in \mathbb{R}-OrbRef $\left(R_{\theta_{1}} \oplus \cdots \oplus R_{\theta_{k}} \oplus I_{a} \oplus-I_{b}\right)$. Since $\theta_{1}, \ldots, \theta_{k}$ satisfy condition (3) in Lemma 6, it follows from Lemma 6 that $R_{\theta_{1}} \oplus \cdots \oplus R_{\theta_{k}} \oplus I_{a} \oplus-I_{b}$ is \mathbb{R}-orbit reflexive, so there is a sequence $\left\{s_{n}\right\}$ with $s_{n} \rightarrow \infty$ and a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{R} such that $\lambda_{n}\left(R_{\theta_{1}} \oplus \cdots \oplus R_{\theta_{k}} \oplus I_{a} \oplus-I_{b}\right)^{s_{n}-m+1} \rightarrow A_{1} \oplus \cdots \oplus A_{k+2}$. Hence

$$
\lambda_{n} T^{s_{n}} \rightarrow S
$$

Hence T is \mathbb{R}-orbit reflexive.
REMARK 10. Using the ideas of the proof of Corollary 8 it is possible to characterize \mathbb{R}-orbit reflexivity for an algebraic operator on a Banach space in terms of its algebraic Jordan form.

REFERENCES

[1] William Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) $\mathbf{1 0 0}$ (1974), 433-532.
[2] William Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics, 55.
[3] Edward A. Azoff, Marek Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156, 2 (1998), 411-428.
[4] Randall L. Crist, Local derivations on operator algebras, J. Funct. Anal. 135, 1 (1996), 76-92.
[5] Kenneth R. Davidson, Nest algebras. Triangular forms for operator algebras on Hilbert space, Pitman Research Notes in Mathematics Series, 191. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1988.
[6] James A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
[7] J. A. Deddens, P. A. Fillmore, Reflexive linear transformations, Linear Algebra and Appl. 10 (1975), 89-93.
[8] JEAN Esterle, Operators of Read's type are not orbit-reflexive, Integral Equations Operator Theory 63, 4 (2009), 591-593.
[9] P. A. Fillmore, On invariant linear manifolds, Proc. Amer. Math. Soc. 41 (1973), 501-505.
[10] Sophie Grivaux, Maria Roginskaya, On Read's type operators on Hilbert spaces, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 083, 42 pp.
[11] Don Hadwin, An asymptotic double commutant theorem for C^{*}-algebras, Trans. Amer. Math. Soc. 244 (1978), 273-297.
[12] Don Hadwin, Algebraically reflexive linear transformations, Linear and Multilinear Algebra 14 (1983), 225-233.
[13] Don Hadwin, A general view of reflexivity, Trans. Amer. Math. Soc. 344 (1994), 325-360.
[14] D. Hadwin, I. Ionascu, and H. Yousefi, Null-orbit reflexive operators, arXiv:1101.2218, to Appear, Operators and Matrices.
[15] D. Hadwin, I. Ionascu, M. McHugh, and H. Yousefi, \mathbb{C}-orbit reflexive operators, Operators and Matrices 5 (2011), 511-527.
[16] Don Hadwin, Jeanne Wald Kerr, Scalar-reflexive rings, II, J. Algebra 125, 2 (1989), 311-319.
[17] Don Hadwin, Jeanne Wald Kerr, Local multiplications on algebras, J. Pure Appl. Algebra 115, 3 (1997), 231-239.
[18] Don Hadwin, Jiankui Li, Local derivations and local automorphisms on some algebras, J. Operator Theory 60, 1 (2008), 29-44.
[19] Don Hadwin, Eric Nordgren, Heydar Radjavi, Peter Rosenthal, Orbit-reflexive operators, J. London Math. Soc. (2) 34, 1 (1986), 111-119.
[20] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
[21] De Guang Han, Shu Yun Wei, Local derivations of nest algebras, Proc. Amer. Math. Soc. 123, 10 (1995), 3095-3100.
[22] B. E. Johnson, Local derivations on C^{*}-algebras are derivations, Trans. Amer. Math. Soc. 353, 1 (2001), 313-325.
[23] Irving Kaplansky, Infinite abelian groups, Revised edition, The University of Michigan Press, Ann Arbor, Mich. 1969
[24] Richard V. Kadison, Local derivations, J. Algebra 130, 2 (1990), 494-509.
[25] David R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), 283-299.
[26] David R. Larson, Ahmed R. Sourour, Local derivations and local automorphisms of $B(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988), 187-194, Proc. Sympos. Pure Math., 51, Part 2, Amer. Math. Soc., Providence, RI, 1990.
[27] Michael McHugh, Orbit-reflexivity, Doctoral Dissertation, University of New Hampshire, 1995.
[28] Vladimír Müller, Kaplansky's theorem and Banach PI-algebras, Pacific J. Math. 141, 2 (1990), 355-361.
[29] V. MÜLLER, J. VrŠovský, On orbit-reflexive operators, J. Lond. Math. Soc. (2) 79, 2 (2009), 497510.
[30] Hari Bercovici, Ciprian Foias, Carl Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series in Mathematics, 56, 1985.
[31] D. SARASON, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511517.
[32] HASAN A. Shehada, Reflexivity of convex subsets of $L(H)$ and subspaces of ℓ^{p}, Internat. J. Math. Math. Sci. 14, 1 (1991), 55-67.
[33] V. S. Shulman, Operators preserving ideals in C*-algebras, Studia Math. 109, 1 (1994), 67-72.

Ileana Ionaşcu Philadelphia University

Current address:
Math/CS/Physics Department Immaculata University Immaculata, PA 19345, U.S.A. e-mail: iionascu@immaculata.edu

Hassan Yousefi Department of Mathematics California State University, Fullerton Fullerton, CA 92834, U.S.A.

[^0]: Mathematics subject classification (2010): 47A15.
 Keywords and phrases: Hilbert space operators, subspaces, reflexivity, R-orbit reflexivity.

