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Abstract. We investigate the spectral properties of the maximal operator A associated with a
differential expression 1
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, where the coefficients w , p and q are real-valued

and w changes sign. It turns out that the non-real spectrum of A is bounded, symmetric with
respect to the real axis and consists of a finite number of analytic curves. The real spectrum is
band-shaped and neither bounded from above nor from below. We characterize the finite spectral
singularities of A and prove that there is only a finite number of them. Finally, we provide a
condition on the coefficients w and p which ensures that ∞ is not a spectral singularity of A .

Introduction

In this paper we consider the maximal operator A corresponding to the Sturm-
Liouville differential expression

a( f ) :=
1
w

(
− (p f ′)′ +q f

)
(0.1)

on R with real-valued coefficients w , p and q which are periodic with the period a > 0
such that w , q and p−1 are integrable over (0,a) . We assume p > 0 and w �= 0 almost
everywhere.

It is well-known (see, e.g., [35]) that in the definite case (i.e. w > 0 (a.e.)) the
operator A is self-adjoint in the weighted L2 -Hilbert space L2

w(R) . Moreover, it is
bounded from below and its spectrum has a band structure, i.e. it consists of compact
intervals which may intersect in their endpoints only.

If the weight function w changes its sign, the differential expression a in (0.1)
is called indefinite. In this case the operator A is no longer self-adjoint in L2

|w|(R) .
But if J denotes the operator of multiplication with sgn(w(·)) , then JA is the maximal
operator associated with the definite Sturm-Liouville expression

t( f ) :=
1
|w|

(
− (p f ′)′ +q f

)
(0.2)
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and is therefore self-adjoint in the Hilbert space L2
|w|(R) . The operator A is a so-

called J -self-adjoint operator in L2
|w|(R) . Equivalently, A is self-adjoint with respect

to the indefinite inner product [· , ·] := (J·, ·) , where (· , ·) denotes the scalar product in
L2
|w|(R) .

If the lower bound of the spectrum of the self-adjoint operator JA is positive,
the spectral properties of the operator A are well understood (see [14, 28, 32]). Such
problems are called left-definite. In this case the spectrum of A is real and has a band
structure as in the definite case. But it is neither bounded from above nor from below if
w is indefinite. Also in the non-periodic case the J -self-adjoint operators correspond-
ing to left-definite problems have real spectra and have been intensively studied in the
literature. Here, we only mention [5, 6, 7, 9, 26, 27] and the monograph [38] for further
references. If A0 is a J -self-adjoint realization of a and only JA0 � 0 is assumed, the
spectrum of the operator A0 remains real provided its resolvent set is non-empty. In this
case it is of particular interest whether the operator A0 is similar to a self-adjoint oper-
ator. With regard to this problem we refer to [21, 22, 23] and also to [28] in the periodic
case. If the negative spectrum of JA0 only consists of a finite number of negative eigen-
values (counting multiplicities) and ρ(A0) �= ∅ , the spectrum of the operator A0 is real
with the possible exception of a finite number of non-real eigenvalues, cf. [4, 8, 13, 29].
The situation becomes much more difficult, in general, when the negative spectrum of
the operator JA0 has accumulation points in (−∞,0] . For example, accumulation of
the non-real spectrum of A0 to the real line may occur. In [2, 3] and [24] such prob-
lems have been tackled with the local spectral theory of self-adjoint operators in Krein
spaces.

In the present paper we discuss the periodic case and allow the lower bound of the
spectrum of the operator JA to be negative. Our methods are based on the interplay
between standard tools in the analysis of periodic ODEs (such as Gelfand transform
and Floquet-discriminant) and elements of the local spectral theory of J -self-adjoint
operators. As a first result we prove that the Floquet-discriminant of a in (0.1) is not
a constant. This implies that the spectrum of A consists of the closures of analytic
curves. Moreover, it is symmetric with respect to R since A is J -self-adjoint. But
in contrast to the left-definite case the non-real part of the spectrum might be non-
empty. However, the main result of this paper (see Theorem 3.1) shows that the non-real
spectrum of A is bounded. Moreover, Theorem 3.1 states that there is a finite number of
real points which separate the real axis into open intervals of positive or negative type.
This means that the spectrum of A within these intervals is separable and the spectral
subspaces corresponding to closed subintervals are Hilbert spaces with respect to either
[· , ·] = (J·, ·) or −[· , ·] . Roughly speaking, the operator A acts locally like a self-
adjoint operator in a Hilbert space. The statements of Theorem 3.1 particularly imply
that there is only a finite number of spectral singularities of A . These are characterized
in Theorem 4.6. In the last result (see Theorem 5.3) a condition on the coefficients w
and p of a is presented which ensures that the point ∞ is not a spectral singularity of
A .

The paper is organized as follows. In section 1 the necessary definitions and state-
ments concerning J -self-adjoint operators are provided. In section 2 we define the
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maximal operator A and the multiplication operator Ã with the family of J -self-adjoint
operators {A(t) : t ∈ [−π ,π ]} , where A(t) is the differential operator in L2

|w|(0,a) as-
sociated with a on (0,a) subject to the boundary conditions

f (a) = eit f (0) and (p f ′)(a) = eit(p f ′)(0).

The multiplication operator Ã acts in the Hilbert space L2([−π ,π ],L2
|w|(0,a)) and is

unitarily equivalent to A . Since the spectrum of each operator A(t) is non-empty
(Proposition 2.1), the Floquet-discriminant D of a is a non-constant entire function.
This implies that the spectrum of A , which coincides with {λ : D(λ ) ∈ [−2,2]} , con-
sists of closures of analytic curves, cf. Theorem 2.7. In section 3 we prove our main
result Theorem 3.1. The proof is based on perturbation-theoretic arguments. In section
4 it is proved that A possesses a spectral function with a finite number of singularities.
These are among the points in the spectrum of A in which the derivative of D vanishes.
In Theorem 4.6 it is shown in particular that such a point λ0 ∈ σ(A(t0)) is not a spectral
singularity of A if and only if the root subspace of A(t0) corresponding to λ0 coincides
with ker(A(t0)−λ0) . The behaviour of the spectral function at ∞ is investigated in sec-
tion 5. We prove that ∞ is not a spectral singularity of A if the weight function w has
only a finite number of turning points in (0,a) and if w and p satisfy some regularity
conditions in neighborhoods of these turning points.

1. Preliminaries on J -self-adjoint operators

In this paper B(X ,Y ) denotes the set of all bounded and everywhere defined lin-
ear operators from a Banach space X to a Banach space Y . As usual, we write B(X)
instead of B(X ,X) . Spectrum and resolvent set of a closed linear operator T are
denoted by σ(T ) and ρ(T ) , respectively. Point spectrum, residual spectrum and con-
tinuous spectrum of T are denoted by σp(T ) , σr(T ) and σc(T ) , respectively. We
set R+ := (0,∞) and R− := (−∞,0) . Moreover, C+ (C− ) denotes the upper (lower)
complex halfplane.

Throughout this section let (H ,(· , ·)) be a Hilbert space and let J ∈ B(H ) be
boundedly invertible such that

J = J−1 = J∗,
where J∗ denotes the adjoint of J with respect to the scalar product (· , ·) . Such an
operator will be called a fundamental symmetry in H . The fundamental symmetry J
induces a second inner product

[ f ,g] := (J f ,g), f ,g ∈ H ,

on H which is indefinite unless J = ±I . The inner product space (H , [· , ·]) is called
a Krein space. For an intensive study of Krein spaces and operators therein we refer to
the monographs [1] and [2].

A linear operator B in H is called J -self-adjoint if the operator JB is self-adjoint.
Equivalently, B∗ = JBJ , which implies that the spectrum of B is symmetric with respect
to the real axis, i.e.

σ(B) = {λ : λ ∈ σ(B)}.
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Moreover, for λ ∈ C the following holds:

ker(B−λ ) = J ker(J(B−λ )J) = J ker(B∗ −λ ) = J ran(B−λ)⊥. (1.1)

Note that an operator is J -self-adjoint if and only if it is self-adjoint with respect to the
inner product [· , ·] .

For the rest of this section let B be a J -self-adjoint operator in H . Recall that the
approximate point spectrum σap(B) of B is defined as the set of all λ ∈ C for which
there exists a sequence ( fn) ⊂ domB with ‖ fn‖ = 1 and (B− λ ) fn → 0 as n → ∞ .
A point λ ∈ C is not an element of σap(B) if and only if ran(B−λ ) is closed and
ker(B−λ ) = {0} . Therefore, in view of (1.1) we have

σ(B)∩R ⊂ σap(B). (1.2)

It should be mentioned that in general the spectral properties of J -self-adjoint operators
differ considerably from those of self-adjoint operators. There exist simple examples of
J -self-adjoint operators whose spectrum covers the entire complex plane or is empty.
Therefore, the existing literature mainly focusses on special classes of J -self-adjoint
operators such as definitizable or fundamentally reducible operators. Another approach
is based on the local spectral analysis of J -self-adjoint operators.

DEFINITION 1.1. Let B be a J -self-adjoint operator in H . A point λ ∈ σap(B)
is called a spectral point of positive (negative) type of B if for every sequence ( fn) ⊂
domB with ‖ fn‖ = 1 and ‖(B−λ ) fn‖→ 0 as n → ∞ we have

liminf
n→∞

[ fn, fn] > 0
(

limsup
n→∞

[ fn, fn] < 0, respectively
)
.

The set of all spectral points of positive (negative) type of B will be denoted by σ+(B)
(σ−(B) , respectively). A set Δ ⊂R is said to be of positive (negative) type with respect
to B if

Δ∩σ(B) ⊂ σ+(B)
(

Δ∩σ(B) ⊂ σ−(B), respectively
)
.

The set Δ is said to be of definite type with respect to B if it is either of positive or
negative type with respect to B .

In the following we collect a few properties of the spectra of definite type. Proofs
of the statements can be found in the fundamental paper [30]. First of all we note that
the spectra of positive and negative type of a J -self-adjoint operator B are real. A pole
λ of the resolvent of B (and hence an isolated eigenvalue) is of positive (negative) type
if and only if the inner product [· , ·] is positive definite (negative definite, respectively)
on ker(B−λ ) . If J ⊂R is an interval which is of positive (negative) type with respect
to B , then there exists an open domain U in C such that J ⊂ U and U ∩σ(B) ⊂
σ+(B) (U ∩σ(B) ⊂ σ−(B) , respectively). In particular, σ+(B) and σ−(B) are open
in σ(B) . Moreover, the operator B has a local spectral function E on J .

DEFINITION 1.2. Let Ξ ⊂ C be Borel-measurable and let T be a closed linear
operator in a Banach space X . By B0(Ξ) we denote the system of Borel-measurable
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subsets of Ξ whose closure is contained in Ξ . A mapping E : B0(Ξ)→B(X) is called
a local spectral function of T on Ξ if it has the following properties (Δ ∈ B0(Ξ)):

(S1) E(Δ) is a projection in the double-commutant of the resolvent of T (which maps
to a (closed) subspace of domT if Δ is bounded).

(S2) E is strongly σ -additive, i.e., if Δ1,Δ2, . . . ∈ B0(Ξ) are mutually disjoint and⋃∞
k=1 Δk ∈ B0(Ξ) , then

lim
n→∞

∥∥∥∥∥E

(
∞⋃

k=1

Δk

)
f −

n

∑
k=1

E(Δk) f

∥∥∥∥∥ = 0

holds for every f ∈ X .

(S3) E(Δ1∩Δ2) = E(Δ1)E(Δ2) for all Δ1,Δ2 ∈ B0(Ξ) .

(S4) σ(T |E(Δ)H ) ⊂ σ(T )∩Δ .

(S5) σ(T |(I−E(Δ))H ) ⊂ σ(T )\Δ .

The local spectral function E of the J -self-adjoint operator B on the interval J
(which is of positive (negative) type with respect to B) has the additional property that
the spectral subspace E(Δ)H is a Hilbert space with respect to the inner product [· , ·]
(−[· , ·] , respectively) for each Δ∈B0(J ) . Hence, since B is self-adjoint with respect
to [· , ·] , the restriction B|E(Δ)H is self-adjoint in the Hilbert space (E(Δ)H , [· , ·]) .

In the following, the signature of an inner product 〈·, ·〉 on a finite-dimensional
subspace M of H (which is contained in the domain of 〈·, ·〉) will be denoted by{

κ+(〈·, ·〉,M ),κ−(〈·, ·〉,M ),κ0(〈·, ·〉,M )
}
.

For λ ∈ C denote the root subspace of B corresponding to λ by

Lλ (B) :=
∞⋃

k=1

ker
(
(B−λ )k).

It is well-known (see, e.g., [16, Proposition 3.2]) that for λ �= μ we have

Lλ (B) [⊥] Lμ(B),

i.e. [ f ,g] = 0 for all f ∈ Lλ (B) and all g ∈ Lμ(B) . In particular, [ f ,g] = 0 holds for
all f ,g ∈ Lλ (B) if λ /∈ R , or equivalently, κ+([· , ·],Lλ (B)) = κ−([· , ·],Lλ (B)) = 0.
Moreover, it is well-known that dimLλ (B) = dimLλ (B) holds for isolated eigenval-
ues λ of B , see, e.g., [29, Proposition I.3.2]. The implication

λ ∈ σ+(B)∪σ−(B) =⇒ Lλ (B) = ker(B−λ ) (1.3)

follows with the use of the local spectral function but also by elementary means: assume
(B−λ ) f1 = f0 and (B−λ ) f0 = 0, f0 �= 0. Then [ f0, f0] = [(B−λ ) f1, f0] = [ f1,(B−
λ ) f0] = 0 which contradicts λ ∈ σ+(B)∪σ−(B) .
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The next lemma describes the relation between the signatures of the inner products
[· , ·] and [B·, ·] on the subspace

Mλ (B) := Lλ (B)+Lλ (B), λ ∈ C.

LEMMA 1.3. Let λ ∈ C be an isolated eigenvalue of B with finite multiplicity.
Then the following holds.

(i) If λ ∈ R , then we have κ0([· , ·],Lλ (B)) = 0 . If, in addition, λ �= 0 , then also
κ0([B·, ·],Lλ (B)) = 0 .

(ii) If λ ∈ R+ , then

κ±([B·, ·],Lλ (B)) = κ±([· , ·],Lλ (B)).

(iii) If λ ∈ R− , then

κ±([B·, ·],Lλ (B)) = κ∓([· , ·],Lλ (B)).

(iv) If λ ∈ C \R , then also λ is a pole of the resolvent of B with finite algebraic
multiplicity and the Jordan structures of B at λ and λ coincide. Moreover,

κ−([· , ·],Mλ (B)) = κ+([· , ·],Mλ (B)) = dimLλ (B).

The same holds with respect to the inner product [B·, ·]:

κ−([B·, ·],Mλ (B)) = κ+([B·, ·],Mλ (B)) = dimLλ (B).

In particular, dimLλ (B) = dimLλ (B) and

κ0([· , ·],Mλ (B)) = κ0([B·, ·],Mλ (B)) = 0.

Proof. If P(λ ) denotes the Riesz-Dunford spectral projection of B corresponding
to λ , then [P(λ ) f ,g] = [ f ,P(λ )g] for f ,g∈H , cf. [29, Proposition 3.2]. In particular,
P(λ ) is J -self-adjoint if λ is real. In this case we have

H = Lλ (B) [�] (I−P(λ ))H ,

where [�] denotes the [· , ·]-orthogonal direct sum. Hence, if f ∈Lλ (B) with [ f ,g] = 0
for all g ∈ Lλ (B) , then [ f ,g] = 0 for all g ∈ H and f = 0 follows. This proves
κ0([· , ·],Lλ (B)) = 0 for real λ and also κ0([B·, ·],Lλ (B)) = 0 if λ ∈ R\{0} . For the
proof of (ii) we may assume that dimH < ∞ and that σ(B) = {λ} . Using the Riesz-
Dunford calculus, we define a square root B1/2 of B . The operator B1/2 is boundedly
invertible and J -self-adjoint. Therefore, (ii) follows from [B f , f ] = [B1/2 f ,B1/2 f ] ,
f ∈ H . The statement (iii) is proved similarly with the difference that iB1/2 is J -self-
adjoint. Statement (iv) is a consequence of [29, Proposition 3.2]. �
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REMARK 1.4. If the origin belongs to the spectrum of B , then there is in general
no relation between the signatures of [· , ·] and [B·, ·] on L0(B) .

The J -self-adjoint operator B is said to have κ , κ ∈ N0 , negative squares, if the
inner product [B·, ·] has κ negative squares. Equivalently (as [B·, ·] = (JB·, ·)), the
spectrum of the self-adjoint operator JB in (−∞,0) consists of exactly κ eigenvalues
(counting multiplicities). It should be mentioned that a J -self-adjoint operator with κ
negative squares and non-empty resolvent set is definitizable in the sense of [29]. If B
has κ = 0 negative squares (i.e. JB is non-negative or [B f , f ] � 0 for all f ∈ domB),
then B is called J -nonnegative.

PROPOSITION 1.5. Assume that the resolvent set of the J -self-adjoint operator B
is non-empty and that the resolvent of B is compact. If B has κ negative squares, then

∑
λ∈C+∪R

κ−
(
[B·, ·],Mλ (B)

)
= κ . (1.4)

In particular (cf. Lemma 1.3), the number of non-real eigenvalues of B (counting mul-
tiplicities) does not exceed κ .

Proof. Let λ1, . . . ,λn be the distinct non-zero eigenvalues of B in C+ ∪R with
κ−([B·, ·],Mλ j

(B)) > 0, j = 1, . . . ,n , and set

M := L0(B) [�]Mλ1
(B) [�] . . . [�]Mλn(B).

Then κ−([B·, ·],M ) = ∑λ∈C+∪R κ−([B·, ·],Mλ (B)) . Since M is B-invariant, the same
holds for M [⊥] = JM⊥ , and we have H = M [�]M [⊥] (see [29, Theorem I.5.2]).
Hence, it remains to show that [B f , f ] � 0 for all f ∈ domB∩M [⊥] . To see this, note
that the spectrum of B|M [⊥] is real and that R+ (R− ) is of positive (negative) type
with respect to B|M [⊥] , cf. Lemma 1.3. The same holds for the compact J -self-adjoint
operator C := (B|M [⊥])−1 . Hence, due to [29, Corollary II.5.3] we have [C f , f ] � 0
for all f ∈ M [⊥] , which proves the assertion. �

For J -self-adjoint operators B with κ negative squares and compact resolvent we
set

σex(B) :=
{

λ ∈ C : κ−
(
[B·, ·],Mλ (B)

)
> 0

}
.

The points in σex(B) will be called the exceptional eigenvalues of B . It follows from
Proposition 1.5 that B has at most κ exceptional eigenvalues in C+ ∪R and hence a
total of at most 2κ exceptional eigenvalues. The assertions of the next lemma follow
directly from Lemma 1.3 and (1.3).

LEMMA 1.6. Let B be a J -self-adjoint operator with compact resolvent and κ
negative squares. Then a point λ ∈ σ(B) \ {0} is contained in σex(B) if and only if
one of the following holds:

(a) λ /∈ R .
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(b) λ > 0 and λ /∈ σ+(B) .

(c) λ < 0 and λ /∈ σ−(B) .

If 0 ∈ σ+(B)∪σ−(B) , then 0 /∈ σex(B) .

2. Multiplication operators and Floquet theory

The object of investigation in this paper will be the maximal operator associated
with a Sturm-Liouville expression of the form

a( f ) :=
1
w

(
− (p f ′)′ +q f

)
(2.1)

on R with real-valued coefficients w , p and q which are periodic with the same period
a > 0. We assume that the functions w , q and p−1 are integrable over (0,a) , that
w(x) �= 0 and p(x) > 0 for a.e. x ∈ (0,a) . If neither w > 0 a.e. nor w < 0 a.e. on
(0,a) , we say that the weight function w and the differential expression a are indefinite.
Since also |w| is a -periodic, it is a well-known fact (see, e.g., [35, Lemma 12.1]) that
the (definite) differential expression

t( f ) :=
1
|w|

(
− (p f ′)′ +q f

)
(2.2)

is limit point at ±∞ . Hence, the maximal operator T associated with t is self-adjoint
in the weighted L2 -space L2

|w|(R) which consists of all (equivalence classes of) mea-

surable functions f : R → C such that f 2w is integrable over R . The scalar product on
L2
|w|(R) is given by

( f ,g) :=
∫

R

f (x)g(x)|w(x)|dx, f ,g ∈ L2
|w|(R),

and the maximal operator T associated with t is defined by T f := t( f ) for f ∈ domT ,
where

domT :=
{

f ∈ L2
|w|(R) : f , p f ′ ∈ ACloc(R), t( f ) ∈ L2

|w|(R)
}

.

Hereby, the set of all (locally) absolutely continuous complex-valued functions, defined
on a bounded or unbounded interval Δ , is denoted by AC(Δ) (ACloc(Δ) , respectively).
The maximal operator A associated with a is defined analogously:

A f := a( f ), f ∈ domA := domT.

Obviously, we have JA = T , where J is the operator of multiplication with sgn(w(·)) :
(J f )(x) := sgn(w(x)) f (x), f ∈ L2

|w|(R), x ∈ R.

Since J is a fundamental symmetry in L2
|w|(R) , the operator A is J -self-adjoint. Equiv-

alently, A is self-adjoint with respect to the (in general indefinite) Krein space inner
product

[ f ,g] := (J f ,g) =
∫

R

f (x)g(x)w(x)dx, f ,g ∈ L2
|w|(R).
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The spectral properties of the operator A are closely connected to those of a family
{A(t) : t ∈ [−π ,π ]} of differential operators associated with a in the Hilbert space
L2
|w|(0,a) . By (· , ·)a we denote the scalar product in this Hilbert space, i.e.

( f ,g)a :=
∫ a

0
f (x)g(x)|w(x)|dx, f ,g ∈ L2

|w|(0,a).

The operators A(z) , z ∈ C , are defined by A(z) f = a( f ) for f ∈ domA(z) , where

domA(z) := { f ∈ L2
|w|(0,a) : f , p f ′ ∈ AC([0,a]), a( f ) ∈ L2

|w|(0,a),

f (a) = eiz f (0), (p f ′)(a) = eiz(p f ′)(0)}.

Note that A(z+ 2π) = A(z) for all z ∈ C . The operator of multiplication Ja with the
restriction of the function sgn(w(·)) to [0,a] is a fundamental symmetry in the Hilbert
space L2

|w|(0,a) and the operators T (t) := JaA(t) are self-adjoint in L2
|w|(0,a) for t ∈R .

Hence, each of the operators A(t) , t ∈ R , is Ja -self-adjoint and thus self-adjoint with
respect to the inner product [· , ·]a , where

[ f ,g]a := (Ja f ,g)a =
∫ a

0
f (x)g(x)w(x)dx, f ,g ∈ L2

|w|(0,a).

It is well-known that each operator T (t) , t ∈ R , has compact resolvent and is bounded
from below. By κ(t) we denote the number of negative eigenvalues of T (t) (counting
multiplicities). Hence, the operator A(t) has κ(t) negative squares. Since each operator
T (t) has as many negative eigenvalues as either T (0) or T (π) , see [35, Theorem 12.7],
we have

κ(t) ∈ {κ∗−1,κ∗},
for all t ∈ R , where κ∗ denotes the maximum of the number of negative eigenvalues
of the operators T (0) and T (π) .

PROPOSITION 2.1. The resolvent set of each operator A(t) , t ∈ R , is non-empty
and the resolvent of A(t) is compact. In particular, we have

∑
λ∈C+∪R

κ−
(
[A(t)·, ·]a,Mλ (A(t))

)
= κ(t). (2.3)

Moreover, if the weight function w is indefinite, then the real spectrum of A(t) is neither
bounded from below nor from above.

Proof. The first two assertions are due to [13, Corollary 1.4 and Proposition 2.2],
and (2.3) follows from Proposition 1.5. Assume, e.g., that σ(A(t))∩R is bounded
from below and choose c > 0 such that −c < min(σ(A(t))∩R) and max(σex(A(t))∩
R) < c . Then [c,∞) is of positive type with respect to A(t) and (−∞,−c] ⊂ ρ(A(t)) .
Therefore, see [29, page 39], the point ∞ is not a singularity of the spectral function
E of A(t) , and it follows that (E(R \ [−c,c])Ha, [· , ·]a) is a Hilbert space. Since this
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space has finite codimension in Ha , we obtain κ−([· , ·]a,Ha) < ∞ , which is obviously
impossible. �

Standard perturbation-theoretical arguments imply that also for non-real z the op-
erators A(z) are closed and densely defined, and for all λ ∈ C the operator A(z)−λ is
Fredholm with index zero.

The following abbreviations will be used throughout this paper:

I := [−π ,π ], Ha := L2
|w|(0,a) and H̃ := L2(I ,Ha).

The multiplication operator T̃ with the family of self-adjoint operators {T (t) : t ∈ I }
is an operator in H̃ . It has the domain of definition

dom T̃ := {F ∈ H̃ : F(t) ∈ domT (t) for a.e. t ∈ I and T (·)F(·) ∈ H̃ }
and acts in the following way:(

T̃F
)
(t) := T (t)F(t), F ∈ dom T̃ , t ∈ I . (2.4)

The Gelfand transform G : L2
|w|(R) → H̃ is defined by

(G f )(t) := l. i.m.
N→∞

1√
2π

N

∑
n=−N

e−int f ( ·+na), t ∈ I , f ∈ L2
|w|(R).

Here, l. i.m. denotes the limit in H̃ = L2(I ,Ha) . It is well-known (see, e.g., [36,
Lemma 16.7 and Satz 16.9]) that the Gelfand transform is unitary and that

T̃ = G TG −1. (2.5)

In particular, T̃ is a self-adjoint operator in H̃ . Moreover, the operator J̃ in H̃ , given
by (

J̃F
)
(t) := JaF(t), F ∈ H̃ , t ∈ I ,

is a fundamental symmetry in H̃ . For f ∈ L2
|w|(R) and t ∈ I we have

(
J̃G f

)
(t) = l. i.m.

N→∞

1√
2π

N

∑
n=−N

e−int sgn(w(·)) f (·+na)

= l. i.m.
N→∞

1√
2π

N

∑
n=−N

e−int sgn(w(·+na)) f (·+na)

= l. i.m.
N→∞

1√
2π

N

∑
n=−N

e−int(J f )(·+na)

= (G J f ) (t),

and thus
J̃ = G JG−1. (2.6)
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Let Ã be the multiplication operator with the family {A(t) : t ∈ I } , i.e.

dom Ã = {F ∈ H̃ : F(t) ∈ domA(t) for a.e. t ∈ I and A(·)F(·) ∈ H̃ },
and (

ÃF
)
(t) = A(t)F(t), F ∈ dom Ã, t ∈ I .

Then dom Ã = dom T̃ , and (2.5)–(2.6) imply

Ã = J̃T̃ = G JTG −1 = G AG −1.

We summarize the above discussion in the following lemma.

LEMMA 2.2. Let Ã , T̃ and J̃ be the multiplication operators in H̃ with the
families of operators {A(t) : t ∈I } , {T (t) : t ∈I } and {Ja} , respectively. Then with
the Gelfand transform G the following holds:

Ã = G AG−1, T̃ = G TG −1 and J̃ = G JG −1.

In the following we introduce the Floquet discriminant and the monodromymatrix
of a . For λ ∈ C denote by ϕλ and ψλ the solutions of a(u) = λu which satisfy the
initial conditions

ϕλ (0) = 1, (pϕ ′
λ )(0) = 0,

ψλ (0) = 0, (pψ ′
λ )(0) = 1.

(2.7)

We mention that ϕλ (x) , ψλ (x) , pϕ ′
λ (x) and pψ ′

λ (x) are entire functions (in λ ∈ C)
for every x∈R and that (λ ,x) �→ (ϕλ (x),ψλ (x),(pϕ ′

λ )(x),(pψ ′
λ )(x)) is continuous on

C×R . The entire function

D(λ ) := ϕλ (a)+ (pψ ′
λ )(a)

is called the Floquet discriminant of a . Here, since

ϕλ = ϕλ and ψλ = ψλ , (2.8)

it has the additional property D(λ ) = D(λ ) , λ ∈ C . In particular, if λ is real then ϕλ
and ψλ are real-valued and D(λ ) is real. The Floquet discriminant is the trace of the
so-called monodromy matrix

L(λ ) :=
(

ϕλ (a) ψλ (a)
(pϕ ′

λ )(a) (pψ ′
λ )(a)

)
. (2.9)

As detL(λ ) = 1 for all λ ∈ C we have

ρ ∈ σ(L(λ )) ⇐⇒ ρ−1 ∈ σ(L(λ )). (2.10)

The following lemma is well-known, see, e.g., [17].
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LEMMA 2.3. Let λ ,z ∈ C . Then,

λ ∈ σ(A(z)) ⇐⇒ σ(L(λ )) = {eiz,e−iz} ⇐⇒ D(λ ) = 2cos(z).

In particular, the spectra of the operators A(t) , t ∈ [0,π ] , are mutually disjoint.

We point out an important fact which is a consequence of Lemma 2.3 and Propo-
sition 2.1.

COROLLARY 2.4. The entire function D is not a constant.

Indeed, if D is a constant, then Lemma 2.3 implies that σ(A(t)) = ∅ for all but
at most two t ∈ I . If the weight function w is indefinite, this contradicts Proposition
2.1. Otherwise, Ja = ±I , and for each t ∈ I the operator A(t) = ±T (t) is self-adjoint
and hence has a non-empty spectrum.

In the next lemma we consider the function (z,λ ) �→ R(z,λ ) , where

R(z,λ ) := (A(z)−λ )−1.

Note that by Lemma 2.3 the resolvent R(z,λ ) exists if and only if D(λ ) �= 2cos(z) .

LEMMA 2.5. The following statements hold:

(a) For each r > 0 there exists λ0 ∈C such that λ0 ∈ ρ(A(z)) for all z∈R+ i[−r,r] .

(b) For fixed λ ∈ C the mapping z �→ R(z,λ ) is holomorphic on the open set {z :
2cos(z) �= D(λ )} .

(c) If U is a domain in C such that U ⊂ ρ(A(z)) for all z in a compact set K ⊂C ,
then R(z,λ ) is continuous on K×U .

Proof. Let r > 0 and suppose that λ0 as in (a) does not exist. Then for every λ ∈C

there exists z ∈ R+ i[−r,r] such that λ ∈ σ(A(z)) , or equivalently, D(λ ) = 2cos(z) ,
cf. Lemma 2.3. Hence, the entire function D is bounded and therefore constant which
is impossible due to Corollary 2.4.

For the proof of (b) let λ ∈ C . For z ∈ C with d(z,λ ) := 2cos(z)−D(λ ) �= 0 the
resolvent R(z,λ ) of A(z) in λ is given by

(
R(z,λ )g

)
(x) =

∫ a

0
Gλ (z,x,y)g(y)w(y)dy , g ∈ Ha, x ∈ [0,a], (2.11)

where

Gλ (z,x,y) = Ψλ (x)T
(

L(λ )− e−iz

d(z,λ )
+1{y�x}(x,y)

)
JΨλ (y). (2.12)

Hereby,

J :=
(

0 1
−1 0

)
and Ψλ (x) :=

(
ϕλ (x)
ψλ (x)

)
.
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Let z,ζ ∈ C with d(z,λ ) �= 0 and d(ζ ,λ ) �= 0. Then

Gλ (z,x,y)−Gλ (ζ ,x,y) =
e−iz− e−iζ

d(z,λ )d(ζ ,λ )
Ψλ (x)T Mλ (z,ζ )JΨλ (y),

where Mλ (z,ζ ) := (ei(z+ζ )−1)L(λ )+D(λ )− eiz− eiζ . Hence, for g ∈ Ha we have

R(z,λ )g−R(ζ ,λ )g =
e−iz− e−iζ

d(z,λ )d(ζ ,λ )
ΨT

λ Mλ (z,ζ )J
(

[g,ϕλ ]a
[g,ψλ ]a

)
.

This proves (b). And due to

R(z,λ )−R(z0,λ0) =
(
R(z,λ )−R(z0,λ )

)
+

(
R(z0,λ )−R(z0,λ0)

)
also (c) is proved. �

REMARK 2.6. Lemmas 2.3 and 2.5 imply that the operator function z �→ A(z) is
holomorphic on C in the sense of [25, page 366], cf. [25, Theorem VII-1.3].

In the sequel a continuous mapping γ : J → C , where J is a real (bounded
or unbounded) interval, will be called a curve. As usual, we identify γ with its image
γ(J ) . We shall call a curve γ analytic if the mapping γ : J → C is injective and
analytic at each t in the real interior of J .

THEOREM 2.7. The operator A has the following spectral properties:

(i) σ(A) =
⋃

t∈I σ(A(t)) =
⋃

t∈[0,π ] σ(A(t)) = {λ ∈ C : D(λ ) ∈ [−2,2]} .

(ii) σ(A) = σc(A) .

(iii) σ(A) contains neither interior nor isolated points.

(iv) σ(A) consists of closures of analytic curves.

(v) ρ(A) does not have bounded connected components.

(vi) If the weight function w is indefinite, then the real spectrum of A is neither
bounded from above nor from below.

Proof. By Lemma 2.2 it suffices to prove the theorem for the multiplication op-
erator Ã instead of A . The second and third equality in (i) follow from Lemma 2.3.
Choose some λ0 as in Lemma 2.5 and note that the multiplication operator with the
family {(A(t)− λ0)−1 : t ∈ I } coincides with (Ã− λ0)−1 . From [15] we conclude
that

σ
(
(Ã−λ0)−1) =

⋃
t∈I

σ
(
(A(t)−λ0)−1),

which implies (i). Statement (vi) is a consequence of (i) and Proposition 2.1. Also
(iv) follows from (i). Interior points of σ(Ã) cannot exist according to Corollary 2.4,
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and the absence of isolated points of σ(Ã) follows from the properties of holomorphic
functions. If the operator Ã has an eigenvalue λ ∈ C , then there exists F ∈ dom Ã ,
F �= 0, such that A(t)F(t) = λF(t) for a.e. t ∈ I . But as D(λ ) = 2cos(t) is only
possible for at most two t ∈ I , from Lemma 2.3 we obtain the contradiction F = 0.
Statement (ii) now follows from the implication (cf. (1.1))

λ ∈ σr(Ã) =⇒ λ ∈ σp(Ã).

It remains to prove (v). Assume that there exists a bounded connected component of
ρ(A) . Then ImD = 0 on its boundary. As ImD is a harmonic function, it follows from
the maximum and minimum principle that ImD = 0 in the whole component which
contradicts Corollary 2.4. �

The following corollary generalizes the main result of [32], where the authors
assume that the self-adjoint operator T = JA is uniformly positive (the so-called left-
definite case). The complex derivative of a function f : U → C , U ⊂ C , is denoted
by ḟ .

COROLLARY 2.8. The operator A is J -nonnegative if and only if all operators
A(t) , t ∈ I , are Ja -nonnegative. In this case the spectrum of A is real and consists
of compact intervals [α,β ] (which might intersect in their endpoints only), such that
D(α) = ±2 , D(β ) = ∓2 and ±Ḋ(λ ) < 0 for λ ∈ (α,β ) .

Proof. The operator A is J -nonnegative if and only if the self-adjoint operator
T = JA in the Hilbert space L2

|w|(R) is non-negative. By Theorem 2.7(i) (applied to
t instead of a ) this is the case if and only if all self-adjoint operators T (t) = JaA(t) ,
t ∈ I , are non-negative in the Hilbert space L2

|w|(0,a) . This proves the first statement.
Assume now that A is J -nonnegative. Then σ(A) is real since σ(A(t)) is real for any
t ∈ I , cf. Proposition 1.5. It remains to show that there are no real points λ0 such that
D(λ0) ∈ (−2,2) and Ḋ(λ0) = 0. Suppose that λ0 is such a point. Then for each ε > 0
sufficiently small both equations D(λ ) = D(λ0)± ε have two solutions close to λ0 ,
respectively, and these must be real. Therefore, λ0 is both a maximum and a minimum
of D|R which contradicts Corollary 2.4. �

3. Non-real spectrum and sign types

In this section it is our aim to prove the following theorem which can be regarded
as the main result of this paper.

THEOREM 3.1. The non-real spectrum of the operator A is bounded. Moreover,
there exists a finite number of points λ1, . . . ,λn ∈ R , λ j−1 < λ j , j = 2, . . . ,n, such that
the following holds:

(i) The interval (−∞,λ1) is of negative type with respect to A.

(ii) Each interval (λ j−1,λ j) , j = 2, . . . ,n, is of definite type with respect to A.
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(iii) The interval (λn,∞) is of positive type with respect to A.

REMARK 3.2. We mention that adjacent intervals in Theorem 3.1 might be of the
same sign type with respect to A . As the following lemmas will reveal, this happens
if Ḋ vanishes in the common endpoint λ j of the intervals and if the function λ �→
Ḋ(λ )ψλ (a) does not change its sign in a neighborhood of λ j .

The statements of Theorem 3.1 follow immediately from the next three lemmas.

LEMMA 3.3. Let t ∈ I and λ ∈ σ(A(t))∩R . If Ḋ(λ ) �= 0 , then ψλ (a) �= 0 or
(pϕ ′

λ )(a) �= 0 , and the following statements hold:

(i) If ψλ (a) �= 0 then

λ ∈ σ±(A(t)) ⇐⇒ ±Ḋ(λ )ψλ (a) < 0.

(ii) If (pϕ ′
λ )(a) �= 0 then

λ ∈ σ±(A(t)) ⇐⇒ ±Ḋ(λ )(pϕ ′
λ )(a) > 0.

In particular, if only Ḋ(λ ) �= 0 , then λ is a spectral point of definite type of A(t) .

LEMMA 3.4. There exists R > 0 such that for all t ∈ I the following holds:

(i) The non-real spectrum of A(t) is contained in BR(0) .

(ii) The interval (−∞,−R) is of negative type with respect to A(t) .

(iii) The interval (R,∞) is of positive type with respect to A(t) .

LEMMA 3.5. If Δ ⊂ R is of positive (negative) type with respect to A(t) for all
t ∈ I , then Δ is of positive type (negative type, respectively) with respect to A.

In the proof of Lemma 3.3 (more precisely, in that of Lemma 3.6 below) we will
make use of the relation

Ḋ(λ ) = −ψλ (a) [ϕλ ,ϕλ ]a +
(
ϕλ (a)− (pψ ′

λ )(a)
)
[ϕλ ,ψλ ]a +(pϕ ′

λ )(a) [ψλ ,ψλ ]a .
(3.1)

To prove (3.1), note that for g∈Ha = L2
|w|(0,a) the solution of the initial value problem

a(u)−λu = g, u(0) = (pu′)(0) = 0,

is given by

u(x) = ϕλ (x) ·
∫ x

0
ψλ gwdy − ψλ (x) ·

∫ x

0
ϕλ gwdy.

As for λ ,μ ∈ C the function f := ϕλ −ϕμ has the properties f (0) = (p f ′)(0) = 0 and
a( f )−λ f = (λ − μ)ϕμ , it follows that

ϕλ (x)−ϕμ(x)
λ − μ

= ϕλ (x) ·
∫ x

0
ψλ ϕμwdy − ψλ (x) ·

∫ x

0
ϕλ ϕμwdy.
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Analogously, we proceed with the functions ψλ , pϕ ′
λ and pψ ′

λ and obtain the formulas

d
dλ

ϕλ (a) = ϕλ (a) [ψλ ,ϕλ ]a−ψλ (a) [ϕλ ,ϕλ ]a

d
dλ

(pϕ ′
λ )(a) = (pϕ ′

λ )(a) [ψλ ,ϕλ ]a − (pψ ′
λ )(a) [ϕλ ,ϕλ ]a

d
dλ

ψλ (a) = ϕλ (a) [ψλ ,ψλ ]a−ψλ (a) [ϕλ ,ψλ ]a

d
dλ

(pψ ′
λ )(a) = (pϕ ′

λ )(a) [ψλ ,ψλ ]a− (pψ ′
λ )(a) [ϕλ ,ψλ ]a.

(3.2)

These imply (3.1).

LEMMA 3.6. Let t ∈ [−π ,π ] and λ ∈ σ(A(t)) . Moreover, let fλ and fλ be

eigenfunctions of A(t) corresponding to the eigenvalues λ and λ , respectively. Then
we have

ψλ (a) [ fλ , fλ ]a = − fλ (0) fλ (0) · Ḋ(λ )

and
(pϕ ′

λ )(a) [ fλ , fλ ]a = (p f ′λ )(0)(p f ′
λ
)(0) · Ḋ(λ ).

Proof. As ϕλ = ϕλ and ψλ = ψλ , there are α,β ,γ,δ ∈ C such that

fλ = αϕλ + β ψλ and fλ = γϕλ + δψλ .

It is obvious that

α = fλ (0), β = (p f ′λ )(0), γ = fλ (0), δ = (p f ′λ )(0). (3.3)

For simplicity, we set ϕ := ϕλ and ψ := ψλ . From fλ , fλ ∈ domA(t) we deduce the
four equations (

ϕ(a)− eit)α = −ψ(a)β(
(pψ ′)(a)− eit)β = −(pϕ ′)(a)α(

ϕ(a)− e−it)γ = −ψ(a)δ(
(pψ ′)(a)− e−it)δ = −(pϕ ′)(a)γ.

With the help of (3.1) we obtain

−ψ(a) [ fλ , fλ ]a = −ψ(a)
(

αγ [ϕ ,ϕ ]a +(β γ + αδ) [ϕ ,ψ ]a + β δ [ψ ,ψ]a
)

= −αγ ψ(a) [ϕ ,ϕ ]a + αγ
(
2ϕ(a)− eit − e−it) [ϕ ,ψ ]a

+ α
(
ϕ(a)− eit)δ [ψ ,ψ ]a

= −αγ ψ(a) [ϕ ,ϕ ]a + αγ
(
ϕ(a)− (pψ ′)(a)

)
[ϕ ,ψ ]a

+ α
(
D(λ )− (pψ ′)(a)− eit)δ [ψ ,ψ ]a
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= αγ
(
Ḋ(λ )− (pϕ ′)(a) [ψ ,ψ ]a

)
+ α

(
e−it − (pψ ′)(a)

)
δ [ψ ,ψ ]a

= αγ Ḋ(λ )

as well as

(pϕ ′)(a) [ fλ , fλ ]a = (pϕ ′)(a)
(

αγ [ϕ ,ϕ ]a +(β γ + αδ) [ϕ ,ψ ]a + β δ [ψ ,ψ]a
)

=
(
eit − (pψ ′)(a)

)
β γ [ϕ ,ϕ ]a

+
(

β
(
e−it − (pψ ′)(a)

)
δ − (

(pψ ′)(a)− eit)β δ
)

[ϕ ,ψ ]a

+ β δ (pϕ ′)(a) [ψ ,ψ ]a

=
(
ϕ(a)− e−it)β γ [ϕ ,ϕ ]a + β δ

(
ϕ(a)− (pψ ′)(a)

)
[ϕ ,ψ ]a

+ β δ (pϕ ′)(a) [ψ ,ψ ]a

= β δ Ḋ(λ ).

The assertion now follows from (3.3). �
We are now ready to prove Lemmas 3.3–3.5.

Proof of Lemma 3.3. Suppose that Ḋ(λ ) �= 0 but ψλ (a)= (pϕ ′
λ )(a) = 0. Then the

monodromy matrix L(λ ) in (2.9) is a diagonal matrix and hence has its eigenvalues eit

and e−it on the diagonal. Since the functions ϕλ and ψλ are real-valued, it follows that
ϕλ (a) = (pψ ′

λ )(a) = ±1. But in view of (3.1) this implies Ḋ(λ ) = 0. A contradiction.
Assume, e.g., ψλ (a) �= 0 and let fλ be any eigenfunction of A(t) corresponding

to the eigenvalue λ . Then fλ (0) �= 0 since otherwise fλ = νψλ with some ν ∈C\{0}
and thus ψλ (a) = eitψλ (0) = 0. From Lemma 3.6 it follows that

[ fλ , fλ ]a = −| fλ (0)|2 Ḋ(λ )
ψλ (a)

which proves the equivalence in (i). The statement (ii) is proved similarly. �

For r > 0 and λ ∈C by Br(λ ) we denote the open disc in the complex plane with
center λ and radius r .

Proof of Lemma 3.4. First of all note that R > 0 as in Lemma 3.4 exists if and
only if the set ⋃

t∈I

σex(A(t))

is bounded. Also note that the number of points in each σex(A(t)) , t ∈ I , cannot
exceed κ∗ , cf. Proposition 2.1. The proof is divided into two steps.

1. In this first step we prove the assertion under the assumption that one of the two
following cases holds true:

(I) D(0) /∈ [−2,2] .

(II) D(0) ∈ (−2,2) and Ḋ(0) �= 0.
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Let (I) or (II) be satisfied. In what follows we show the following claim:

(C) For each t0 ∈ I there exists δ > 0 such that for all t ∈ (t0 − δ ,t0 + δ ) and all
λ ∈ σex(A(t)) we have

dist
(
λ ,σex(A(t0))

)
� 1. (3.4)

Then the assertion follows since I is compact.
Let t0 ∈ I be arbitrary and let λ1, . . . ,λn be the exceptional eigenvalues of A(t0)

in C+ and λn+1, . . . ,λn+k the non-zero real exceptional eigenvalues of A(t0) . Choose
ε ∈ (0,1) such that with Bj := Bε(λ j) the following holds:

(a) σ(A(t0))∩Bj = {λ j} for j = 1, . . . ,n+ k ,

(b) Bj ⊂ C+ for j = 1, . . . ,n ,

(c) 0 /∈ Bj for j = n+1, . . . ,n+ k .

(d) Bi∩Bj = ∅ for all i, j = 1, . . . ,n+ k , i �= j .

Denote by Γ j , j = 1, . . . ,n+ k , the boundary of Bj . As a consequence of Lemma 2.3
there exists δ1 > 0 such that Γ j ⊂ ρ(A(t)) for all t ∈ Iδ1

(t0) := [t0 − δ1, t0 + δ1] and
all j ∈ {1, . . . ,n+ k} . Hence, the Riesz-Dunford projection

Pj(t) := − 1
2π i

∫
Γ j

(A(t)−λ )−1 dλ

is well-defined for j = 1, . . . ,n+k and t ∈Iδ1
(t0) . Moreover, according to Lemma 2.5,

each function Pj is continuous on Iδ1
(t0) in the uniform operator topology. Therefore,

there exists δ ∈ (0,δ1) such that

‖Pj(t)−Pj(t0)‖ < 1 and ‖Pj(t0)(Pj(t)−Pj(t0))Pj(t0)‖ < 1

holds for all j = 1, . . . ,n+ k and all t ∈ Iδ (t0) . Hence, [31, Lemma 2.1] implies

κs([· , ·]a,Pj(t)Ha) = κs([· , ·]a,Lλ j
(A(t0))), s ∈ {+,−,0}, (3.5)

for each j ∈ {1, . . . ,n + k} and all t ∈ Iδ (t0) . Let us now see that for each j ∈
{1, . . . ,n+ k} and all t ∈ Iδ (t0) this implies

∑
λ∈Bj\C−

κ−
(
[A(t)·, ·]a,Mλ (A(t))

)
= κ−

(
[A(t0)·, ·]a,Mλ j

(A(t0))
)
. (3.6)

If λ j /∈R , i.e. j ∈ {1, . . . ,n} , then (3.6) follows directly from Lemma 1.3(iv). Let j > n
such that λ j ∈ R+ . Then Lemma 1.3 and (3.5) imply

κ−
(
[A(t0)·, ·]a,Mλ j

(A(t0))
)

= κ−([· , ·]a,Lλ j
(A(t0))) = κ−([· , ·]a,Pj(t)Ha)

for all t ∈ Iδ (t0) . From Lemma 1.3(ii) we obtain

κ−([· , ·]a,Pj(t)Ha) = ∑
λ∈Bj∩C+

dimLλ (A(t))+ ∑
λ∈Bj∩R

κ−([· , ·]a,Lλ (A(t)))



INDEFINITE STURM-LIOUVILLE OPERATORS WITH PERIODIC COEFFICIENTS 795

= ∑
λ∈Bj\C−

κ−
(
[A(t)·, ·]a,Mλ (A(t))

)
.

Similarly, one proves that (3.6) holds for λ j ∈ R− .
If 0 /∈σ(A(t0)) , we can choose δ > 0 so small that 0 /∈σ(A(t)) for all t ∈Iδ (t0) .

Then κ(t) is constant on Iδ (t0) , and from (3.6) it follows that

n+k

∑
j=1

∑
λ∈Bj\C−

κ−
(
[A(t)·, ·]a,Mλ (A(t))

)
=

n+k

∑
j=1

κ−
(
[A(t0)·, ·]a,Mλ j

(A(t0))
)

= κ(t0) = κ(t),

which shows that the exceptional eigenvalues of each A(t) , t ∈ Iδ (t0) , are contained
in the union of all Bj and B∗

j := {λ : λ ∈ Bj} , j = 1, . . . ,n+ k . Therefore, (3.4) holds
if 0 /∈ σ(A(t0)) . In particular, the lemma is proved in case (I).

It remains to prove the claim (C) in the case (II) for t0 ∈ (0,π) with D(0) =
2cos(t0) . The value −t0 needs not to be considered since f ∈ Lλ (A(t)) ⇐⇒ f ∈
Lλ (A(−t)) implies σex(A(−t)) = σex(A(t)) . By Lemma 3.3 either ψ0(a) �= 0 or
(pϕ ′

0)(a) �= 0. Without loss of generality we assume ψ0(a) �= 0. Moreover, Lemma
3.3 implies 0 ∈ σ+(A(t0))∪σ−(A(t0)) . In particular, 0 /∈ σex(A(t0)) , cf. Lemma 1.6,
and zero is a simple (isolated) eigenvalue of A(t0) , cf. (1.3).

Choose ε and δ from above so small that Iδ (t0)⊂ (0,π) and such that for B0 :=
Bε(0) the following holds:

(a’) σ(A(t0))∩B0 = {0} ,

(b’) ∂B0 ⊂ ρ(A(t)) for all t ∈ Iδ (t0) ,

(c’) Ḋ(λ )ψλ (a) �= 0 for all λ ∈ B0 .

(d’) B0∩Bj = ∅ for j = 1, . . . ,n+ k ,

For t ∈Iδ (t0) let λ (t) be the simple (isolated) eigenvalue of A(t) in B0 . Then λ (t) is
real since otherwise λ (t) is another eigenvalue of A(t) in B0 . Moreover, as D(λ )ψλ (a)
does not change sign on B0∩R , we have λ (t)∈σ±(A(t)) if 0∈σ±(A(t0)) , cf. Lemma
3.3. In addition, from Ḋ(λ (t))λ̇ (t) =−2sin(t) and Iδ (t0)⊂ (0,π) we see that λ̇ (t) �=
0 for all t ∈ Iδ (t0) .

Let t ∈ Iδ (t0) , t > t0 . Then, due to Lemma 1.6, λ (t) ∈ σex(A(t)) if and only
if ±λ (t) > 0 and λ (t) ∈ σ∓(A(t)) . This holds if and only if ±λ̇(t0) > 0 and 0 ∈
σ∓(A(t0)) . By Lemma 3.3 this is equivalent to λ̇ (t0)Ḋ(0)ψ0(a) > 0. Hence, the re-
lation Ḋ(λ (s))λ̇ (s) = −2sin(s) for s ∈ Iδ (t0) yields that λ (t) ∈ σex(A(t)) for t > t0
if and only if ψ0(a) < 0. By D+ denote the Floquet discriminant corresponding to
the differential expression t in (2.2). Then Lemma 3.3 implies that Ḋ+(0)ψ0(a) < 0.
Therefore, λ (t) ∈ σex(A(t)) for t > t0 if and only if Ḋ+(0) > 0. Similarly, one proves
that λ (t) ∈ σex(A(t)) for t < t0 if and only if Ḋ+(0) < 0.

Assume that Ḋ+(0) > 0. Then for t ∈ Iδ (t0) we have

κ(t) =

{
κ∗ for t > t0
κ∗ −1 for t � t0.
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Since λ (t) /∈ σex(A(t)) for t � t0 and λ (t) ∈ σex(A(t)) for t > t0 ,

κ−
(
[A(t)·, ·]a,Lλ (t)(A(t))

)
=

{
1 for t > t0
0 for t � t0,

t ∈ Iδ (t0).

Hence, (3.6) and Proposition 1.5 imply that for each t ∈ Iδ (t0) we have

n+k

∑
j=0

∑
λ∈Bj\C−

κ−
(
[A(t)·, ·]a,Mλ (A(t))

)
= κ−

(
[A(t)·, ·]a,Lλ (t)(A(t))

)
+ κ(t0)

= κ−
(
[A(t)·, ·]a,Lλ (t)(A(t))

)
+ κ∗−1 = κ(t).

Therefore, σex(A(t)) ⊂ ⋃n+k
j=0(Bj ∪ B∗

j) . A similar reasoning applies if Ḋ+(0) < 0.
Hence, the lemma is proved for the cases (I) and (II).

2. Assume now that 0 ∈ σ(A) and that (II) is not satisfied. Then Ḋ(ε) �= 0 and
D(ε) /∈ {−2,2} for ε > 0 sufficiently small. By Dε denote the Floquet discriminant
associated with the (periodic) differential expression

aε( f ) := a( f )− ε f =
1
w

(
(p f ′)′ +(q− εw) f

)
.

Then Dε (λ ) = D(λ +ε) and thus Ḋε(0) �= 0 and Dε(0) /∈ {−2,2} . By the first step of
this proof there exists R > 0 such that σex(A(t)− ε) ⊂ BR(0) for all t ∈ I . Hence,
for all t ∈ I the non-real spectrum of A(t)− ε is contained in BR(0) , (R,∞) is of
positive type with respect to A(t)− ε and (−∞,−R) is of negative type with respect
to A(t)− ε . Consequently, for all t ∈ I the non-real spectrum of A(t) is contained
in BR(ε) , (R + ε,∞) is of positive type with respect to A(t) and (−∞,−R + ε) is of
negative type with respect to A(t) . But this means that σex(A(t)) ⊂ BR(ε) holds for
all t ∈ I . �

Proof of Lemma 3.5. Let λ ∈ R such that λ ∈ σ+(A(t))∪ρ(A(t)) for all t ∈ I .
We have to prove that λ ∈σ+(Ã)∪ρ(Ã) . Then λ ∈σ+(A)∪ρ(A) follows from Lemma
2.2. First of all we show that there exists ε > 0 such that for all t ∈ I we have

f ∈ domA(t), ‖(A(t)−λ ) f‖a � ε‖ f‖a =⇒ [ f , f ]a � ε‖ f‖2
a. (3.7)

Suppose that such an ε > 0 does not exist. Then for each n∈ N there exist tn ∈ I and
fn ∈ domA(tn) with ‖ fn‖a = 1 such that

‖(A(tn)−λ ) fn‖a � 1/n and [ fn, fn]a < 1/n.

It is no restriction to assume that (tn) converges to some t ∈ I . We set

gn := (A(t)−λ0)−1(A(tn)−λ0) fn ∈ domA(t),

where λ0 ∈ ρ(A) is arbitrary. Due to Lemma 2.5(b) the expression

gn− fn =
(
(A(t)−λ0)−1− (A(tn)−λ0)−1)(A(tn)−λ0) fn
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tends to zero as n → ∞ . The same holds for

(A(t)−λ )gn = (A(tn)−λ ) fn +(λ0−λ )(gn− fn).

Therefore, λ ∈ σap(A(t)) and thus, by assumption, λ ∈ σ+(A(t)) , which implies

liminf
n→∞

[ fn, fn]a = liminf
n→∞

[gn,gn]a > 0.

But this contradicts [ fn, fn]a < 1/n . Hence, (3.7) is proved.
Assume that λ ∈ σ(Ã) (and hence λ ∈ σap(Ã) , cf. (1.2)) and let (Fn) ⊂ dom Ã

with ‖Fn‖∼ = 1 for all n ∈ N and ‖(Ã−λ )Fn‖∼ → 0 as n → ∞ , i.e.

an :=
∫

I
‖(A(t)−λ )Fn(t)‖2

a dt → 0 and
∫

I
‖Fn(t)‖2

a dt = 1.

For n ∈ N we define the measurable set

Mn :=
{
t ∈ I : ‖(A(t)−λ )Fn(t)‖a > ε‖Fn(t)‖a

}
.

Then ∫
Mn

‖Fn(t)‖2
a dt � 1

ε2

∫
Mn

‖(A(t)−λ )Fn(t)‖2
a dt � an

ε2 → 0

as n → ∞ . Moreover, by (3.7),

[Fn,Fn]∼ =
∫

I
[Fn(t),Fn(t)]a dt �

∫
Mn

[Fn(t),Fn(t)]a dt + ε
∫

I \Mn

‖Fn(t)‖2
a dt.

And since ∣∣∣∣∫
Mn

[Fn(t),Fn(t)]a dt

∣∣∣∣ �
∫

Mn

‖Fn(t)‖2
a dt → 0,

it follows that
liminf
n→∞

[Fn,Fn]∼ � ε lim
n→∞

∫
I \Mn

‖Fn(t)‖2
a dt = ε.

This shows λ ∈ σ+(Ã) . �

The rest of this section is devoted to the study of the Floquet discriminant D on
R . Recall that the order of an entire function v : C → C is defined as the infimum of
all c > 0 with the property

v(λ ) = O
(
e|λ |

c
)

(|λ | → ∞).

If there exists no such c > 0, we say that the function v is of infinite order. A proof of
the following lemma can be found in [37, Section VII.1.1].

LEMMA 3.7. The order of the entire function D is at most one.

The next lemma is proved in [11], see [11, Lemma XI-3.1]. Note that the addi-
tional assumption f (0) = 1 in [11] is redundant.
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LEMMA 3.8. Let f : C → C be a non-constant entire function whose order is at
most one and let the zeros λ1,λ2, . . . of f (counting multiplicities) be ordered in such
a way that |λ j| � |λ j+1| , j ∈ N . Then for λ /∈ {λk : k ∈ N} we have

f (λ ) f̈ (λ )− ḟ (λ )2

f (λ )2 = −
∞

∑
k=1

1
(λ −λk)2 .

In the case of a definite weight function w it is well-known that for real λ with
Ḋ(λ ) = 0 we have |D(λ )| � 2 and D(λ )D̈(λ ) < 0, cf. [35, Theorem 12.7]. The fol-
lowing proposition shows that in the general case the function D has this behaviour on
R\ (−R0,R0) , where

R0 :=
√

2 max
{|λ | : λ ∈ (

σ(A(0))\R
)∪ (

σ(A(π))\R
)∪{0}}.

The constant R0 is well-defined due to Proposition 2.1.

PROPOSITION 3.9. For each λ ∈ R\ (−R0,R0) with Ḋ(λ ) = 0 we have

|D(λ )| � 2 and D(λ )D̈(λ ) < 0.

Consequently, λ is a maximum of D|R if D(λ ) � 2 , and a minimum if D(λ ) � −2 .

Proof. Let λ ∈ R \ (−R0,R0) such that Ḋ(λ ) = 0. By λ1, . . . ,λn we denote
the zeros of the function D(·)− 2 (and thus the eigenvalues of A(0) , cf. Lemma 2.3)
in C+ and set λn+ j := λ j for j = 1, . . . ,n . In addition, let λ2n+1,λ2n+2, . . . be the
(infinitely many) real zeros of D(·)− 2 such that |λ j| � |λ j+1| for j � 2n+ 1. From
|λ | � √

2 max j=1,...,n |λ j| it follows that

|λ −Re λ j| � |λ |− |Re λ j| �
√

2((Re λ j)2 +(Im λ j)2)−|Re λ j|

�
√

(|Re λ j|+ | Im λ j|)2−|Re λ j| = | Im λ j|

for j = 1, . . . ,n , and with an easy calculation one confirms that this implies

(λ −λ j)−2 +(λ −λ j)−2 � 0

for each j ∈ {1, . . . ,n} . We apply Lemma 3.8 and obtain

D(λ ) �= 2 =⇒ (D(λ )−2)D̈(λ ) < 0.

An analog treatment of the function D(·)+2 gives

D(λ ) �= −2 =⇒ (D(λ )+2)D̈(λ ) < 0.

These two implications yield the assertion. �

COROLLARY 3.10. The real accumulation points of the non-real spectrum of A
are contained in (−R0,R0) and constitute a finite set.
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Proof. Let λ0 ∈R be an accumulation point of the non-real spectrum of A . As the
spectrum of A is symmetric with respect to the real axis, in each neighborhood of λ0 in
C there is a pair λ ,λ ∈C\R such that D(λ )= D(λ ) which implies Ḋ(λ0)= 0. Hence,
in (−R0,R0) there is only a finite number of such accumulation points. Suppose
now that |λ0| � R0 . Then from Proposition 3.9 it follows that D(λ0) ∈ {−2,2} and
D(λ0)D̈(λ0) < 0. If, e.g., D(λ0) = 2, then D|R has a maximum at λ0 and hence, in
each neighborhood of λ0 , in addition to λ and λ , there is also some μ ∈ R such that
D(λ ) = D(λ ) = D(μ) , which contradicts D̈(λ0) �= 0. �

COROLLARY 3.11. If the spectra of A(0) and A(π) are real, then the spectrum
of A is real.

Proof. If the spectra of A(0) and A(π) are real, then R0 = 0. Hence, by Corollary
3.10 the non-real spectrum of A does not accumulate to any real point. Therefore, since
σ(A) \R is bounded by Theorem 3.1, the set K := σ(A)∩C+ is compact. Suppose
that K �= ∅ . Then the function D attains its maximum on K (note that D is real-
valued on K ). Let λ0 ∈ K such that D(λ ) � D(λ0) for all λ ∈ K . As λ0 /∈ R we have
D(λ0)∈ (−2,2) . Let U ⊂C+ be an open neighborhood of λ0 . Then D(U ) is an open
neighborhood of D(λ0) . Hence, there exists λ1 ∈ U such that D(λ0) < D(λ1) < 2.
Since this also implies λ1 ∈ K , we have obtained a contradiction. �

4. The spectral function and its singularities

A regular spectral curve of A is an analytic curve γ : J → σ(A) such that the
derivative Ḋ of D does not vanish on γ , i.e. Ḋ(γ(t)) �= 0 for all t ∈ J . If γ is a
regular spectral curve of A , then for Δ ⊂ γ we denote by IΔ the set of all t ∈ I such
that σ(A(t))∩Δ �= ∅ . Each regular spectral curve of A is bounded due to Proposition
2.1 and Theorem 3.1. We say that a regular spectral curve γ of A is maximal, if for
each endpoint λ of γ we either have Ḋ(λ ) = 0 (and hence λ /∈ γ ) or Ḋ(λ ) �= 0,
D(λ ) ∈ {−2,2} and λ ∈ γ .

THEOREM 4.1. The operator A has a local spectral function on each of its regu-
lar spectral curves.

Proof. Let γ be a regular spectral curve of A . Since each regular spectral curve of
A is contained in a maximal one, it is no restriction to assume that γ is maximal. Then
there exists a closed rectifiable Jordan contour Γ such that (see Figure 1)

σ(A)∩ intΓ = γ and σ(A)∩Γ = γ \ γ.

Let Δ ∈ B0(γ) . Then each of the operators A(t) , t ∈ IΔ , has exactly one eigenvalue
in intΓ and there exists a small neighborhood U of Γ such that U ⊂ ρ(A(t)) holds
for all t ∈ IΔ . According to Lemma 2.5(c) the function R(t,λ ) is continuous and
therefore uniformly bounded on IΔ ×Γ . Hence, the operator function t �→ E(t;Δ) ,
t ∈ I , defined by
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Γ
γ

|D|= 2

Ḋ �= 0

Ḋ = 0

Figure 1: Maximal regular spectral curve γ and contour Γ

E(t;Δ) :=

{
− 1

2π i

∫
Γ R(t,λ )dλ , if t ∈ IΔ

0, if t ∈ I \IΔ,
(4.1)

is measurable and uniformly bounded. Therefore, the multiplication operator Ẽ(Δ) in
H̃ corresponding to the family {E(t;Δ) : t ∈ I } is an element of B(H̃ ) . Since the
above construction is independent of the choice of Γ , the operator Ẽ(Δ) is properly
defined. In the following we show that (S1)–(S5) in Definition 1.2 hold with T , E and
Ξ replaced by Ã , Ẽ and γ . Then the theorem is proved according to Lemma 2.2.

Let Δ ∈B0(γ) . As for each t ∈I the operator E(t;Δ) is a projection commuting
with the resolvent of A(t) , also Ẽ(Δ) is a projection commuting with the resolvent of Ã
(the fact that Ẽ(Δ) is even in the double-commutant of the resolvent of Ã will be proved
below). Moreover, for every F ∈ H̃ the function Ẽ(Δ)F belongs to dom Ã since the
function λR(t,λ ) is continuous on IΔ ×Γ . Property (S3) follows directly from the
definition of Ẽ . Let us prove (S2). To this end let F ∈ H̃ and set Δ :=

⋃∞
j=1 Δ j as well

as

Gn := Ẽ(Δ)F −
n

∑
j=1

Ẽ(Δ j)F.

Note that IΔ =
⋃∞

j=1 IΔ j and that the IΔ j are mutually disjoint. From the definition

of Ẽ it follows that

Gn(t) =

⎧⎪⎨⎪⎩
0 if t ∈ I \IΔ, n ∈ N,

E(t;Δ)F(t) if t ∈ IΔk , n < k,

0 if t ∈ IΔk , n � k .

Hence, for each t ∈I we have Gn(t)→ 0 as n→∞ . Moreover, as E(t;Δ) is uniformly
bounded in t ∈ IΔ , there exists C > 0 such that ‖Gn(t)‖a � C‖F(t)‖a holds for all
t ∈ I and all n ∈ N . Therefore, by Lebesgue’s theorem, ‖Gn‖∼ → 0 as n → ∞ as
desired.

For the proof of (S4) let λ0 ∈ C\Δ and let Γ1 be a rectifiable Jordan contour such
that

Δ ⊂ intΓ1, λ0 /∈ intΓ1, σ(A)∩Γ1 ⊂ γ.
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Then E(t;Δ) is given by (4.1) with Γ replaced by Γ1 . For G ∈ Ẽ(Δ)H̃ set F(t) = 0
for t ∈ I \IΔ and

F(t) := − 1
2π i

∫
Γ1

R(t,λ )G(t)
λ −λ0

dλ (4.2)

for t ∈ IΔ . Then for a.e. t ∈ I we have F(t) ∈ E(t;Δ)Ha and ‖F(t)‖a � C‖G(t)‖a

with a constant C > 0 which does not depend on t . Hence, F ∈ Ẽ(Δ)H̃ . Moreover, for
a.e. t ∈ I we have (A(t)−λ0)F(t) = G(t) and therefore F ∈ dom Ã , (Ã−λ0)F = G
which shows λ0 ∈ ρ(Ã|Ẽ(Δ)H̃ ) .

In order to prove (S5) let λ0 /∈ σ(Ã)\Δ . Then either λ0 ∈ ρ(Ã) or λ0 is in the
σ(Ã)-interior of Δ . In the first case it is clear that λ0 ∈ ρ(Ã|(I − Ẽ(Δ))H ) . In the
second case we have λ0 ∈ ρ(A(t)) for all t ∈ I \IΔ . Hence, if G ∈ (I − Ẽ(Δ))H̃ ,
then F(t) := R(t,λ0)G(t) is a proper definition for t ∈ I \IΔ . For t ∈ IΔ we define
F(t) as in (4.2) with Γ1 replaced by Γ (note that λ0 ∈ intΓ). Due to Lemma 2.5(c)
there exists C > 0 such that ‖F(t)‖a � C‖G(t)‖a for a.e. t ∈ I . Moreover, F(t) ∈
(I−E(t;Δ))Ha for a.e. t ∈I implies F ∈ (I− Ẽ(Δ))H̃ . In addition, F(t)∈ domA(t)
and (A(t)−λ0)F(t) = G(t) holds for a.e. t ∈ I . Consequently, F ∈ dom Ã and (Ã−
λ0)F = G . Therefore, λ0 ∈ ρ(Ã|(I− Ẽ(Δ))H̃ ) .

It remains to prove that Ẽ(Δ) is in the double-commutant of the resolvent of Ã for
Δ ∈ B0(γ) . For this it suffices to consider only closed Δ ∈ B0(γ) . For k sufficiently
large, say k � K , the set Δk := {λ ∈ γ : dist(λ ,Δ) � 1/k} is an element of B0(γ) . If
the spectral curve γ is a spectral set of Ã and Δ = γ , then Ẽ(Δ) coincides with the
Riesz-Dunford spectral projection of Ã corresponding to Δ , and hence (S1) holds true.
Otherwise, Δ is a proper subset of Δk for all k � K . Let B̃ ∈ B(H̃ ) be an operator
which commutes with S̃ := (Ã−λ0)−1 for some λ0 ∈ ρ(Ã) . Set B̃0 := B̃|Ẽ(Δ)H̃ ∈
B(Ẽ(Δ)H̃ ,H̃ ) . Then, since S̃ commutes with all Ẽ(Δk) , we have for k � K :[

S̃|(I− Ẽ(Δk))H̃
] [

(I− Ẽ(Δk))B̃0

]
=

[
(I− Ẽ(Δk))B̃0

] [
S̃|Ẽ(Δ)H̃

]
.

Owing to (S4), (S5) and Rosenblum’s corollary (see, e.g., [33]) it follows that (I −
Ẽ(Δk))B̃0 = 0 for all k � K or, equivalently,

B̃Ẽ(Δ)H̃ ⊂ Ẽ(Δk)H̃ .

Similarly one proves that for all k � K

B̃(I− Ẽ(Δk))H̃ ⊂ (I− Ẽ(Δ))H̃ .

We will now prove that the following two inclusions hold:⋂
k�K

Ẽ(Δk)H̃ ⊂ Ẽ(Δ)H̃ , (I− Ẽ(Δ))H̃ ⊂ c. l.s.
{
(I− Ẽ(Δk))H̃ : k � K

}
. (4.3)

Then the proof of (S1) is complete. For simplicity we assume K = 1 and set

δ0 := Δ, δk := Δk \Δk+1 for k � 1.
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Then the δk , k � 0, are mutually disjoint and their union coincides with Δ1 . By (S2)
we obtain for every F ∈ H̃ :

Ẽ(Δ1)F = Ẽ(Δ)F +
∞

∑
k=1

Ẽ(δk)F.

As for k � 1 we have Ẽ(δk)= Ẽ(Δk)−Ẽ(Δk+1) , this implies ‖Ẽ(Δk)F−Ẽ(Δ)F‖∼→ 0
as k → ∞ and thus (4.3). The stated uniqueness of Ẽ is a consequence of (S1), (S2),
(S4) and (S5), see, e.g. [20, Lemma 3.14]. �

Due to Theorem 2.7 the spectrum of A consists of the union of countably many
regular spectral curves of A and the (discrete) set c(A) of points λ ∈ σ(A) for which
Ḋ(λ ) = 0. The points in c(A) will be called the critical points of A .

REMARK 4.2. We mention that in a similar manner to the proof of Theorem 4.1
a spectral projection E(Δ) can be defined for small connected σ(A)-neighborhoods Δ
of the critical points of A . Hence, if Bc(A)(σ(A)) denotes the collection of all bounded
Borel sets in σ(A) whose σ(A)-boundary does not contain any critical point of A ,
then there exists an operator-valued mapping E on Bc(A)(σ(A)) with the properties
(S1)–(S5) in Definition 1.2 (with T and B0(γ) replaced by A and Bc(A)(σ(A)) , re-
spectively).

DEFINITION 4.3. The mapping E on Bc(A)(σ(A)) from Remark 4.2 is called the
spectral function of A (with the set of critical points c(A)). A critical point λ0 of A
is called regular if for some domain U in C with λ0 ∈ U and U ∩ c(A) = {λ0} we
have

sup
γ

sup
Δ⊂U ,Δ∈B0(γ)

‖E(Δ)‖ < ∞,

where the first supremum runs over all regular spectral curves γ of A with λ0 in the
σ(A)-boundary of γ . If the critical point λ0 is not regular, it is called singular. A
singular critical point of A is also called a singularity of the spectral function E or a
spectral singularity of A .

If γ is a regular spectral curve of A , then by λγ : Iγ → γ we denote the mapping
with λγ (t) ∈ σ(A(t)) , t ∈ Iγ . This mapping is unique and real-analytic: if U is a
domain in C with U ∩σ(A) = γ and on which Ḋ does not vanish, then for t ∈ Iγ

we have λγ(t) = (D|U )−1(2cos(t)) . By Ẽ we denote the spectral function of Ã , i.e.
Ẽ(Δ) := G E(Δ)G −1 , Δ ∈ Bc(A)(σ(A)) .

LEMMA 4.4. Let γ be a regular spectral curve of A and let Δ ∈B0(γ) . Then for
all G,H ∈ H̃ we have

[
Ẽ(Δ)G,H

]
∼ =

∫
IΔ

(
[ϕλ (t),H(t)]a
[ψλ (t),H(t)]a

)T L(λ (t))− e−it

Ḋ(λ (t))

(
[G(t),ψλ (t)]a
−[G(t),ϕλ (t)]a

)
dt,

where λ (·) := λγ(·) and L(·) is the monodromy matrix from (2.9).
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Proof. It is no restriction to assume that γ is maximal. By the definition of Ẽ(Δ)
in the proof of Theorem 4.1 we have

[
Ẽ(Δ)G,H

]
∼ = − 1

2π i

∫
IΔ

∫
Γ
[R(t,λ )G(t),H(t)]a dλ dt,

where Γ is a closed rectifiable Jordan contour such that σ(A)∩ intΓ = γ and σ(A)∩
Γ = γ \ γ , cf. Figure 1. We will now make use of the representation (2.11)–(2.12) of
R(t,λ ) . For x,y∈ [0,a] and t ∈I set f (t,x,y) := (G(t))(y)w(y)(H(t))(x)w(x) . Since
the function

λ �→
∫ a

0

∫ x

0
Ψλ (x)T JΨλ (y) f (t,x,y)dydx

is entire for every t , it follows that
[
Ẽ(Δ)G,H

]
∼ coincides with

− 1
2π i

∫
IΔ

∫
Γ

∫ a

0

∫ a

0
Ψλ (x)T L(λ )− e−it

2cos(t)−D(λ )
JΨλ (y) f (t,x,y)dydxdλ dt

=− 1
2π i

∫
IΔ

∫
Γ

(
[ϕλ ,H(t)]a
[ψλ ,H(t)]a

)T L(λ )− e−it

2cos(t)−D(λ )

(
[G(t),ψλ ]a
−[G(t),ϕλ ]a

)
dλ dt.

The assertion is now a consequence of

L(λ )− e−it

2cos(t)−D(λ )
= −

λ (t)−λ
D(λ (t))−D(λ ) (L(λ )− e−it)

λ −λ (t)

and Cauchy’s integral formula. �

LEMMA 4.5. Let λ0 ∈ c(A) , let γ be a regular spectral curve of A with γ∩c(A) =
{λ0} and let f (t) be one of the entries of the matrix function L(λγ(t))− e−it . If

f

Ḋ◦λγ
/∈ L2(Iγ ),

then λ0 is a singular critical point of A.

Proof. Set λ (·) := λγ(·) . We prove the lemma for the entry f (t) = ϕλ (t)(a)−e−it .
The proof for the other ones is similar. For linearly independent functions g,h ∈ Ha

we set

Φ(g,h) := Ja

(
g− (g,h)a

‖h‖2
a

h

)
.

Since f is real-analytic, the zeros of f in Iγ are at most countable. If f/(Ḋ ◦λ ) ∈
L1(Iγ )\L2(Iγ ) , for t ∈ Iγ define

G(t) :=
∣∣∣∣ f (t)
Ḋ(λ (t))

∣∣∣∣1/2

Φ(ψλ (t),ϕλ (t)),
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H(t) :=
f (t)

Ḋ(λ (t))

∣∣∣∣ f (t)
Ḋ(λ (t))

∣∣∣∣−1/2

Φ(ϕλ (t),ψλ (t)).

For t ∈I \Iγ we set G(t) := H(t) := 0. Then, G,H ∈ L2(I ,Ha) , and due to Lemma
4.4 for each connected Δ ∈ B0(γ) we have

[Ẽ(Δ)G,H]∼ =
∫

IΔ

(‖ϕλ (t)‖2
a‖ψλ (t)‖2

a−|(ϕλ (t),ψλ (t))a|2
)2

‖ϕλ (t)‖2
a‖ψλ (t)‖2

a
·
∣∣∣∣ f (t)
Ḋ(λ (t))

∣∣∣∣2 dt .

This shows that [Ẽ(Δ)G,H]∼ tends to ∞ when the σ(A)-boundary of Δ tends to λ0 .
If f/(Ḋ◦λ ) /∈ L1(Iγ ) , the same holds for [Ẽ(Δ)G,H]∼ , where

G(t) := Φ(ψλ (t),ϕλ (t)), H(t) :=
f (t)
| f (t)| ·

|Ḋ(λ (t))|
Ḋ(λ (t))

Φ(ϕλ (t),ψλ (t)), t ∈ Iγ .

Hence, in both cases λ0 is a singular critical point of A . �

THEOREM 4.6. Let λ0 be a critical point of A and set t0 := arccos(D(λ0)/2) .
Then the following assertions are equivalent.

(i) λ0 is a regular critical point of A.

(ii) D(λ0) ∈ {−2,2} , ψλ0
(a) = (pϕ ′

λ0
)(a) = 0 and D̈(λ0) �= 0 .

(iii) ker
(
(A(t0)−λ0)2

)
= ker(A(t0)−λ0) .

Proof. Let m � 2 be the order of λ0 as a zero of the function D−D(λ0) . Then
there exists an entire function F with F(λ0) �= 0 such that D(λ )−D(λ0) = (λ −
λ0)mF(λ ) for all λ ∈C . Hence, we have (D(λ )−D(λ0))m−1 = (λ −λ0)m(m−1)F(λ )m

and Ḋ(λ )m = (λ − λ0)m(m−1)(mF(λ ) + (λ − λ0)Ḟ(λ ))m for all λ ∈ C . Combining
these identities we obtain

Ḋ(λ )m = C(λ )m(D(λ )−D(λ0)
)m−1

, where C(λ ) :=
mF(λ )+ (λ −λ0)Ḟ(λ )

F(λ )
.

Note that limλ→λ0
C(λ ) = m . In what follows let γ be a regular spectral curve of A

with γ ∩ c(A) = {λ0} and set λ (·) = λγ(·) .
Assume that (i) holds. Then we have∣∣Ḋ(λ (t))

∣∣ = |C(λ (t))| · ∣∣2(cos(t)− cos(t0))
∣∣m−1

m , t ∈ Iγ . (4.4)

If D(λ0) /∈ {−2,2} , then either ϕλ0
(a) �= e−it0 or (pψ ′

λ0
)(a) �= e−it0 . Without loss of

generality we assume ϕλ0
(a) �= e−it0 and f (t) := ϕλ (t)(a)− e−it �= 0 for t ∈ Iγ . Then

(4.4) implies
f

Ḋ◦λ
/∈ L2(Iγ ),
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which, due to Lemma 4.5, is a contradiction. Hence, D(λ0)∈ {−2,2} . In the following
we only consider the case D(λ0) = 2 (and thus t0 = 0). Similar arguments apply to the
case D(λ0) = −2. From (4.4) it follows that

|Ḋ(λ (t))| = c(t) · |t|2−2/m, t ∈ Iγ , (4.5)

where c ∈C(Iγ ) with c(0) �= 0. Hence, if ψλ0
(a) �= 0 or (pϕ ′

λ0
)(a) �= 0, then

ψλ (·)(a)
Ḋ◦λ

/∈ L1(Iγ ) or
(pϕ ′

λ (·))(a)

Ḋ◦λ
/∈ L1(Iγ ),

which again contradicts (i). Assume now that ψλ0
(a) = (pϕ ′

λ0
)(a) = 0, but D̈(λ0) = 0.

Then ϕλ0
(a) = (pψ ′

λ0
)(a) = 1 and m � 3. From Ḋ(λ ) = F(λ )C(λ )(λ −λ0)m−1 and

(4.5) we obtain
|λ (t)−λ0| = ĉ(t)|t|2/m, t ∈ Iγ (4.6)

with ĉ ∈ C(Iγ ) , ĉ(0) �= 0. Let g(·) be an entry of L(·)− I . We set fg(t) := g(λ (t))
if g is an off-diagonal entry and fg(t) := g(λ (t))+ 1− e−it otherwise, t ∈ Iγ . Then
fg(t) is an entry of L(λ (t))− e−it . By κ(g) denote the order of λ0 as a zero of g .
If κ(g) � (m− 2)/2, then it is seen from (4.5) and (4.6) that fg/(Ḋ ◦λ ) /∈ L1(Iγ ) .
Therefore, we have κ(g) > (m−2)/2 for all entries g of L(·)− I . The relation

− (ϕλ (a)−1)((pψ ′
λ )(a)−1) = D(λ )−2+(pϕ ′

λ)(a)ψλ (a) (4.7)

implies that there exists an entry g of L(·)− I with κ(g) � m/2. Let g be such an
entry of L(·)− I . Let us first assume that m is odd. Then κ(g) = (m−1)/2 and for all
p ∈ (m/(m−1),m/(m−2)) , p � 2, we have

g ◦λ
Ḋ◦λ

∈ L1(Iγ)\Lp(Iγ ) and
1− e−it

Ḋ◦λ
∈ Lp(Iγ ),

which implies fg/(Ḋ◦λ ) /∈ Lp(Iγ ) and thus fg/(Ḋ ◦λ ) /∈ L2(Iγ ) , contradicting (i).
Therefore, m must be even. For all entries g we have κ(g) > (m− 2)/2 = m/2− 1
and thus κ(g) � m/2. For off-diagonal entries g even κ(g) � m/2+ 1 holds since
otherwise fg/(Ḋ◦λ ) /∈ L2(Iγ ) . From this and (4.7) it follows that

κ(ϕλ (a)−1) = κ((pψ ′
λ )(a)−1) =

m
2

.

Set g11(λ ) := ϕλ (a)−1 and g22(λ ) := (pψ ′
λ )(a)−1, λ ∈C , and f j j := fg j j , j = 1,2.

There exist entire functions c j j such that g j j(λ ) = (λ −λ0)m/2c j j(λ ) for λ ∈ C and
c j j(λ0) �= 0. Note that c11(λ0)+ c22(λ0) = D(m/2)(λ0)/(m/2)! = 0. Therefore, there
exists j ∈ {1,2} such that for t sufficiently close to zero∣∣∣∣∣ (λ (t)−λ0)m/2c j j(λ (t))− isin(t)

t

∣∣∣∣∣ � δ



806 FRIEDRICH PHILIPP

with some δ > 0. For this j we have

f j j(t)
Ḋ(λ (t))

=
(λ (t)−λ0)m/2c j j(λ (t))− isin(t)

t
· t

Ḋ(λ (t))
+

1− cos(t)
Ḋ(λ (t))

.

As
1− cos(t)
Ḋ(λ (t))

∈ L2(Iγ ) and
t

Ḋ(λ (t))
/∈ L2(Iγ )

it follows that f j j/(Ḋ◦λ ) /∈ L2(Iγ ) . This finally shows that (i) implies (ii).
Assume that (ii) holds. As above, we only consider the case D(λ0) = 2. From

m = 2, (4.5) and (4.6) it follows that each entry of

L(λ (t))− e−it

Ḋ(λ (t))

is bounded as a function of t ∈ Iγ . Hence, the uniform boundedness of E(Δ) for
Δ ∈ B0(γ) is a consequence of Lemma 4.4, and (i) follows. Moreover, it is seen from
the representation (2.11)–(2.12) of R(0,λ ) = (A(0)−λ )−1 that λ0 is a pole of order
one of R(0,λ ) . This yields (iii). Conversely, assume that (iii) is satisfied. Then the
spectral subspace of A(t0) corresponding to the isolated eigenvalue λ0 coincides with
ker(A(t0)−λ0) and has at most dimension 2. As due to Ḋ(λ0) = 0 the function D at-
tains its values at least twice in a neighborhood U of λ0 , it follows from [25, Theorem
VII-1.7] that for t close to t0 the operator A(t) has exactly two simple eigenvalues in
U and hence also dimker(A(t0)−λ0) = 2. This implies (ii). �

REMARK 4.7. We remark that the techniques and results above also apply to dif-
ferential expressions a with complex-valued coefficients w , p , q and associated non-
constant Floquet-discriminant1. In fact, even for higher order differential expressions
with complex-valued coefficients (but without weight) the characterization (iii) in The-
orem 4.6 of (finite) regular critical points was proved by Veliev in [34]. In addition,
we mention that in the paper [18] by F. Gesztesy and V. Tkachenko also necessary and
sufficient conditions have been proved for the point ∞ not to be a spectral singularity
of a Hill operator (i.e. w = p = 1) with complex-valued potential q . In the proof the
authors make use of the asymptotic behaviour of the eigenvalues of the operators A(t)
and the functions ϕλ and ψλ . To the best of our knowledge such asymptotics do not
exist yet in the case of an indefinite weight function. Therefore, we restrict ourselves to
proving only a sufficient condition in the next section.

COROLLARY 4.8. The set of singular critical points of A is finite.

Proof. Let R > 0 be as in Lemma 3.4 and let λ be a critical point of A in
C \ BR(0) . Then λ ∈ σ+(A(t)) ∪ σ−(A(t)) , where t := arccos(D(λ )/2) . Hence,
ker((A(t)−λ )2) = ker(A(t)−λ ) holds by (1.3) which implies that λ is a regular crit-
ical point of A . Therefore, the singular critical points of A are contained in BR(0) .

1If w is not real-valued, then [· , ·] , [· , ·]a and [· , ·]∼ are only bounded sesquilinear forms.
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And as any critical point of A is a zero of the non-constant holomorphic function Ḋ ,
the statement is proved. �

The following corollary can be found as Theorem 3.8 in [28].

COROLLARY 4.9. Assume that A is J -nonnegative. Then the zero point is the
only possible singular critical point of A. If 0 is a critical point of A, then it is singular.

Proof. Due to Corollary 2.8 the spectrum of A is real. Since σex(A(t)) = ∅ for
each t ∈ I , the value R > 0 in Lemma 3.4 can be chosen arbitrarily small. Hence,
the same arguments as in the proof of Corollary 4.8 imply that the critical points of A
in R\{0} are regular. And since ψ0(a) > 0 (see the proof of [35, Theorem 12.7]), the
origin is a spectral singularity of A if 0 ∈ c(A) . �

5. Regularity of the point ∞

We say that ∞ is a spectral singularity of A if

sup
C>R

‖E([R,C])‖ = ∞ or sup
C>R

‖E([−C,−R])‖ = ∞,

where R is as in Lemma 3.4 and E denotes the spectral function of A . In this section
we provide a condition which ensures that ∞ is not a spectral singularity of A . A point
x0 ∈ R is called turning point of the function w if w is indefinite on (x0 − δ ,x0 + δ )
for each δ > 0. In Theorem 5.3 below we assume that the function w has only finitely
many turning points in [0,a] at which it is 1-simple in the following sense.

DEFINITION 5.1. The function w is called 1 -simple at a turning point x0 , if there
exist δ > 0, τ+,τ− >−1 and functions ρ+ ∈C1([x0,x0 +δ ]) and ρ− ∈C1([x0−δ ,x0])
with ρ+(x0) �= 0, ρ−(x0) �= 0 and sgn(ρ+(x0 + x)) = −sgn(ρ−(x0 − x)) = const for
x ∈ [0,δ ] , such that

w(x) = ρ±(x)|x− x0|τ± , ±(x− x0) ∈ (0,δ ).

REMARK 5.2. The term ”n -simple” originates from the paper [13] where ordi-
nary differential expressions of order 2n , n ∈ N , were investigated.

THEOREM 5.3. Assume that the function w has only finitely many turning points
in [0,a] and that w is 1 -simple at each of them. If p and p−1 are essentially bounded
in neighborhoods of these turning points, then ∞ is not a spectral singularity of A.

Proof. The proof is divided into two steps.
1. In this step we assume that the self-adjoint operator T = JA is uniformly pos-

itive, i.e., there exists δ > 0 such that (T f , f ) � δ‖ f‖2 for all f ∈ domT . Then also
(T (t) f , f )a � δ‖ f‖2

a for all t ∈ I and all f ∈ domT (t) . By Tmin denote the minimal
operator associated with t on [0,a] ; that is, Tmin f := t( f ) , f ∈ domTmin , where

domTmin = { f ∈ L2
|w|(0,a) : f , f ′ ∈ AC([0,a]),
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f (0) = f (a) = (p f ′)(0) = (p f ′)(a) = 0}.
Clearly, the symmetric operator Tmin is uniformly positive. Denote the Friedrichs- and
the Krein-von Neumann extension of Tmin by TF and TN , respectively, and define the
sets

DN := { f ∈ AC([0,a]) : | f ′|2p ∈ L1(0,a)},
D(t) := { f ∈ DN : f (a) = eit f (0)}, t ∈ I ,

DF := { f ∈ DN : f (0) = f (a) = 0}.
Obviously, DF ⊂ D(t) ⊂ DN for all t ∈ I . It is well-known (cf. [13]) that

domT 1/2
N = DN , domT (t)1/2 = D(t) and domT 1/2

F = DF .

These are at the same time the domains of the closures of the forms which are induced
by TN , T (t) and TF , respectively (cf. [25, Chapter VI, Theorem 2.23]). Moreover (see
[19, Theorem 4.1] and [25, Chapter VI, Theorem 2.21]) for all t ∈ I the following
relations hold:

‖T 1/2
N f‖a � ‖T (t)1/2 f‖a for f ∈ D(t) (5.1)

and
‖T (t)1/2 f‖a � ‖T 1/2

F f‖a for f ∈ DF . (5.2)

We mention that it is no restriction to assume that zero is not a turning point of w .
Hence, the number of turning points of w in [0,a] is even. Let x1, . . . ,x2n ∈ (0,a)
be the turning points of w . Due to [13, Section 3] there exists a uniformly positive
operator Xa ∈ B(Ha) with XaDN ⊂ DN such that for f ∈ DN we have (Xa f )(x j) =
0, j = 1, . . . ,2n , and Xa f = f in neighborhoods of 0 and a . Hence, the bounded,
boundedly invertible and Ja -nonnegative operator Wa := JaXa satisfies

WaDN ⊂ DN and WaD(t) ⊂ D(t) for all t ∈ I . (5.3)

By ι ∈ {−1,1} denote the sign of w on [0,x1)∪ (x2n,a] . Due to the properties of Xa

and (5.3) we have
(Wa− ιI)DN ⊂ DF . (5.4)

Now, define the operator W̃ ∈ B(L2(I ,Ha)) by(
W̃F

)
(t) := WaF(t), F ∈ L2(I ,Ha), t ∈ I .

This operator is J̃ -nonnegative and boundedly invertible. In the following we shall
show the relation

W̃ dom T̃ 1/2 ⊂ dom T̃ 1/2, (5.5)

where T̃ denotes the multiplication operator with the family {T (t) : t ∈ I } , cf. (2.4).
Clearly, T̃ 1/2 coincides with the multiplication operator with the family {T (t)1/2 : t ∈
I } . In particular,

dom T̃ 1/2 =
{
F ∈ L2(I ,Ha) : F(t) ∈ D(t) a.e., T (·)1/2F(·) ∈ L2(I ,Ha)

}
.
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In order to prove (5.5) let F ∈ dom T̃ 1/2 . Then W̃F ∈ L2(I ,Ha) , and (5.3) gives
(W̃F)(t) = WaF(t) ∈ D(t) for a.e. t ∈ I . It remains to prove that T (·)1/2WaF(·) is
contained in L2(I ,Ha) . By the closed graph theorem and (5.4) there exists some
c > 0 such that

‖T 1/2
F (Wa− ιI) f‖2 � c

(
‖ f‖2 +‖T1/2

N f‖2
)

, f ∈ DN .

This, together with the relations (5.1) and (5.2), implies

‖T (t)1/2(Wa − ιI)F(t)‖2 � ‖T 1/2
F (Wa − ιI)F(t)‖2

� c
(
‖F(t)‖2 +‖T1/2

N F(t)‖2
)

� c
(
‖F(t)‖2 +‖T(t)1/2F(t)‖2

)
.

Hence, the function t �→ T (t)1/2WaF(t)− ιT (t)1/2F(t) is an element of L2(I ,Ha) .
Therefore, also t �→ T (t)1/2WaF(t) belongs to L2(I ,Ha) , and (5.5) is proved. It is
now a consequence of (5.5) and [12, Proposition 3.5] that ∞ is not a spectral singularity
of Ã and thus neither of A .

2. In the general case there exists η > 0 such that T + η is uniformly positive.
The operator T + η is the maximal operator corresponding to

tη( f ) := t( f )+ η f =
1
|w|

(
− (p f ′)′ +(q+ η |w|) f

)
.

Similarly, A+ ηJ = J(T + η) is the maximal operator associated with

aη( f ) :=
1
w

(
− (p f ′)′ +(q+ η |w|) f

)
.

By step 1 of this proof, ∞ is not a spectral singularity of A + ηJ . Equivalently (see
[12, Proposition 3.5]), there exists a bounded and boundedly invertible J -nonnegative
operator W in L2

|w|(R) with W domA ⊂ domA . Let R > 0 such that [R,∞) is of
positive type, (−∞,−R] is of negative type with respect to A and σ(A)\R ⊂ BR(0) ,
and let E be the spectral projection corresponding to BR(0) , cf. Remark 4.2. Then
both E and E⊥ := I−E are J -self-adjoint. Moreover, both ranE and ranE⊥ are A-
invariant and A⊥ := A| ranE⊥ is J -nonnegative and boundedly invertible. Set W⊥ :=
E⊥(W | ranE⊥) . Then for f ∈ ranE⊥ we have [W⊥ f , f ] = [W f , f ] which implies that
also W⊥ is J -nonnegative and boundedly invertible. In addition,

W⊥ domA⊥ ⊂ E⊥W domA ⊂ E⊥ domA = domA⊥.

Therefore, ∞ is not a spectral singularity of A⊥ by [12, Proposition 3.5] and thus
neither of A . �

REMARK 5.4. The assertion in step 1 of the proof of Theorem5.3 has been proved
similarly but in less detail in [28].
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COROLLARY 5.5. Under the conditions on w and p in Theorem 5.3 the operator
A is a direct sum of a bounded operator and a self-adjoint operator in a Hilbert space.

Proof. Choose R > 0 as in step 2 of the proof of Theorem 5.3 and let Eb be
the spectral projection of A corresponding to BR(0) . In addition, denote by E±
the spectral projection of A corresponding to R± \ [−R,R] , set Ab := A| ranEb and
A± := A| ranE± . From ranEb ⊂ domA it follows that Ab is bounded. Since (R,∞) is
of positive type and (−∞,−R) is of negative type with respect to A , the inner prod-
uct spaces (ranE+, [· , ·]) and (ranE−,−[· , ·]) are Hilbert spaces. Moreover, ran(I −
Eb) = ranE+[�] ranE− . Therefore, As := A+[�]A− is self-adjoint in the Hilbert space
(ran(I −Eb),〈·, ·〉) , where 〈 f+ + f−,g+ +g−〉 = [ f+,g+]− [ f−,g−] , f±,g± ∈ ranE± ,
and A = Ab[�]As . �
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