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(Communicated by C.-K. Li)

Abstract. There has been longstanding interest in the problem of characterizing normal compres-
sions of normal matrices. Indeed, the solution to the Hermitian case goes back to the Cauchy
interlacing theorem, and its converse (due to Fan and Pall). More recently, the theory of higher–
rank numerical ranges has included the solution in the case of scalar compressions. Here we take
steps towards a similar treatment of the general case. We develop some natural necessary con-
ditions on the eigenvalues as well as some convenient sufficient conditions, showing by a study
of the 2x2 compressions of 4x4 normals that the necessary conditions are not sufficient. We also
give a new proof of the Choi–Kribs–Życzkowski conjecture for 2x2 compressions by means of a
powerful extension of that result. The CKŻ conjecture (more recently a theorem) may be stated
as follows: given an N×N normal matrix M with eigenvalues λ1, . . . ,λN , the set of a ∈ C for
which the scalar matrix aIk is a compression of M is precisely

Ωk(M) =
⋂

#(J)=N−k+1

conv{λ j : j ∈ J}.

Thus, for k = 2 we see that a ∈ Ω2(M) implies that diag(a,a) is a compression of M (the
reverse implication is relatively straightforward). We show that, in fact, for any pair a,b ∈
Ω2(M) , diag(a,b) is a compression of M . Our proof is independent of the earlier results and
depends on a novel approach. We also study the continuity of the map a → B(a) , where B(a)
denotes the set of all b ∈ C such that diag(a,b) is a compression of M .

1. Introduction

Given a linear operator T on a complex Hilbert space H , and any orthogonal pro-
jection P , we say that PT |PH is a compression of T . If H = CN and T is represented
by a matrix M ∈ MN (the N ×N complex matrices), a second matrix C represents a
compression of T (or a compression of M ) iff there is a unitary matrix U such that
C is a NW corner of UMU∗ . If C is k× k we say it is a rank–k compression of M .
There is a rich history of results that allow us to identify compressions by means of
intrinsic criteria. A classic example is the Cauchy interlacing theorem [3], along with
its converse [10], which may be expressed as follows.

THEOREM 1. If M ∈ MN is Hermitian, with eigenvalues

a1 � a2 � . . . � aN ,
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then C is a rank–k compression of M iff C is Hermitian with eigenvalues b j satisfying

a1 � b1 � aN−k+1,a2 � b2 � aN−k+2, . . . ,ak � bk � aN .

In particular, C is a rank N−1 compression iff

a1 � b1 � a2 � b2 � a3 � ... � aN−1 � bN−1 � aN ,

the classic “interlacing” of eigenvalues.

A much more recent example is provided by the theory of higher–rank numerical
ranges.

The striking development of this theory was motivated originally by problems in
quantum information theory. Since the introduction of this concept by Choi, Kribs,
and Życzkowski [4, 5] only a few years ago, it has indeed been effectively applied
in the area of quantum information (see [14, 15, 16, 20], for example). It has also
inspired a remarkable development of its purely mathematical aspects (see, for example,
[6, 7, 26, 18, 17, 9]). From this point of view the theory of the higher–rank numerical
ranges may be described as a highly successful analysis of scalar compressions of
arbitrary matrices M ∈ MN . This suggests a more general program: characterize the
normal (diagonal) compressions of M . Among other approaches to this program we
may mention [1], [2] (where the program is included among a “treasure trove of open
problems”; see Problem 6), [8], [11], [19], [22], [23], [24], and [25].

Added in proof. Two papers of Gau and Wu are also relevant in this context; see
Linear and Multilinear Algebra 52:3, 195–201, and Linear Algebra Appl. 390, 121–
136.

In the present paper we make a detailed study of 2×2 compressions diag(a,b) of
normal M . As a result we obtain, for the first time, examples where the natural neces-
sary conditions on the spectrum of a compression are not sufficient: see Figure 3 and
Proposition 13. We also see parts of the theory of higher–rank numerical ranges from
a new angle: we give a novel proof of the Choi–Kribs–Życzkowski conjecture (more
recently a theorem) for the rank–2 numerical range. That result says that diag(a,a) is
a compression of normal M having spectrum {λ1, . . . ,λN} provided a lies in

Ω2(M) =
N⋂

k=1

conv{λ j : j �= k}.

We prove a significantly stronger result (and by an argument that is independent of
earlier work): in fact, for any pair a,b ∈ Ω2(M) , diag(a,b) is a compression of M .
See the discussion of Figure 1 below, and Proposition 15.

The rank–k numerical range of M , usually denoted in the literature by Λk(M) ,
was defined by Choi, Kribs, and Życzkowski as the set of those complex λ such that
for some rank–k orthogonal projection P we have

PMP = λP.

In terms of compressions, we see that λ ∈ Λk(M) iff λ Ik is a (matrix) compression of
M . Thus the following fundamental result of Li and Sze [18] may be placed in the same
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family as the Cauchy interlacing theorem (and, in fact, the interlacing theorem plays a
role in the argument of Li and Sze).

THEOREM 2. Given M ∈ MN , let λ j(θ ) be an enumeration of the eigenvalues of
the (Hermitian)

Re(eiθ M) = (eiθ M + e−iθM∗)/2

such that
λ1(θ ) � λ2(θ ) � . . . � λN(θ ).

For each real θ , let the half–plane H(M,θ ) be defined by

H(M,θ ) = eiθ{z : Re(z) � λN−k+1(−θ )}.

Then
Λk(M) =

⋂
{H(M,θ ) : θ ∈ [0,2π ]}. (1)

Our more general program seeks to describe all normal compressions of M , ie to
describe those complex a1, . . . ,ak such that diag(a1, . . . ,ak) is a compression of M .
Equivalently, we ask when there exist orthonormal

u1,u2, . . . ,uk

such that (Mui,ui) = ai for each i and (Mui,u j) = 0 whenever i �= j ; in particular,
Λ1(M) is nothing but the classical numerical range

W (M) = {(Mu,u) : ‖u‖ = 1}

(hence the “higher–rank numerical range” terminology). In this work we usually re-
strict our attention to the case where M itself is also normal, although we occasionally
comment on cases where either M or its compression may not be normal.

Note that for normal M ∈ MN(C) Theorem 2 shows that Λk(M) can be explicitly
described in terms of the eigenvalues z1, . . . ,zN of M :

Λk(M) = Ωk(M), (2)

where
Ωk(M) =

⋂
#(J)=N−k+1

conv{z j : j ∈ J}. (3)

We shall refer to this result, first proposed by Choi, Kribs, and Życzkowski, as the
CKŻ conjecture, although it is now a theorem. The CKŻ conjecture played an im-
portant role in the development of the theory of higher–rank numerical ranges. For
example, while Li and Sze gave an effective description of Λk(M) for non–normal
M (Theorem 2), their proof of the CKŻ conjecture was a key step towards the gen-
eral result. Of course, the case k = 1 of (2) is easy and well–known: for normal M ,
W (M) = conv{z1, . . . ,zN} .

The following observation is often useful.
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PROPOSITION 3. For every M ∈ MN , if k � N , C is a rank-k compression of M ,
and Q is a compression of rank N− k+1 , then

W (C)∩W (Q) �= /0.

Proof. Let S and T be the subspaces corresponding to compressions C and Q .
Since the dimensions add to more than N , S and T must intersect non–trivially; let u
be a unit vector in S∩T . Then

(Mu,u) = (Mu,PSu) = (PSMu,u) = (Cu,u) ∈W (C),

and similarly (Mu,u) ∈W (Q) . �

Applying this observation to the normal case, we see that part of the CKŻ conjec-
ture is straightforward.

PROPOSITION 4. If M ∈MN is normal with eigenvalues z1, . . . ,zN , and the rank–
k compression C is normal with eigenvalues c1, . . . ,ck , then for every index set J hav-
ing #(J) = N− k+1

conv{c1, . . . ,ck}∩ conv{z j : j ∈ J} �= /0.

In particular,
Λk(M) ⊆

⋂
#(J)=N−k+1

conv{z j : j ∈ J}

(compare (2)).

Proof. We have noted that for normal (finite–dimensional) operators the numerical
range is just the convex hull of the eigenvalues. Thus W (C) = conv{c1, . . . ,ck} . On
the other hand, let Q be the compression to the span of eigenvectors corresponding to
{z j : j ∈ J} ; then Q is normal and W (Q) = conv{z j : j ∈ J} . Apply Proposition 3. In
particular, for points λ ∈ Λk(M) we may let c1 = c2 = . . . = ck = λ . �

On the other hand, the fact that Λk(M) completely fills the RHS of (2) is more
subtle, in general, although for certain combinations of N and k it is relatively easy
to see. To illustrate this, and to introduce some of the methods of the present paper,
consider the case N = 5, k = 2. In Figure 1 we see the eigenvalues z1, . . . ,z5 of a
normal (in fact, unitary) M as the outer points of the blue pentagram. It is easy to see
that (2) implies that Λ2(M) is the inner pentagon. As far as we know, there is no simple
proof that Λk(M) fills this pentagon, but three markedly disparate arguments may be
found in the literature:

(1) in [6] there is an argument based in part on topological concepts such as simple
connectivity and winding number;

(2) as it is easy to conclude (see section 2) that the vertices of the inner pentagon
are in Λ2(M) , the fact that (whether or not M is normal) Λk(M) is convex (see [7] and
[26])) – a striking extension of the classical Toeplitz–Hausdorff Theorem for W (M) –
may be used;
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Figure 1: Choosing a (red asterisk) at random in Λ2(M) (the inner pentagon), we see that B(a)
includes a “starfish” that covers Λ2(M) and more.

(3) as we have noted, (2) is a direct consequence of the Li and Sze result Theo-
rem 2.

A fourth, and quite different yet again, approach can be obtained by considering
those eigenvalue pairs a,b that can belong to rank–2 normal compressions of M . Given
a ∈ C we denote by B(a) the set of b that match a in this sense. We shall prove in
section 3 that for a in the inner pentagon B(a) includes a “starfish” (outlined in green
for the example of Figure 1) covering the (filled) pentagon (our conjecture, in addition,
is that the starfish is precisely B(a)). Since a∈B(a) says that a∈ Λ2(M) , we conclude
once again that Λ2(M) fills the pentagon.

Plan of the paper: section 2 has some general results, section 3 treats the case
k = 2, section 4 examines continuity of B(·) , and section 5 discusses non–normal com-
pressions.

NOTE. Since detailed proofs of our results are readily available online via the
preprint [13], we’ll often merely refer the interested reader to that resource.
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2. Some general results (arbitrary k,N )

Note that if C is a rank–k compression of M ∈ MN and C′ is a rank–k′ com-
pression of C , then C′ is a rank–k′ compression of M . Thus Proposition 3 has the
following consequence.

PROPOSITION 5. If C is a compression of M ∈ MN then

W (C) ⊆W (M).

Proof. Regard z∈W (C) as a rank–1 compression C′ of C , hence of M and apply
Proposition 3 with k = 1, C replaced by C′ and Q = M . �

Whereas Proposition 4 supplies a necessary condition on the eigenvalues c1, . . . ,ck

of a normal compression C of normal M , the following proposition points out a suffi-
cient condition that is sometimes useful. An interesting analysis of such necessary vs
sufficient conditions may be found in [23].

PROPOSITION 6. If M ∈MN is normal with eigenvalues z1, . . . ,zN then c1, . . . ,ck

∈ C are eigenvalues of a normal compression C of M provided that there exists a
partition J1, . . . ,Jk of {1,2, . . . ,N} such that for each i = 1, . . . ,k

ci ∈ conv{z j : j ∈ Ji}.

Proof. See proof of Proposition 6 in [13]. �
In [4] Choi, Kribs, and Życzkowski identified explicitly the higher–rank numerical

ranges of Hermitian matrices, and their argument may be viewed, along the lines of the
proof of our next proposition, as an illustration of the combined force of the necessary
condition from Proposition 4 with the sufficient condition from Proposition 6. Note
that the result might also have been obtained as a special case of the Fan–Pall result,
Theorem 1 (taking b1 = b2 = . . . = bk ).

PROPOSITION 7. If M ∈ MN is Hermitian with (real) eigenvalues

a1 � a2 � . . . � aN ,

then for each k � N/2 we have

Λk(M) = [ak,aN−k+1].

If aN−k+1 < ak , then ΛK(M) = /0 .

Proof. See proof of Proposition 7 in [13]. �
As another example of such general arguments we treat the normal compression

problem for the case k = N − 1. This result goes back to Fan-Pall [10]; their proof is
algebraic in character whereas ours is more geometric. We restrict to the case where
the matrix and its compression have no common eigenvalues since this is where our
general principles are most pertinent; Fan and Pall also treat the general case by means
of a direct sum construction.
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PROPOSITION 8. Let z1, . . . ,zN and c1, . . . ,cN−1 be two collections of complex
numbers having no elements in common. Then there is a normal M ∈ MN with eigen-
values z j having a rank–(N−1) normal compression C with eigenvalues c j iff the z j

are collinear and alternate with the c j (in some order) along the common line.

Proof. Let us first show that if such M,C exist then the z j must be collinear. Label
the z j lying on the boundary of W (M) in counterclockwise order: z1, . . . ,zp . If the z j

are not collinear there must be some zk−1,zk,zk+1 that are not collinear, as in Figure
2. Proposition 4 requires that [zk−1,zk] meets W (C) at some λ closest to zk ; this λ is
extreme in W (C) and so must be an eigenvalue of C . Similarly we have an eigenvalue
μ of C in [zk,zk+1] , as in Figure 2. Note that Proposition 4 also tells us that zk cannot
be a repeated eigenvalue of M , since it would then coincide with an eigenvalue of C .

Let u1, . . . ,uN be an orthonormal set of eigenvectors of M , with Muj = z ju j , and
let orthonormal v,w be eigenvectors of C with Cv = λv and Cw = μw . Expand v,w
in terms of the u j :

v =
N

∑
j=1

a ju j, w =
N

∑
j=1

b ju j;

then

λ = (Cv,v) = (Mv,v) =
N

∑
j=1

|a j|2z j,

so that a j = 0 unless z j lies on the line through zk−1,zk . Similarly b j = 0 unless z j

lies on the line through zk,zk+1 . Since zk is the only common point,

0 = (v,w) = akbk.

If ak = 0 we have λ = zk−1 , which we have ruled out, while if bk = 0 we have μ =
zk+1 , also ruled out.

z
k

z
k−1

z
k+1

λ

μ

Figure 2: An example of the eigenvalue geometry ruled out in the proof of Proposition 8.

Thus the eigenvalues all lie on a common line and by an affine map M → αIN +
βM this common line can be R , ie we are in the Hermitian case. Proposition 1 then
completes the argument, giving the interlacing property.
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On the other hand, if the collinearity and interlacing conditions are met, the same
sort of affine map and Proposition 1 establish the existence of M and C . �

3. Results for k = 2 and small N

For 2× 2 normal compressions diag(a,b) , we can give a more detailed account
of the ab–geometry, leading up to an understanding of the “starfish” seen in Figure 1.

Recall that, given normal M ∈ MN and complex a , we denote by B(a) the set of
complex b such that diag(a,b) is a compression of M . Of course, in order that B(a)
should be nonempty we must have

a ∈ conv{z1,z2, . . . ,zN},
where the z j are the eigenvalues of M . Note that Proposition 4 also requires that for
b ∈ B(a) we require that the line segment [a,b] intersect

conv{z j : j �= i}
for each i = 1, . . . ,N .

The simplest case to consider: N = 3 and the eigenvalues of M form a nontrivial
triangle.

PROPOSITION 9. Suppose that the eigenvalues z1,z2,z3 of a normal M ∈ M3 are
not collinear. Then b ∈ B(a) iff either a is one of these eigenvalues, say a = z1 and
b ∈ [z2,z3] (the opposite side of the triangle formed by z1,z2,z3 ) or a is in one of the
sides, say [z2,z3] , and b = z1 .

Proof. Since [a,b] must meet each of the triangle’s sides, the necessity of the
condition is clear. On the other hand, Proposition 6 shows that these conditions suffice
for a,b to be the eigenvalues of a normal compression. �

REMARK. Here we have a very simple case of the result of Fan and Pall [10]
where they characterize in general the case k = N−1.

When N = 4 we encounter more complex behaviour, such as that seen in Figure
3, where B(a) is a curve interior to conv{z1,z2,z3,z4} (except for endpoints).

To analyse such behaviour, it will be convenient to assume in what follows that
the eigenvalues of M are generic in the sense that no three are collinear. We may also
assume that M = diag(z1, . . . ,zN) , so that the eigenvectors of M are the standard basis
vectors e j .

Note that if b ∈ B(a) we have orthonormal u,w such that

(Mu,u) = a,(Mw,w) = b, and (Mu,w) = (Mw,u) = 0.

Thus a = ∑N
1 |u j|2z j , a convex combination. Let ΔN denote the N –dimensional sim-

plex, ie conv{e1, . . . ,eN} ; then |u|2 (where the operations are performed component-
wise) belongs to

C(a) = {t ∈ ΔN : a =
N

∑
1

t jz j}.
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Figure 3: For a (red asterisk) strictly inside the upper quadrant (case (a)), we see that B(a) is
a curve in the opposite quadrant.

By exchanging complex arguments between the components of u and w we may as-
sume that u � 0; then the possible u lie in {√t : t ∈C(a)} . The conditions on w ∈ CN

are then given by
‖w‖ = 1,w ⊥ u,w ⊥ z◦ u, and w ⊥ z◦ u,

where ◦ indicates Schur (componentwise) multiplication, so that

z◦ u = (z1u1, . . . ,zNuN)′,

with ′ indicating transpose.
We may thus describe B(a) as follows.

PROPOSITION 10. Given a ∈W (M)(= conv{z1, . . . ,zN}) ,

B(a) =
⋃

t∈C(a)

B(a,t),

where

B(a, t) = {
N

∑
1
|wj|2z j : ‖w‖ = 1,w ⊥√

t,z◦√t,z◦√t}.

Proof. To the discussion above we need only add the observation that

b = (Mw,w) =
N

∑
1
|wj|2z j. �

Clearly C(a) is a compact convex subset of ΔN . It is therefore the convex hull of
its extreme points, which are identified in the following result.
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PROPOSITION 11. The extreme points of C(a) are those t ∈ C(a) such that at
most three tk > 0 .

Proof. See proof of Proposition 11 in [13]. �
For distinct indices i, j, l , let t(i, j, l) denote the element of C(a) (if it exists) such

that tk(i, j, l) = 0 whenever k �= i, j, l . Note that such elements are uniquely determined
since

a = ti(i, j, l)zi + t j(i, j, l)z j + tl(i, j, l)zl

represents a uniquely as a point in the triangle conv{zi,z j,zl} ; here again we use the
assumption that no three of the eigenvalues z j are collinear. Thus

C(a) = conv{t(i, j, l) : i, j, l are distinct and a ∈ conv{zi,z j,zl}}. (4)

The complexity of B(a,t) increases with the number of nonzero tk . For example,
if only one tk > 0, then tk = 1 and a = zk . Here the simple sufficient condition of
Proposition 6 is also necessary:

B(a,t) = conv{z j : j �= k}.

We see this as follows. Evidently, with u =
√

t = ek , u,w are orthonormal exactly
when w = ∑ j �=k α je j with ∑ j �=k |α j|2 = 1; then

b = (Nw,w) = ∑
j �=k

|α j|2z j ∈ conv{z j : j �= k},

and any b ∈ conv{z j : j �= k} can be obtained in this way.
The same sort of simplification occurs if only two or three tk > 0.

PROPOSITION 12. (a) If t ∈C(a) has exactly two positive components, say t1,t2 >
0 , then

B(a,t) = conv{z j : j > 2}.
(b) If t ∈C(a) has exactly three positive components, say t1,t2,t3 > 0 , then

B(a,t) = conv{z j : j > 3}.

Proof. See proof of Proposition 12 in [13]. �
We are now in a position to understand the features of Figure 3 and, indeed, to

analyse all the possibilities when N = 4. We treat in detail the case where z1,z2,z3,z4

are all extreme in conv{z1,z2,z3,z4} ; the case where one of the eigenvalues lies in the
interior of W (M) (eg z4 ∈ conv{z1,z2,z3} ) can be treated similarly.

PROPOSITION 13. Let N = 4 and suppose that z1,z2,z3,z4 are all extreme in
W (M) and are numbered in counterclockwise order. The diagonals [z1,z3] and [z2,z4]
meet at q and divide W (M) into four quadrants. Consider a∈W (M); the possibilities
for B(a) are as follows.
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(a) See figure 3: a lies in the interior of one of the quadrants. For convenience,
assume that a∈ conv{z1,z2,q} ; let x = t(1,2,3) , y = t(1,2,4) . Then B(a) is the curve
traced out by the function b(r) defined for 0 < r < 1 by

b(r) =
4

∑
k=1

(xk − yk)2

(1− r)xk + ryk
zk

/ 4

∑
k=1

(xk − yk)2

(1− r)xk + ryk
.

Note that x4 = 0 and y3 = 0 so that

lim
r→0

b(r) = z4, lim
r→1

b(r) = z3,

and we obtain a continuous curve parametrized on [0,1] when we interpret b(0) as z4

and b(1) as z3 . Except for these endpoints, the curve lies in the interior of the opposite
quadrant conv{z3,z4,q} .

(b) If a lies in the interior of one of the sides of W(M) then B(a) is the opposite
side (eg if a is inside [z1,z2] then B(a) = [z3,z4]). If a = zk then B(a) is the opposite
triangle conv{z j : j �= k} .

(c) See Figure 4: a lies interior to the diagonals but is not q; say a is interior to
[z1,q] . Then B(a) is the T–shaped object [z2,z4]∪ [q,z3] .

(d) If a = q then B(a) is the union of the two diagonals.
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Figure 4: For a (red asterisk) strictly inside the segment [z1,q] (case (c)), we see that B(a) is
the T–shaped object consisting of [z2,z4]∪ [q,z3] .

Proof. See proof of Proposition 13 in [13]. �
We now have the tools to continue the theme of Proposition 12, treating the case

when exactly four of the components of t ∈C(a) are positive.

PROPOSITION 14. Suppose that N > 4 and that t ∈C(a) has exactly four positive
components; for convenience, assume that t1,t2,t3,t4 > 0 and that a lies in the upper
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quadrant relative to Q = conv{z1,z2,z3,z4} , ie a is interior to conv{z1,z2,q} (see
Figure 3, with the understanding that it is now intended to show only the relation of a to
z1,z2,z3,z4 , and Proposition 13). Let β be the curve traced out by b(·) of Proposition
13(a) (and shown in Figure 3). Then

B(a,t) = conv{β ,z5,z6, . . . ,zN}.

Proof. See proof of Proposition 14 in [13]. �

Proposition 14 allows us to understand, in large part, the phenomenon illustrated
in Figure 1. Let N = 5 and suppose that each eigenvalue zk is an extreme point of
W (M) = conv{z1, . . . ,z5} (eg whenever M is unitary). For convenience, label the zk

in counterclockwise order. Suppose that a lies strictly inside the central pentagon, ie
Ω2(M) as defined in (3). For each k let βk denote the curve obtained as in Proposition
14 by regarding a as an element of the quadrilateral Qk = conv{z j : j �= k} . Note that βk

connects zk+2 and zk+3 (numbering modulo 5) and lies in the quadrant of Qk opposite
to the one containing a . We claim that (as illustrated in Figure 1) B(a) includes the
whole “starfish” region bounded by β1,β2, . . . ,β5 .

To see this note that the starfish is the union of the wedges Wk = conv{βk,zk} ,
so it suffices to show that each Wk ⊆ B(a) . Since a ∈ Qk there is t ∈ C(a) such that
tk = 0. Then Proposition 14 tells us that B(a,c) = Wk .

Figure 1 was obtained by first computing C(a) via the relation (4) as

conv{t(k,k+2,k+3) : k = 1,2, . . . ,5}

(note that for a in the inner pentagon, the only eigenvalue triangles containing a cor-
respond to the triples zk,zk+2,zk+3 ). To generate each of the thousands of b ’s in B(a) ,
plotted as green points in Figure 1, our MATLAB program first chose a “random” point
t ∈ C(a) (ie a random convex combination of the five c(k,k + 2,k+ 3)), put u =

√
t ,

then computed b = (Nw,w) where w was chosen “randomly” in

C
5 � span{u,u ◦Re(z),u ◦ Im(z)}

(and normalized so that ‖w‖ = 1). The curves βk were added using the formula of
Proposition 13(a). Such simulations strongly suggest the following “starfish conjec-
ture”, since no green dots fall outside the starfish: in such a situation (and in particular
when N = 5 and M is unitary), B(a) not only contains the starfish but is equal to it.

We have seen in the discussion of Figure 1 that for N = 5 and a,b ∈ Ω2(M)
we always have a,b as eigenvalues of a normal compression of M . The following
proposition points out that this is true for any N – and that N = 5 is, in fact, the only
subtle case.

PROPOSITION 15. Let M be normal in MN and such that the eigenvalues z1, . . . ,zN

are distinct and each is an extreme point of W (M) (eg M unitary). Then a,b ∈ Ω2(M)

implies that

[
a 0
0 b

]
is a compression of M .
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Proof. For N � 3, Ω2(M) = /0 . For even N � 4, the relation (3) tells us that
Ω2(M) is the “inner N –gon” cut off by the line segments [z j,z j+2] (indexing modulo
N ). Thus for even N � 4

Ω2(M) = conv{z j : j odd}∩ conv{z j : j even},
and Proposition 6 suffices. For N = 5 the “starfish” discussion proves our assertion. For
odd N � 7 we see that conv{z j : j odd} ⊇ Ω2(M) and conv{z j : j even} covers all of
Ω2(M) except that part lying in Q = conv{z1,z2,zN−1,zN} . Hence Proposition 6 suf-
fices for a �∈Q,b ∈ Ω2(M) . The same argument applies for a �∈ Q̃ = conv{z2.z3,z4,z5}
and because N > 5 this covers any a ∈ Q . �

4. Continuity of B(·)

A natural assertion of “continuity” for B(·) might be that dH(B(a′),B(a)) → 0
as a′ → a , where dH(X ,Y ) is the Hausdorff distance between compact nonempty sets
X ,Y ⊂ C . Recall that

dH(X ,Y ) = max{d̂H(X ,Y ), d̂H(Y,X)},
where

d̂H(X ,Y ) = max
x∈X

(min
y∈Y

|x− y|).

However, we have seen simple examples where this fails: recall the analysis of B(a)
for various a ∈ conv{z1,z2,z3,z4} that was provided by Proposition 13. If a′ lies
in the interior of [z1,z2] and a′ → a = z1 , then B(a′) = [z3,z4] “jumps” to B(a) =
conv{z2,z3,z4} . A perhaps more surprising example: let a be interior to [z1,q] as in
Figure 4; for a′ approaching a from the interior of conv{z1,z2,q} we see B(a′) as
a curve joining z3 and z4 in conv{z3,z4,q} , whereas for a′ approaching a from the
interior of conv{z1,z4,q} we see B(a′) as a curve joining z2 and z3 in conv{z2,z3,q} .

In spite of such “failures” we’ll show that B(·) is continuous with respect to Haus-
dorff distance at most points of W (M) and enjoys a “one–sided” Hausdorff continuity
in general.

Our standard set–up for this discussion is as in section 3, ie we assume M is normal
in MN and is in diagonal form: M = diag(z) , where no three eigenvalues are collinear.
Thus W (M) = conv{z1, . . . ,zN} and B(a′) = /0 if a′ �∈W (M) . Seeking continuity, we
restrict attention to a′ → a with a′,a ∈W (M) . Note that if N = 3 and a′ is interior to
W (M) = conv{z1,z2,z3} , we again have B(a′) = /0 , since b ∈ B(a′) and Proposition 4
would require that [a′,b] meet each side of the triangle W (M) . We therefore restrict
also to cases where N � 4.

PROPOSITION 16. If N � 4 , B(a) is a compact nonempty set for any a ∈W (M) .

Proof. See proof of Proposition 16 in [13]. �
A related argument shows that, in general, B(·) is continuous in a one–sided Haus-

dorff sense.
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PROPOSITION 17. If a,an ∈W (M) and an → a, then

d̂H(B(an),B(a)) →n 0. (5)

Proof. See proof of Proposition 17 in [13]. �
In terms of the obvious extension of Hausdorff distance to compact nonempty

subsets of ΔN , we note that C(·) is continuous and in fact satisfies a Lipschitz condition
for each fixed M .

PROPOSITION 18. There is a constant K < ∞ depending only on M such that for
all a,a′ ∈W (M)

dH(C(a),C(a′)) � K|a−a′|.

Proof. See proof of Proposition 18 in [13]. �
Next we show that B(·) is dH –continuous at any point that is “off the grid”, and

that continuity is uniform if we stay bounded away from the grid.

PROPOSITION 19. If a ∈ W (M) but a does not lie on any line segment [zi,z j] ,
then a′ → a implies that

dH(B(a′),B(a)) → 0.

In fact, on any subset S(d) ⊂W (M) that is a positive distance d from the grid

G =
⋃
{[zi,z j] : i, j = 1, . . . ,N},

so that
S(d) = {a ∈W (M) : min

g∈G
|a−g|� d},

the map a �→ B(a) is uniformly continuous.

Proof. See proof of Proposition 19 in [13]. �
Note that sometimes B(·) is continuous even at points that are on the grid. For ex-

ample, from Proposition 13(a) and 13(b) we can see that there is continuity everywhere
on the boundary segments [zi,zi+1] except at the endpoints.

5. Related results

We offer some remarks on the apparently more difficult problem of characterizing
arbitrary compressions of a normal matrix M . Suppose again that M is N×N , and is
represented by the diagonal matrix diag(z) and that X is a rank–k compression of M ,
ie there is a k–dimensional subspace S such that X = PSM|S . From Proposition 3 we
obtain a necessary condition on X : the (classical) numerical range W (X) of X must
intersect the convex hull of any subset of the eigenvalues z j having size N− k+1.

When k = 2, ie X is represented by a 2× 2 matrix, the numerical range W (X)
determines X uniquely as an operator. Indeed, W (X) is a (filled–in) ellipse in this case
with the eigenvalues of X as foci and the length of the minor axis is the modulus of the



NORMAL MATRIX COMPRESSIONS 863

off–diagonal entry of any upper–triangular matrix for X . Let’s consider the problem of
characterizing such compressions X geometrically via the elliptical W (X) in the cases
where N = 3 and N = 4.

When N = 3, the necessary condition of above tells us that W (X) must be tangent
to each of the three sides of conv{z1,z2,z3} (recall that Proposition 5 tells us that in
general we must have W (X) ⊆ W (M) = conv{z j : j = 1, . . . ,n} ). In fact, Williams
showed long ago that the necessary condition is also sufficient when N = 3 (see [25]).

When N = 4 we consider the case where the eigenvalues z j form a quadrilateral
Q . The necessary condition above tells us that W (X) must intersect each of the four
triangles Ti = conv{z j : j �= i} . Thus W (X) must intersect each of the quadrants Ti∩Tk .
This phenomenon is borne out by numerical experiments such as Figure 5 illustrates,
but it is not clear what additional conditions must be satisfied by W (X) , even in this
N = 4 case. Of course, if by chance W (X) is tangent to all three sides of some Ti , then
Williams’ result tells us that X is indeed a 2–dimensional compression.
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Figure 5: Shows the (elliptical) boundaries of the numerical ranges of several (nonnormal)
compressions of a 4×4 normal M , each compression having a (red asterisk) as an eigenvalue
(therefore seen as one of the foci of each ellipse)
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