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SUBMAXIMAL OPERATOR SPACE STRUCTURES ON BANACH SPACES

VINOD KUMAR. P AND M. S. BALASUBRAMANI

(Communicated by Z.-J. Ruan)

Abstract. Subspaces of maximal operator spaces are called submaximal spaces and in general,
they need not be maximal. We call those maximal operator spaces with the property that all
submaximal spaces turn out to be maximal as hereditarily maximal spaces. Any two Banach
isomorphic subspaces of a hereditarily maximal space will be completely isomorphic as operator
spaces. We derive a characterization of these spaces. We introduce a notion of distance of an
operator space to the class of submaximal spaces and discuss some related results.

1. Introduction

Just as one can treat C∗ -algebras either concretely as closed *-subalgebras of
B(H ) for some Hilbert space H , or abstractly as a Banach algebra satisfying certain
properties, operator spaces can also be considered in two different ways. A (concrete)
operator space X is a closed linear subspace of B(H ) . Here, in each matrix level
Mn(X) (the space of all n×n matrices with entries from X ), we have a norm ‖.‖n , in-
duced by the inclusion Mn(X)⊂Mn(B(H )) , where the norm in Mn(B(H )) is given
by the natural identification Mn(B(H )) ≈ B(H n) . If X and Y are linear spaces and
ϕ : X → Y is a linear map, ϕ(n) : Mn(X) → Mn(Y ) , given by [xi j] → [ϕ(xi j)] , with
[xi j] ∈ Mn(X) and n ∈ N , determines a linear map from Mn(X) to Mn(Y ) . Suppose
that each of the spaces Mn(X) has a given norm ‖.‖n , then the complete bound norm

(in short cb-norm ) of ϕ is defined as ‖ϕ‖cb = sup
{∥∥∥ϕ(n)

∥∥∥ ;n ∈ N

}
. ϕ is completely

bounded if ‖ϕ‖cb < ∞ . ϕ is a complete isometry if each map ϕ(n) : Mn(X) → Mn(Y )
is an isometry. If ϕ is a complete isometry, then ‖ϕ‖cb = 1. If ‖ϕ‖cb � 1, ϕ is said to
be a complete contraction. If ϕ : X → Y is a completely bounded linear bijection and
if its inverse is also completely bounded, then ϕ is said to be a complete isomorphism .

An abstract operator space, is a pair (X ,{‖.‖n}n∈N) consisting of a linear space
X and a complete norm ‖.‖n on Mn(X) for every n ∈ N , such that there exists a linear
complete isometry ϕ : X → B(H ) for some Hilbert space H . Two operator spaces
are considered to be the same if there is a complete isometric isomorphism from X to
Y . i.e., if there is a linear isomorphism ϕ : X → Y such that ‖ϕ‖cb =

∥∥ϕ−1
∥∥

cb = 1.
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In that case, we write X ≈ Y completely isometrically . The sequence of matrix norms
{‖.‖n}n∈N is called an operator space structure on the linear space X . In 1988, Z-J.
Ruan [11], characterized the sequence of matrix norms on a linear space X that defines
an operator space structure on X in terms of two properties of matrix norms. This al-
lows us to view an operator space in an abstract way free of any concrete representation
on a Hilbert space and so we no longer distinguish between concrete and abstract opera-
tor spaces. More information about operator spaces and completely bounded mappings
may be found in [3], [8] or [9].

If X is a Banach space, any linear embedding of X into B(H ) for some Hilbert
space H , defines an operator space structure on X , by the natural identification
Mn(B(H )) ≈ B(H n) . If such an embedding preserves the original norm on X ,
(i.e., if the embedding is isometric), the corresponding operator space structure on X
is said to be admissible . Blecher and Paulsen [2] observed that the set of all operator
space structures admissible on a given Banach space X admits a minimal and maximal
element. These structures were further investigated in [6] and [7]. Subspace structure
of various maximal operator spaces were studied in [5].

Let X be a Banach space and K = Ball(X∗) the closed unit ball of the dual space
X∗ of X , with its weak∗ topology. Then the canonical embedding J : X → C(K) ,
defined by J(x)( f ) = f (x),x ∈ X and f ∈ K is a linear isometry. Since by Gelfand-
Naimark theorem [4], subspaces of C*-algebras are operator spaces, this identification
of X induces matrix norms on Mn(X) that makes X an operator space. The matrix
norms on X are given by

∥∥[xi j]
∥∥

n = sup{∥∥[ f (xi j)]
∥∥ : f ∈ K}

for all [xi j] ∈ Mn(X) and for all n ∈ N . The above defined operator space structure on
X is called the minimal operator space structure on X , and we denote this operator
space as Min(X) . For [xi j] ∈ Mn(X) , we write

∥∥[xi j]
∥∥

Min(X) to denote its norm as an

element of Mn(Min(X)) . This minimal quantization of a normed space is characterized
by the property that for any arbitrary operator space Y any bounded linear map ϕ :Y →
Min(X) is completely bounded and satisfies

‖ϕ : Y → Min(X)‖cb = ‖ϕ : Y → X‖ .

Thus, if X and Y are Banach spaces and ϕ ∈ B(X ,Y ) , then ϕ is completely bounded
and ‖ϕ‖cb = ‖ϕ‖ , when considered as a map from X → Min(Y ) . It may be noted that
Min(X) is the smallest operator space structure on X . An operator space X is minimal
if Min(X) = X . Also, an operator space is minimal if and only if it is completely
isometric to a subspace of a commutative C*-algebra.

If X is a Banach space, there is a maximal way to consider it as an operator space.
The matrix norms given by

∥∥[xi j]
∥∥

n = sup{∥∥[ϕ(xi j)])
∥∥ ;ϕ ∈ Ball(B(X ,Y ))}

where the supremum is taken over all operator spaces Y and all linear maps ϕ ∈
Ball(B(X ,Y )) , makes X an operator space. We denote this operator space as Max(X)
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and is called the maximal operator space structure on X . For [xi j] ∈ Mn(X) , we write∥∥[xi j]
∥∥

Max(X) to denote its norm as an element of Mn(Max(X)) . We say that an operator

space X is maximal if Max(X) = X . By Ruan’s theorem [11] , we also have
∥∥[xi j]

∥∥
Max(X) = sup{∥∥[ϕ(xi j)])

∥∥ ;ϕ ∈ Ball(B(X ,B(H )))}

where the supremum is taken over all Hilbert spaces H and all linear maps ϕ ∈
Ball(B(X ,B(H ))) . By the definition of Max(X) , any operator space structure that
we can put on X , will be smaller than Max(X) . This maximal quantization of a Ba-
nach space is characterized by the property that for any arbitrary operator space Y any
bounded linear map ϕ : Max(X) → Y is completely bounded and satisfies

‖ϕ : Max(X) → Y‖cb = ‖ϕ : X → Y‖ .

Thus, if X and Y are Banach spaces and ϕ ∈ B(X ,Y ) , then ϕ is completely bounded
and ‖ϕ‖cb = ‖ϕ‖ , when considered as a map from Max(X) → Y . If X is any operator
space, then the identity map on X defines completely contractive maps Max(X) →
X → Min(X) . From the above discussions, we have the following observation.

PROPOSITION 1.1. Let X and Y be operator spaces and ϕ : X → Y a bounded
linear map, then ϕ is completely bounded and ‖ϕ‖cb = ‖ϕ‖ if X is given the maximal
operator space structure or Y is given the minimal operator space structure.

Any subspace of a minimal operator space is again minimal, but quotient of a
minimal space need not be minimal. Quotients of minimal operator spaces are called
Q-spaces. Also, the class of Q-spaces is stable under taking quotients and subspaces.
The subspace of a maximal space need not be maximal and such spaces are called
submaximal spaces [5]. But quotient spaces inherits maximality.

THEOREM 1.2. ([9]) If X is a maximal operator space and Y a closed subspace
then Max(X/Y ) ≈ Max(X)/Y completely isometrically.

An operator space Z is injective [3] if for any operator spaces X and Y where Y
contains X as a closed subspace, and for any completely bounded linear map ϕ : X →
Z , there exists a completely bounded extension ϕ̃ : Y → Z such that ϕ̃ |X = ϕ and
‖ϕ̃‖cb = ‖ϕ‖cb . An important class of operator spaces are those X ⊂ B(H) which are
isomorphic (as a Banach space) to a Hilbert space. We call such spaces as Hilbertian
operator spaces. The spaces Min(�2) and Max(�2) are Hilbertian operator spaces.
Blecher and Paulsen [2] observed that any separable infinite dimensional Hilbertian
operator space lies between Min(�2) and Max(�2) .

We discuss submaximal spaces and some of their properties in the next section.
In section 3, we introduce hereditarily maximal spaces and give a characterization of
these spaces. In section 4, we define the distance dsm(X) of a space to the class of
submaximal spaces and make use of this to obtain a necessary and sufficient condition
for a space to be submaximal. Also, we compute dsm(X) for some spaces and explore
its relation with dQ(X) , the distance of a space X to the class of Q-spaces.
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2. Submaximal spaces

We have noted that subspace of a maximal space need not be maximal, i.e., if Y is a
subspace of X and if xi j ∈Y for i, j = 1,2, ...,n , then the norm of [xi j] in Mn(Max(Y ))
can be larger than the norm of [xi j] as an element of Mn(Max(X)) . However, we have
the following result.

THEOREM 2.1. ([7]) Let xi j ∈ X , i, j = 1,2, ...,n, then
∥∥[xi j]

∥∥
Max(X) =

inf{∥∥[xi j]
∥∥

Max(Y ) ; xi j ∈ Y and Y ⊂ X , finite dimensional} .

Also, if every subspace of X = Max(X) is maximal, then by proposition 1.1, any
two Banach isomorphic subspaces of X will be completely isomorphic as operator
spaces.

DEFINITION 2.2. ([9]) An operator space X is said to be submaximal if it embeds
completely isometrically into a maximal operator space Y.

Paulsen ([6]) observed that every separable submaximal space embeds completely
isometrically into a separable maximal space. We now observe that just like every
operator space embeds completely isometrically into B(H ) for some Hilbert space
H , every submaximal space embeds completely isometrically into Max(B(H )) for
some Hilbert space H .

PROPOSITION 2.3. Let X be a submaximal space of a maximal operator space
Y = Max(Y ) . If ι : X → B(H ) is a completely isometric inclusion, then ι defines a
completely isometric inclusion ι̃ : X →Max(B(H )) and there is a completely contrac-
tive extension ϕ : Y → Max(B(H )) .

Proof. Let ι : X → B(H ) be a complete isometric inclusion. Since X ↪→ Y =
Max(Y ) and since B(H ) is injective, ι : X →B(H ) extends to a complete contraction
ϕ : Y → B(H ) . The maximal operator space structure of Y implies that

‖ϕ : Y → Max(B(H ))‖cb = ‖ϕ : Y → Max(B(H ))‖ � ‖ϕ : Y → B(H )‖cb � 1

Thus, ‖ι̃ = ϕ |X : X → Max(B(H ))‖cb � 1. If X̃ = ι̃(X) , then ‖ι̃−1 : X̃ → X‖cb � 1,
so that ι̃ is a complete isometric inclusion of X into Max(B(H )) . �

Using the above result, we now derive a characterization of submaximal spaces.

THEOREM 2.4. An operator space X is a submaximal space if and only if any
complete contraction u : X → B(H ) defines a complete contraction ũ = u : X →
Max(B(H )).

Proof. Assume that X is a submaximal space and let X ⊂ Max(Y ) . Let u :
X → B(H ) be a complete contraction. As in proposition 2.3, there exists a com-
plete contractive extension φ : Max(Y ) → Max(B(H )) such that ‖ũ = φ |X : X →
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Max(B(H ))‖cb � ‖φ : Max(Y ) → Max(B(H ))‖cb � 1. Conversely assume that ι :
X → B(H ) be a complete isometric inclusion of X in B(H ) , then by assumption,
ι̃ = ι : X → Max(B(H )) is a complete contraction. Also, ‖ι̃−1 : ι̃(X) → X‖cb � 1, so
that ι̃ defines a complete isometric inclusion of X in Max(B(H )) , so that X is com-
pletely isometrically isomorphic to the submaximal space ι̃(X) ⊂ Max(B(H )) . �

Now we identify the completely bounded maps between two submaximal spaces.

THEOREM 2.5. Let X ⊂ Max(B(H1)) and Y ⊂ Max(B(H2)) be submaximal
spaces. Then any completely bounded map ϕ : X → Y extends to a bounded linear
map from B(H1) to B(H2) . Also, any bounded linear map ϕ : B(H1) → B(H2) with
ϕ(X) ⊂ Y induces a completely bounded map from X to Y .

Proof. Let ϕ : X → Y be completely bounded. It is known from proposition
2.3 that ϕ̃ = ϕ : X → Max(B(H2)) is also completely bounded and ‖ϕ̃‖cb � ‖ϕ‖cb .
Since B(H2) is injective, we have an extension φ : Max(B(H1)) → Max(B(H2))
such that φ |X = ϕ̃ and ‖φ‖cb = ‖ϕ̃‖cb . Thus, ‖φ‖ � ‖φ‖cb = ‖ϕ̃‖cb � ‖ϕ‖cb < ∞ .
This implies that φ is a bounded linear map from B(H1) to B(H2) . Now let ϕ :
B(H1) → B(H2) be a bounded linear map such that ϕ(X) ⊂ Y . Regarding ϕ as a
map ϕ̃ = ϕ : Max(B(H1)) → Max(B(H2)) , we see that ϕ̃ is completely bounded and
‖ϕ̃‖cb = ‖ϕ : B(H1) → B(H2)‖ , so that ‖ϕ̃ |X : X → Y‖cb � ‖ϕ̃‖cb = ‖ϕ‖ < ∞. �

REMARK 2.6. The class of submaximal spaces is closed under taking closed sub-
spaces and quotients. To see this, if X is a submaximal space, it embeds completely
isometrically into a maximal operator space Y ; say ϕ : X ↪→ Max(Y ) . If Z is a closed
subspace of X , then the restriction of ϕ to Z will be a complete isometric embedding
of Z in Max(Y ) . Also, in this case, X/Z ⊂ Max(Y )/Z and from theorem 1.2, we have
Max(Y/Z) ≈ Max(Y )/Z completely isometrically. This shows that the quotient space
X/Z is a submaximal space.

Now we show that submaximal spaces are stable under �1 -sums.

THEOREM 2.7. Let {Xi}i∈I be a family of submaximal operator spaces. Then
�1({Xi; i ∈ I}) is submaximal.

Proof. First, we note that �1 -sum of maximal spaces is again maximal. Let Xi ’s
be maximal, so that Max(Xi) = Xi for all i ∈ I . Let u : �1({Xi; i ∈ I}) → B(H) be a
bounded linear map. Corresponding to this u , there exists bounded linear maps ui :
Xi → B(H) for every i ∈ I . Then ‖u‖ = sup{‖ui‖ ; i ∈ I} . But by the definition of
operator space structure on �1({Xi; i ∈ I}) , and using the fact that Xi has maximal
operator space structure, we see that ‖u‖cb = sup{‖ui‖cb ; i ∈ I} = sup{‖ui‖ ; i ∈ I} =
‖u‖ . This shows that �1({Xi; i ∈ I}) is maximal.

If X ′
i s are submaximal, we have Xi ⊂ Max(Yi) , for every i ∈ I , so that �1({Xi; i ∈

I}) ⊂ �1({Max(Yi); i ∈ I}) . Hence �1({Xi; i ∈ I}) is a submaximal space. �
Now we show that submaximality of a space will be reflected in its bidual also.
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THEOREM 2.8. An operator space X is submaximal if and only if its bidual X∗∗
is submaximal.

Proof. Let X ⊂Max(Y ) . Then X∗∗ ⊂ (Max(Y ))∗∗ . But from the duality relations
[1], (Max(Y ))∗ = Min(Y ∗) , so that (Max(Y ))∗∗ = (Min(Y ∗))∗ = Max(Y ∗∗) . Thus X∗∗
is submaximal. The converse part follows from the fact that X ⊂ X∗∗ and from the
remark 2.6. �

3. Hereditarily maximal spaces

It is known that submaximal operator space structure on a Banach space X need
not equals with the maximal operator space structure on X . But we show that in some
spaces this will happen. We call such spaces as hereditarily maximal. (This name was
suggested by Prof. Gilles Pisier in a private communication with us.)

DEFINITION 3.1. A maximal operator space X is said to be hereditarily maximal
if any closed subspace of X is again a maximal operator space. i.e., for any closed
subspace Y ⊂ X = Max(X) , we have Max(Y ) = Y .

Note that any two closed subspaces of a hereditarily maximal space which are
isomorphic as Banach spaces, are in fact completely isomorphic as operator spaces.

Now we derive a characterization of these spaces.

THEOREM 3.2. A maximal operator space X is hereditarily maximal if and only
if the space X has the following extension property: For any closed subspace Y ⊂ X ,
and for any bounded linear map ϕ : Y → B(H ) , there exists a bounded extension
ϕ̃ : X → B(H ) such that ‖ϕ̃‖ = ‖ϕ‖ .

Proof. Assume that X is hereditarily maximal. Let Y ⊂ X be a closed subspace.
Then Max(Y ) = Y . Let ϕ : Y → B(H ) be a bounded linear map. Since Y = Max(Y ) ,
we see that ϕ is completely bounded and ‖ϕ‖cb = ‖ϕ‖ . Since B(H ) is injective,
there exists a mapping ϕ̃ : X → B(H ) such that ϕ̃ |X = ϕ and ‖ϕ̃‖cb = ‖ϕ‖cb . Since
X has maximal structure, ‖ϕ̃‖cb = ‖ϕ̃‖ . Thus ‖ϕ̃‖ = ‖ϕ̃‖cb = ‖ϕ‖cb = ‖ϕ‖ .

Conversely, assume that X has the above described extension property. We have
to show that X is hereditarily maximal. Let Y ⊂ X = Max(X) . Let u : Y → Max(Y ) ⊂
B(H ) be the isometric inclusion mapping. Then u is bounded. By assumption it has
an extension ũ : X →B(H ) such that ũ|Y = u and ‖ũ‖= ‖u‖ . Then ‖u‖cb = ‖ũ|Y‖cb �
‖ũ‖cb = ‖ũ‖ = ‖u‖ . The second last equality follows from the fact that X = Max(X) .
This shows that ‖u‖cb = ‖u‖ . Thus the formal isometric inclusion mapping of Y to
Max(Y ) is a complete isometry, which implies that Max(Y ) = Y . �

The following theorem will serve us some examples for these type of spaces.

THEOREM 3.3. If X is a Hilbertian operator space and Y be a closed subspace
of Max(X) , then Y = Max(Y ) .
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Proof. Let p : X → Y be the orthogonal projection. Then p : Max(X) → Max(Y )
is a complete contraction. Note that the inclusion map j : Y ↪→ Max(X) is completely
bounded. Therefore, p j : Y → Max(Y ) is completely contractive. Thus Max(Y ) =
Y . �

REMARK 3.4. The above theorem shows that every maximal Hilbertian operator
space is hereditarily maximal. This can also be obtained by noting that a Hilbertian
operator space X has the bounded extension property described in theorem 3.2. Let
Y be a closed subspace of X and let u be any bounded linear map u : Y → B(H ) .
Then Y admits an orthogonal projection p : X → Y . Now the composition map ũ =
u ◦ p : X → B(H ) is bounded and ũ|Y = u . Also, ‖ũ‖ = ‖u ◦ p‖ � ‖u‖ . Since ũ is an
extension of u , this shows that ‖ũ‖ = ‖u‖ .

4. Distance to the class of submaximal spaces

We now introduce a notion of distance of an operator space to the class of submax-
imal spaces, and by using it we derive a characterization of submaximal spaces. Note
that completely bounded Banach-Mazur distance between two operator spaces X and
Y is defined as dcb(X ,Y ) = inf{‖ϕ‖cb

∥∥ϕ−1
∥∥

cb : ϕ : X →Y a complete isomorphism} .

DEFINITION 4.1. For a given operator space X , we define dsm(X)= inf{dcb(X ,Y );
Y a submaximal space}

We make use of this concept to characterize a submaximal space up to complete
isometric isomorphism.

THEOREM 4.2. An operator space X is a submaximal space, up to complete iso-
metric isomorphism, if and only if dsm(X) = 1 .

Proof. If X is a submaximal space, then clearly dsm(X) = 1. For proving the
other direction we use the fact that submaximal spaces are stable under ultra products.
To see this, note if Xi ⊂ Max(Yi) , and if U is a nontrivial ultra filter on the indexing
set I , then ∏Xi/U ⊂ ∏Max(Yi)/U , which is completely isometrically isomorphic
to Max(∏Yi/U ) [5]. If dsm(X) = 1, then for any n ∈ N , there exists a submaximal
space Xn such that dcb(X ,Xn) < 1 + 1/n , and a complete isomorphism un : X → Xn

such that ‖un‖cb < 1+1/n and
∥∥u−1

n

∥∥
cb = 1. Choose a nontrivial ultra filter U on N

such that limU ‖un‖cb = 1. Then the ultra product ∏Xn/U is a submaximal space and
u : X → ∏Xn/U defined by u = (un)n∈N is a complete isometric isomorphism. This
shows that X is a submaximal space. �

Operator spaces X and Y are said to be C-completely isomorphic if there exists
a linear isomorphism ϕ : X → Y such that ‖ϕ‖cb

∥∥ϕ−1
∥∥

cb � C . The following result
gives another characterization of submaximal spaces upto C -complete isomorphism.
This result is implicitly contained in [5].
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THEOREM 4.3. Let X be an operator space and C > 0 . Then X is C-completely
isomorphic to a submaximal space Y if and only if for every complete contraction
u : X → B(H ) , we have ‖u : X → Max(B(H ))‖cb � C

Proof. Assume that X is C -completely isomorphic to a submaximal space Y . Let
ϕ : X → Y be such that ‖ϕ‖cb

∥∥ϕ−1
∥∥

cb � C . Since Y is submaximal, Y ⊂ Max(Z) ,
for some operator space Z . Let u : X → B(H ) be a complete contraction. Then the
map v = uϕ−1 : Y → B(H ) is completely bounded. As in proposition 2.3, there exists
a completely bounded extension ṽ =: Max(Z) → Max(B(H )) such that ṽ|Y = uϕ−1 :
Y → Max(B(H )) is completely bounded. Therefore,

‖u : X → Max(B(H ))‖cb =
∥∥uϕ−1ϕ : X → Max(B(H ))

∥∥
cb

� ‖ϕ‖cb

∥∥uϕ−1 : Y → Max(B(H ))
∥∥

cb

� ‖ϕ‖cb

∥∥ϕ−1
∥∥

cb � C

Conversely, let ι : X → B(H ) be a complete isometric inclusion, then by assumption,
‖ι : X → Max(B(H ))‖cb � C . Then ι(X) ⊂ Max(B(H )) is a submaximal space and
since ι−1 : ι(X) → X is a complete contraction, ι defines a C -complete isomorphism
from X onto the submaximal space ι(X) ⊂ Max(B(H )) . �

COROLLARY 4.4. For an operator space X , dsm(X) is the smallest C > 0 such
that for any complete contraction u : X → B(H ) , ‖u : X → Max(B(H ))‖cb � C

As an illustration, we compute dsm(X) for some finite dimensional operator spaces.

PROPOSITION 4.5. Let Rn and Cn denotes the n-dimensional row and column
Hilbert spaces and Mn denotes the space of n× n scalar matrices. Then, we have
dsm(Rn) = dsm(Cn) =

√
n and dsm(Mn) = n.

Proof. Consider the formal identity map id : Rn → �n
2 . From the factorization of

the identity map from Rn to Cn , along Max(�n
2) , Rn → Max(�n

2) →Cn , we have

‖id : Rn → Max(�n
2)‖cb � ‖id : Rn →Cn‖cb = ‖id : Rn →Cn‖HS =

√
n.

Therefore by the above corollary 4.4, dsm(Rn) �√
n . Since Max(�n

2) itself is a submax-
imal space, and since ‖id : Rn → Max(�n

2)‖cb =
√

n and
∥∥id−1 : Max(�n

2) → Rn
∥∥

cb = 1,
from the definition of dsm(X) , we have dsm(Rn) �√

n . Thus dsm(Rn) =
√

n . Similarly
dsm(Cn) =

√
n . Note that id : Mn →Max(Mn) has the cb-norm n , so that dsm(Mn) � n .

But Max(Mn) itself is a submaximal space, hence we have dsm(Mn) = n . �

THEOREM 4.6. Let X be an operator space. Then X is C-complete isomorphic
to a submaximal space, for some C > 0 , if and only if dsm(Y ) �C for any finite dimen-
sional subspace Y of X .
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Proof. If X is C -complete isomorphic to a submaximal space, for some C > 0,
then there exists a submaximal space Z such that ϕ : X → Z satisfies ‖ϕ‖cb

∥∥ϕ−1
∥∥

cb �
C . Then for any subspace Y of X , ϕ |Y :Y →ϕ(Y )⊂ Z , is such that ‖ϕ |Y‖cb

∥∥ϕ |−1
Y

∥∥
cb �

C . This shows that dsm(Y ) � C .
Conversely assume that dsm(Y ) � C for any finite dimensional subspace Y of X

for some C > 0. If X is not C -completely isomorphic to any submaximal space, then
by theorem 4.3, there exists a Hilbert space H and a complete contraction ϕ : X →
Max(B(H )) , with ‖ϕ : X → Max(B(H ))‖cb > C . Therefore, by definition of cb-
norm, there exists a finite set of elements {xi, j;1 � i, j � n} for some n∈ N , in X such
that

∥∥[xi, j]
∥∥ � 1 and

∥∥[ϕ(xi, j)]
∥∥ >C . Choose Y as the linear span of {xi, j;1� i, j � n} .

Then Y is a finite dimensional subspace of X , and ‖ϕ |Y : Y → Max(B(H ))‖cb > C .
So by theorem 4.3, Y is not C -complete isomorphic to a submaximal space. This
implies that dsm(Y ) > C , which is a contradiction. �

A Q-space ([10]) is an (operator) quotient of a minimal space. In a similar way of
defining dsm(X) , we can have dQ(X) = inf{dcb(X ,Y ); Y is a Q-space} which mea-
sures the distance of a given operator space X to the class of Q-spaces. Also, X is a
Q-space if and only if dQ(X) = 1. Note that if X is a Q-space, then X∗ is a submaxi-
mal space. More precisely, if X is C -completely isomorphic to a Q-space, then X∗ is
C -completely isomorphic to a submaximal space. Conversely, the dual of a submaximal
space is a Q-space. Thus we have the following observation.

THEOREM 4.7. For any operator space X , we have dsm(X) = dQ(X∗) .

COROLLARY 4.8. For n∈N , we have: dQ(Rn) = dQ(Cn) =
√

n and dQ(Sn
1) = n,

where Sn
1 = M∗

n , the space of trace class operators.
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