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WEAK MAJORIZATION INEQUALITIES FOR SINGULAR VALUES

LIMIN ZOU AND CHUANJIANG HE

(Communicated by R. Bhatia)

Abstract. In this paper, we refine an inequality due to Bhatia and Kittaneh [Linear Algebra Appl.
308 (2000) 203–211], and generalize another inequality by Bhatia and Kittaneh [Lett. Math.
Phys. 43 (1998) 225–231].

1. Introduction

Let Mn be the space of n× n complex matrices. Let ‖·‖ denote any unitarily
invariant norm on Mn . We shall always denote the singular values of A by s1 (A) �
· · · � sn (A) � 0. Let M+

n be the set of positive semidefinite matrix on Mn .
Let x = (x1, · · · , xn) be an element of Rn . Let x↓ be the vector obtained by

rearranging the coordinates of x in the decreasing order. For x = (x1, · · · , xn) and
y = (y1, · · · , yn) belonging to Rn , if

k

∑
i=1

x↓i �
k

∑
i=1

y↓i , k = 1, · · · , n,

then we say that x is weakly majorized by y , denoted x ≺w y . If the components of x
and y are nonnegative and

k

∏
i=1

x↓i �
k

∏
i=1

y↓i , k = 1, · · · , n,

then we say that x is weakly log-majorized by y , denoted x ≺w log y .
It is well known that x≺w log y implies x≺w y . For more information on majoriza-

tion and matrix inequalities the reader is referred to [1–3].
Let A and B be positive semidefinite. Bhatia and Kittaneh [4, Theorem 1] (see

also [2, p. 77]) obtained the following inequality:

s(AB) ≺w s

((
A+B

2

)2
)

. (1.1)
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Zhan [5, Theorem 2.2] proved that for any complex number z ,

s(A−|z|B) ≺w log s(A+ zB) ≺w log s(A+ |z|B) .

This is a strengthening of the following inequality:

s(A−|z|B) ≺w s(A+ zB) ≺w s(A+ |z|B) ,

which is due to Bhatia and Kittaneh [6, Theorem 2.1]. These authors also proved [6,
Theorem 2.2] that for any positive integer m ,

s(Am +Bm) ≺w s((A+B)m) . (1.2)

In Section 2, we shall refine (1.1) and generalize (1.2). Section 3 contains some
remarks.

2. Main results

In this section, we first refine (1.1).

THEOREM 2.1. If A, B ∈ Mn are positive semidefinite, then

s(AB) ≺w s

(∫ 1

0
A1/2+tB3/2−t dt

)
≺w s

((
A+B

2

)2
)

. (2.1)

Proof. The well-known arithmetic-geometric mean inequality for singular values
due to Bhatia and Kittaneh [7] (see also [1, p. 262]) says that

2s j (PQ∗) � s j (P∗P+Q∗Q) , j = 1,2, · · · ,n (2.2)

for any P, Q ∈ Mn . Let

P = A1/2 (A+B)1/2 , Q = B1/2 (A+B)1/2 .

By (2.2), we have

2s j

(
A1/2 (A+B)B1/2

)
� s j

(
(A+B)2

)
, j = 1,2, · · · ,n. (2.3)

Hiai and Kosaki [8, Corollary 2.3] proved that for all unitarily invariant norms∥∥∥A1/2XB1/2
∥∥∥�

∥∥∥∥
∫ 1

0
AtXB1−tdt

∥∥∥∥�
∥∥∥∥AX +XB

2

∥∥∥∥ .

Putting
X = A1/2B1/2

in this last inequality, gives

‖AB‖ �
∥∥∥∥
∫ 1

0
A1/2+tB3/2−t dt

∥∥∥∥�
∥∥∥∥A1/2 (A+B)B1/2

2

∥∥∥∥ .
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By Fan’s dominance principle, this is equivalent to

s(AB) ≺w s

(∫ 1

0
A1/2+tB3/2−tdt

)
≺w s

(
A1/2 (A+B)B1/2

2

)
. (2.4)

It follows from (2.3) and (2.4) that

s(AB) ≺w s

(∫ 1

0
A1/2+tB3/2−t dt

)
≺w s

((
A+B

2

)2
)

.

This completes the proof. �

Next, we shall generalize (1.2). To do this, we need the following result [9, Theo-
rem 2.1].

LEMMA 2.1. Let A, B ∈ Mn be normal and let f : [0, ∞) → [0, ∞) be concave.
Then, for all unitarily invariant norms,

‖ f (|A+B|)‖ � ‖ f (|A|)+ f (|B|)‖ . (2.5)

THEOREM 2.2. Let g(t) =
m
∑

k=1
aktk be a polynomial vanishing at 0 and with non-

negative coefficients ak, k = 1 , · · · , m. Then for all normal matrices A, B ∈ Mn ,

s(g(A)+g(B)) ≺w s(g(|A+B|)) . (2.6)

In particular,
s(Am +Bm) ≺w s(|A+B|m) .

Proof. Let X , Y be any pair of normal matrices in Mn and let f (t) = g−1 (t) be
the reciprocal function of g(t) for t ∈ [0, ∞) . By (2.5), since f is concave, we have

s( f (|X +Y |)) ≺w s( f (|X |)+ f (|Y |)) .

Since g is convex and increasing on [0, ∞) , it preserves weak majorization on M+
n ,

hence the above majorization yields

s(|X +Y |) ≺w s(g( f (|X |)+ f (|Y |))) .

Now, set X = g(A) and Y = g(B) . We then have

s(|g(A)+g(B)|) ≺w s(g( f (|g(A)|)+ f (|g(B)|))) .

Since |g(A)|= g(|A|) , |g(B)| = g(|B|) , and f (g(t)) = t on [0, ∞) , the last majoriza-
tion completes the proof. �
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3. Remarks

REMARK 3.1. The inequality (2.3) has been obtained by Bhatia and Kittaneh [4,
p. 206]. Here, we give a simple proof.

REMARK 3.2. Let A, B ∈ Mn be positive semidefinite. Then

s j (AB) � s j

((
A+B

2

)2
)

, 1 � j � n. (3.1)

This was a question posed by Bhatia and Kittaneh [4](see also [10-11]), and settled in
the affirmative by Drury in [12]. In view of (1.1), (2.1) and (3.1), we ask the following:
Is it true that

s j (AB) � s j

(∫ 1

0
A1/2+tB3/2−tdt

)
� s j

((
A+B

2

)2
)

, 1 � j � n?

This would be a strengthening of (2.1).

REMARK 3.3. Let A, B ∈ Mn be positive semidefinite. Tao [13, Theorem 3]
proved that the following inequality

2s j

(
A1/2 (A+B)r B1/2

)
� s j

(
(A+B)r+1

)
, j = 1, · · · ,n (3.2)

holds for any positive integer r . It is a generalization of (2.3). Bhatia and Kittaneh [10,
p. 2186] proved that the inequality (3.2) holds for any positive real number r . Now, we
give a simple proof of (3.2). In fact, for any r > 0, let

P = A1/2 (A+B)r/2 , Q = B1/2 (A+B)r/2 ,

we obtain the inequality (2.4) from the inequality (2.1).
Moreover, for any r,r1,r2 > 0, let

P = Ar1 (A+B)r/2 , Q = Br2 (A+B)r/2 .

Then, for j = 1, · · · ,n , we have

2s j (Ar1 (A+B)r Br2) � s j

(
(A+B)r/2 (A2r1 +B2r2

)
(A+B)r/2

)
.

This is a generalization of (3.2).
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