MATRICES WITH DEFECT INDEX ONE

CHENG-CHUN CHANG, HWA-LONG GAU, YA-SHU WANG, SZU-CHIEH WU AND YA-TING YEH

(Communicated by C.-K. Li)

Abstract. In this paper, we give some characterizations of matrices which have defect index one. Recall that an *n*-by-*n* matrix *A* is said to be of class \mathscr{S}_n (resp., \mathscr{S}_n^{-1}) if its eigenvalues are all in the open unit disc (resp., in the complement of closed unit disc) and rank $(I_n - A^*A) = 1$. We show that an *n*-by-*n* matrix *A* is of defect index one if and only if *A* is unitarily equivalent to $U \oplus C$, where *U* is a *k*-by-*k* unitary matrix, $0 \le k < n$, and *C* is either of class \mathscr{S}_{n-k} or of class \mathscr{S}_{n-k}^{-1} . We also give a complete characterization of polar decompositions, norms and defect indices of powers of \mathscr{S}_n^{-1} -matrices. Finally, we consider the numerical ranges of \mathscr{S}_n^{-1} -matrices and \mathscr{S}_n -matrices, and give a generalization of a result of Chien and Nakazato on tridiagonal matrices (cf. [3, Theorem 7]).

1. Introduction

Let M_n be the algebra of *n*-by-*n* complex matrices and $A \in M_n$. The *defect index* d_A of *A* is, by definition, rank $(I_n - A^*A)$, that is, the dimension of the range of $I_n - A^*A$. It is a way to measure how far *A* is from the unitary matrices. In this paper, we give some characterizations of matrices which have defect index one.

Recall that a matrix $A \in M_n$ is said to be of *class* \mathscr{S}_n if its eigenvalues are all in the open unit disc $\mathbb{D}(\equiv \{z \in \mathbb{C} : |z| < 1\})$ and $d_A = 1$. The *n*-by-*n* Jordan block

$$J_n = \begin{bmatrix} 0 & 1 & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

is one example. Such operators and their infinite-dimensional analogues $S(\phi)$ (ϕ an inner function) were first studied by Sarason [16]. They play the role of the building blocks of the Jordan model for C_0 contractions [1, 15]. In particular, if an \mathscr{S}_n -matrix A is invertible, then

$$d_{A^{-1}} = \operatorname{rank}(I_n - (A^{-1})^*(A^{-1})) = \operatorname{rank}((A^{-1})^*(A^*A - I_n)(A^{-1})) = 1,$$

Mathematics subject classification (2010): 47A12, 15A60.

Keywords and phrases: polar decomposition, defect index, numerical range, \mathscr{S}_n -matrix, \mathscr{S}_n^{-1} -matrix.

Research supported in part by the National Science Council of the Republic of China under project NSC 99-2115-M-008-008.

and all eigenvalues of A^{-1} are in $\mathbb{C}\setminus\overline{\mathbb{D}}$, the complement of the closed unit disc. Therefore, we recall that a matrix $A \in M_n$ is said to be of class \mathscr{S}_n^{-1} if its eigenvalues are all in $\mathbb{C}\setminus\overline{\mathbb{D}}$ and $d_A = 1$. It is easily seen that if A is in \mathscr{S}_n^{-1} (resp., \mathscr{S}_n), then A^* and $e^{i\theta}A$ are also in \mathscr{S}_n^{-1} (resp., \mathscr{S}_n). Moreover, if A is in \mathscr{S}_n^{-1} , then A has no unitary part, A is invertible, and A^{-1} is in \mathscr{S}_n .

In Section 2, we first give a complete characterization of matrices which have defect index one. We show that a matrix $A \in M_n$ is of defect index one if and only if A is unitarily equivalent to $U \oplus C$, where $U \in M_k$, $0 \le k < n$, is unitary, and C is either in \mathscr{S}_{n-k} or in \mathscr{S}_{n-k}^{-1} . In recent years, properties of \mathscr{S}_n -matrices have been intensely studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention to \mathscr{S}_n^{-1} -matrices in the rest of this section. We will give a complete characterization of polar decompositions, norms and defect indices of powers of \mathscr{S}_n^{-1} -matrices.

In Section 3, we take up the numerical ranges of \mathscr{S}_n^{-1} -matrices and \mathscr{S}_n -matrices. From Proposition 2.4 (e), an \mathscr{S}_n^{-1} -matrix A is unitarily equivalent to a polar decomposition UD_t , where U is unitary and $D_t = \text{diag}(t, 1, \dots, 1)$ for some t > 1. We show that if $0 \in W(U)$, then $W(UD_{t_1}) \subseteq W(UD_{t_2})$ for $1 \leq t_1 \leq t_2$. Among other things, recall that an operator A in \mathscr{S}_n always has the matrix representation $[f_1 \cdots f_n]$ so that $||f_j|| = 1$ $(1 \leq j \leq n-1)$, $||f_n|| < 1$ and $f_i \perp f_j$ $(1 \leq i \neq j \leq n)$. We show that if $B = [f_1 \cdots f_{n-1}]$, then the numerical range of the 2-by-2 block matrix

$$\begin{bmatrix} 0 & I'_n + B \\ -I'^*_n + B^* & 0 \end{bmatrix} \in M_{2n-1}$$

is the convex hull of two ellipses, where I'_n is the *n*-by-(n-1) submatrix of I_n obtained by deleting its last column. This generalizes a result of Chien and Nakazato on tridiagonal matrices (cf. [3, Theorem 7]).

2. Defect indices of powers, polar decompositions and norms

We start by giving a complete characterization of matrices which have defect index one. For abbreviation, the notation $A \cong B$ means that A is unitarily equivalent to B for any $A, B \in M_n$.

THEOREM 2.1. Let A be an n-by-n matrix. Then $d_A = 1$ if and only if A is unitarily equivalent to $U \oplus C$, where $U \in M_k$, $0 \leq k < n$, is unitary, and C is either in \mathscr{S}_{n-k} or in \mathscr{S}_{n-k}^{-1} .

The proof depends on the following lemma.

LEMMA 2.2. Let A be an n-by-n matrix with
$$d_A \leq 1$$
.
(a) If $A = \begin{bmatrix} A' & B \\ 0 & C \end{bmatrix}$, where $A' \in M_k$, $1 \leq k \leq n$, then $d_{A'} \leq 1$ and $d_C \leq 1$.
(b) If $n = 2$ and $A = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix}$, then $|a_{12}|^2 = (1 - |a_{11}|^2)(1 - |a_{22}|^2)$.
(c) If $A = \begin{bmatrix} U & B \\ 0 & C \end{bmatrix}$, where $U \in M_k$, $1 \leq k < n$, is unitary, then $B = 0$.

(d) If $A = [t_{ij}]_{i,j=1}^n$ is an upper triangular matrix with $|t_{ii}| = 1$ for all $i, 1 \le i \le n$, then $t_{ii} = 0$ for all $i \neq j$.

Proof. (a) It is easily seen that

$$I_n - A^*A = \begin{bmatrix} I_k - A'^*A' & * \\ & * \end{bmatrix}$$
 and $I_n - AA^* = \begin{bmatrix} * & * \\ * & I_{n-k} - CC^* \end{bmatrix}$.

Hence $d_{A'} = \operatorname{rank}(I_k - A'^*A') \leq \operatorname{rank}(I_n - A^*A) = d_A \leq 1$ and $d_C = d_{C^*} \leq d_{A^*} = d_A \leq 1$ as asserted.

(b) A simple computation shows that

$$I_2 - A^* A = \begin{bmatrix} 1 - |a_{11}|^2 & \overline{a_{11}} a_{12} \\ a_{11} \overline{a_{12}} & 1 - (|a_{12}|^2 + |a_{22}|^2) \end{bmatrix}.$$

Since $d_A \leq 1$, $I_2 - A^*A$ is not invertible. Thus

$$0 = \det(I_2 - A^*A) = (1 - |a_{11}|^2)(1 - |a_{22}|^2) - |a_{12}|^2.$$

Hence $|a_{12}|^2 = (1 - |a_{11}|^2)(1 - |a_{22}|^2)$ as asserted. (c) Note that

$$I_n - A^* A = \begin{bmatrix} 0 & -U^* B \\ -B^* U & I_{n-k} - (B^* B + C^* C) \end{bmatrix}.$$

Since rank $(I_n - A^*A) = d_A \leq 1$, it implies that every column of $I_n - A^*A$ is a scalar multiple of the first column of $I_n - A^*A$. Hence we conclude that $U^*B = 0$ or B = 0, since U is unitary.

(d) Let $A_k = [t_{ij}]_{i, j=1}^k$ for $k = 1, \dots, n$. From (a), we have $d_{A_k} \leq 1$ for all k. Since $d_{A_2} \leq 1$, by (b), we obtain that $t_{12} = 0$. Thus $A_2 = \begin{bmatrix} t_{11} & 0 \\ 0 & t_{22} \end{bmatrix}$ is unitary. Since $d_{A_3} \leq 1$ and A_2 is unitary, by (c), we deduce that $A_3 = \text{diag}(t_{11}, t_{22}, t_{33})$ is unitary. Repeating this argument gives us $A = A_n = \text{diag}(t_{11}, \dots, t_{nn})$. This completes the proof.

Proof of Theorem 2.1. Assume that $d_A = 1$. Let $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$. We want to show that either $|\lambda_i| \leq 1$ for all j, or $|\lambda_i| \geq 1$ for all j. Indeed, if there exist $|\lambda_{i_0}| > 1$ and $|\lambda_{j_0}| < 1$, then A is unitarily equivalent to an upper triangular matrix $[a_{ij}]_{i,j=1}^n$ such that $a_{11} = \lambda_{i_0}$, $a_{22} = \lambda_{j_0}$ and $a_{ij} = 0$ for all $1 \le j < i \le n$. Let $A_2 = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix}$ be the 2-by-2 principal submatrix of $[a_{ij}]_{i,j=1}^n$. Then $A \cong \begin{bmatrix} A_2 & * \\ 0 & * \end{bmatrix}$. By Lemma 2.2 (b), we have

$$0 \leq |a_{12}|^2 = (1 - |a_{11}|^2)(1 - |a_{22}|^2) = (1 - |\lambda_{i_0}|^2)(1 - |\lambda_{j_0}|^2) < 0,$$

a contradiction, since $|\lambda_{i_0}| > 1$ and $|\lambda_{j_0}| < 1$. Hence we conclude that either $\sigma(A) \subseteq \overline{\mathbb{D}}$ or $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{D}$.

Now, if $\sigma(A) \subseteq \mathbb{D}$ (resp., $\sigma(A) \subseteq \mathbb{C} \setminus \overline{\mathbb{D}}$), since $d_A = 1$, then $A \in \mathscr{S}_n$ (resp., $A \in \mathscr{S}_n^{-1}$) as required. Therefore, we may assume that A is unitarily equivalent to an

upper triangular matrix $[t_{ij}]_{i,j=1}^n$ such that $|t_{ii}| = 1$ for all $1 \le i \le k$ $(1 \le k \le n)$ and $|t_{jj}| \ne 1$ for all $k+1 \le j \le n$. Write $[t_{ij}]_{i,j=1}^n = \begin{bmatrix} U & B \\ 0 & C \end{bmatrix}$, where $U = [t_{ij}]_{i,j=1}^k \in M_k$. From Lemma 2.2 (a), we have $d_U \le 1$. Since $|t_{ii}| = 1$ for all $1 \le i \le k$, by Lemma 2.2 (d), we infer that $U = \text{diag}(t_{11}, \cdots, t_{kk})$ and k < n, because $d_A = 1 \ne 0$. Moreover, by Lemma 2.2 (c), we obtain that B = 0. Therefore, $A \cong U \oplus C$ and $d_C = d_A = 1$. If $\sigma(A) \subseteq \overline{\mathbb{D}}$, then $|t_{jj}| < 1$ for all $j, k+1 \le j \le n$, and it follows that $C = [t_{ij}]_{i,j=k+1}^n \in \mathcal{S}_{n-k}$. On the other hand, $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{D}$ implies that $|t_{jj}| > 1$ for all $j, k+1 \le j \le n$. Hence C is in \mathcal{S}_{n-k}^{-1} as asserted.

The converse is trivial. \Box

For an *n*-by-*n* matrix *A* with $d_A = 1$, if *A* has no unitary part, then *A* is either in \mathscr{S}_n or in \mathscr{S}_n^{-1} from Theorem 2.1. In recent years, properties of \mathscr{S}_n -matrices have been intensely studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention to \mathscr{S}_n^{-1} -matrices in the rest of this section. We generalize some known results about \mathscr{S}_n -matrices to \mathscr{S}_n^{-1} -matrices.

In [6], Gau and Wu gave an upper triangular matrix representation for \mathscr{S}_n -matrices. In [4], the author gave an upper triangular matrix representation for \mathscr{S}_n^{-1} -matrix without proof, because the proof is the same as the one in [6, Corollary 1.3]. We present it here for easy reference. For its detailed proof, the reader may consult [18, Theorem 3.8].

PROPOSITION 2.3. An operator is in \mathscr{S}_n^{-1} if and only if it has the upper triangular matrix representation $[t_{ij}]_{i,j=1}^n$, where $|t_{ii}| > 1$ for all i and $t_{ij} = s_{ij}(|t_{ii}|^2 - 1)^{1/2}(|t_{ij}|^2 - 1)^{1/2}$ for i < j with

$$s_{ij} = \begin{cases} \prod_{k=i+1}^{j-1}(\bar{t}_{kk}) & \text{if } j > i+1\\ 1 & \text{if } j = i+1. \end{cases}$$

Wu gave a complete characterization of the polar decomposition of an \mathscr{S}_n -matrix [17]. Here, we prove an analogue of Wu's result for \mathscr{S}_n^{-1} -matrices.

PROPOSITION 2.4. The following are equivalent for an n-by-n matrix A:

(a) A is an \mathscr{S}_n^{-1} -matrix;

(b) $A = U(I_n + sxx^*)$, where U is a unitary matrix with distinct eigenvalues, s > 0 and x is a unit cyclic vector for U;

(c) A is unitarily equivalent to $U'(I_n + sx'x'^*)$, where U' is a diagonal unitary matrix with distinct eigenvalues, s > 0 and x' is a unit vector with all components nonzero;

(d) $A = U(I_n + sP)$, where U is a unitary matrix, s > 0 and P is a rank-one (orthogonal) projection whose kernel contains no eigenvector of U and whose range contains a cyclic vector of U;

(e) A is unitarily equivalent to VD, where V is a unitary matrix such that all its eigenvectors have a nonzero first component and it has $[1 \ 0 \cdots 0]^T$ as a cyclic vector, and D is the diagonal matrix diag(t, 1, ..., 1) with t > 1.

Proof. (a) \Rightarrow (b): Notice that for any $A \in \mathscr{S}_n^{-1}$, A is invertible and $A^{-1} \in \mathscr{S}_n$. It follows that $(A^{-1})^* \in \mathscr{S}_n$. By [17, Proposition 3.4], there exists a unitary matrix U with distinct eigenvalues, $0 < r \leq 1$ and a unit cyclic vector x for U such that

$$(A^{-1})^* = U(I_n - rxx^*).$$

Thus $A = U(I_n - rxx^*)^{-1}$. Since $I_n - rxx^*$ is invertible and x is a unit vector, we deduce that 0 < r < 1 and

$$(I_n - rxx^*)^{-1} = I_n + \sum_{j=1}^{\infty} (rxx^*)^j = I_n + \sum_{j=1}^{\infty} r^j xx^* = I_n + \frac{r}{1 - r}xx^*.$$

Hence $A = U(I_n + sxx^*)$, where s = r/(1 - r) > 0.

(b) \Rightarrow (a): If $A = U(I_n + sxx^*)$ as in (b), then $A^*A = I_n + (2s + s^2)xx^*$. Since xx^* is a rank one matrix, we have $d_A = \operatorname{rank}((2s + s^2)xx^*) = 1$. We will check that $\sigma(A) \subseteq \mathbb{C} \setminus \overline{\mathbb{D}}$. On the contrary, suppose that there is a unit vector $y \in \mathbb{C}^n$ such that $Ay = \lambda y$ for some $|\lambda| \leq 1$. Then

$$1 \ge \|\lambda y\|^2 = \|Ay\|^2 = \|(I_n + sxx^*)y\|^2$$

= $\langle (I_n + sxx^*)^2 y, y \rangle = \|y\|^2 + (s^2 + 2s)|\langle x, y \rangle|^2$
= $1 + (s^2 + 2s)|\langle x, y \rangle|^2 \ge 1.$

We thus get $\langle x, y \rangle = 0$, since s > 0. Moreover,

$$\lambda y = Ay = U(I_n + sxx^*)y = Uy.$$

Since y is an eigenvector of U, it follows that $\langle x, y \rangle \neq 0$ because x is a cyclic vector for U. This is a contradiction. Hence we conclude that A is an \mathscr{S}_n^{-1} -matrix.

For the other equivalences, the proofs are essentially the same as in [17, Proposition 3.4]. Hence we omit the proofs. \Box

The following proposition shows how the characteristic polynomial of an \mathscr{S}_n^{-1} -matrix A can be expressed in terms of s and the entries of U' and x' in Proposition 2.4 (c). It is an analogue of [17, Proposition 3.5] for \mathscr{S}_n^{-1} -matrices, and its proof is omitted because it is essentially the same as the one for [17, Proposition 3.5].

PROPOSITION 2.5. Let A be an \mathscr{S}_n^{-1} -matrix with polar decomposition $U'(I_n + sx'x'^*)$ as in Proposition 2.4 (c). If U' has eigenvalues u_1, \dots, u_n and $x' = [x_1 \dots x_n]^T$, then the characteristic polynomial of A is given by

$$\sum_{j=1}^{n} |x_j|^2 (z-u_1) \cdots (z-(1+s)u_j) \cdots (z-u_n).$$

An \mathscr{S}_n -matrix A may be not invertible, hence its polar decomposition is not unique (cf. [17, Proposition 3.6]). But every \mathscr{S}_n^{-1} -matrix is invertible, and thus its polar decomposition is unique. The following proposition shows this simple fact.

PROPOSITION 2.6. Let A be an \mathscr{S}_n^{-1} -matrix with polar decomposition $A = U_1(I_n + s_1x_1x_1^*) = U_2(I_n + s_2x_2x_2^*)$ as in Proposition 2.4 (b). Then (a) $s_1 = s_2$, (b) $x_1 = \lambda x_2$ for some λ , $|\lambda| = 1$, and

(c) $U_1 = U_2$.

Proof. Since $I_n + s_1 x_1 x_1^* = (A^*A)^{1/2} = I_n + s_2 x_2 x_2^*$, (a) and (b) follow easily. Note that since $I_n + s_1 x_1 x_1^*$ is positive definite, it is invertible. Hence

$$U_1 = U_2(I_n + s_2 x_2 x_2^*)(I_n + s_1 x_1 x_1^*)^{-1} = U_2$$

as asserted. \Box

Proposition 2.3 says that an \mathscr{S}_n^{-1} -matrix is completely determined by its eigenvalues. Therefore, we give the norm of an \mathscr{S}_n^{-1} -matrix in terms of its eigenvalues in the next corollary. It is an easy consequence of Proposition 2.4 (e). Among other things, it's well-known that ||A|| = 1 for all $A \in \mathscr{S}_n$.

COROLLARY 2.7. Let A be an \mathscr{S}_n^{-1} -matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Then $||A|| = |\lambda_1 \dots \lambda_n|$.

Proof. From Proposition 2.4 (e), A can be written as a polar decomposition A = UD, where U is unitary and $D = \text{diag}(t, 1, \dots, 1)$ for some t > 1. Hence

$$||A|| = ||UD|| = ||D|| = t = \det D = |\det UD| = |\det A| = |\lambda_1 \cdots \lambda_n|$$

as asserted. \Box

For a matrix $A \in M_n$, $\text{Re}A = (A + A^*)/2$ and $\text{Im}A = (A - A^*)/(2i)$ are the *real* and *imaginary* parts of A, respectively.

In [5, Corollary 2.7], Gau and Wu show that if A is in S_n , then all eigenvalues of ReA and ImA are simple. Moreover, Gau [4, Theorem 2.5] shows that if A is in S_n^{-1} , then the maximal eigenvalue of ReA is simple. Here, we prove an analogue of Gau and Wu's result for S_n^{-1} -matrices.

THEOREM 2.8. If A is in \mathscr{S}_n^{-1} , then both ReA and ImA have simple eigenvalues.

Let $A = [t_{ij}]_{i,j=1}^n$ be an \mathscr{S}_n^{-1} -matrix represented as in Proposition 2.3, and let $A_k = [t_{ij}]_{i,j=1}^k$ for $k = 1, \dots, n$. Then A_k is in \mathscr{S}_k^{-1} from Proposition 2.3. Moreover, $e^{i\theta}A$ is also in \mathscr{S}_n^{-1} for all $\theta \in \mathbb{R}$. Since ImA = Re(-iA), we need only to prove the result for Re*A*. Let *r* be an eigenvalue of Re*A* and $K = \text{ker}(rI_n - \text{Re}A)$. If dim $K \ge 2$, then there exists a nonzero vector $x \in K$ such that the *n*th entry of *x* is zero. Therefore, Theorem 2.8 can be proven by the following lemma.

LEMMA 2.9. Let A be an \mathscr{S}_n^{-1} -matrix represented as in Proposition 2.3 and let r be an eigenvalue of ReA. If $x = [x_1 \cdots x_n]^T \in \mathbb{C}^n$ is an eigenvector of ReA corresponding to the eigenvalue r, then $x_n \neq 0$.

Proof. The proof is by induction on *n*. For n = 2, then $r = \max \sigma(\text{Re}A)$ or $r = \min \sigma(\text{Re}A) = -\max \sigma(\text{Re}(-A))$. Hence our assertion follows from [4, Lemma 2.6].

Assume the assertion holds for n-1. We will prove it for n. Suppose that $x = [x_1 \cdots x_n]^T$ is a unit eigenvector of ReA corresponding to r. From [4, Lemma 2.6], we may assume that r is neither the maximal eigenvalue nor the minimal eigenvalue of ReA. We now show that $x_n \neq 0$. On the contrary, suppose that $x_n = 0$. It implies that $(\text{Re}A_{n-1})y = ry$, where $A_{n-1} = [t_{ij}]_{i,j=1}^{n-1}$ is the (n-1)-by-(n-1) principal submatrix of A and $y = [x_1 \cdots x_{n-1}]^T \in \mathbb{C}^{n-1}$. Thus y is an eigenvector of Re A_{n-1} corresponding to the eigenvalue r. On the other hand, let us compute the n th and (n-1) th entries of $(rI_n - \text{Re}A)x$, we have

$$-\frac{1}{2}\sum_{j=1}^{n-2} x_j \overline{t}_{j,n} - \frac{1}{2} x_{n-1} \overline{t}_{n-1,n} = 0$$
⁽¹⁾

and

$$-\frac{1}{2}\sum_{j=1}^{n-2} x_j \overline{t}_{j,n-1} + x_{n-1} (r - \operatorname{Re} t_{n-1,n-1}) = 0.$$
⁽²⁾

By Proposition 2.3, we have

$$t_{j,n} = t_{j,n-1} \cdot \frac{\sqrt{|t_{n,n}|^2 - 1}}{\sqrt{|t_{n-1,n-1}|^2 - 1}} \cdot \overline{t}_{n-1,n-1},\tag{3}$$

for $1 \leq j \leq n-2$. Substituting (3) into (1) yields

$$0 = -\frac{\sqrt{|t_{n,n}|^2 - 1}}{2\sqrt{|t_{n-1,n-1}|^2 - 1}} \cdot t_{n-1,n-1} \sum_{j=1}^{n-2} x_j \overline{t}_{j,n-1} - \frac{1}{2} x_{n-1} \overline{t}_{n-1,n}$$
(4)

Substituting (2) into (4) we obtain

$$0 = -\frac{\sqrt{|t_{nn}|^2 - 1}}{\sqrt{|t_{n-1,n-1}|^2 - 1}} t_{n-1,n-1} x_{n-1} (r - \operatorname{Re} t_{n-1,n-1}) - \frac{1}{2} x_{n-1} \overline{t}_{n-1,n}.$$

By induction hypothesis, we have $x_{n-1} \neq 0$, which implies that

$$-t_{n-1,n-1}\frac{\sqrt{|t_{nn}|^2-1}}{\sqrt{|t_{n-1,n-1}|^2-1}}(r-\operatorname{Re} t_{n-1,n-1})=\frac{1}{2}\overline{t}_{n-1,n}.$$

Thus $-t_{n-1,n-1}(r - \operatorname{Re} t_{n-1,n-1}) = \frac{1}{2}(|t_{n-1,n-1}|^2 - 1)$, and hence $t_{n-1,n-1}$ is real and $t_{n-1,n-1} = r \pm \sqrt{r^2 - 1}$. Since $t_{n-1,n-1}$ is real, it implies that $r^2 \ge 1$ or $|r| \ge 1$. The result [4, Lemma 2.9 (1)] says that if λ_j is the *j*th largest eigenvalue of ReA, then $\lambda_2 \le 1$. Note that $-\lambda_{n-1}$ is the second largest eigenvalue of Re(-A) and $-A \in \mathscr{S}_n^{-1}$, so by [4, Lemma 2.9 (1)] again, we have $-\lambda_{n-1} \le 1$ or $\lambda_{n-1} \ge -1$. Now, since *r* is neither the maximal eigenvalue nor the minimal eigenvalue of ReA, by [4, Lemma

2.9 (1)], we have $-1 \leq \lambda_{n-1} \leq r \leq \lambda_2 \leq 1$. Thus |r| = 1. Consequently, we obtain $|t_{n-1,n-1}| = 1$, a contradiction. Hence $x_n \neq 0$ as asserted. \Box

We now restrict our attention to the defect indices of powers of an \mathscr{S}_n^{-1} -matrix. In recent years, the defect indices of powers of a contraction have been intensely studied (cf. [7, 9, 10, 13]). In particular, Gau and Wu [7, Theorem 3.1] have shown that for an *n*-by-*n* contraction A ($||A|| \le 1$), the following conditions are equivalent: (a) A is in \mathscr{S}_n ; (b) $||A|| = ||A^{n-1}|| = 1$ and $||A^n|| < 1$; (c) $d_{A^k} = k$ for all k, $1 \le k \le n$; (d) $d_{A^k} = k$ for k = n and for k equal to some k_0 , $1 \le k_0 < n$. Notice that the norm of an \mathscr{S}_n^{-1} -matrix is greater than one, that is, it is not a contraction. Here, we prove an analogue of [7, Theorem 3.1] for \mathscr{S}_n^{-1} -matrices.

THEOREM 2.10. Let A be an n-by-n matrix with ||A|| > 1. Then the following conditions are equivalent:

(a) $A \in \mathscr{S}_n^{-1}$; (b) $d_{A^k} = k$ for all $k, 1 \leq k \leq n$; (c) $d_{A^n} = n$ and $d_A = 1$.

Proof. (a) \Rightarrow (b): Since A^{-1} is in \mathscr{S}_n , by [7, theorem 3.1], we have $d_{A^{-k}} = k$ for all $k, 1 \leq k \leq n$. On the other hand, since A^k is invertible and

$$I_n - A^{k*}A^k = A^{k*}[A^{-k*}A^{-k} - I_n]A^k = -A^{k*}[I_n - A^{-k*}A^{-k}]A^k,$$

we deduce that $d_{A^k} = k$ for all $k, 1 \le k \le n$.

(b) \Rightarrow (c): This is trivial.

(c) \Rightarrow (a): Since ||A|| > 1 and $d_A = 1$, by Theorem 2.1, we may assume that A is unitarily equivalent to $U \oplus C$, where $U \in M_k$ is unitary, $0 \le k < n$, and $C \in S_{n-k}^{-1}$. We obtain that

$$A^n \cong \begin{bmatrix} U^n & 0\\ 0 & C^n \end{bmatrix},$$

and hence

$$I_n - A^{n*}A^n \cong \begin{bmatrix} 0 & 0 \\ 0 & I_{n-k} - C^{n*}C^n \end{bmatrix}.$$

But $d_{A^n} = n$, which clearly forces $A \cong C$. \Box

For an *n*-by-*n* matrix *A*, $d_{A^n} = n$ means that *A* has no unitary part. Moreover, if *A* is a contraction with $d_{A^n} = n$, [7, Theorem 3.1] shows that $d_A = 1$ if and only if $d_{A^k} = k$ for some k, $1 \le k < n$. The following examples show that it is not the case for an *n*-by-*n* matrix *A* with ||A|| > 1.

EXAMPLE 2.11. Let

$$A = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix},$$

then ||A|| > 1. After a simple calculation, we have

$$I_3 - A^* A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{4} & 0 \\ 0 & 0 & -3 \end{bmatrix}, \qquad I_3 - A^{2*} A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and $I_3 - A^{3*}A^3 = I_3$. Thus, we have $d_{A^2} = 2$ and $d_{A^3} = 3$. But $d_A = 3 \neq 1$. Next, we construct a 4-by-4 matrix $A = B \oplus C$ such that $B^2 \in \mathscr{S}_2^{-1}$ and $C^2 \in \mathscr{S}_2$. Then $d_{A^2} = d_{B^2} + d_{C^2} = 1 + 1 = 2$ and $d_{A^4} = d_{B^4} + d_{C^4} = 2 + 2 = 4$. But, it is easily seen that $d_A \neq 1$.

EXAMPLE 2.12. Let

$$A = \begin{bmatrix} \sqrt{2} & \frac{3}{2\sqrt{2}} & 0 & 0\\ 0 & \sqrt{2} & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{3}{4\sqrt{2}}\\ 0 & 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Then $\begin{bmatrix} \sqrt{2} & \frac{3}{2\sqrt{2}} \\ 0 & \sqrt{2} \end{bmatrix}^2 = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \in \mathscr{S}_2^{-1}, \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{3}{4\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}^2 = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ 0 & \frac{1}{2} \end{bmatrix} \in \mathscr{S}_2 \text{ and } d_A = 4 \neq 1.$ But $d_{A^2} = \bar{2}$ and $\vec{d_{A^4}} = 4$.

Let A be an *n*-by-*n* contraction and $H_i(A) = \ker(I_n - A^{j*}A^j)$ for $j = 1, \dots, n$. Since $||A|| \leq 1$, we have $x \in H_i(A)$ if and only if $||A^j x|| = ||x||$. Moreover, $||A^j y|| \leq 1$ $||A^{j-1}y|| \leq \cdots \leq ||Ay|| \leq ||y||$ for all $y \in \mathbb{C}^n$. Therefore, $H_j(A) \subseteq H_{j-1}(A)$ for all j. On the other hand, let $V_i = H_i(A) \cap H_i(A^*)$, it is clear that $V_i \subseteq V_{i-1}$ for all j. Let $V_{\infty} = \bigcap_{i=1}^{\infty} V_i$, then $A|_{V_{\infty}}$ is the unitary part of A. Therefore, A has no unitary part if and only if $V_k = \{0\}$ for some k. Let $k(A) = \min\{k : 0 \le k \le \infty, V_k = V_\infty\}$. It was shown independently by Gau-Wu [9] and Li [13] that $k(A) \leq \lfloor n/2 \rfloor$. Moreover, they also showed that the equality $k(A) = \lceil n/2 \rceil$ holds if and only if one of the following holds. (a) $A \in \mathscr{S}_n$. (b) n is even and A is unitarily equivalent to $[e^{it}] \oplus A_1$ with $t \in \mathbb{R}$ and $A_1 \in \mathscr{S}_{n-1}$. (c) *n* is even, $||A^{n-2}|| = 1 > ||A^{n-1}||$. The following theorem provides an analogue of the above result for \mathscr{S}_n^{-1} -matrices. Its proof is inspired by that of [13, Theorem 2].

THEOREM 2.13. Let A be an n-by-n $(n \ge 2)$ matrix with ||A|| > 1 and $H_i(A) =$ $ker(I_n - A^{j*}A^j)$ for $j = 1, 2, \dots, n$. The following statements are equivalent: (a) $A \in \mathscr{S}_n^{-1}$;

(b) dim $[H_k(A) \cap H_k(A^*)] = n - 2k$, for all $1 \leq k \leq \lfloor n/2 \rfloor$, and dim $[H_{k_0}(A) \cap$ $H_{k_0}(A^*) = 0$, where $k_0 = \lceil n/2 \rceil$;

(c) $\dim[H_1(A) \cap H_1(A^*)] = n-2$ and $\dim[H_{k_0}(A) \cap H_{k_0}(A^*)] = 0$, where $k_0 =$ $\lceil n/2 \rceil$.

For its proof, we need the following lemmas.

LEMMA 2.14. Let A be an n-by-n matrix with $ker(I_n - A^*A) = ker(I_n - AA^*)$. If

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \quad \text{on } \mathbb{C}^n = \ker(I_n - A^*A) \oplus \operatorname{ran}(I_n - A^*A),$$

then $A_2 = 0 = A_3$ and A_1 is unitary.

Proof. By polar decomposition, write A = UD where U is unitary and $D = (A^*A)^{1/2}$. Write $k = \dim \ker(I_n - A^*A)$,

$$U = \begin{bmatrix} U_1 & U_2 \\ U_3 & U_4 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} I_k & D_2 \\ D_2^* & D_4 \end{bmatrix}$$

on $\mathbb{C}^n = \ker(I_n - A^*A) \oplus \operatorname{ran}(I_n - A^*A)$. Note that $\ker(I_n - A^*A) = \ker(I_n - AA^*)$. Thus

$$\operatorname{ran}(I_n - AA^*) = \ker(I_n - AA^*)^{\perp} = \ker(I_n - A^*A)^{\perp} = \operatorname{ran}(I_n - A^*A)_{\perp}$$

where S^{\perp} denotes the orthogonal complement of $S \subseteq \mathbb{C}^n$.

Since $U(I_n - A^*A) = (I_n - AA^*)U$, we have

$$U(\operatorname{ran}(I_n - A^*A)) \subseteq \operatorname{ran}(I_n - AA^*) = \operatorname{ran}(I_n - A^*A)$$

and

$$U(\ker(I_n - A^*A)) \subseteq \ker(I_n - AA^*) = \ker(I_n - A^*A).$$

Hence $U_2 = 0 = U_3$, and U_1 and U_4 are unitary. Moreover,

$$A = \begin{bmatrix} U_1 & 0 \\ 0 & U_4 \end{bmatrix} \begin{bmatrix} I_k & D_2 \\ D_2^* & D_4 \end{bmatrix} = \begin{bmatrix} U_1 & U_1 D_2 \\ U_4 D_2^* & U_4 D_4 \end{bmatrix}.$$

Since $A(I_n - A^*A) = (I_n - AA^*)A$, it follows that $A(\operatorname{ran}(I_n - A^*A)) \subseteq \operatorname{ran}(I_n - AA^*) = \operatorname{ran}(I_n - A^*A)$. Therefore, $U_1D_2 = 0$ or $D_2 = 0$, since U_1 is unitary. Hence

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} = \begin{bmatrix} U_1 & 0 \\ 0 & U_4 D_4 \end{bmatrix}.$$

It is clear that $A_2 = 0 = A_3$ and $A_1 = U_1$ is unitary. \Box

LEMMA 2.15. If $A \in \mathscr{S}_n^{-1}$, then $\ker(I_n - A^*A) = \ker(I_n - AA^*)$ if and only if n = 1.

Proof. If n = 1, then $\ker(I_n - A^*A) = \{0\} = \ker(I_n - AA^*)$.

Conversely, if ker $(I_n - A^*A) = \text{ker}(I_n - AA^*)$, by Lemma 2.14, the restriction of A on ker $(I_n - A^*A)$ is unitary. Since $A \in \mathcal{S}_n^{-1}$ implies A has no unitary part, it follows that ker $(I_n - A^*A) = \{0\}$. Since rank $(I_n - A^*A) = d_A = 1$ implies

$$n = \dim(\ker(I_n - A^*A)) + \operatorname{rank}(I_n - A^*A) = 1,$$

the proof is complete. \Box

Notice that for any $x \in \mathbb{C}^n$ and $A \in \mathscr{S}_n^{-1}$, we have $||Ax|| \ge ||x||$. Indeed, by Proposition 2.4 (e), we may assume that A = VD, where $V \in M_n$ is unitary and $D = \text{diag}(t, 1, ..., 1) \in M_n$, t > 1. Thus $||Ax|| = ||Dx|| \ge ||x||$. Moreover, if $x \in H_k(A)$ for some $k \ge 1$, then

$$||x|| = ||A^k x|| \ge ||A^{k-1} x|| \ge \dots \ge ||Ax|| \ge ||x||.$$

Thus $x \in H_j(A)$ for all $1 \le j \le k$, and hence $H_k(A) \subseteq H_{k-1}(A)$ for all k. Among other things, since $A^*A - I_n = D^2 - I_n$ is positive semi-definite, it follows that a vector x is in $H_k(A)$ if and only if $||A^kx|| = ||x||$ for k = 1, ..., n. We are now ready to prove Theorem 2.13.

Proof of Theorem 2.13. (a) \Rightarrow (b): Let $V_k = H_k(A) \cap H_k(A^*)$ for k = 1, ..., n. Since $A \in \mathscr{S}_n^{-1}$ implies $A^* \in \mathscr{S}_n^{-1}$, by the above paragraph, we have $V_{k+1} \subseteq V_k$ for all k. Moreover, we also deduce that a vector x is in V_k if and only if $||A^k x|| = ||A^{*k} x|| = ||x||$ for k = 1, ..., n.

We first show that $AV_{k+1} \subseteq V_k$. Suppose $\{x_1, \ldots, x_l\}$ is an orthonormal basis for V_{k+1} . Since $V_{k+1} \subseteq V_k$, we let $\{x_1, \ldots, x_p\}$ be an orthonormal basis for V_k , where $p \ge l$. Let x be a unit vector in V_{k+1} , then $||A^k(Ax)|| = 1$. Since $V_{k+1} \subseteq V_k \subseteq \cdots \subseteq V_1$, it implies $A^*Ax = x$ and

$$||A^{k*}(Ax)|| = ||(A^{k-1})^*(A^*A)x|| = ||(A^{k-1})^*x|| = 1.$$

Hence $Ax \in V_k$ and $AV_{k+1} \subseteq V_k$. Similarly, we have $A^*V_{k+1} \subseteq V_k$.

We claim that $l \leq \max\{0, p-2\}$.

If l = p, then $AV_k = AV_{k+1} \subseteq V_k$. If $\alpha_1Ax_1 + \dots + \alpha_pAx_p = 0$ for some scalars $\alpha_1, \dots, \alpha_p$, then $A^*(\alpha_1Ax_1 + \dots + \alpha_pAx_p) = 0$. It follows that $\alpha_1x_1 + \dots + \alpha_px_p = 0$ since $A^*Ax_j = x_j$ for $j = 1, \dots, p$. But $\{x_1, \dots, x_p\}$ is orthonormal, which implies that $\alpha_1 = \dots = \alpha_p = 0$. Hence $\{Ax_1, \dots, Ax_p\}$ is linearly independent and $A(V_k) = V_k$. Interchanging A and A^* in the preceding arguments yields $A^*(V_k) = V_k$. Therefore A is unitarily equivalent to $\begin{bmatrix} A_{11} & 0 \\ 0 & * \end{bmatrix}$ on $\mathbb{C}^n = V_k \oplus V_k^{\perp}$, and $A_{11} \in M_p$ is unitary, which contradicts the fact that A has no unitary part.

If l = p - 1, let $U \in M_n$ be a unitary matrix such that x_1, \ldots, x_p are the first p columns of U. We have

$$\widetilde{A} \equiv U^* A U = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

on $\mathbb{C}^n = \mathbb{C}^p \oplus \mathbb{C}^{n-p}$. Let $A_{11} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix} \in M_p$ on $\mathbb{C}^p = \mathbb{C}^{p-1} \oplus \mathbb{C}$. Since $AV_{k+1} \subseteq V_k$, $A^*V_{k+1} \subseteq V_k$, and $V_{k+1} = \bigvee \{x_1, \cdots, x_{p-1}\}$, we obtain that

$$\widetilde{A} = \begin{bmatrix} C_1 & C_2 & 0 \\ C_3 & C_4 & y^T \\ 0 & x & * \end{bmatrix} \text{ and } \widetilde{A}^* \widetilde{A} = \begin{bmatrix} A_{11}^* A_{11} + J & * \\ & * & * \end{bmatrix},$$

where $x, y \in \mathbb{C}^{n-p}$ are nonzero vectors and

$$J = A_{21}^* A_{21} = \begin{bmatrix} 0 \\ x^* \end{bmatrix} \begin{bmatrix} 0 & x \end{bmatrix} = \operatorname{diag}(0, \dots, 0, ||x||^2).$$

Since $V_k \subseteq \ker(I_n - A^*A)$ and $x_j \in V_k$ for $j = 1, \dots, p$, it follows that $\widetilde{A}^*\widetilde{A} = I_p \oplus B$ for some $B \in M_{n-p}$, and consequently

$$A_{11}^*A_{11} = \begin{bmatrix} I_{p-1} & 0\\ 0 & 1 - \|x\|^2 \end{bmatrix}.$$

Symmetrically, we have

$$A_{11}A_{11}^* = \begin{bmatrix} I_{p-1} & 0\\ 0 & 1 - \|y\|^2 \end{bmatrix}.$$

We now prove that C_2 and C_3 are zero matrices. Note that

$$A_{11}^*A_{11} = \begin{bmatrix} C_1^*C_1 + C_3^*C_3 & C_1^*C_2 + C_3^*C_4 \\ C_2^*C_1 + C_4C_3 & C_2^*C_2 + C_4C_4 \end{bmatrix}$$

and

$$A_{11}A_{11}^* = \begin{bmatrix} C_1C_1^* + C_2C_2^* & C_1C_3^* + C_2\overline{C_4} \\ C_3C_1^* + C_4C_2^* & C_3C_3^* + C_4\overline{C_4} \end{bmatrix}$$

It follows that $C_2^*C_1 + \overline{C_4}C_3 = 0$, and hence $C_2^*C_1C_1^* + \overline{C_4}C_3C_1^* = 0$. Combining $C_1C_1^* + C_2C_2^* = I_{p-1}$ with $C_3C_1^* + C_4C_2^* = 0$, we obtain that

$$C_2^*(I_{p-1} - C_2C_2^*) - |C_4|^2C_2^* = 0$$

or $(1 - ||C_2||^2 - |C_4|^2)C_2^* = 0$. It implies that $C_2 = 0$, since $||C_2||^2 + |C_4|^2 = 1 - ||x||^2 \neq 1$. 1. Similarly, since $C_3C_1^*C_1 + C_4C_2^*C_1 = 0$ and $||C_3||^2 + |C_4|^2 = 1 - ||y||^2 \neq 1$, we have $C_3 = 0$. Hence $\widetilde{A} = \begin{bmatrix} C_1 & 0 \\ 0 & * \end{bmatrix}$ and $C_1C_1^* = I_{p-1}$. It implies that C_1 is a unitary direct summand of \widetilde{A} , which is a contradiction.

By the above, we see that $l \leq \max\{0, p-2\}$. By Lemma 2.15, we have $\ker(I_n - A^*A) \neq \ker(I_n - AA^*)$. Hence $n-1 < \dim(\ker(I_n - A^*A) + \ker(I_n - AA^*))$ and

$$\dim V_1 = \dim(\ker(I_n - A^*A)) + \dim(\ker(I_n - AA^*)) - \dim[\ker(I_n - A^*A) + \ker(I_n - AA^*)]$$

= (n-1) + (n-1) - n = n - 2.

Moreover,

$$n-2 = \dim(V_1) \ge \dim(V_2) + 2 \ge \dots \ge \dim(V_k) + (2k-2) \ge \dots.$$
 (5)

Therefore, if $k_0 = \lceil n/2 \rceil$, then dim $V_{k_0} = 0$ and dim $V_j = 0$ for $j \ge k_0$ since $V_j \subseteq V_{k_0}$.

On the other hand, dim $(\ker(I_n - (A^{n-1})^*A^{n-1})) = 1$, so there is a unit vector $x \in C^n$ such that $||A^{n-1}x|| = 1$. Since A is an \mathscr{S}_n^{-1} -matrix, we have

$$1 = ||A^{n-1}x|| \ge ||A^{n-2}x|| \ge \dots \ge ||Ax|| \ge ||x|| = 1.$$

It follows that $x, Ax, \dots, A^{n-1}x$ are unit vectors.

If $n = 2k_0 - 1$, then $A^{k_0-1}(A^{k_0-1}x) = A^{2k_0-2}x$ and $(A^*)^{k_0-1}A^{k_0-1}x = x$ are unit vectors. So $A^{k_0-1}x \in V_{k_0-1}$ and $V_{k_0-1} \neq \{0\}$. Similarly, if $n = 2k_0$, then $A^{k_0-1}(A^{k_0-1}x) = A^{2k_0-2}x$ and $(A^*)^{k_0-1}A^{k_0-1}x = x$ are unit vectors, and hence $A^{k_0-1}x \in V_{k_0-1} \neq \{0\}$. This implies that k_0 is the smallest integer satisfying $V_k = \{0\}$.

Now, we are going to show that $l = \max\{0, p-2\}$. If $n = 2k_0 - 1$, by (5), $\dim(V_{k_0-1}) \leq 1$, and hence $\dim(V_{k_0-1}) = 1$ since $V_{k_0-1} \neq \{0\}$. If $n = 2k_0$, by (5), $\dim(V_{k_0-1}) \leq 2$. On the other hand,

$$\dim(V_{k_0-1}) = \dim H_{k_0-1}(A) + \dim H_{k_0-1}(A^*) - \dim[H_{k_0-1}(A) + H_{k_0-1}(A^*))]$$

$$\ge (n - k_0 + 1) + (n - k_0 + 1) - n = 2.$$

Thus $\dim(V_{k_0-1}) = 2$ and in both cases

$$n-2 = \dim(V_1) \ge \dim(V_2) + 2 \ge \cdots \ge \dim(V_{k_0-1}) + 2k_0 - 4 = n-2$$

Therefore, dim $(V_j) = n - 2j$ for $1 \le j \le \lfloor n/2 \rfloor$, and dim $(V_j) = 0$ for $j \ge k_o$. (b) \Rightarrow (c): This is trivial.

(c) ⇒(a): We want to show that dim(ker($I_n - A^*A$)) = n - 1. Indeed, since dim[ker($I_n - A^*A$) ∩ ker($I_n - AA^*$)] = dim[$H_1(A) \cap H_1(A^*)$] = n - 2, it follows that $n - 2 \leq \dim \ker(I_n - A^*A) \leq n$. If dim(ker($I_n - A^*A$)) = n, then A is a unitary matrix, but this contradicts the fact that dim[$H_{k_0}(A) \cap H_{k_0}(A^*)$] = 0, where $k_0 = \lceil n/2 \rceil$. On the other hand, if dim(ker($I_n - A^*A$)) = n - 2 = dim[ker($I_n - A^*A$) ∩ ker($I_n - AA^*$)], then ker($I_n - A^*A$) ⊆ ker($I_n - AA^*$). Note that for every finite matrix T, the dimensions of ker($I - T^*T$) and ker($I - TT^*$) are the same. Hence we deduce that ker($I_n - A^*A$) = ker($I_n - AA^*$). Lemma 2.14 now yields that $A \cong \begin{bmatrix} A_1 & 0 \\ 0 & A_4 \end{bmatrix}$ on $\mathbb{C}^n = \ker(I_n - A^*A) \oplus \operatorname{ran}(I_n - A^*A)$, where A_1 is unitary. This contradicts the fact that dim[$H_{k_0}(A) \cap H_{k_0}(A^*)$] = 0, where $k_0 = \lceil n/2 \rceil$. Therefore, we infer that dim ker($I_n - A^*A$) = n - 1 or rank($I_n - A^*A$) = 1. Moreover, dim[$H_{k_0}(A) \cap H_{k_0}(A^*)$] = 0 implies that A has no unitary part. Hence, by Theorem 2.1 and ||A|| > 1, we conclude that $A \in \mathscr{S}_n^{-1}$ as desired. \Box

3. Numerical ranges

Recall that the numerical range W(A) of any *n*-by-*n* matrix A is the subset

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

of the plane, where $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{C}^n . Properties of the numerical range can be found in [12, Chapter 1].

From Proposition 2.4 (e), an \mathscr{S}_n^{-1} -matrix *A* can be written as a polar decomposition $A = UD_t$, where *U* is unitary and $D_t = \text{diag}(t, 1, \dots, 1)$ for some t > 1. The following theorem shows that if $0 \in W(U)$, then $W(UD_{t_1}) \subseteq W(UD_{t_2})$ for $1 \leq t_1 \leq t_2$.

THEOREM 3.1. Let A_t be in \mathscr{S}_n^{-1} with $A_t = UD_t$, where U is a unitary matrix and $D_t = diag(t, 1, \dots, 1), t > 1$. If 0 is in W(U), then

- (*a*) $0 \in W(A_t)$ for all t > 1,
- (b) $W(U) \subseteq W(A_t)$, and
- (c) $W(A_{t_1}) \subseteq W(A_{t_2})$ for $1 \leq t_1 \leq t_2$.

Proof. (a) Assume that $0 \notin W(A_t)$ for some t > 1. By convexity of $W(A_t)$, there exists a $0 \leq \theta \leq 2\pi$ such that $\operatorname{Re} w > 0$ for all $w \in W(e^{-i\theta}A_t)$. Without loss of generality, we may assume $\theta = 0$. We will show that $\operatorname{Re} \lambda > 0$ for all $\lambda \in \sigma(U)$. Then $W(U) \subseteq \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ which contradicts the fact that $0 \in W(U)$.

Let *x* be a unit eigenvector of *U* corresponding to $\lambda \in \sigma(U)$, then

$$\langle A_t x, x \rangle = \langle U x, x \rangle + \langle U (D_t - I_n) x, x \rangle = \lambda \left(1 + \langle (D_t - I_n) x, x \rangle \right)$$

Note that $D_t - I_n$ is a positive semi-definite matrix. Thus $1 + \langle (D_t - I_n)x, x \rangle > 0$. Since Re $\langle A_t x, x \rangle > 0$, it follows that Re $\lambda > 0$ as required.

(b) As in the proof of (a), for any $\lambda \in \sigma(U)$ and a unit eigenvector x of U corresponding to λ , we have

$$\lambda = \langle A_t x, x \rangle \cdot \frac{1}{1 + \langle (D_t - I_n) x, x \rangle} + 0 \cdot \frac{\langle (D_t - I_n) x, x \rangle}{1 + \langle (D_t - I_n) x, x \rangle} \in W(A_t),$$

since $\langle (D_t - I_n)x, x \rangle \ge 0$ and $0 \in W(A_t)$.

Hence $\sigma(U) \subseteq W(A)$ and $W(U) = \text{convex hull}(\sigma(U)) \subseteq W(A)$ as required.

(c) Let $A_{t_1} = UD_{t_1}$ and $A_{t_2} = UD_{t_2}$, $t_2 > t_1 > 1$. Let λ be the maximal eigenvalue of $\operatorname{Re} A_{t_1}$. We want to show that $\lambda \leq \max \sigma(\operatorname{Re} A_{t_2})$. Indeed, let x be a unit eigenvector of $\operatorname{Re} A_{t_1}$ corresponding to λ , then

$$\frac{1}{2}(UD_{t_1}+D_{t_1}U^*)x=\lambda x.$$

Therefore,

$$\begin{split} \lambda &= \frac{1}{2} [\langle UD_{t_1} x, x \rangle + \langle D_{t_1} U^* x, x \rangle] \\ &= \frac{1}{2} [\langle D_{t_1} x, U^* x \rangle + \langle U^* x, D_{t_1} x \rangle] \\ &= \operatorname{Re} \langle D_{t_1} x, U^* x \rangle. \end{split}$$

Write $U = [u_1 \cdots u_n]$, $x = [x_1 \cdots x_n]^T$ and $D_{t_1} = I_n + T_1$, where $T_1 = \text{diag}(t_1 - 1, 0, \dots, 0)$. Hence

$$\lambda = \operatorname{Re} \langle (I_n + T_1)x, U^*x \rangle$$

= Re \langle Ux, x \rangle + (t_1 - 1) Re (x_1 \langle u_1, x \rangle).

Note that $\lambda = \max \sigma(\operatorname{Re} A_{t_1}) > 0$, because $0 \in W(A_{t_1})$. Since $t_1 - 1 > 0$ and $W(U) \subseteq W(A_{t_1})$, it follows that $\operatorname{Re}(x_1 \langle u_1, x \rangle) > 0$.

Similarly, we have

$$\langle (\operatorname{Re} A_{t_2})x, x \rangle = \operatorname{Re} \langle Ux, x \rangle + (t_2 - 1)\operatorname{Re} (x_1 \langle u_1, x \rangle).$$

Therefore, $\langle (\operatorname{Re} A_{t_2})x, x \rangle - \lambda = (t_2 - t_1)\operatorname{Re} (x_1 \langle u_1, x \rangle) > 0$. That is,

 $\lambda < \langle (\operatorname{Re} A_{t_2})x, x \rangle \leq \max \sigma(\operatorname{Re} A_{t_2}).$

Now, for each $\theta \in [0, 2\pi)$, let $U' = e^{i\theta}U$, then

$$e^{i\theta}A_{t_1} = U'D_{t_1}$$
 and $e^{i\theta}A_{t_2} = U'D_{t_2}$.

From the above result that we have proven, we deduce that

$$\max \sigma(\operatorname{Re}(e^{i\theta}A_{t_1})) \leqslant \max \sigma(\operatorname{Re}(e^{i\theta}A_{t_2}))$$

for all $\theta \in [0, 2\pi)$. Hence $W(A_{t_1}) \subseteq W(A_{t_2})$. \Box

The next example shows that the condition $0 \in W(U)$ in Theorem 3.1 is essential.

EXAMPLE 3.2. Let

$$U = \begin{bmatrix} 0.8986 + 0.1493i & -0.0996 + 0.0911i & 0.2597 + 0.0792i & 0.2680 + 0.0797i \\ -0.0996 + 0.0911i & 0.8986 + 0.1493i & 0.2680 + 0.0797i & 0.2597 + 0.0792i \\ -0.2597 - 0.0792i & -0.2680 - 0.0797 & 0.8986 + 0.1493i & -0.0996 + 0.0911i \\ -0.2680 - 0.0797 & -0.2597 - 0.0792i - 0.0996 + 0.0911i & 0.8986 + 0.1493i \end{bmatrix}$$

and $B_k = UD_k$ for k = 1, 2, where $D_1 = \text{diag}(1.1, 1, 1, 1)$ and $D_2 = \text{diag}(1.2, 1, 1, 1)$. By computing, we have $\sigma(U) \subseteq \{z \in \mathbb{C} : \text{Re}z > 0\}$, that is, $0 \notin W(U)$, and

 $\min \sigma(\operatorname{Re}B_1) \approx 0.6522, \quad \min \sigma(\operatorname{Re}B_2) \approx 0.6587,$

and

$$\max \sigma(\operatorname{Re} B_1) \approx 1.067, \quad \max \sigma(\operatorname{Re} B_2) \approx 1.149$$

Hence $W(B_1) \nsubseteq W(B_2)$ and $W(B_2) \nsubseteq W(B_1)$.

We remark that Theorem 3.1 does not hold for \mathscr{S}_n -matrices. In fact, [5, Lemma 4.2] says that if T_1 and T_2 are in \mathscr{S}_n , then $T_1 \cong T_2$ if and only if $W(T_1) \subseteq W(T_2)$. Hence $W(A_{t_1}) \nsubseteq W(A_{t_2})$ for any $0 \le t_1 \ne t_2 < 1$.

In the end of this paper, we give a generalization of Chien and Nakazato's result [3]. In [3], they study the numerical range of the tridiagonal matrix

$$A = A(n, r) = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ r & 0 & 1 & 0 & \cdots & 0 \\ 0 & r^2 & 0 & 1 & \cdots & 0 \\ 0 & 0 & r^3 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & \cdots & 0 & r^{n-1} & 0 \end{bmatrix}.$$

In particular, they examined more details on the numerical range of A(n,-1). For $n \ge 4$, they show that W(A(n,-1)) is contained in the square

$$Q = \{z \in \mathbb{C} : |\operatorname{Re} z| \leq 1 \text{ and } |\operatorname{Im} z| \leq 1\}.$$

Moreover, if *n* is even, they show that the numerical range W(A(n,-1)) has 4 flat portions on its boundary $\partial W(A(n,-1))$ (cf. [3, Theorem 8]). In fact, these 4 flat portions lie on the boundary ∂Q of the square *Q*. Note that if $\{e_1, \ldots, e_{2k}\}$ denotes the standard basis for \mathbb{C}^{2k} and *P* is the 2*k*-by-2*k* permutation matrix so that $Pe_{2j-1} = e_j$ and $Pe_{2j} = e_{k+j}$ for $1 \leq j \leq k$, then

$$PA(2k,-1)P^* = \begin{bmatrix} 0 & I_k + J_k^* \\ -I_k + J_k & 0 \end{bmatrix},$$

where J_k is the k-by-k Jordan block as the form

$$\begin{bmatrix} 0 & 1 \\ 0 & \ddots \\ & \ddots & 1 \\ & & 0 \end{bmatrix}$$

The next theorem generalizes the Chien and Nakazato's result about A(2k, -1) to the 2-by-2 block matrix $\begin{bmatrix} 0 & I_k + B^* \\ -I_k + B & 0 \end{bmatrix} \in M_{2k}$ for general contraction $B \in M_k$.

THEOREM 3.3. For any $B \in M_k$ with $||B|| \leq 1$ and $k \geq 1$, let

$$A = \begin{bmatrix} 0 & I_k + B^* \\ -I_k + B & 0 \end{bmatrix} \in M_{2k}.$$

Then the numerical range of A is contained in the square

$$Q = \{ z \in \mathbb{C} : |\operatorname{Re} z| \leq 1 \text{ and } |\operatorname{Im} z| \leq 1 \}.$$

Moreover, the flat portions on $\partial W(A)$ *are*

$$\{\pm(t+i): t \in W(\operatorname{Im} B)\}$$
 and $\{\pm(1+it): t \in W(\operatorname{Im} B_M)\},\$

where $M = \ker(I_k - B^*B)$ and B_M is the compression of B on M.

Proof. Note that

$$\operatorname{Re} A = \begin{bmatrix} 0 & B^* \\ B & 0 \end{bmatrix}$$
 and $\operatorname{Im} A = \begin{bmatrix} 0 & -iI_k \\ iI_k & 0 \end{bmatrix}$.

Since

$$\begin{bmatrix} 0 & B^* \\ B & 0 \end{bmatrix} \begin{bmatrix} 0 & B^* \\ B & 0 \end{bmatrix} = \begin{bmatrix} B^*B & 0 \\ 0 & BB^* \end{bmatrix}$$

and $||B^*B|| = ||BB^*|| = ||B||^2 \le 1$, we have $||\text{Re}A|| \le 1$ and $W(\text{Re}A) \subseteq [-1,1]$. On the other hand, since

$$\begin{bmatrix} 0 & -iI_k^* \\ iI_k^* & 0 \end{bmatrix} \begin{bmatrix} 0 & -iI_k \\ iI_k & 0 \end{bmatrix} = \begin{bmatrix} I_k & 0 \\ 0 & I_k \end{bmatrix},$$

it is obviously that ||ImA|| = 1 and $W(\text{Im}A) \subseteq [-1,1]$. Hence W(A) is contained in the square Q.

For any $x, y \in \mathbb{C}^k$ with $||x||^2 + ||y||^2 = 1$,

$$\langle A \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rangle = \langle (\operatorname{Re}A + i\operatorname{Im}A) \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rangle$$

$$= \langle \begin{bmatrix} 0 & B^* \\ B & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rangle + i \langle \begin{bmatrix} 0 & -iI_k \\ iI_k & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rangle$$

$$= 2\operatorname{Re} \langle Bx, y \rangle + i 2\operatorname{Im} \langle y, x \rangle.$$

$$(6)$$

We first prove that $2 \text{Im} \langle y, x \rangle = 1$ if and only if y = ix and $||x|| = ||y|| = 1/\sqrt{2}$. Assume $2 \text{Im} \langle y, x \rangle = 1$, then

$$1 = 2 \operatorname{Im} \langle y, x \rangle \leqslant 2 |\langle y, x \rangle| \leqslant 2 ||y|| ||x|| \leqslant 2 \cdot \frac{||x||^2 + ||y||^2}{2} = 1.$$

It follows that $|\langle y, x \rangle| = ||y|| ||x||$ and $y = e^{i\theta}x$. Therefore,

$$1 = 2 \operatorname{Im} \langle e^{i\theta} x, x \rangle = 2 \operatorname{Im} e^{i\theta} ||x||^2 = \operatorname{Im} (\cos \theta + i \sin \theta) = \sin \theta.$$

This implies that y = ix. Moreover,

$$2\operatorname{Re}\langle Bx, y\rangle = 2\operatorname{Re}(-i)||x||^2 \langle B\frac{x}{||x||}, \frac{x}{||x||}\rangle = \operatorname{Re}(-i) \langle B\frac{x}{||x||}, \frac{x}{||x||}\rangle \in W(\operatorname{Im} B),$$

and applying (6), we deduce that

$$W(A) \cap \{z \in \mathbb{C} : \operatorname{Im} z = 1\} \subseteq \{t + i : t \in W(\operatorname{Im} B)\}.$$

Conversely, for any $t \in W(\operatorname{Im} B)$, let $t = \langle (\operatorname{Im} B)x, x \rangle$ for some unit vector $x \in \mathbb{C}^k$. Replace $\begin{bmatrix} x \\ y \end{bmatrix}$ by $\frac{1}{\sqrt{2}} \begin{bmatrix} x \\ ix \end{bmatrix}$ in (6), we obtain that

$$\langle A \begin{bmatrix} \frac{x}{\sqrt{2}} \\ \frac{ix}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{x}{\sqrt{2}} \\ \frac{ix}{\sqrt{2}} \end{bmatrix} \rangle = t + i,$$

and hence

$$W(A) \cap \{z \in \mathbb{C} : \operatorname{Im} z = 1\} = \{t + i : t \in W(\operatorname{Im} B)\}.$$

For any $x, y \in \mathbb{C}^k$ with $||x||^2 + ||y||^2 = 1$, we now check that $2 \operatorname{Re} \langle Bx, y \rangle = 1$ if and only if $y = Bx, x \in M$ and $||x|| = ||y|| = 1/\sqrt{2}$. Suppose that $2 \operatorname{Re} \langle Bx, y \rangle = 1$, then

$$1 = 2 \operatorname{Re} \langle Bx, y \rangle \leq 2 |\langle Bx, y \rangle| \leq 2 ||Bx|| ||y|| \leq 2 ||x|| ||y|| \leq 2 \cdot \frac{||x||^2 + ||y||^2}{2} = 1.$$

We obtain that $||x|| = ||y|| = 1/\sqrt{2}$, ||B|| = 1 and ||Bx|| = ||B|| ||x|| = ||x||. This implies that

$$x \in \ker(I - B^*B) = M.$$

On the other hand, since $|\langle Bx, y \rangle| = ||Bx|| ||y||$, it follows that $y = e^{i\theta}Bx$. Hence

$$1 = 2\operatorname{Re}\langle Bx, y \rangle = 2\operatorname{Re}\left(e^{-i\theta} \|Bx\|^2\right) = 2\operatorname{Re}\left(e^{-i\theta} \|x\|^2\right) = \operatorname{Re}\left(\cos\theta - i\sin\theta\right) = \cos\theta.$$

We thus get y = Bx. Moreover,

$$2\operatorname{Im}\langle y,x\rangle = 2\operatorname{Im}\|x\|^2 \langle B\frac{x}{\|x\|}, \frac{x}{\|x\|}\rangle = \operatorname{Im}\langle B\frac{x}{\|x\|}, \frac{x}{\|x\|}\rangle \in W(\operatorname{Im}(P_M B|_M)),$$

and

$$W(A) \cap \{z \in \mathbb{C} : \operatorname{Re} z = 1\} \subseteq \{1 + it : t \in W(\operatorname{Im} B_M)\}.$$

Conversely, for any unit vector $x \in M$, then ||Bx|| = ||x|| = 1. A simple computation shows that

$$\langle A \begin{bmatrix} \frac{x}{\sqrt{2}} \\ \frac{Bx}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{x}{\sqrt{2}} \\ \frac{Bx}{\sqrt{2}} \end{bmatrix} \rangle = 1 + i \langle (\operatorname{Im} B_M) x, x \rangle,$$

and hence

$$W(A) \cap \{z \in \mathbb{C} : \operatorname{Re} z = 1\} = \{1 + it : t \in W(\operatorname{Im} B_M)\}\$$

Note that

$$\begin{bmatrix} I_k & 0 \\ 0 & -I_k \end{bmatrix} A \begin{bmatrix} I_k & 0 \\ 0 & -I_k \end{bmatrix} = -A.$$

Hence our assertion follows from the fact that W(A) = W(-A). \Box

We remark that if $B = J_k$, then $W(\text{Im}B) = [-\cos(\pi/(k+1)), \cos(\pi/(k+1))]$ and $W(\text{Im}B_M) = [-\cos(\pi/k), \cos(\pi/k)]$. Therefore, the numerical range W(A(2k, -1)) can be described clearly.

For odd n = 2k - 1, $k \ge 3$, Chien and Nakazato show that W(A(2k - 1, -1)) is the convex hull of the two ellipses $e^{i\pi/4}E$ and $e^{3i\pi/4}E$, where *E* is the ellipse given by the equation: $x^2/(1 + \cos(\pi/k)) + y^2/(1 - \cos(\pi/k)) = 1$ (cf. [3, Theorem 7]). Now we can see that

$$e^{i\pi/4}E = \partial W \left(\begin{bmatrix} (1+i)\sqrt{\cos(\pi/k)} & 2\sqrt{1-\cos(\pi/k)} \\ 0 & (-1-i)\sqrt{\cos(\pi/k)} \end{bmatrix} \right)$$

and

$$e^{3i\pi/4}E = \partial W \left(\begin{bmatrix} (-1+i)\sqrt{\cos(\pi/k)} & 2\sqrt{1-\cos(\pi/k)} \\ 0 & (1-i)\sqrt{\cos(\pi/k)} \end{bmatrix} \right)$$

Moreover, these two ellipses $e^{i\pi/4}E$ and $e^{3i\pi/4}E$ are inscribed in the square Q. Notice that if B is the k-by-(k-1) submatrix of J_k^* obtained by deleting its last column, then $B^*B = I_{k-1}$. On the other hand, if $\{e_1, \ldots, e_{2k-1}\}$ denotes the standard basis for \mathbb{C}^{2k-1} and P is the (2k-1)-by-(2k-1) permutation matrix so that $Pe_{2j-1} = e_j$ for $1 \le j \le k$ and $Pe_{2j} = e_{k+j}$ for $1 \le j \le k-1$, then

$$PA(2k-1,-1)P^* = \begin{bmatrix} 0 & I'_k + B \\ -I'_k + B^* & 0 \end{bmatrix},$$

where I'_k is the *k*-by-(k-1) submatrix of I_k obtained by deleting its last column. Therefore, we are interested in the numerical ranges of such a 2-by-2 block matrices for any *k*-by-(k-1) matrix *B* with $B^*B = I_{k-1}$. The next theorem shows that the numerical range of such 2-by-2 block matrix is also the convex hull of two ellipses.

Among other things, the k-by-(k-1) matrix B with $B^*B = I_{k-1}$ is a submatrix of an \mathscr{S}_k -matrix obtained by deleting its last column. Indeed, let T be an operator in \mathscr{S}_k . We will consider a special matrix representation for T. Since $K = \ker(I_k - T^*T)$ has codimension 1, there is an orthonormal basis $\{h_1, \dots, h_k\}$ of \mathbb{C}^k such that $\{h_1, \dots, h_{k-1}\}$ forms a basis for K. Let T have the matrix representation $[f_1 \cdots f_k]$ with respect to this basis, where each $f_i = Th_i$ represents a column vector. Since *K* consists of all vectors *x* in \mathbb{C}^k with the property ||Tx|| = ||x||, we have $||f_j|| = 1$ $(1 \le j \le k-1)$, $||f_k|| < 1$ and $f_i \perp f_j$ $(1 \le i \ne j \le k)$. Let $B = [f_1 \cdots f_{k-1}]$. It is clear that $B^*B = I_{k-1}$. We can see that $J_k^* \in \mathcal{S}_k$ and the standard basis $\{e_1, \dots, e_k\}$ for \mathbb{C}^k satisfies $\lor \{e_1, \dots, e_{k-1}\} = \ker(I_k - J_k J_k^*)$. Hence the result of Chien and Nakazato [3, Theorem 7] is a special case of the following theorem.

THEOREM 3.4. Suppose that B is an k-by-(k-1) $(k \ge 3)$ matrix with $B^*B = I_{k-1}$ and I'_k is the k-by-(k-1) submatrix of I_k obtained by deleting its last column. Let

$$A = \begin{bmatrix} 0 & I'_k + B \\ -I'^*_k + B^* & 0 \end{bmatrix} \in M_{2k-1}$$

then the numerical range

$$W(A) = W\left(\begin{bmatrix}\sqrt{\beta}(-1+i) & 2\sqrt{1-\beta}\\ 0 & \sqrt{\beta}(1-i)\end{bmatrix} \oplus \begin{bmatrix}\sqrt{(-\alpha)}(1+i) & 2\sqrt{1+\alpha}\\ 0 & \sqrt{(-\alpha)}(-1-i)\end{bmatrix}\right),$$

where $\alpha = \min \sigma(\operatorname{Im} B') \leq 0$, $\beta = \max \sigma(\operatorname{Im} B') \geq 0$ and $B' = I'^*_k B \oplus [0]$.

Proof. Let $\widetilde{A} = A \oplus [0]$, that is,

$$\widetilde{A} = \begin{bmatrix} 0 & I_k'' + B_1 \\ -I_k'' + B_1^* & 0 \end{bmatrix} \in M_{2k},$$

where $I_k'' = [I_k' \ 0] = I_{k-1} \oplus [0] \in M_k$ and $B_1 = [B \ 0] \in M_k$. Notice that

$$\operatorname{Re}\tilde{A} = \begin{bmatrix} 0 & B_1 \\ B_1^* & 0 \end{bmatrix}$$
 and $\operatorname{Im}\tilde{A} = \begin{bmatrix} 0 & -iI_k'' \\ iI_k'' & 0 \end{bmatrix}$.

Let $f(\theta) = \max \sigma(\operatorname{Re}(e^{-i\theta}\tilde{A}))$ for $\theta \in [0, 2\pi)$. Observe that

$$\operatorname{Re}\left(e^{-i\theta}\tilde{A}\right) = \cos\theta\operatorname{Re}\tilde{A} + \sin\theta\operatorname{Im}\tilde{A} = \begin{bmatrix} 0 & T_{\theta} \\ T_{\theta}^{*} & 0 \end{bmatrix},$$

where $T_{\theta} = \cos \theta \cdot B_1 - i \sin \theta \cdot I_k''$. Note that $\begin{bmatrix} 0 & T_{\theta} \\ T_{\theta}^* & 0 \end{bmatrix}$ is unitarily equivalent to $\begin{bmatrix} 0 & -T_{\theta} \\ -T_{\theta}^* & 0 \end{bmatrix}$. This gives $\sigma(\operatorname{Re}(e^{-i\theta}\tilde{A})) = \sigma(-\operatorname{Re}(e^{-i\theta}\tilde{A}))$. Hence

$$f(\theta) = \|\operatorname{Re}\left(e^{-i\theta}\tilde{A}\right)\| = \left\| \begin{bmatrix} 0 & T_{\theta} \\ T_{\theta}^* & 0 \end{bmatrix} \begin{bmatrix} 0 & T_{\theta} \\ T_{\theta}^* & 0 \end{bmatrix} \right\|^{1/2} = \left\| \begin{bmatrix} T_{\theta}T_{\theta}^* & 0 \\ 0 & T_{\theta}^*T_{\theta} \end{bmatrix} \right\|^{1/2}$$

Since $T_{\theta}^* T_{\theta} = I_k'' - \sin 2\theta \cdot \operatorname{Im} B'$ and $||T_{\theta}^* T_{\theta}|| = ||T_{\theta} T_{\theta}^*||$, we have

$$f(\theta) = \|I_k'' - \sin 2\theta \cdot \operatorname{Im} B'\|^{1/2}$$

=
$$\begin{cases} \sqrt{1 - \alpha \sin 2\theta}, & \text{if } 0 \leq \theta \leq \frac{\pi}{2} & \text{or } \pi \leq \theta \leq \frac{3\pi}{2}; \\ \sqrt{1 - \beta \sin 2\theta}, & \text{if } \frac{\pi}{2} \leq \theta \leq \pi & \text{or } \frac{3\pi}{2} \leq \theta \leq 2\pi. \end{cases}$$

Next, let

$$C = \begin{bmatrix} \sqrt{\beta}(-1+i) & 2\sqrt{1-\beta} \\ 0 & \sqrt{\beta}(1-i) \end{bmatrix}$$

and $g(\theta) = \max \sigma(\operatorname{Re}(e^{-i\theta}C))$ for $\theta \in [0, 2\pi)$. An easy computation shows that

$$\operatorname{Re}\left(e^{-i\theta}C\right) = \begin{bmatrix} -\sqrt{\beta}(\cos\theta - \sin\theta) & \sqrt{1-\beta}(\cos\theta - i\sin\theta) \\ \sqrt{1-\beta}(\cos\theta + i\sin\theta) & \sqrt{\beta}(\cos\theta - \sin\theta) \end{bmatrix}$$

and $g(\theta) = \sqrt{1 - \beta \sin 2\theta}$ for $\theta \in [\pi/2, \pi] \cup [3\pi/2, 2\pi]$. Similarly, let

$$D = \begin{bmatrix} \sqrt{(-\alpha)}(1+i) & 2\sqrt{1+\alpha} \\ 0 & \sqrt{(-\alpha)}(-1-i) \end{bmatrix}$$

and $h(\theta) = \max \sigma(\operatorname{Re}(e^{-i\theta}D))$ for all $\theta \in [0, 2\pi)$. Since

$$\operatorname{Re}\left(e^{-i\theta}D\right) = \begin{bmatrix}\sqrt{-\alpha}(\cos\theta + \sin\theta) & \sqrt{1+\alpha}(\cos\theta - i\sin\theta)\\\sqrt{1+\alpha}(\cos\theta + i\sin\theta) & -\sqrt{-\alpha}(\cos\theta + \sin\theta)\end{bmatrix},$$

it is easy to check that $h(\theta) = \sqrt{1 - \alpha \sin 2\theta}$ for $\theta \in [0, \pi/2] \cup [\pi, 3\pi/2]$. Hence we conclude that

$$f(\theta) = \begin{cases} h(\theta), \text{ if } 0 \leqslant \theta \leqslant \frac{\pi}{2} & \text{or } \pi \leqslant \theta \leqslant \frac{3\pi}{2}; \\ g(\theta), \text{ if } \frac{\pi}{2} \leqslant \theta \leqslant \pi & \text{or } \frac{3\pi}{2} \leqslant \theta \leqslant 2\pi, \end{cases}$$

or, $W(\tilde{A}) = W(A) = W(C \oplus D)$, thus completing the proof. \Box

Acknowledgement. The authors would like to thank the referee for many helpful suggestions and careful reading of the paper.

REFERENCES

- [1] H. BERCOVICI, Operator Theory and Arithmetic in H[∞], Amer. Math. Soc., Providence, RI, 1988.
- [2] R. BHATIA, Matrix analysis, Springer, New York, 1997
- [3] M. T. CHIEN, H. NAKAZATO, *The numerical range of a tridiagonal operator*, J. Math. Anal. Appl. 373 (2011) 297–304.
- [4] H.-L. GAU, Numerical ranges of reducible companion matrices, Linear Algebra Appl. 432 (2010) 1310–1321.
- [5] H.-L. GAU, P. Y. WU, Numerical range of $S(\phi)$, Linear Multilinear Algebra 45 (1998) 49–73.
- [6] H.-L. GAU, P. Y. WU, Lucas' theorem refined, Linear Multilinear Algebra 45 (1999) 359-373.
- [7] H.-L. GAU, P. Y. WU, Finite Blaschke products of contractions, Linear Algebra Appl. 368 (2003) 359–370.
- [8] H.-L. GAU, P. Y. WU, Numerical range and Poncelet property, Taiwanese J. Math. 7 (2003) 173–193.
- [9] H.-L. GAU, P. Y. WU, Unitary part of a contraction, J. Math. Anal. Appl. 366 (2010) 700-705.
- [10] H.-L. GAU, P. Y. WU, Defect indices of powers of a contraction, Linear Algebra Appl. 432 (2010) 2824–2833.
- [11] K. E. GUSTAFSON, D. K. M. RAO, Numerical range, the field of values of linear operators and matrices, Springer, New York, 1997.

- [12] R. A. HORN, C. R. JOHNSON, *Topics in matrix analysis*, Cambridge University Press, Cambridge, 1991.
- [13] C.-K. LI, A note on the unitary part of a contraction, Linear Algebra Appl. 433 (2010) 1533–1535.
- [14] B. MIRMAN, Numerical ranges and Poncelet curves, Linear Algebra Appl. 281 (1998) 59-85.
- [15] B. SZ.-NAGY, C. FOIAŞ, Harmonic Analysis of Operators on Hilbert Space, North Holland, Amsterdam, 1970.
- [16] D. SARASON, Generalized interpolation in H[∞], Trans. Amer. Math. Soc. 127 (1967) 179–203.
- [17] P. Y. WU, Polar decompositions of $C_0(N)$ contractions, Integral Equations Operator Theory, 56 (2006) 559–569.
- [18] S.-C. WU, A study on matrices of defect index one, Master Thesis, National Central University, Taiwan, 2008.

(Received October 21, 2011)

Cheng-Chun Chang Department of Mathematics National Central University Chung-Li 320, Taiwan e-mail: kent.chang0709@gmail.com

Hwa-Long Gau Department of Mathematics National Central University Chung-Li 320, Taiwan e-mail: hlgau@math.ncu.edu.tw

Ya-Shu Wang Department of Mathematics National Central University Chung-Li 320, Taiwan e-mail: wangys@math.ncu.edu.tw

> Szu-Chieh Wu Department of Mathematics National Central University Chung-Li 320, Taiwan e-mail: pmat7@hotmail.com

> Ya-Ting Yeh Department of Mathematics National Central University Chung-Li 320, Taiwan e-mail: pmat7@hotmail.com

Operators and Matrices www.ele-math.com oam@ele-math.com