A RESULT CONCERNING TWO-SIDED CENTRALIZERS ON ALGEBRAS WITH INVOLUTION

Nejc Širovnik and Joso Vukman

(Communicated by F. Kittaneh)

Abstract

The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let $\mathscr{L}(X)$ be the algebra of all bounded linear operators on X and let $\mathscr{A}(X) \subset \mathscr{L}(X)$ be a standard operator algebra, which is closed under the adjoint operation. Let $T: \mathscr{A}(X) \rightarrow \mathscr{L}(X)$ be a linear mapping satisfying the relation $3 T\left(A A^{*} A\right)=T(A) A^{*} A+A T\left(A^{*}\right) A+A A^{*} T(A)$ for all $A \in \mathscr{A}(X)$. In this case T is of the form $T(A)=\lambda A$ for all $A \in \mathscr{A}(X)$, where λ is some fixed complex number.

Throughout, R will represent an associative ring with center $Z(R)$. Given an integer $n \geqslant 2$, a ring R is said to be $n-$ torsion free, if for $x \in R, n x=0$ implies $x=0$. An additive mapping $x \mapsto x^{*}$ on a ring R is called involution if $(x y)^{*}=y^{*} x^{*}$ and $x^{* *}=x$ hold for all pairs $x, y \in R$. A ring equipped with an involution is called a ring with involution or ${ }^{*}$ - ring. Recall that a ring R is prime, if for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime in case $a R a=(0)$ implies $a=$ 0 . We denoted by Q_{r} and C the Martindale right ring of quotients and the extended centroid of a semiprime ring R, respectively. For the explanation of Q_{r} and C we refer the reader to [2]. An additive mapping $T: R \rightarrow R$ is called a left centralizer in case $T(x y)=T(x) y$ holds for all pairs $x, y \in R$. In case R has the identity element, $T: R \rightarrow R$ is a left centralizer iff T is of the form $T(x)=a x$ for all $x \in R$, where a is some fixed element of R. For a semiprime ring R all left centralizers are of the form $T(x)=q x$ for all $x \in R$, where $q \in Q_{r}$ is some fixed element (see Chapter 2 in [2]). An additive mapping $T: R \rightarrow R$ is called a left Jordan centralizer in case $T\left(x^{2}\right)=T(x) x$ holds for all $x \in R$. The definition of right centralizer and right Jordan centralizer should be self-explanatory. We call $T: R \rightarrow R$ a two-sided centralizer in case T is both a left and a right centralizer. In case $T: R \rightarrow R$ is a two-sided centralizer, where R is a semiprime ring with extended centroid C, then T is of the form $T(x)=\lambda x$ for all $x \in R$, where $\lambda \in C$ is some fixed element (see Theorem 2.3.2 in [2]).

Zalar [21] has proved that any left (right) Jordan centralizer on a semiprime ring is a left (right) centralizer. Molnár [8] has proved that in case we have an additive mapping $T: A \rightarrow A$, where A is a semisimple H^{*} - algebra satisfying the relation $T\left(x^{3}\right)=T(x) x^{2}$ ($T\left(x^{3}\right)=x^{2} T(x)$) for all $x \in A$, then T is a left (right) centralizer. Let us recall that

[^0]a semisimple H^{*} - algebra is a complex semisimple Banach* - algebra, whose norm is a Hilbert space norm such that $\left(x, y z^{*}\right)=(x z, y)=\left(z, x^{*} y\right)$ is fulfilled for all $x, y, z \in$ A. For basic facts concerning H^{*}-algebras we refer to [1]. Vukman [9] has proved that in case there exists an additive mapping $T: R \rightarrow R$, where R is a $2-$ torsion free semiprime ring, satisfying the relation $2 T\left(x^{2}\right)=T(x) x+x T(x)$ for all $x \in R$, then T is a two-sided centralizer. Kosi-Ulbl and Vukman [7] have proved the following result. Let A be a semisimple H^{*} - algebra and let $T: A \rightarrow A$ be an additive mapping such that $2 T\left(x^{n+1}\right)=T(x) x^{n}+x^{n} T(x)$ holds for all $x \in R$ and some fixed integer $n \geqslant 1$. In this case T is a two-sided centralizer. Recently, Benkovič, Eremita and Vukman [4] have considered the relation we have just mentioned above in prime rings with suitable characteristic restrictions. Vukman and Kosi-Ulbl [16] have proved that in case there exists an additive mapping $T: R \rightarrow R$, where R is a $2-$ torsion free semiprime ${ }^{*}$ - ring, satisfying the relation $T\left(x x^{*}\right)=T(x) x^{*}\left(T\left(x x^{*}\right)=x T\left(x^{*}\right)\right)$ for all $x \in R$, then T is a left (right) centralizer. For results concerning centralizers on rings and algebras we refer to $[3,6-16,18-21]$, where further references can be found. Let X be a real or complex Banach space and let $\mathscr{L}(X)$ and $\mathscr{F}(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $\mathscr{L}(X)$, respectively. An algebra $\mathscr{A}(X) \subset \mathscr{L}(X)$ is said to be standard in case $\mathscr{F}(X) \subset \mathscr{A}(X)$. Let us point out that any standard operator algebra is prime, which is a consequence of a HahnBanach theorem. In case X is a real or complex Hilbert space, we denote by A^{*} the adjoint operator of $A \in \mathscr{L}(X)$. We denote by X^{*} the dual space of a real or complex Banach space X.

Vukman and Kosi-Ulbl [11] have proved the following result, which was motivated by the work of Brešar [5].

THEOREM 1. Let R be a 2 -torsion free semiprime ring and let $T: R \rightarrow R$ be an additive mapping satisfying the relation

$$
\begin{equation*}
3 T(x y x)=T(x) y x+x T(y) x+x y T(x) \tag{1}
\end{equation*}
$$

for all pairs $x, y \in R$. In this case T is of the form $T(x)=\lambda x$ for all $x \in R$, where λ is some fixed element from the extended centroid C.

Putting x for y in the relation (1), one obtains the relation

$$
\begin{equation*}
3 T\left(x^{3}\right)=T(x) x^{2}+x T(x) x+x^{2} T(x), x \in R \tag{2}
\end{equation*}
$$

In case we have a ${ }^{*}$-ring, we obtain, after putting x^{*} for y in the relation (1), the relation

$$
\begin{equation*}
3 T\left(x x^{*} x\right)=T(x) x^{*} x+x T\left(x^{*}\right) x+x x^{*} T(x), x \in R \tag{3}
\end{equation*}
$$

The relation (2) is considered in [6] and [20] (actually, much more general situation is considered). It is our aim in this paper to consider the relation (3).

Theorem 2. Let X be a complex Hilbert space and let $\mathscr{A}(X)$ be a standard operator algebra, which is closed under the adjoint operation. Suppose $T: \mathscr{A}(X) \rightarrow$ $\mathscr{L}(X)$ is a linear mapping satisfying the relation

$$
\begin{equation*}
3 T\left(A A^{*} A\right)=T(A) A^{*} A+A T\left(A^{*}\right) A+A A^{*} T(A) \tag{4}
\end{equation*}
$$

for all $A \in \mathscr{A}(X)$. In this case T is of the form $T(A)=\lambda A$ for all $A \in \mathscr{A}(X)$, where λ is a fixed complex number.

Proof. Let us first consider the restriction of T on $\mathscr{F}(X)$. Let A be from $\mathscr{F}(X)$ (in this case we have $A^{*} \in \mathscr{F}(X)$). Let $P \in \mathscr{F}(X)$ be a self-adjoint projection with the property $A P=P A=A$ (we have also $A^{*} P=P A^{*}=A^{*}$). Putting P for A in (4) we obtain $3 T(P)=T(P) P+P T(P) P+P T(P)$, which gives after some calculations

$$
\begin{equation*}
T(P)=T(P) P=P T(P)=P T(P) P . \tag{5}
\end{equation*}
$$

Putting $A+P$ for A in the relation (4) we obtain

$$
\begin{aligned}
& 3 T\left(A^{2}+A A^{*}+A^{*} A\right)+6 T(A)+3 T\left(A^{*}\right) \\
= & T(A)\left(A+A^{*}\right)+T(A) P+T(P) A^{*} A+T(P)\left(A+A^{*}\right)+A T\left(A^{*}\right) P \\
& +P T\left(A^{*}\right) A+P T\left(A^{*}\right) P+A T(P) A+A T(P) P+P T(P) A \\
& +\left(A+A^{*}\right) T(A)+P T(A)+A A^{*} T(P)+\left(A+A^{*}\right) T(P) .
\end{aligned}
$$

Putting $-A$ for A in the above relation and comparing the relation so obtained with the above relation, we obtain

$$
\begin{align*}
3 T\left(A^{2}+A A^{*}+A^{*} A\right)= & T(A)\left(A+A^{*}\right)+T(P) A^{*} A+A T\left(A^{*}\right) P+P T\left(A^{*}\right) A \\
& +A T(P) A+\left(A+A^{*}\right) T(A)+A A^{*} T(P) \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
6 T(A)+3 T\left(A^{*}\right)= & T(A) P+T(P)\left(A+A^{*}\right)+P T\left(A^{*}\right) P \\
& +A T(P) P+P T(P) A+P T(A)+\left(A+A^{*}\right) T(P) \tag{7}
\end{align*}
$$

Putting $i A$ for A in the relations (6) and (7) gives

$$
\begin{align*}
3 T\left(A^{2}-A A^{*}-A^{*} A\right)= & T(A)\left(A-A^{*}\right)-T(P) A^{*} A-A T\left(A^{*}\right) P-P T\left(A^{*}\right) A \\
& +A T(P) A+\left(A-A^{*}\right) T(A)-A A^{*} T(P) \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
6 T(A)-3 T\left(A^{*}\right)= & T(A) P+T(P)\left(A-A^{*}\right)-P T\left(A^{*}\right) P+A T(P) P \\
& +P T(P) A+P T(A)+\left(A-A^{*}\right) T(P) . \tag{9}
\end{align*}
$$

Comparing (6) with (8) and (7) with (9) leads to

$$
\begin{equation*}
3 T\left(A^{2}\right)=T(A) A+A T(P) A+A T(A) \tag{10}
\end{equation*}
$$

and

$$
6 T(A)=T(A) P+T(P) A+A T(P) P+P T(P) A+P T(A)+A T(P)
$$

After considering $P T(P) A=T(P) A$ and $A T(P) P=A T(P)$ from the relation (5), the above relation reduces to

$$
\begin{equation*}
6 T(A)=T(A) P+P T(A)+2 T(P) A+2 A T(P) \tag{11}
\end{equation*}
$$

Putting A^{*} for A in the relation (7) we obtain

$$
\begin{aligned}
6 T\left(A^{*}\right)+3 T(A)= & T\left(A^{*}\right) P+T(P)\left(A+A^{*}\right)+P T(A) P \\
& +A^{*} T(P) P+P T(P) A^{*}+P T\left(A^{*}\right)+\left(A+A^{*}\right) T(P)
\end{aligned}
$$

Putting $i A$ for A in the above relation and comparing the relation so obtained with the above relation, we obtain

$$
\begin{equation*}
3 T(A)=T(P) A+P T(A) P+A T(P) \tag{12}
\end{equation*}
$$

Multiplying the relation (12) by 2 and comparing the relation so obtained with (11) gives $T(A) P+P T(A)=2 P T(A) P$, which after right multiplication by P gives $T(A) P=$ $P T(A) P$ and $P T(A)=P T(A) P$ after left multiplication by P. Combining both identities, we get

$$
\begin{equation*}
T(A) P=P T(A)=P T(A) P \tag{13}
\end{equation*}
$$

Right multiplication by P in the relation (12) gives

$$
3 T(A) P=T(P) A+P T(A) P+A T(P) P
$$

After considering $P T(A) P=T(A) P$ from the relation (13) and $A T(P) P=A T(P)$ from the relation (5), the above relation reduces to

$$
2 T(A) P=T(P) A+A T(P)
$$

According to the relation (13), we can write $2 T(A) P=T(A) P+P T(A)$ in the above relation, which can now be written as

$$
T(A) P+P T(A)=T(P) A+A T(P)
$$

The above relation reduces the relation (11) to

$$
\begin{equation*}
2 T(A)=T(P) A+A T(P) \tag{14}
\end{equation*}
$$

From the above relation we can conclude that T maps $\mathscr{F}(X)$ into itself. Putting A^{2} for A in the relation (14) gives

$$
\begin{equation*}
2 T\left(A^{2}\right)=T(P) A^{2}+A^{2} T(P) \tag{15}
\end{equation*}
$$

Right and left multiplication by A in the relation (14) gives, respectively,

$$
\begin{equation*}
T(P) A^{2}=2 T(A) A-A T(P) A \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{2} T(P)=2 A T(A)-A T(P) A \tag{17}
\end{equation*}
$$

Applying both (16) and (17) in the relation (15), we obtain

$$
\begin{equation*}
T\left(A^{2}\right)=T(A) A-A T(P) A+A T(A) \tag{18}
\end{equation*}
$$

Adding the above relation to the relation (10) gives

$$
\begin{equation*}
2 T\left(A^{2}\right)=T(A) A+A T(A) \tag{19}
\end{equation*}
$$

We therefore have a linear mapping $T: \mathscr{F}(X) \rightarrow \mathscr{F}(X)$, satisfying the relation (19) for all $A \in \mathscr{F}(X)$. Since $\mathscr{F}(X)$ is prime, one can conclude, according to Theorem 1 in [9] that T is a two-sided centralizer on $\mathscr{F}(X)$. We intend to prove that there exists an operator $C \in \mathscr{L}(X)$, such that

$$
\begin{equation*}
T(A)=C A, A \in \mathscr{F}(X) \tag{20}
\end{equation*}
$$

For any fixed $x \in X$ and $f \in X^{*}$ we denote by $x \otimes f$ an operator from $\mathscr{F}(X)$ defined by $(x \otimes f) y=f(y) x, y \in X$. For any $A \in \mathscr{L}(X)$ we have $A(x \otimes f)=(A x) \otimes f$. Now let us choose such f and y that $f(y)=1$ and define $C x=T(x \otimes f) y$. Obviously, C is linear and applying the fact that T is a left centralizer on $\mathscr{F}(X)$, we obtain

$$
(C A) x=C(A x)=T((A x) \otimes f) y=T(A(x \otimes f)) y=T(A)(x \otimes f) y=T(A) x
$$

for any $x \in X$. We therefore have $T(A)=C A$ for any $A \in \mathscr{F}(X)$. As T is a right centralizer on $\mathscr{F}(X)$, we obtain $C(A B)=T(A B)=A T(B)=A C B$. We therefore have $[A, C] B=0$ for any $A, B \in \mathscr{F}(X)$, whence it follows that $[A, C]=0$ for any $A \in \mathscr{F}(X)$. Using closed graph theorem one can easily prove that C is continuous. Since C commutes with all operators from $\mathscr{F}(X)$, we can conclude that $C x=\lambda x$ holds for any $x \in X$ and some $\lambda \in \mathbb{C}$, which gives together with the relation (20) that T is of the form

$$
\begin{equation*}
T(A)=\lambda A \tag{21}
\end{equation*}
$$

for any $A \in \mathscr{F}(X)$ and some $\lambda \in \mathbb{C}$. It remains to prove that the relation (21) holds on $\mathscr{A}(X)$ as well. Let us introduce $T_{1}: \mathscr{A}(X) \rightarrow \mathscr{L}(X)$ by $T_{1}(A)=\lambda A$ and consider $T_{0}=T-T_{1}$. The mapping T_{0} is, obviously, additive and satisfies the relation (4). Besides, T_{0} vanishes on $\mathscr{F}(X)$. It is our aim to show that T_{0} vanishes on $\mathscr{A}(X)$ as well. Let $A \in \mathscr{A}(X)$, let $P \in \mathscr{F}(X)$ be a one-dimensional self-adjoint projection and $S=A+P A P-(A P+P A)$. Such S can also be written in the form $S=(I-P) A(I-P)$, where I denotes the identity operator on X. Since $S-A \in \mathscr{F}(X)$, we have $T_{0}(S)=$ $T_{0}(A)$. It is easy to see that $S P=P S=0$. By the relation (4) we have

$$
\begin{aligned}
& T_{0}(S) S^{*} S+S T_{0}\left(S^{*}\right) S+S S^{*} T_{0}(S) \\
= & 3 T_{0}\left((S+P)(S+P)^{*}(S+P)\right) \\
= & T_{0}(S+P)(S+P)^{*}(S+P)+(S+P) T_{0}\left((S+P)^{*}\right)(S+P) \\
& +(S+P)(S+P)^{*} T_{0}(S+P) \\
= & T_{0}(S) S^{*} S+T_{0}(S) P+S T_{0}\left(S^{*}\right) S+S T_{0}\left(S^{*}\right) P+P T_{0}\left(S^{*}\right) S \\
& +P T_{0}\left(S^{*}\right) P+S S^{*} T_{0}(S)+P T_{0}(S) .
\end{aligned}
$$

We therefore have

$$
T_{0}(S) P+S T_{0}\left(S^{*}\right) P+P T_{0}\left(S^{*}\right) S+P T_{0}\left(S^{*}\right) P+P T_{0}(S)=0
$$

Putting $-A$ for A in the above relation (in this case S becomes $-S$) and comparing the relation so obtained with the above relation, we obtain

$$
T_{0}(S) P+P T_{0}\left(S^{*}\right) P+P T_{0}(S)=0
$$

Putting $i A$ for A in the above relation (in this case S^{*} becomes $-S^{*}$) and comparing the relation so obtained with the above relation, we obtain

$$
T_{0}(S) P+P T_{0}(S)=0
$$

Considering $T_{0}(S)=T_{0}(A)$ in the above relation, we obtain

$$
\begin{equation*}
T_{0}(A) P+P T_{0}(A)=0 \tag{22}
\end{equation*}
$$

Multiplication from both sides by P in the above relation leads to

$$
\begin{equation*}
P T_{0}(A) P=0 \tag{23}
\end{equation*}
$$

Right multiplication by P in the relation (22) and considering (23) gives

$$
\begin{equation*}
T_{0}(A) P=0 \tag{24}
\end{equation*}
$$

Since P is an arbitrary one-dimensional self-adjoint projection, it follows from (24) that $T_{0}(A)=0$ for all $A \in \mathscr{A}(X)$, which completes the proof of the theorem.

It should be mentioned that in the proof of Theorem 2 we used some ideas which are similar to those used by Molnár in [8] and by Vukman in [17].

We conclude with the following conjecture.
CONJECTURE 3. Let R be a semiprime *-ring with suitable torsion restrictions and let $T: R \rightarrow R$ be an additive mapping, satisfying the relation

$$
3 T\left(x x^{*} x\right)=T(x) x^{*} x+x T\left(x^{*}\right) x+x x^{*} T(x)
$$

for all $x \in R$. In this case T is a two-sided centralizer.

REFERENCES

[1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] K. I. Beidar, W. S. Martindale 3rd, A. V. Mikhalev, Rings with generalized identities. Marcel Dekker, Inc., New York, (1996).
[3] D. Benkovič, D. Eremita, Characterizing left centralizers by their action on a polynomial, Publ. Math. (Debr.) 64 (2004), 343-351.
[4] D. Benkovič, D. Eremita, J. Vukman, A characterization of the centroid of a prime ring, Studia Sci. Math. Hungar. 45, 3 (2008), 379-394.
[5] M. BREŠAR, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
[6] M. Fošner, J. Vukman, An equation related to two-sided centralizers in prime rings, Houston J. Math. 35, 2 (2009), 353-361.
[7] I. Kosi-Ulbl, J. Vukman, On centralizers of standard operator algebras and semisimple H^{*} algebras, Acta Math. Hungar. 110, 3 (2006), 217-223.
[8] L. MolnÁr, On centralizers of an H^{*}-algebra, Publ. Math. Debrecen 46, 1-2 (1995), 89-95.
[9] J. VUKMAN, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol. 40 (1999), 447-456.
[10] J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carol. 42 (2001), 237-245.
[11] J. Vukman, I. Kosi-Ulbl, An equation related to centralizers in semiprime rings, Glas. Mat. 38, 58 (2003), 253-261.
[12] J. Vukman, I. Kosi-Ulbl, On centralizers of semiprime rings, Aequationes Math. 66 (2003), 277283.
[13] J. Vukman, I. Kosi-Ulbl, On certain equations satisfied by centralizers in rings, Internat. Math. J. 5 (2004), 437-456.
[14] J. Vukman, I. Kosi-Ulbl, Centralizers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225-234.
[15] J. Vukman, I. Kosi-Ulbl, A remark on a paper of L. Molnár, Publ. Math. Debrecen. 67 (2005), 419-421.
[16] J. Vukman, I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hungar. 43, 1 (2006), 61-67.
[17] J. Vukman, On derivations of algebras with involution, Acta Math. Hungar. 112, 3 (2006), 181-186.
[18] J. VUKMAN, Identities related to derivations and centralizers on standard operator algebras, Taiwan. J. Math. 11 (2007), 255-265.
[19] J. VUkman, M. Fošner, A characterization of two-sided centralizers on prime rings, Taiwan. J. Math. 11, 5 (2007), 1431-1441.
[20] J. Vukman, I. Kosi-Ulbl, On two-sided centralizers of rings and algebras, CUBO A Math. Journal 10, 3 (2008), 211-222.
[21] B. ZaLAR, On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991), 609-614.

[^0]: Mathematics subject classification (2010): 16N60, 46B99, 39B42.
 Keywords and phrases: Ring, ring with involution, prime ring, semiprime ring, Banach space, Hilbert space, standard operator algebra, H^{*} - algebra left (right) centralizer, two-sided centralizer.

 This research has been supported by the Research Council of Slovenia.

