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Abstract. The purpose of this paper is to prove the following result. Let X be a complex Hilbert
space, let L (X) be the algebra of all bounded linear operators on X and let A (X)⊂ L (X) be
a standard operator algebra, which is closed under the adjoint operation. Let T : A (X)→L (X)
be a linear mapping satisfying the relation 3T (AA∗A) = T (A)A∗A+AT(A∗)A+AA∗T (A) for all
A ∈ A (X). In this case T is of the form T (A) = λA for all A ∈ A (X), where λ is some fixed
complex number.

Throughout, R will represent an associative ring with center Z(R) . Given an
integer n � 2, a ring R is said to be n− torsion free, if for x ∈ R , nx = 0 implies
x = 0. An additive mapping x �→ x∗ on a ring R is called involution if (xy)∗ = y∗x∗
and x∗∗ = x hold for all pairs x,y ∈ R. A ring equipped with an involution is called a
ring with involution or ∗− ring. Recall that a ring R is prime, if for a,b∈ R , aRb = (0)
implies that either a = 0 or b = 0, and is semiprime in case aRa = (0) implies a =
0. We denoted by Qr and C the Martindale right ring of quotients and the extended
centroid of a semiprime ring R , respectively. For the explanation of Qr and C we
refer the reader to [2]. An additive mapping T : R → R is called a left centralizer in
case T (xy) = T (x)y holds for all pairs x,y ∈ R . In case R has the identity element,
T : R → R is a left centralizer iff T is of the form T (x) = ax for all x ∈ R , where a is
some fixed element of R . For a semiprime ring R all left centralizers are of the form
T (x) = qx for all x ∈ R , where q∈Qr is some fixed element (see Chapter 2 in [2]). An
additive mapping T : R → R is called a left Jordan centralizer in case T (x2) = T (x)x
holds for all x ∈ R . The definition of right centralizer and right Jordan centralizer
should be self-explanatory. We call T : R→ R a two-sided centralizer in case T is both
a left and a right centralizer. In case T : R → R is a two-sided centralizer, where R is
a semiprime ring with extended centroid C , then T is of the form T (x) = λx for all
x ∈ R , where λ ∈C is some fixed element (see Theorem 2.3.2 in [2]).

Zalar [21] has proved that any left (right) Jordan centralizer on a semiprime ring is
a left (right) centralizer. Molnár [8] has proved that in case we have an additive mapping
T : A→A , where A is a semisimple H∗−algebra satisfying the relation T (x3)= T (x)x2

(T (x3) = x2T (x)) for all x ∈ A , then T is a left (right ) centralizer. Let us recall that
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a semisimple H∗−algebra is a complex semisimple Banach∗−algebra, whose norm is
a Hilbert space norm such that (x,yz∗) = (xz,y) = (z,x∗y) is fulfilled for all x,y,z ∈
A . For basic facts concerning H∗−algebras we refer to [1]. Vukman [9] has proved
that in case there exists an additive mapping T : R → R, where R is a 2− torsion free
semiprime ring, satisfying the relation 2T (x2) = T (x)x+ xT (x) for all x ∈ R , then T
is a two-sided centralizer. Kosi-Ulbl and Vukman [7] have proved the following result.
Let A be a semisimple H∗−algebra and let T : A → A be an additive mapping such
that 2T (xn+1) = T (x)xn + xnT (x) holds for all x ∈ R and some fixed integer n � 1. In
this case T is a two-sided centralizer. Recently, Benkovič, Eremita and Vukman [4]
have considered the relation we have just mentioned above in prime rings with suitable
characteristic restrictions. Vukman and Kosi-Ulbl [16] have proved that in case there
exists an additive mapping T : R → R , where R is a 2− torsion free semiprime ∗− ring,
satisfying the relation T (xx∗) = T (x)x∗ (T (xx∗) = xT (x∗)) for all x ∈ R , then T is
a left (right) centralizer. For results concerning centralizers on rings and algebras we
refer to [3, 6− 16, 18− 21] , where further references can be found. Let X be a real
or complex Banach space and let L (X) and F (X) denote the algebra of all bounded
linear operators on X and the ideal of all finite rank operators in L (X) , respectively.
An algebra A (X) ⊂ L (X) is said to be standard in case F (X) ⊂ A (X) . Let us point
out that any standard operator algebra is prime, which is a consequence of a Hahn-
Banach theorem. In case X is a real or complex Hilbert space, we denote by A∗ the
adjoint operator of A ∈ L (X) . We denote by X∗ the dual space of a real or complex
Banach space X .

Vukman and Kosi-Ulbl [11] have proved the following result, which was motivated
by the work of Brešar [5].

THEOREM 1. Let R be a 2− torsion free semiprime ring and let T : R → R be an
additive mapping satisfying the relation

3T (xyx) = T (x)yx+ xT (y)x+ xyT (x) (1)

for all pairs x,y ∈ R. In this case T is of the form T (x) = λx for all x ∈ R, where λ is
some fixed element from the extended centroid C.

Putting x for y in the relation (1), one obtains the relation

3T (x3) = T (x)x2 + xT (x)x+ x2T (x), x ∈ R. (2)

In case we have a ∗− ring, we obtain, after putting x∗ for y in the relation (1), the
relation

3T (xx∗x) = T (x)x∗x+ xT(x∗)x+ xx∗T (x), x ∈ R. (3)

The relation (2) is considered in [6] and [20] (actually, much more general situation is
considered). It is our aim in this paper to consider the relation (3).

THEOREM 2. Let X be a complex Hilbert space and let A (X) be a standard
operator algebra, which is closed under the adjoint operation. Suppose T : A (X) →
L (X) is a linear mapping satisfying the relation

3T (AA∗A) = T (A)A∗A+AT(A∗)A+AA∗T (A) (4)
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for all A ∈ A (X). In this case T is of the form T (A) = λA for all A ∈ A (X) , where
λ is a fixed complex number.

Proof. Let us first consider the restriction of T on F (X) . Let A be from F (X)
(in this case we have A∗ ∈ F (X)). Let P ∈ F (X) be a self-adjoint projection with the
property AP = PA = A (we have also A∗P = PA∗ = A∗ ). Putting P for A in (4) we
obtain 3T (P) = T (P)P+PT (P)P+PT (P) , which gives after some calculations

T (P) = T (P)P = PT (P) = PT (P)P. (5)

Putting A+P for A in the relation (4) we obtain

3T (A2 +AA∗+A∗A)+6T(A)+3T(A∗)
= T (A)(A+A∗)+T(A)P+T(P)A∗A+T(P)(A+A∗)+AT (A∗)P

+PT (A∗)A+PT(A∗)P+AT(P)A+AT(P)P+PT (P)A
+(A+A∗)T (A)+PT(A)+AA∗T (P)+ (A+A∗)T (P).

Putting −A for A in the above relation and comparing the relation so obtained with the
above relation, we obtain

3T (A2 +AA∗+A∗A) = T (A)(A+A∗)+T(P)A∗A+AT(A∗)P+PT(A∗)A
+AT (P)A+(A+A∗)T (A)+AA∗T (P) (6)

and

6T (A)+3T(A∗) = T (A)P+T(P)(A+A∗)+PT (A∗)P
+AT (P)P+PT(P)A+PT(A)+ (A+A∗)T (P). (7)

Putting iA for A in the relations (6) and (7) gives

3T (A2−AA∗−A∗A) = T (A)(A−A∗)−T(P)A∗A−AT(A∗)P−PT(A∗)A
+AT (P)A+(A−A∗)T (A)−AA∗T (P) (8)

and

6T (A)−3T(A∗) = T (A)P+T (P)(A−A∗)−PT(A∗)P+AT (P)P
+PT (P)A+PT(A)+ (A−A∗)T (P). (9)

Comparing (6) with (8) and (7) with (9) leads to

3T (A2) = T (A)A+AT(P)A+AT(A) (10)

and
6T (A) = T (A)P+T(P)A+AT(P)P+PT(P)A+PT(A)+AT(P).

After considering PT (P)A = T (P)A and AT (P)P = AT (P) from the relation (5), the
above relation reduces to

6T (A) = T (A)P+PT (A)+2T(P)A+2AT(P). (11)
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Putting A∗ for A in the relation (7) we obtain

6T (A∗)+3T(A) = T (A∗)P+T(P)(A+A∗)+PT(A)P
+A∗T (P)P+PT(P)A∗ +PT(A∗)+ (A+A∗)T (P).

Putting iA for A in the above relation and comparing the relation so obtained with the
above relation, we obtain

3T (A) = T (P)A+PT(A)P+AT (P). (12)

Multiplying the relation (12) by 2 and comparing the relation so obtained with (11)
gives T (A)P+PT (A)= 2PT(A)P , which after right multiplication by P gives T (A)P=
PT (A)P and PT (A) = PT (A)P after left multiplication by P . Combining both identi-
ties, we get

T (A)P = PT (A) = PT (A)P. (13)

Right multiplication by P in the relation (12) gives

3T (A)P = T (P)A+PT(A)P+AT(P)P.

After considering PT (A)P = T (A)P from the relation (13) and AT (P)P = AT (P) from
the relation (5), the above relation reduces to

2T (A)P = T (P)A+AT(P).

According to the relation (13), we can write 2T (A)P = T (A)P+PT (A) in the above
relation, which can now be written as

T (A)P+PT(A) = T (P)A+AT(P).

The above relation reduces the relation (11) to

2T (A) = T (P)A+AT(P). (14)

From the above relation we can conclude that T maps F (X) into itself. Putting A2 for
A in the relation (14) gives

2T (A2) = T (P)A2 +A2T (P). (15)

Right and left multiplication by A in the relation (14) gives, respectively,

T (P)A2 = 2T (A)A−AT(P)A (16)

and
A2T (P) = 2AT (A)−AT(P)A. (17)

Applying both (16) and (17) in the relation (15), we obtain

T (A2) = T (A)A−AT(P)A+AT(A). (18)
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Adding the above relation to the relation (10) gives

2T (A2) = T (A)A+AT(A). (19)

We therefore have a linear mapping T : F (X)→F (X) , satisfying the relation (19) for
all A ∈ F (X) . Since F (X) is prime, one can conclude, according to Theorem 1 in
[9] that T is a two-sided centralizer on F (X) . We intend to prove that there exists an
operator C ∈ L (X) , such that

T (A) = CA, A ∈ F (X). (20)

For any fixed x ∈ X and f ∈ X∗ we denote by x⊗ f an operator from F (X) defined
by (x⊗ f )y = f (y)x , y ∈ X . For any A ∈ L (X) we have A(x⊗ f ) = (Ax)⊗ f . Now
let us choose such f and y that f (y) = 1 and define Cx = T (x⊗ f )y . Obviously, C is
linear and applying the fact that T is a left centralizer on F (X) , we obtain

(CA)x = C(Ax) = T ((Ax)⊗ f )y = T (A(x⊗ f ))y = T (A)(x⊗ f )y = T (A)x,

for any x ∈ X . We therefore have T (A) = CA for any A ∈ F (X) . As T is a right
centralizer on F (X) , we obtain C(AB) = T (AB) = AT (B) = ACB . We therefore have
[A,C]B = 0 for any A,B∈F (X) , whence it follows that [A,C] = 0 for any A ∈F (X) .
Using closed graph theorem one can easily prove that C is continuous. Since C com-
mutes with all operators from F (X) , we can conclude that Cx = λx holds for any
x ∈ X and some λ ∈ C , which gives together with the relation (20) that T is of the
form

T (A) = λA (21)

for any A ∈ F (X) and some λ ∈ C . It remains to prove that the relation (21) holds
on A (X) as well. Let us introduce T1 : A (X) → L (X) by T1(A) = λA and consider
T0 = T − T1 . The mapping T0 is, obviously, additive and satisfies the relation (4).
Besides, T0 vanishes on F (X) . It is our aim to show that T0 vanishes on A (X) as
well. Let A ∈ A (X) , let P ∈ F (X) be a one-dimensional self-adjoint projection and
S = A+PAP− (AP+PA) . Such S can also be written in the form S = (I−P)A(I−P) ,
where I denotes the identity operator on X . Since S−A ∈ F (X) , we have T0(S) =
T0(A) . It is easy to see that SP = PS = 0. By the relation (4) we have

T0(S)S∗S+ST0(S∗)S+SS∗T0(S)
= 3T0((S+P)(S+P)∗(S+P))
= T0(S+P)(S+P)∗(S+P)+ (S+P)T0((S+P)∗)(S+P)

+(S+P)(S+P)∗T0(S+P)
= T0(S)S∗S+T0(S)P+ST0(S∗)S+ST0(S∗)P+PT0(S∗)S

+PT0(S∗)P+SS∗T0(S)+PT0(S).

We therefore have

T0(S)P+ST0(S∗)P+PT0(S∗)S+PT0(S∗)P+PT0(S) = 0.
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Putting −A for A in the above relation (in this case S becomes −S ) and comparing
the relation so obtained with the above relation, we obtain

T0(S)P+PT0(S∗)P+PT0(S) = 0.

Putting iA for A in the above relation (in this case S∗ becomes −S∗ ) and comparing
the relation so obtained with the above relation, we obtain

T0(S)P+PT0(S) = 0.

Considering T0(S) = T0(A) in the above relation, we obtain

T0(A)P+PT0(A) = 0. (22)

Multiplication from both sides by P in the above relation leads to

PT0(A)P = 0. (23)

Right multiplication by P in the relation (22) and considering (23) gives

T0(A)P = 0. (24)

Since P is an arbitrary one-dimensional self-adjoint projection, it follows from (24)
that T0(A) = 0 for all A ∈ A (X) , which completes the proof of the theorem. �

It should be mentioned that in the proof of Theorem 2 we used some ideas which
are similar to those used by Molnár in [8] and by Vukman in [17].

We conclude with the following conjecture.

CONJECTURE 3. Let R be a semiprime ∗−ring with suitable torsion restrictions
and let T : R → R be an additive mapping, satisfying the relation

3T (xx∗x) = T (x)x∗x+ xT(x∗)x+ xx∗T (x)

for all x ∈ R. In this case T is a two-sided centralizer.
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[6] M. FOŠNER, J. VUKMAN, An equation related to two-sided centralizers in prime rings, Houston J.

Math. 35, 2 (2009), 353–361.
[7] I. KOSI-ULBL, J. VUKMAN, On centralizers of standard operator algebras and semisimple H∗ -

algebras, Acta Math. Hungar. 110, 3 (2006), 217–223.



A RESULT CONCERNING TWO-SIDED CENTRALIZERS ON ALGEBRAS WITH INVOLUTION 693
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