# MATRICES WITH DEFECT INDEX ONE 

Cheng-Chun Chang, Hwa-Long Gau, Ya-Shu Wang, Szu-Chieh Wu and Ya-Ting Yeh

(Communicated by C.-K. Li)


#### Abstract

In this paper, we give some characterizations of matrices which have defect index one. Recall that an $n$-by- $n$ matrix $A$ is said to be of class $\mathscr{S}_{n}$ (resp., $\mathscr{S}_{n}^{-1}$ ) if its eigenvalues are all in the open unit disc (resp., in the complement of closed unit disc) and rank $\left(I_{n}-A^{*} A\right)=1$. We show that an $n$-by- $n$ matrix $A$ is of defect index one if and only if $A$ is unitarily equivalent to $U \oplus C$, where $U$ is a $k$-by- $k$ unitary matrix, $0 \leqslant k<n$, and $C$ is either of class $\mathscr{S}_{n-k}$ or of class $\mathscr{S}_{n-k}^{-1}$. We also give a complete characterization of polar decompositions, norms and defect indices of powers of $\mathscr{S}_{n}^{-1}$-matrices. Finally, we consider the numerical ranges of $\mathscr{S}_{n}^{-1}$-matrices and $\mathscr{S}_{n}$-matrices, and give a generalization of a result of Chien and Nakazato on tridiagonal matrices (cf. [3, Theorem 7]).


## 1. Introduction

Let $M_{n}$ be the algebra of $n$-by- $n$ complex matrices and $A \in M_{n}$. The defect index $d_{A}$ of $A$ is, by definition, $\operatorname{rank}\left(I_{n}-A^{*} A\right)$, that is, the dimension of the range of $I_{n}-A^{*} A$. It is a way to measure how far $A$ is from the unitary matrices. In this paper, we give some characterizations of matrices which have defect index one.

Recall that a matrix $A \in M_{n}$ is said to be of class $\mathscr{S}_{n}$ if its eigenvalues are all in the open unit disc $\mathbb{D}(\equiv\{z \in \mathbb{C}:|z|<1\})$ and $d_{A}=1$. The $n$-by- $n$ Jordan block

$$
J_{n}=\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

is one example. Such operators and their infinite-dimensional analogues $S(\phi)$ ( $\phi$ an inner function) were first studied by Sarason [16]. They play the role of the building blocks of the Jordan model for $C_{0}$ contractions [1, 15]. In particular, if an $\mathscr{S}_{n}$-matrix $A$ is invertible, then

$$
d_{A^{-1}}=\operatorname{rank}\left(I_{n}-\left(A^{-1}\right)^{*}\left(A^{-1}\right)\right)=\operatorname{rank}\left(\left(A^{-1}\right)^{*}\left(A^{*} A-I_{n}\right)\left(A^{-1}\right)\right)=1
$$

Mathematics subject classification (2010): 47A12, 15A60.
Keywords and phrases: polar decomposition, defect index, numerical range, $\mathscr{S}_{n}$-matrix, $\mathscr{S}_{n}^{-1}$ matrix.

Research supported in part by the National Science Council of the Republic of China under project NSC 99-2115-M-008-008.
and all eigenvalues of $A^{-1}$ are in $\mathbb{C} \backslash \overline{\mathbb{D}}$, the complement of the closed unit disc. Therefore, we recall that a matrix $A \in M_{n}$ is said to be of class $\mathscr{S}_{n}^{-1}$ if its eigenvalues are all in $\mathbb{C} \backslash \overline{\mathbb{D}}$ and $d_{A}=1$. It is easily seen that if $A$ is in $\mathscr{S}_{n}^{-1}$ (resp., $\mathscr{S}_{n}$ ), then $A^{*}$ and $e^{i \theta} A$ are also in $\mathscr{S}_{n}^{-1}$ (resp., $\mathscr{S}_{n}$ ). Moreover, if $A$ is in $\mathscr{S}_{n}^{-1}$, then $A$ has no unitary part, $A$ is invertible, and $A^{-1}$ is in $\mathscr{S}_{n}$.

In Section 2, we first give a complete characterization of matrices which have defect index one. We show that a matrix $A \in M_{n}$ is of defect index one if and only if $A$ is unitarily equivalent to $U \oplus C$, where $U \in M_{k}, 0 \leqslant k<n$, is unitary, and $C$ is either in $\mathscr{S}_{n-k}$ or in $\mathscr{S}_{n-k}^{-1}$. In recent years, properties of $\mathscr{S}_{n}$-matrices have been intensely studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention to $\mathscr{S}_{n}^{-1}$ matrices in the rest of this section. We will give a complete characterization of polar decompositions, norms and defect indices of powers of $\mathscr{S}_{n}^{-1}$-matrices.

In Section 3, we take up the numerical ranges of $\mathscr{S}_{n}^{-1}$-matrices and $\mathscr{S}_{n}$-matrices. From Proposition 2.4 (e), an $\mathscr{S}_{n}^{-1}$-matrix $A$ is unitarily equivalent to a polar decomposition $U D_{t}$, where $U$ is unitary and $D_{t}=\operatorname{diag}(t, 1, \cdots, 1)$ for some $t>1$. We show that if $0 \in W(U)$, then $W\left(U D_{t_{1}}\right) \subseteq W\left(U D_{t_{2}}\right)$ for $1 \leqslant t_{1} \leqslant t_{2}$. Among other things, recall that an operator $A$ in $\mathscr{S}_{n}$ always has the matrix representation $\left[f_{1} \cdots f_{n}\right]$ so that $\left\|f_{j}\right\|=1(1 \leqslant j \leqslant n-1),\left\|f_{n}\right\|<1$ and $f_{i} \perp f_{j}(1 \leqslant i \neq j \leqslant n)$. We show that if $B=\left[f_{1} \cdots f_{n-1}\right]$, then the numerical range of the 2-by-2 block matrix

$$
\left[\begin{array}{cc}
0 & I_{n}^{\prime}+B \\
-I_{n}^{\prime *}+B^{*} & 0
\end{array}\right] \in M_{2 n-1}
$$

is the convex hull of two ellipses, where $I_{n}^{\prime}$ is the $n$-by- $(n-1)$ submatrix of $I_{n}$ obtained by deleting its last column. This generalizes a result of Chien and Nakazato on tridiagonal matrices (cf. [3, Theorem 7]).

## 2. Defect indices of powers, polar decompositions and norms

We start by giving a complete characterization of matrices which have defect index one. For abbreviation, the notation $A \cong B$ means that $A$ is unitarily equivalent to $B$ for any $A, B \in M_{n}$.

THEOREM 2.1. Let $A$ be an $n-b y-n$ matrix. Then $d_{A}=1$ if and only if $A$ is unitarily equivalent to $U \oplus C$, where $U \in M_{k}, 0 \leqslant k<n$, is unitary, and $C$ is either in $\mathscr{S}_{n-k}$ or in $\mathscr{S}_{n-k}^{-1}$.

The proof depends on the following lemma.
Lemma 2.2. Let $A$ be an $n-b y-n$ matrix with $d_{A} \leqslant 1$.
(a) If $A=\left[\begin{array}{rr}A^{\prime} & B \\ 0 & C\end{array}\right]$, where $A^{\prime} \in M_{k}, 1 \leqslant k \leqslant n$, then $d_{A^{\prime}} \leqslant 1$ and $d_{C} \leqslant 1$.
(b) If $n=2$ and $A=\left[\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right]$, then $\left|a_{12}\right|^{2}=\left(1-\left|a_{11}\right|^{2}\right)\left(1-\left|a_{22}\right|^{2}\right)$.
(c) If $A=\left[\begin{array}{ll}U & B \\ 0 & C\end{array}\right]$, where $U \in M_{k}, 1 \leqslant k<n$, is unitary, then $B=0$.
(d) If $A=\left[t_{i j}\right]_{i, j=1}^{n}$ is an upper triangular matrix with $\left|t_{i i}\right|=1$ for all $i, 1 \leqslant i \leqslant n$, then $t_{i j}=0$ for all $i \neq j$.

Proof. (a) It is easily seen that

$$
I_{n}-A^{*} A=\left[\begin{array}{cc}
I_{k}-A^{*} A^{\prime} & * \\
* & *
\end{array}\right] \quad \text { and } \quad I_{n}-A A^{*}=\left[\begin{array}{cc}
* & * \\
* & I_{n-k}-C C^{*}
\end{array}\right] .
$$

Hence $d_{A^{\prime}}=\operatorname{rank}\left(I_{k}-A^{*} A^{\prime}\right) \leqslant \operatorname{rank}\left(I_{n}-A^{*} A\right)=d_{A} \leqslant 1$ and $d_{C}=d_{C^{*}} \leqslant d_{A^{*}}=d_{A} \leqslant 1$ as asserted.
(b) A simple computation shows that

$$
I_{2}-A^{*} A=\left[\begin{array}{cc}
1-\left|a_{11}\right|^{2} & \overline{a_{11}} a_{12} \\
a_{11} \overline{a_{12}} & 1-\left(\left|a_{12}\right|^{2}+\left|a_{22}\right|^{2}\right)
\end{array}\right] .
$$

Since $d_{A} \leqslant 1, I_{2}-A^{*} A$ is not invertible. Thus

$$
0=\operatorname{det}\left(I_{2}-A^{*} A\right)=\left(1-\left|a_{11}\right|^{2}\right)\left(1-\left|a_{22}\right|^{2}\right)-\left|a_{12}\right|^{2}
$$

Hence $\left|a_{12}\right|^{2}=\left(1-\left|a_{11}\right|^{2}\right)\left(1-\left|a_{22}\right|^{2}\right)$ as asserted.
(c) Note that

$$
I_{n}-A^{*} A=\left[\begin{array}{cc}
0 & -U^{*} B \\
-B^{*} U & I_{n-k}-\left(B^{*} B+C^{*} C\right)
\end{array}\right]
$$

Since $\operatorname{rank}\left(I_{n}-A^{*} A\right)=d_{A} \leqslant 1$, it implies that every column of $I_{n}-A^{*} A$ is a scalar multiple of the first column of $I_{n}-A^{*} A$. Hence we conclude that $U^{*} B=0$ or $B=0$, since $U$ is unitary.
(d) Let $A_{k}=\left[t_{i j}\right]_{i, j=1}^{k}$ for $k=1, \cdots, n$. From (a), we have $d_{A_{k}} \leqslant 1$ for all $k$. Since $d_{A_{2}} \leqslant 1$, by (b), we obtain that $t_{12}=0$. Thus $A_{2}=\left[\begin{array}{cc}t_{11} & 0 \\ 0 & t_{22}\end{array}\right]$ is unitary. Since $d_{A_{3}} \leqslant 1$ and $A_{2}$ is unitary, by (c), we deduce that $A_{3}=\operatorname{diag}\left(t_{11}, t_{22}, t_{33}\right)$ is unitary. Repeating this argument gives us $A=A_{n}=\operatorname{diag}\left(t_{11}, \cdots, t_{n n}\right)$. This completes the proof.

Proof of Theorem 2.1. Assume that $d_{A}=1$. Let $\sigma(A)=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$. We want to show that either $\left|\lambda_{j}\right| \leqslant 1$ for all $j$, or $\left|\lambda_{j}\right| \geqslant 1$ for all $j$. Indeed, if there exist $\left|\lambda_{i_{0}}\right|>1$ and $\left|\lambda_{j_{0}}\right|<1$, then $A$ is unitarily equivalent to an upper triangular matrix $\left[a_{i j}\right]_{i, j=1}^{n}$ such that $a_{11}=\lambda_{i_{0}}, a_{22}=\lambda_{j_{0}}$ and $a_{i j}=0$ for all $1 \leqslant j<i \leqslant n$. Let $A_{2}=\left[\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right]$ be the 2-by-2 principal submatrix of $\left[a_{i j}\right]_{i, j=1}^{n}$. Then $A \cong\left[\begin{array}{cc}A_{2} & * \\ 0 & *\end{array}\right]$. By Lemma 2.2 (b), we have

$$
0 \leqslant\left|a_{12}\right|^{2}=\left(1-\left|a_{11}\right|^{2}\right)\left(1-\left|a_{22}\right|^{2}\right)=\left(1-\left|\lambda_{i_{0}}\right|^{2}\right)\left(1-\left|\lambda_{j_{0}}\right|^{2}\right)<0
$$

a contradiction, since $\left|\lambda_{i_{0}}\right|>1$ and $\left|\lambda_{j_{0}}\right|<1$. Hence we conclude that either $\sigma(A) \subseteq \overline{\mathbb{D}}$ or $\sigma(A) \subseteq \mathbb{C} \backslash \mathbb{D}$.

Now, if $\sigma(A) \subseteq \mathbb{D}$ (resp., $\sigma(A) \subseteq \mathbb{C} \backslash \overline{\mathbb{D}}$ ), since $d_{A}=1$, then $A \in \mathscr{S}_{n}$ (resp., $A \in \mathscr{S}_{n}^{-1}$ ) as required. Therefore, we may assume that $A$ is unitarily equivalent to an
upper triangular matrix $\left[t_{i j}\right]_{i, j=1}^{n}$ such that $\left|t_{i i}\right|=1$ for all $1 \leqslant i \leqslant k(1 \leqslant k \leqslant n)$ and $\left|t_{j j}\right| \neq 1$ for all $k+1 \leqslant j \leqslant n$. Write $\left[t_{i j}\right]_{i, j=1}^{n}=\left[\begin{array}{cc}U & B \\ 0 & C\end{array}\right]$, where $U=\left[t_{i j}\right]_{i, j=1}^{k} \in M_{k}$. From Lemma 2.2 (a), we have $d_{U} \leqslant 1$. Since $\left|t_{i i}\right|=1$ for all $1 \leqslant i \leqslant k$, by Lemma 2.2 (d), we infer that $U=\operatorname{diag}\left(t_{11}, \cdots, t_{k k}\right)$ and $k<n$, because $d_{A}=1 \neq 0$. Moreover, by Lemma 2.2 (c), we obtain that $B=0$. Therefore, $A \cong U \oplus C$ and $d_{C}=d_{A}=1$. If $\sigma(A) \subseteq \overline{\mathbb{D}}$, then $\left|t_{j j}\right|<1$ for all $j, k+1 \leqslant j \leqslant n$, and it follows that $C=\left[t_{i j}\right]_{i, j=k+1}^{n} \in$ $\mathscr{S}_{n-k}$. On the other hand, $\sigma(A) \subseteq \mathbb{C} \backslash \mathbb{D}$ implies that $\left|t_{j j}\right|>1$ for all $j, k+1 \leqslant j \leqslant n$. Hence $C$ is in $\mathscr{S}_{n-k}^{-1}$ as asserted.

The converse is trivial.

For an $n$-by- $n$ matrix $A$ with $d_{A}=1$, if $A$ has no unitary part, then $A$ is either in $\mathscr{S}_{n}$ or in $\mathscr{S}_{n}^{-1}$ from Theorem 2.1. In recent years, properties of $\mathscr{S}_{n}$-matrices have been intensely studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention to $\mathscr{S}_{n}^{-1}$-matrices in the rest of this section. We generalize some known results about $\mathscr{S}_{n}$-matrices to $\mathscr{S}_{n}^{-1}$-matrices.

In [6], Gau and Wu gave an upper triangular matrix representation for $\mathscr{S}_{n}$-matrices. In [4], the author gave an upper triangular matrix representation for $\mathscr{S}_{n}^{-1}$-matrix without proof, because the proof is the same as the one in [6, Corollary 1.3]. We present it here for easy reference. For its detailed proof, the reader may consult [18, Theorem 3.8].

Proposition 2.3. An operator is in $\mathscr{S}_{n}^{-1}$ if and only if it has the upper triangular matrix representation $\left[t_{i j}\right]_{i, j=1}^{n}$, where $\left|t_{i i}\right|>1$ for all $i$ and $t_{i j}=s_{i j}\left(\left|t_{i i}\right|^{2}-\right.$ $1)^{1 / 2}\left(\left|t_{j j}\right|^{2}-1\right)^{1 / 2}$ for $i<j$ with

$$
s_{i j}= \begin{cases}\prod_{k=i+1}^{j-1}\left(\bar{t}_{k k}\right) & \text { if } j>i+1 \\ 1 & \text { if } j=i+1\end{cases}
$$

Wu gave a complete characterization of the polar decomposition of an $\mathscr{S}_{n}$-matrix [17]. Here, we prove an analogue of Wu's result for $\mathscr{S}_{n}^{-1}$-matrices.

Proposition 2.4. The following are equivalent for an n-by-n matrix $A$ :
(a) A is an $\mathscr{S}_{n}^{-1}$-matrix;
(b) $A=U\left(I_{n}+s x x^{*}\right)$, where $U$ is a unitary matrix with distinct eigenvalues, $s>0$ and $x$ is a unit cyclic vector for $U$;
(c) A is unitarily equivalent to $U^{\prime}\left(I_{n}+s x^{\prime} x^{\prime *}\right)$, where $U^{\prime}$ is a diagonal unitary matrix with distinct eigenvalues, $s>0$ and $x^{\prime}$ is a unit vector with all components nonzero;
(d) $A=U\left(I_{n}+s P\right)$, where $U$ is a unitary matrix, $s>0$ and $P$ is a rank-one (orthogonal) projection whose kernel contains no eigenvector of $U$ and whose range contains a cyclic vector of $U$;
(e) $A$ is unitarily equivalent to $V D$, where $V$ is a unitary matrix such that all its eigenvectors have a nonzero first component and it has $\left[\begin{array}{lll}1 & 0 & \cdots 0\end{array}\right]^{T}$ as a cyclic vector, and $D$ is the diagonal matrix $\operatorname{diag}(t, 1, \ldots, 1)$ with $t>1$.

Proof. (a) $\Rightarrow$ (b): Notice that for any $A \in \mathscr{S}_{n}^{-1}, A$ is invertible and $A^{-1} \in \mathscr{S}_{n}$. It follows that $\left(A^{-1}\right)^{*} \in \mathscr{S}_{n}$. By [17, Proposition 3.4], there exists a unitary matrix $U$ with distinct eigenvalues, $0<r \leqslant 1$ and a unit cyclic vector $x$ for $U$ such that

$$
\left(A^{-1}\right)^{*}=U\left(I_{n}-r x x^{*}\right) .
$$

Thus $A=U\left(I_{n}-r x x^{*}\right)^{-1}$. Since $I_{n}-r x x^{*}$ is invertible and $x$ is a unit vector, we deduce that $0<r<1$ and

$$
\left(I_{n}-r x x^{*}\right)^{-1}=I_{n}+\sum_{j=1}^{\infty}\left(r x x^{*}\right)^{j}=I_{n}+\sum_{j=1}^{\infty} r^{j} x x^{*}=I_{n}+\frac{r}{1-r} x x^{*}
$$

Hence $A=U\left(I_{n}+s x x^{*}\right)$, where $s=r /(1-r)>0$.
(b) $\Rightarrow$ (a): If $A=U\left(I_{n}+s x x^{*}\right)$ as in (b), then $A^{*} A=I_{n}+\left(2 s+s^{2}\right) x x^{*}$. Since $x x^{*}$ is a rank one matrix, we have $d_{A}=\operatorname{rank}\left(\left(2 s+s^{2}\right) x x^{*}\right)=1$. We will check that $\sigma(A) \subseteq \mathbb{C} \backslash \overline{\mathbb{D}}$. On the contrary, suppose that there is a unit vector $y \in \mathbb{C}^{n}$ such that $A y=\lambda y$ for some $|\lambda| \leqslant 1$. Then

$$
\begin{aligned}
1 & \geqslant\|\lambda y\|^{2}=\|A y\|^{2}=\left\|\left(I_{n}+s x x^{*}\right) y\right\|^{2} \\
& =\left\langle\left(I_{n}+s x x^{*}\right)^{2} y, y\right\rangle=\|y\|^{2}+\left(s^{2}+2 s\right)|\langle x, y\rangle|^{2} \\
& =1+\left(s^{2}+2 s\right)|\langle x, y\rangle|^{2} \geqslant 1 .
\end{aligned}
$$

We thus get $\langle x, y\rangle=0$, since $s>0$. Moreover,

$$
\lambda y=A y=U\left(I_{n}+s x x^{*}\right) y=U y
$$

Since $y$ is an eigenvector of $U$, it follows that $\langle x, y\rangle \neq 0$ because $x$ is a cyclic vector for $U$. This is a contradiction. Hence we conclude that $A$ is an $\mathscr{S}_{n}^{-1}$-matrix.

For the other equivalences, the proofs are essentially the same as in [17, Proposition 3.4]. Hence we omit the proofs.

The following proposition shows how the characteristic polynomial of an $\mathscr{S}_{n}^{-1}$ matrix $A$ can be expressed in terms of $s$ and the entries of $U^{\prime}$ and $x^{\prime}$ in Proposition 2.4 (c). It is an analogue of [17, Proposition 3.5] for $\mathscr{S}_{n}^{-1}$-matrices, and its proof is omitted because it is essentially the same as the one for [17, Proposition 3.5].

Proposition 2.5. Let $A$ be an $\mathscr{S}_{n}^{-1}$-matrix with polar decomposition $U^{\prime}\left(I_{n}+\right.$ $\left.s x^{\prime} x^{\prime *}\right)$ as in Proposition 2.4 (c). If $U^{\prime}$ has eigenvalues $u_{1}, \cdots, u_{n}$ and $x^{\prime}=\left[x_{1} \cdots x_{n}\right]^{T}$, then the characteristic polynomial of $A$ is given by

$$
\sum_{j=1}^{n}\left|x_{j}\right|^{2}\left(z-u_{1}\right) \cdots\left(z-(1+s) u_{j}\right) \cdots\left(z-u_{n}\right)
$$

An $\mathscr{S}_{n}$-matrix $A$ may be not invertible, hence its polar decomposition is not unique (cf. [17, Proposition 3.6]). But every $\mathscr{S}_{n}^{-1}$-matrix is invertible, and thus its polar decomposition is unique. The following proposition shows this simple fact.

Proposition 2.6. Let $A$ be an $\mathscr{S}_{n}^{-1}$-matrix with polar decomposition $A=$ $U_{1}\left(I_{n}+s_{1} x_{1} x_{1}^{*}\right)=U_{2}\left(I_{n}+s_{2} x_{2} x_{2}^{*}\right)$ as in Proposition 2.4 (b). Then
(a) $s_{1}=s_{2}$,
(b) $x_{1}=\lambda x_{2}$ for some $\lambda,|\lambda|=1$, and
(c) $U_{1}=U_{2}$.

Proof. Since $I_{n}+s_{1} x_{1} x_{1}^{*}=\left(A^{*} A\right)^{1 / 2}=I_{n}+s_{2} x_{2} x_{2}^{*}$, (a) and (b) follow easily. Note that since $I_{n}+s_{1} x_{1} x_{1}^{*}$ is positive definite, it is invertible. Hence

$$
U_{1}=U_{2}\left(I_{n}+s_{2} x_{2} x_{2}^{*}\right)\left(I_{n}+s_{1} x_{1} x_{1}^{*}\right)^{-1}=U_{2}
$$

as asserted.

Proposition 2.3 says that an $\mathscr{S}_{n}^{-1}$-matrix is completely determined by its eigenvalues. Therefore, we give the norm of an $\mathscr{S}_{n}^{-1}$-matrix in terms of its eigenvalues in the next corollary. It is an easy consequence of Proposition 2.4 (e). Among other things, it's well-known that $\|A\|=1$ for all $A \in \mathscr{S}_{n}$.

Corollary 2.7. Let $A$ be an $\mathscr{S}_{n}^{-1}$-matrix with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. Then $\|A\|=\left|\lambda_{1} \cdots \lambda_{n}\right|$.

Proof. From Proposition 2.4 (e), $A$ can be written as a polar decomposition $A=$ $U D$, where $U$ is unitary and $D=\operatorname{diag}(t, 1, \cdots, 1)$ for some $t>1$. Hence

$$
\|A\|=\|U D\|=\|D\|=t=\operatorname{det} D=|\operatorname{det} U D|=|\operatorname{det} A|=\left|\lambda_{1} \cdots \lambda_{n}\right|
$$

as asserted.
For a matrix $A \in M_{n}, \operatorname{Re} A=\left(A+A^{*}\right) / 2$ and $\operatorname{Im} A=\left(A-A^{*}\right) /(2 i)$ are the real and imaginary parts of $A$, respectively.

In [5, Corollary 2.7], Gau and Wu show that if $A$ is in $\mathscr{S}_{n}$, then all eigenvalues of $\operatorname{Re} A$ and $\operatorname{Im} A$ are simple. Moreover, Gau [4, Theorem 2.5] shows that if $A$ is in $\mathscr{S}_{n}^{-1}$, then the maximal eigenvalue of $\operatorname{Re} A$ is simple. Here, we prove an analogue of Gau and Wu's result for $\mathscr{S}_{n}^{-1}$-matrices.

THEOREM 2.8. If $A$ is in $\mathscr{S}_{n}^{-1}$, then both $\operatorname{Re} A$ and $\operatorname{Im} A$ have simple eigenvalues.

Let $A=\left[t_{i j}\right]_{i, j=1}^{n}$ be an $\mathscr{S}_{n}^{-1}$-matrix represented as in Proposition 2.3, and let $A_{k}=\left[t_{i j}\right]_{i, j=1}^{k}$ for $k=1, \cdots, n$. Then $A_{k}$ is in $\mathscr{S}_{k}^{-1}$ from Proposition 2.3. Moreover, $e^{i \theta} A$ is also in $\mathscr{S}_{n}^{-1}$ for all $\theta \in \mathbb{R}$. Since $\operatorname{Im} A=\operatorname{Re}(-i A)$, we need only to prove the result for $\operatorname{Re} A$. Let $r$ be an eigenvalue of $\operatorname{Re} A$ and $K=\operatorname{ker}\left(r I_{n}-\operatorname{Re} A\right)$. If $\operatorname{dim} K \geqslant 2$, then there exists a nonzero vector $x \in K$ such that the $n$th entry of $x$ is zero. Therefore, Theorem 2.8 can be proven by the following lemma.

Lemma 2.9. Let $A$ be an $\mathscr{S}_{n}^{-1}$-matrix represented as in Proposition 2.3 and let $r$ be an eigenvalue of $\operatorname{Re} A$. If $x=\left[x_{1} \cdots x_{n}\right]^{T} \in \mathbb{C}^{n}$ is an eigenvector of $\operatorname{Re} A$ corresponding to the eigenvalue $r$, then $x_{n} \neq 0$.

Proof. The proof is by induction on $n$. For $n=2$, then $r=\max \sigma(\operatorname{Re} A)$ or $r=\min \sigma(\operatorname{Re} A)=-\max \sigma(\operatorname{Re}(-A))$. Hence our assertion follows from [4, Lemma 2.6].

Assume the assertion holds for $n-1$. We will prove it for $n$. Suppose that $x=$ $\left[x_{1} \cdots x_{n}\right]^{T}$ is a unit eigenvector of $\operatorname{Re} A$ corresponding to $r$. From [4, Lemma 2.6], we may assume that $r$ is neither the maximal eigenvalue nor the minimal eigenvalue of $\operatorname{Re} A$. We now show that $x_{n} \neq 0$. On the contrary, suppose that $x_{n}=0$. It implies that $\left(\operatorname{Re} A_{n-1}\right) y=r y$, where $A_{n-1}=\left[t_{i j}\right]_{i, j=1}^{n-1}$ is the $(n-1)$-by- $(n-1)$ principal submatrix of $A$ and $y=\left[x_{1} \cdots x_{n-1}\right]^{T} \in \mathbb{C}^{n-1}$. Thus $y$ is an eigenvector of $\operatorname{Re} A_{n-1}$ corresponding to the eigenvalue $r$. On the other hand, let us compute the $n$th and $(n-1)$ th entries of $\left(r I_{n}-\operatorname{Re} A\right) x$, we have

$$
\begin{equation*}
-\frac{1}{2} \sum_{j=1}^{n-2} x_{j} \bar{t}_{j, n}-\frac{1}{2} x_{n-1} \bar{t}_{n-1, n}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{1}{2} \sum_{j=1}^{n-2} x_{j} \bar{t}_{j, n-1}+x_{n-1}\left(r-\operatorname{Re} t_{n-1, n-1}\right)=0 \tag{2}
\end{equation*}
$$

By Proposition 2.3, we have

$$
\begin{equation*}
t_{j, n}=t_{j, n-1} \cdot \frac{\sqrt{\left|t_{n, n}\right|^{2}-1}}{\sqrt{\left|t_{n-1, n-1}\right|^{2}-1}} \cdot \bar{t}_{n-1, n-1} \tag{3}
\end{equation*}
$$

for $1 \leqslant j \leqslant n-2$. Substituting (3) into (1) yields

$$
\begin{equation*}
0=-\frac{\sqrt{\left|t_{n, n}\right|^{2}-1}}{2 \sqrt{\left|t_{n-1, n-1}\right|^{2}-1}} \cdot t_{n-1, n-1} \sum_{j=1}^{n-2} x_{j} \bar{t}_{j, n-1}-\frac{1}{2} x_{n-1} \bar{t}_{n-1, n} \tag{4}
\end{equation*}
$$

Substituting (2) into (4) we obtain

$$
0=-\frac{\sqrt{\left|t_{n n}\right|^{2}-1}}{\sqrt{\left|t_{n-1, n-1}\right|^{2}-1}} t_{n-1, n-1} x_{n-1}\left(r-\operatorname{Re} t_{n-1, n-1}\right)-\frac{1}{2} x_{n-1} \bar{t}_{n-1, n}
$$

By induction hypothesis, we have $x_{n-1} \neq 0$, which implies that

$$
-t_{n-1, n-1} \frac{\sqrt{\left|t_{n n}\right|^{2}-1}}{\sqrt{\left|t_{n-1, n-1}\right|^{2}-1}}\left(r-\operatorname{Re} t_{n-1, n-1}\right)=\frac{1}{2} \bar{t}_{n-1, n} .
$$

Thus $-t_{n-1, n-1}\left(r-\operatorname{Re} t_{n-1, n-1}\right)=\frac{1}{2}\left(\left|t_{n-1, n-1}\right|^{2}-1\right)$, and hence $t_{n-1, n-1}$ is real and $t_{n-1, n-1}=r \pm \sqrt{r^{2}-1}$. Since $t_{n-1, n-1}$ is real, it implies that $r^{2} \geqslant 1$ or $|r| \geqslant 1$. The result [4, Lemma 2.9 (1)] says that if $\lambda_{j}$ is the $j$ th largest eigenvalue of $\operatorname{Re} A$, then $\lambda_{2} \leqslant 1$. Note that $-\lambda_{n-1}$ is the second largest eigenvalue of $\operatorname{Re}(-A)$ and $-A \in \mathscr{S}_{n}^{-1}$, so by [4, Lemma 2.9 (1)] again, we have $-\lambda_{n-1} \leqslant 1$ or $\lambda_{n-1} \geqslant-1$. Now, since $r$ is neither the maximal eigenvalue nor the minimal eigenvalue of $\operatorname{Re} A$, by [4, Lemma
2.9 (1)], we have $-1 \leqslant \lambda_{n-1} \leqslant r \leqslant \lambda_{2} \leqslant 1$. Thus $|r|=1$. Consequently, we obtain $\left|t_{n-1, n-1}\right|=1$, a contradiction. Hence $x_{n} \neq 0$ as asserted.

We now restrict our attention to the defect indices of powers of an $\mathscr{S}_{n}^{-1}$-matrix. In recent years, the defect indices of powers of a contraction have been intensely studied (cf. [7, 9, 10, 13]). In particular, Gau and Wu [7, Theorem 3.1] have shown that for an $n$-by- $n$ contraction $A(\|A\| \leqslant 1)$, the following conditions are equivalent: (a) $A$ is in $\mathscr{S}_{n}$; (b) $\|A\|=\left\|A^{n-1}\right\|=1$ and $\left\|A^{n}\right\|<1$; (c) $d_{A^{k}}=k$ for all $k, 1 \leqslant k \leqslant n$; (d) $d_{A^{k}}=k$ for $k=n$ and for $k$ equal to some $k_{0}, 1 \leqslant k_{0}<n$. Notice that the norm of an $\mathscr{S}_{n}^{-1}$-matrix is greater than one, that is, it is not a contraction. Here, we prove an analogue of [7, Theorem 3.1] for $\mathscr{S}_{n}^{-1}$-matrices.

THEOREM 2.10. Let $A$ be an $n$-by-n matrix with $\|A\|>1$. Then the following conditions are equivalent:
(a) $A \in \mathscr{S}_{n}^{-1}$;
(b) $d_{A^{k}}=k$ for all $k, 1 \leqslant k \leqslant n$;
(c) $d_{A^{n}}=n$ and $d_{A}=1$.

Proof. (a) $\Rightarrow$ (b): Since $A^{-1}$ is in $\mathscr{S}_{n}$, by [7, theorem 3.1], we have $d_{A^{-k}}=k$ for all $k, 1 \leqslant k \leqslant n$. On the other hand, since $A^{k}$ is invertible and

$$
I_{n}-A^{k *} A^{k}=A^{k *}\left[A^{-k *} A^{-k}-I_{n}\right] A^{k}=-A^{k *}\left[I_{n}-A^{-k *} A^{-k}\right] A^{k}
$$

we deduce that $d_{A^{k}}=k$ for all $k, 1 \leqslant k \leqslant n$.
(b) $\Rightarrow$ (c): This is trivial.
(c) $\Rightarrow$ (a): Since $\|A\|>1$ and $d_{A}=1$, by Theorem 2.1 , we may assume that $A$ is unitarily equivalent to $U \oplus C$, where $U \in M_{k}$ is unitary, $0 \leqslant k<n$, and $C \in S_{n-k}^{-1}$. We obtain that

$$
A^{n} \cong\left[\begin{array}{cc}
U^{n} & 0 \\
0 & C^{n}
\end{array}\right]
$$

and hence

$$
I_{n}-A^{n *} A^{n} \cong\left[\begin{array}{lc}
0 & 0 \\
0 & I_{n-k}-C^{n *} C^{n}
\end{array}\right]
$$

But $d_{A^{n}}=n$, which clearly forces $A \cong C$.

For an $n$-by- $n$ matrix $A, d_{A^{n}}=n$ means that $A$ has no unitary part. Moreover, if $A$ is a contraction with $d_{A^{n}}=n$, [7, Theorem 3.1] shows that $d_{A}=1$ if and only if $d_{A^{k}}=k$ for some $k, 1 \leqslant k<n$. The following examples show that it is not the case for an $n$-by- $n$ matrix $A$ with $\|A\|>1$.

EXAMPLE 2.11. Let

$$
A=\left[\begin{array}{lll}
0 & \frac{1}{2} & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

then $\|A\|>1$. After a simple calculation, we have

$$
I_{3}-A^{*} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{3}{4} & 0 \\
0 & 0 & -3
\end{array}\right], \quad I_{3}-A^{2 *} A^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and $I_{3}-A^{3 *} A^{3}=I_{3}$. Thus, we have $d_{A^{2}}=2$ and $d_{A^{3}}=3$. But $d_{A}=3 \neq 1$.
Next, we construct a 4-by-4 matrix $A=B \oplus C$ such that $B^{2} \in \mathscr{S}_{2}^{-1}$ and $C^{2} \in \mathscr{S}_{2}$. Then $d_{A^{2}}=d_{B^{2}}+d_{C^{2}}=1+1=2$ and $d_{A^{4}}=d_{B^{4}}+d_{C^{4}}=2+2=4$. But, it is easily seen that $d_{A} \neq 1$.

Example 2.12. Let

$$
A=\left[\begin{array}{cccc}
\sqrt{2} & \frac{3}{2 \sqrt{2}} & 0 & 0 \\
0 & \sqrt{2} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{3}{4 \sqrt{2}} \\
0 & 0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Then $\left[\begin{array}{cc}\sqrt{2} & \frac{3}{2 \sqrt{2}} \\ 0 & \sqrt{2}\end{array}\right]^{2}=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right] \in \mathscr{S}_{2}^{-1},\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{3}{4 \sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right]^{2}=\left[\begin{array}{cc}\frac{1}{2} & \frac{3}{4} \\ 0 & \frac{1}{2}\end{array}\right] \in \mathscr{S}_{2}$ and $d_{A}=4 \neq 1$. But $d_{A^{2}}=2$ and $d_{A^{4}}=4$.

Let $A$ be an $n$-by- $n$ contraction and $H_{j}(A)=\operatorname{ker}\left(I_{n}-A^{j *} A^{j}\right)$ for $j=1, \cdots, n$. Since $\|A\| \leqslant 1$, we have $x \in H_{j}(A)$ if and only if $\left\|A^{j} x\right\|=\|x\|$. Moreover, $\left\|A^{j} y\right\| \leqslant$ $\left\|A^{j-1} y\right\| \leqslant \cdots \leqslant\|A y\| \leqslant\|y\|$ for all $y \in \mathbb{C}^{n}$. Therefore, $H_{j}(A) \subseteq H_{j-1}(A)$ for all $j$. On the other hand, let $V_{j}=H_{j}(A) \cap H_{j}\left(A^{*}\right)$, it is clear that $V_{j} \subseteq V_{j-1}$ for all $j$. Let $V_{\infty}=\bigcap_{j=1}^{\infty} V_{j}$, then $\left.A\right|_{V_{\infty}}$ is the unitary part of $A$. Therefore, $A$ has no unitary part if and only if $V_{k}=\{0\}$ for some $k$. Let $k(A)=\min \left\{k: 0 \leqslant k \leqslant \infty, V_{k}=V_{\infty}\right\}$. It was shown independently by Gau-Wu [9] and $\mathrm{Li}[13]$ that $k(A) \leqslant\lceil n / 2\rceil$. Moreover, they also showed that the equality $k(A)=\lceil n / 2\rceil$ holds if and only if one of the following holds. (a) $A \in \mathscr{S}_{n}$. (b) $n$ is even and $A$ is unitarily equivalent to $\left[e^{i t}\right] \oplus A_{1}$ with $t \in \mathbb{R}$ and $A_{1} \in \mathscr{S}_{n-1}$. (c) $n$ is even, $\left\|A^{n-2}\right\|=1>\left\|A^{n-1}\right\|$. The following theorem provides an analogue of the above result for $\mathscr{S}_{n}^{-1}$-matrices. Its proof is inspired by that of [13, Theorem 2].

THEOREM 2.13. Let $A$ be an $n-b y-n(n \geqslant 2)$ matrix with $\|A\|>1$ and $H_{j}(A)=$ $\operatorname{ker}\left(I_{n}-A^{j *} A^{j}\right)$ for $j=1,2, \cdots, n$. The following statements are equivalent:
(a) $A \in \mathscr{S}_{n}^{-1}$;
(b) $\operatorname{dim}\left[H_{k}(A) \cap H_{k}\left(A^{*}\right)\right]=n-2 k$, for all $1 \leqslant k \leqslant\lfloor n / 2\rfloor$, and $\operatorname{dim}\left[H_{k_{0}}(A) \cap\right.$ $\left.H_{k_{0}}\left(A^{*}\right)\right]=0$, where $k_{0}=\lceil n / 2\rceil$;
(c) $\operatorname{dim}\left[H_{1}(A) \cap H_{1}\left(A^{*}\right)\right]=n-2$ and $\operatorname{dim}\left[H_{k_{0}}(A) \cap H_{k_{0}}\left(A^{*}\right)\right]=0$, where $k_{0}=$ $\lceil n / 2\rceil$.

For its proof, we need the following lemmas.
Lemma 2.14. Let $A$ be an $n$-by-n matrix with $\operatorname{ker}\left(I_{n}-A^{*} A\right)=\operatorname{ker}\left(I_{n}-A A^{*}\right)$. If

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right] \quad \text { on } \mathbb{C}^{n}=\operatorname{ker}\left(I_{n}-A^{*} A\right) \oplus \operatorname{ran}\left(I_{n}-A^{*} A\right)
$$

then $A_{2}=0=A_{3}$ and $A_{1}$ is unitary.
Proof. By polar decomposition, write $A=U D$ where $U$ is unitary and $D=$ $\left(A^{*} A\right)^{1 / 2}$. Write $k=\operatorname{dim} \operatorname{ker}\left(I_{n}-A^{*} A\right)$,

$$
U=\left[\begin{array}{ll}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
I_{k} & D_{2} \\
D_{2}^{*} & D_{4}
\end{array}\right]
$$

on $\mathbb{C}^{n}=\operatorname{ker}\left(I_{n}-A^{*} A\right) \oplus \operatorname{ran}\left(I_{n}-A^{*} A\right)$. Note that $\operatorname{ker}\left(I_{n}-A^{*} A\right)=\operatorname{ker}\left(I_{n}-A A^{*}\right)$. Thus

$$
\operatorname{ran}\left(I_{n}-A A^{*}\right)=\operatorname{ker}\left(I_{n}-A A^{*}\right)^{\perp}=\operatorname{ker}\left(I_{n}-A^{*} A\right)^{\perp}=\operatorname{ran}\left(I_{n}-A^{*} A\right)
$$

where $S^{\perp}$ denotes the orthogonal complement of $S \subseteq \mathbb{C}^{n}$.
Since $U\left(I_{n}-A^{*} A\right)=\left(I_{n}-A A^{*}\right) U$, we have

$$
U\left(\operatorname{ran}\left(I_{n}-A^{*} A\right)\right) \subseteq \operatorname{ran}\left(I_{n}-A A^{*}\right)=\operatorname{ran}\left(I_{n}-A^{*} A\right)
$$

and

$$
U\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)\right) \subseteq \operatorname{ker}\left(I_{n}-A A^{*}\right)=\operatorname{ker}\left(I_{n}-A^{*} A\right)
$$

Hence $U_{2}=0=U_{3}$, and $U_{1}$ and $U_{4}$ are unitary. Moreover,

$$
A=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{4}
\end{array}\right]\left[\begin{array}{cc}
I_{k} & D_{2} \\
D_{2}^{*} & D_{4}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} & U_{1} D_{2} \\
U_{4} D_{2}^{*} & U_{4} D_{4}
\end{array}\right]
$$

Since $A\left(I_{n}-A^{*} A\right)=\left(I_{n}-A A^{*}\right) A$, it follows that $A\left(\operatorname{ran}\left(I_{n}-A^{*} A\right)\right) \subseteq \operatorname{ran}\left(I_{n}-A A^{*}\right)=$ $\operatorname{ran}\left(I_{n}-A^{*} A\right)$. Therefore, $U_{1} D_{2}=0$ or $D_{2}=0$, since $U_{1}$ is unitary. Hence

$$
\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array} A_{4}\right]=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{4} D_{4}
\end{array}\right]
$$

It is clear that $A_{2}=0=A_{3}$ and $A_{1}=U_{1}$ is unitary.
Lemma 2.15. If $A \in \mathscr{S}_{n}^{-1}$, then $\operatorname{ker}\left(I_{n}-A^{*} A\right)=\operatorname{ker}\left(I_{n}-A A^{*}\right)$ if and only if $n=1$.

Proof. If $n=1$, then $\operatorname{ker}\left(I_{n}-A^{*} A\right)=\{0\}=\operatorname{ker}\left(I_{n}-A A^{*}\right)$.
Conversely, if $\operatorname{ker}\left(I_{n}-A^{*} A\right)=\operatorname{ker}\left(I_{n}-A A^{*}\right)$, by Lemma 2.14, the restriction of $A$ on $\operatorname{ker}\left(I_{n}-A^{*} A\right)$ is unitary. Since $A \in \mathscr{S}_{n}^{-1}$ implies $A$ has no unitary part, it follows that $\operatorname{ker}\left(I_{n}-A^{*} A\right)=\{0\}$. Since $\operatorname{rank}\left(I_{n}-A^{*} A\right)=d_{A}=1$ implies

$$
n=\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)\right)+\operatorname{rank}\left(I_{n}-A^{*} A\right)=1
$$

the proof is complete.
Notice that for any $x \in \mathbb{C}^{n}$ and $A \in \mathscr{S}_{n}^{-1}$, we have $\|A x\| \geqslant\|x\|$. Indeed, by Proposition 2.4 (e), we may assume that $A=V D$, where $V \in M_{n}$ is unitary and $D=$ $\operatorname{diag}(t, 1, \ldots, 1) \in M_{n}, t>1$. Thus $\|A x\|=\|D x\| \geqslant\|x\|$. Moreover, if $x \in H_{k}(A)$ for some $k \geqslant 1$, then

$$
\|x\|=\left\|A^{k} x\right\| \geqslant\left\|A^{k-1} x\right\| \geqslant \cdots \geqslant\|A x\| \geqslant\|x\|
$$

Thus $x \in H_{j}(A)$ for all $1 \leqslant j \leqslant k$, and hence $H_{k}(A) \subseteq H_{k-1}(A)$ for all $k$. Among other things, since $A^{*} A-I_{n}=D^{2}-I_{n}$ is positive semi-definite, it follows that a vector $x$ is in $H_{k}(A)$ if and only if $\left\|A^{k} x\right\|=\|x\|$ for $k=1, \ldots, n$. We are now ready to prove Theorem 2.13.

Proof of Theorem 2.13. (a) $\Rightarrow$ (b): Let $V_{k}=H_{k}(A) \cap H_{k}\left(A^{*}\right)$ for $k=1, \ldots, n$. Since $A \in \mathscr{S}_{n}^{-1}$ implies $A^{*} \in \mathscr{S}_{n}^{-1}$, by the above paragraph, we have $V_{k+1} \subseteq V_{k}$ for all $k$. Moreover, we also deduce that a vector $x$ is in $V_{k}$ if and only if $\left\|A^{k} x\right\|=\left\|A^{* k} x\right\|=\|x\|$ for $k=1, \ldots, n$.

We first show that $A V_{k+1} \subseteq V_{k}$. Suppose $\left\{x_{1}, \ldots, x_{l}\right\}$ is an orthonormal basis for $V_{k+1}$. Since $V_{k+1} \subseteq V_{k}$, we let $\left\{x_{1}, \ldots, x_{p}\right\}$ be an orthonormal basis for $V_{k}$, where $p \geqslant l$. Let $x$ be a unit vector in $V_{k+1}$, then $\left\|A^{k}(A x)\right\|=1$. Since $V_{k+1} \subseteq V_{k} \subseteq \cdots \subseteq V_{1}$, it implies $A^{*} A x=x$ and

$$
\left\|A^{k *}(A x)\right\|=\left\|\left(A^{k-1}\right)^{*}\left(A^{*} A\right) x\right\|=\left\|\left(A^{k-1}\right)^{*} x\right\|=1
$$

Hence $A x \in V_{k}$ and $A V_{k+1} \subseteq V_{k}$. Similarly, we have $A^{*} V_{k+1} \subseteq V_{k}$.
We claim that $l \leqslant \max \{0, p-2\}$.
If $l=p$, then $A V_{k}=A V_{k+1} \subseteq V_{k}$. If $\alpha_{1} A x_{1}+\cdots+\alpha_{p} A x_{p}=0$ for some scalars $\alpha_{1}, \ldots, \alpha_{p}$, then $A^{*}\left(\alpha_{1} A x_{1}+\cdots+\alpha_{p} A x_{p}\right)=0$. It follows that $\alpha_{1} x_{1}+\cdots+\alpha_{p} x_{p}=0$ since $A^{*} A x_{j}=x_{j}$ for $j=1, \cdots, p$. But $\left\{x_{1}, \ldots, x_{p}\right\}$ is orthonormal, which implies that $\alpha_{1}=\cdots=\alpha_{p}=0$. Hence $\left\{A x_{1}, \cdots, A x_{p}\right\}$ is linearly independent and $A\left(V_{k}\right)=V_{k}$. Interchanging $A$ and $A^{*}$ in the preceding arguments yields $A^{*}\left(V_{k}\right)=V_{k}$. Therefore $A$ is unitarily equivalent to $\left[\begin{array}{rr}A_{11} & 0 \\ 0 & *\end{array}\right]$ on $\mathbb{C}^{n}=V_{k} \oplus V_{k}^{\perp}$, and $A_{11} \in M_{p}$ is unitary, which contradicts the fact that $A$ has no unitary part.

If $l=p-1$, let $U \in M_{n}$ be a unitary matrix such that $x_{1}, \ldots, x_{p}$ are the first $p$ columns of $U$. We have

$$
\widetilde{A} \equiv U^{*} A U=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

on $\mathbb{C}^{n}=\mathbb{C}^{p} \oplus \mathbb{C}^{n-p}$. Let $A_{11}=\left[\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right] \in M_{p}$ on $\mathbb{C}^{p}=\mathbb{C}^{p-1} \oplus \mathbb{C}$. Since $A V_{k+1} \subseteq V_{k}$, $A^{*} V_{k+1} \subseteq V_{k}$, and $V_{k+1}=\bigvee\left\{x_{1}, \cdots, x_{p-1}\right\}$, we obtain that

$$
\widetilde{A}=\left[\begin{array}{ccc}
C_{1} & C_{2} & 0 \\
C_{3} & C_{4} & y^{T} \\
0 & x & *
\end{array}\right] \quad \text { and } \quad \widetilde{A}^{*} \tilde{A}=\left[\begin{array}{cc}
A_{11}^{*} A_{11}+J * \\
* & *
\end{array}\right]
$$

where $x, y \in \mathbb{C}^{n-p}$ are nonzero vectors and

$$
J=A_{21}^{*} A_{21}=\left[\begin{array}{c}
0 \\
x^{*}
\end{array}\right]\left[\begin{array}{ll}
0 & x
\end{array}\right]=\operatorname{diag}\left(0, \ldots, 0,\|x\|^{2}\right)
$$

Since $V_{k} \subseteq \operatorname{ker}\left(I_{n}-A^{*} A\right)$ and $x_{j} \in V_{k}$ for $j=1, \cdots, p$, it follows that $\widetilde{A}^{*} \widetilde{A}=I_{p} \oplus B$ for some $B \in M_{n-p}$, and consequently

$$
A_{11}^{*} A_{11}=\left[\begin{array}{cc}
I_{p-1} & 0 \\
0 & 1-\|x\|^{2}
\end{array}\right]
$$

Symmetrically, we have

$$
A_{11} A_{11}^{*}=\left[\begin{array}{cc}
I_{p-1} & 0 \\
0 & 1-\|y\|^{2}
\end{array}\right]
$$

We now prove that $C_{2}$ and $C_{3}$ are zero matrices. Note that

$$
A_{11}^{*} A_{11}=\left[\begin{array}{l}
C_{1}^{*} C_{1}+C_{3}^{*} C_{3} C_{1}^{*} C_{2}+C_{3}^{*} C_{4} \\
C_{2}^{*} C_{1}+\overline{C_{4}} C_{3} C_{2}^{*} C_{2}+\overline{C_{4}} C_{4}
\end{array}\right]
$$

and

$$
A_{11} A_{11}^{*}=\left[\begin{array}{l}
C_{1} C_{1}^{*}+C_{2} C_{2}^{*} C_{1} C_{3}^{*}+C_{2} \overline{C_{4}} \\
C_{3} C_{1}^{*}+C_{4} C_{2}^{*} C_{3} C_{3}^{*}+C_{4} \overline{C_{4}}
\end{array}\right]
$$

It follows that $C_{2}^{*} C_{1}+\overline{C_{4}} C_{3}=0$, and hence $C_{2}^{*} C_{1} C_{1}^{*}+\overline{C_{4}} C_{3} C_{1}^{*}=0$. Combining $C_{1} C_{1}^{*}+$ $C_{2} C_{2}^{*}=I_{p-1}$ with $C_{3} C_{1}^{*}+C_{4} C_{2}^{*}=0$, we obtain that

$$
C_{2}^{*}\left(I_{p-1}-C_{2} C_{2}^{*}\right)-\left|C_{4}\right|^{2} C_{2}^{*}=0
$$

or $\left(1-\left\|C_{2}\right\|^{2}-\left|C_{4}\right|^{2}\right) C_{2}^{*}=0$. It implies that $C_{2}=0$, since $\left\|C_{2}\right\|^{2}+\left|C_{4}\right|^{2}=1-\|x\|^{2} \neq$ 1. Similarly, since $C_{3} C_{1}^{*} C_{1}+C_{4} C_{2}^{*} C_{1}=0$ and $\left\|C_{3}\right\|^{2}+\left|C_{4}\right|^{2}=1-\|y\|^{2} \neq 1$, we have $C_{3}=0$. Hence $\widetilde{A}=\left[\begin{array}{cc}C_{1} & 0 \\ 0 & *\end{array}\right]$ and $C_{1} C_{1}^{*}=I_{p-1}$. It implies that $C_{1}$ is a unitary direct summand of $\widetilde{A}$, which is a contradiction.

By the above, we see that $l \leqslant \max \{0, p-2\}$. By Lemma 2.15, we have $\operatorname{ker}\left(I_{n}-\right.$ $\left.A^{*} A\right) \neq \operatorname{ker}\left(I_{n}-A A^{*}\right)$. Hence $n-1<\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)+\operatorname{ker}\left(I_{n}-A A^{*}\right)\right)$ and

$$
\begin{aligned}
\operatorname{dim} V_{1} & =\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)\right)+\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A A^{*}\right)\right)-\operatorname{dim}\left[\operatorname{ker}\left(I_{n}-A^{*} A\right)+\operatorname{ker}\left(I_{n}-A A^{*}\right)\right] \\
& =(n-1)+(n-1)-n=n-2
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
n-2=\operatorname{dim}\left(V_{1}\right) \geqslant \operatorname{dim}\left(V_{2}\right)+2 \geqslant \cdots \geqslant \operatorname{dim}\left(V_{k}\right)+(2 k-2) \geqslant \cdots \tag{5}
\end{equation*}
$$

Therefore, if $k_{0}=\lceil n / 2\rceil$, then $\operatorname{dim} V_{k_{0}}=0$ and $\operatorname{dim} V_{j}=0$ for $j \geqslant k_{0}$ since $V_{j} \subseteq V_{k_{0}}$.
On the other hand, $\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-\left(A^{n-1}\right)^{*} A^{n-1}\right)\right)=1$, so there is a unit vector $x \in C^{n}$ such that $\left\|A^{n-1} x\right\|=1$. Since $A$ is an $\mathscr{S}_{n}^{-1}$-matrix, we have

$$
1=\left\|A^{n-1} x\right\| \geqslant\left\|A^{n-2} x\right\| \geqslant \cdots \geqslant\|A x\| \geqslant\|x\|=1
$$

It follows that $x, A x, \cdots, A^{n-1} x$ are unit vectors.
If $n=2 k_{0}-1$, then $A^{k_{0}-1}\left(A^{k_{0}-1} x\right)=A^{2 k_{0}-2} x$ and $\left(A^{*}\right)^{k_{0}-1} A^{k_{0}-1} x=x$ are unit vectors. So $A^{k_{0}-1} x \in V_{k_{0}-1}$ and $V_{k_{0}-1} \neq\{0\}$. Similarly, if $n=2 k_{0}$, then $A^{k_{0}-1}\left(A^{k_{0}-1} x\right)$ $=A^{2 k_{0}-2} x$ and $\left(A^{*}\right)^{k_{0}-1} A^{k_{0}-1} x=x$ are unit vectors, and hence $A^{k_{0}-1} x \in V_{k_{0}-1} \neq\{0\}$. This implies that $k_{0}$ is the smallest integer satisfying $V_{k}=\{0\}$.

Now, we are going to show that $l=\max \{0, p-2\}$. If $n=2 k_{0}-1$, by (5), $\operatorname{dim}\left(V_{k_{0}-1}\right) \leqslant 1$, and hence $\operatorname{dim}\left(V_{k_{0}-1}\right)=1$ since $V_{k_{0}-1} \neq\{0\}$. If $n=2 k_{0}$, by (5), $\operatorname{dim}\left(V_{k_{0}-1}\right) \leqslant 2$. On the other hand,

$$
\begin{aligned}
\operatorname{dim}\left(V_{k_{0}-1}\right) & \left.=\operatorname{dim} H_{k_{0}-1}(A)+\operatorname{dim} H_{k_{0}-1}\left(A^{*}\right)-\operatorname{dim}\left[H_{k_{0}-1}(A)+H_{k_{0}-1}\left(A^{*}\right)\right)\right] \\
& \geqslant\left(n-k_{0}+1\right)+\left(n-k_{0}+1\right)-n=2
\end{aligned}
$$

Thus $\operatorname{dim}\left(V_{k_{0}-1}\right)=2$ and in both cases

$$
n-2=\operatorname{dim}\left(V_{1}\right) \geqslant \operatorname{dim}\left(V_{2}\right)+2 \geqslant \cdots \geqslant \operatorname{dim}\left(V_{k_{0}-1}\right)+2 k_{0}-4=n-2 .
$$

Therefore, $\operatorname{dim}\left(V_{j}\right)=n-2 j$ for $1 \leqslant j \leqslant\lfloor n / 2\rfloor$, and $\operatorname{dim}\left(V_{j}\right)=0$ for $j \geqslant k_{o}$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ : This is trivial.
(c) $\Rightarrow\left(\right.$ a): We want to show that $\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)\right)=n-1$. Indeed, since $\operatorname{dim}\left[\operatorname{ker}\left(I_{n}-A^{*} A\right) \cap \operatorname{ker}\left(I_{n}-A A^{*}\right)\right]=\operatorname{dim}\left[H_{1}(A) \cap H_{1}\left(A^{*}\right)\right]=n-2$, it follows that $n-2 \leqslant \operatorname{dim} \operatorname{ker}\left(I_{n}-A^{*} A\right) \leqslant n$. If $\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)\right)=n$, then $A$ is a unitary matrix, but this contradicts the fact that $\operatorname{dim}\left[H_{k_{0}}(A) \cap H_{k_{0}}\left(A^{*}\right)\right]=0$, where $k_{0}=\lceil n / 2\rceil$. On the other hand, if $\operatorname{dim}\left(\operatorname{ker}\left(I_{n}-A^{*} A\right)\right)=n-2=\operatorname{dim}\left[\operatorname{ker}\left(I_{n}-A^{*} A\right) \cap \operatorname{ker}\left(I_{n}-A A^{*}\right)\right]$, then $\operatorname{ker}\left(I_{n}-A^{*} A\right) \subseteq \operatorname{ker}\left(I_{n}-A A^{*}\right)$. Note that for every finite matrix $T$, the dimensions of $\operatorname{ker}\left(I-T^{*} T\right)$ and $\operatorname{ker}\left(I-T T^{*}\right)$ are the same. Hence we deduce that $\operatorname{ker}\left(I_{n}-\right.$ $\left.A^{*} A\right)=\operatorname{ker}\left(I_{n}-A A^{*}\right)$. Lemma 2.14 now yields that $A \cong\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{4}\end{array}\right]$ on $\mathbb{C}^{n}=\operatorname{ker}\left(I_{n}-\right.$ $\left.A^{*} A\right) \oplus \operatorname{ran}\left(I_{n}-A^{*} A\right)$, where $A_{1}$ is unitary. This contradicts the fact that $\operatorname{dim}\left[H_{k_{0}}(A) \cap\right.$ $\left.H_{k_{0}}\left(A^{*}\right)\right]=0$, where $k_{0}=\lceil n / 2\rceil$. Therefore, we infer that $\operatorname{dimker}\left(I_{n}-A^{*} A\right)=n-1$ or $\operatorname{rank}\left(I_{n}-A^{*} A\right)=1$. Moreover, $\operatorname{dim}\left[H_{k_{0}}(A) \cap H_{k_{0}}\left(A^{*}\right)\right]=0$ implies that $A$ has no unitary part. Hence, by Theorem 2.1 and $\|A\|>1$, we conclude that $A \in \mathscr{S}_{n}^{-1}$ as desired.

## 3. Numerical ranges

Recall that the numerical range $W(A)$ of any $n$-by- $n$ matrix $A$ is the subset

$$
W(A)=\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

of the plane, where $\langle\cdot, \cdot\rangle$ denotes the usual inner product in $\mathbb{C}^{n}$. Properties of the numerical range can be found in [12, Chapter 1].

From Proposition 2.4 (e), an $\mathscr{S}_{n}^{-1}$-matrix $A$ can be written as a polar decomposition $A=U D_{t}$, where $U$ is unitary and $D_{t}=\operatorname{diag}(t, 1, \cdots, 1)$ for some $t>1$. The following theorem shows that if $0 \in W(U)$, then $W\left(U D_{t_{1}}\right) \subseteq W\left(U D_{t_{2}}\right)$ for $1 \leqslant t_{1} \leqslant t_{2}$.

THEOREM 3.1. Let $A_{t}$ be in $\mathscr{S}_{n}^{-1}$ with $A_{t}=U D_{t}$, where $U$ is a unitary matrix and $D_{t}=\operatorname{diag}(t, 1, \cdots, 1), t>1$. If 0 is in $W(U)$, then
(a) $0 \in W\left(A_{t}\right)$ for all $t>1$,
(b) $W(U) \subseteq W\left(A_{t}\right)$, and
(c) $W\left(A_{t_{1}}\right) \subseteq W\left(A_{t_{2}}\right)$ for $1 \leqslant t_{1} \leqslant t_{2}$.

Proof. (a) Assume that $0 \notin W\left(A_{t}\right)$ for some $t>1$. By convexity of $W\left(A_{t}\right)$, there exists a $0 \leqslant \theta \leqslant 2 \pi$ such that $\operatorname{Re} w>0$ for all $w \in W\left(e^{-i \theta} A_{t}\right)$. Without loss of generality, we may assume $\theta=0$. We will show that $\operatorname{Re} \lambda>0$ for all $\lambda \in \sigma(U)$. Then $W(U) \subseteq\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ which contradicts the fact that $0 \in W(U)$.

Let $x$ be a unit eigenvector of $U$ corresponding to $\lambda \in \sigma(U)$, then

$$
\left\langle A_{t} x, x\right\rangle=\langle U x, x\rangle+\left\langle U\left(D_{t}-I_{n}\right) x, x\right\rangle=\lambda\left(1+\left\langle\left(D_{t}-I_{n}\right) x, x\right\rangle\right)
$$

Note that $D_{t}-I_{n}$ is a positive semi-definite matrix. Thus $1+\left\langle\left(D_{t}-I_{n}\right) x, x\right\rangle>0$. Since $\operatorname{Re}\left\langle A_{t} x, x\right\rangle>0$, it follows that $\operatorname{Re} \lambda>0$ as required.
(b) As in the proof of (a), for any $\lambda \in \sigma(U)$ and a unit eigenvector $x$ of $U$ corresponding to $\lambda$, we have

$$
\lambda=\left\langle A_{t} x, x\right\rangle \cdot \frac{1}{1+\left\langle\left(D_{t}-I_{n}\right) x, x\right\rangle}+0 \cdot \frac{\left\langle\left(D_{t}-I_{n}\right) x, x\right\rangle}{1+\left\langle\left(D_{t}-I_{n}\right) x, x\right\rangle} \in W\left(A_{t}\right)
$$

since $\left\langle\left(D_{t}-I_{n}\right) x, x\right\rangle \geqslant 0$ and $0 \in W\left(A_{t}\right)$.
Hence $\sigma(U) \subseteq W(A)$ and $W(U)=$ convex $\operatorname{hull}(\sigma(U)) \subseteq W(A)$ as required.
(c) Let $A_{t_{1}}=U D_{t_{1}}$ and $A_{t_{2}}=U D_{t_{2}}, t_{2}>t_{1}>1$. Let $\lambda$ be the maximal eigenvalue of $\operatorname{Re} A_{t_{1}}$. We want to show that $\lambda \leqslant \max \sigma\left(\operatorname{Re} A_{t_{2}}\right)$. Indeed, let $x$ be a unit eigenvector of $\operatorname{Re} A_{t_{1}}$ corresponding to $\lambda$, then

$$
\frac{1}{2}\left(U D_{t_{1}}+D_{t_{1}} U^{*}\right) x=\lambda x
$$

Therefore,

$$
\begin{aligned}
\lambda & =\frac{1}{2}\left[\left\langle U D_{t_{1}} x, x\right\rangle+\left\langle D_{t_{1}} U^{*} x, x\right\rangle\right] \\
& =\frac{1}{2}\left[\left\langle D_{t_{1}} x, U^{*} x\right\rangle+\left\langle U^{*} x, D_{t_{1}} x\right\rangle\right] \\
& =\operatorname{Re}\left\langle D_{t_{1}} x, U^{*} x\right\rangle
\end{aligned}
$$

Write $U=\left[u_{1} \cdots u_{n}\right], x=\left[x_{1} \cdots x_{n}\right]^{T}$ and $D_{t_{1}}=I_{n}+T_{1}$, where $T_{1}=\operatorname{diag}\left(t_{1}-1,0, \cdots, 0\right)$. Hence

$$
\begin{aligned}
\lambda & =\operatorname{Re}\left\langle\left(I_{n}+T_{1}\right) x, U^{*} x\right\rangle \\
& =\operatorname{Re}\langle U x, x\rangle+\left(t_{1}-1\right) \operatorname{Re}\left(x_{1}\left\langle u_{1}, x\right\rangle\right) .
\end{aligned}
$$

Note that $\lambda=\max \sigma\left(\operatorname{Re} A_{t_{1}}\right)>0$, because $0 \in W\left(A_{t_{1}}\right)$. Since $t_{1}-1>0$ and $W(U) \subseteq$ $W\left(A_{t_{1}}\right)$, it follows that $\operatorname{Re}\left(x_{1}\left\langle u_{1}, x\right\rangle\right)>0$.

Similarly, we have

$$
\left\langle\left(\operatorname{Re} A_{t_{2}}\right) x, x\right\rangle=\operatorname{Re}\langle U x, x\rangle+\left(t_{2}-1\right) \operatorname{Re}\left(x_{1}\left\langle u_{1}, x\right\rangle\right)
$$

Therefore, $\left\langle\left(\operatorname{Re} A_{t_{2}}\right) x, x\right\rangle-\lambda=\left(t_{2}-t_{1}\right) \operatorname{Re}\left(x_{1}\left\langle u_{1}, x\right\rangle\right)>0$. That is,

$$
\lambda<\left\langle\left(\operatorname{Re} A_{t_{2}}\right) x, x\right\rangle \leqslant \max \sigma\left(\operatorname{Re} A_{t_{2}}\right)
$$

Now, for each $\theta \in[0,2 \pi)$, let $U^{\prime}=e^{i \theta} U$, then

$$
e^{i \theta} A_{t_{1}}=U^{\prime} D_{t_{1}} \quad \text { and } \quad e^{i \theta} A_{t_{2}}=U^{\prime} D_{t_{2}}
$$

From the above result that we have proven, we deduce that

$$
\max \sigma\left(\operatorname{Re}\left(e^{i \theta} A_{t_{1}}\right)\right) \leqslant \max \sigma\left(\operatorname{Re}\left(e^{i \theta} A_{t_{2}}\right)\right)
$$

for all $\theta \in[0,2 \pi)$. Hence $W\left(A_{t_{1}}\right) \subseteq W\left(A_{t_{2}}\right)$.

The next example shows that the condition $0 \in W(U)$ in Theorem 3.1 is essential.
EXAMPLE 3.2. Let
$U=\left[\begin{array}{cccc}0.8986+0.1493 i & -0.0996+0.0911 i & 0.2597+0.0792 i & 0.2680+0.0797 i \\ -0.0996+0.0911 i & 0.8986+0.1493 i & 0.2680+0.0797 i & 0.2597+0.0792 i \\ -0.2597-0.0792 i & -0.2680-0.0797 & 0.8986+0.1493 i & -0.0996+0.0911 i \\ -0.2680-0.0797 & -0.2597-0.0792 i & -0.0996+0.0911 i & 0.8986+0.1493 i\end{array}\right]$
and $B_{k}=U D_{k}$ for $k=1,2$, where $D_{1}=\operatorname{diag}(1.1,1,1,1)$ and $D_{2}=\operatorname{diag}(1.2,1,1,1)$. By computing, we have $\sigma(U) \subseteq\{z \in \mathbb{C}: \operatorname{Re} z>0\}$, that is, $0 \notin W(U)$, and

$$
\min \sigma\left(\operatorname{Re} B_{1}\right) \approx 0.6522, \quad \min \sigma\left(\operatorname{Re} B_{2}\right) \approx 0.6587
$$

and

$$
\max \sigma\left(\operatorname{Re} B_{1}\right) \approx 1.067, \quad \max \sigma\left(\operatorname{Re} B_{2}\right) \approx 1.149
$$

Hence $W\left(B_{1}\right) \nsubseteq W\left(B_{2}\right)$ and $W\left(B_{2}\right) \nsubseteq W\left(B_{1}\right)$.
We remark that Theorem 3.1 does not hold for $\mathscr{S}_{n}$-matrices. In fact, [5, Lemma 4.2] says that if $T_{1}$ and $T_{2}$ are in $\mathscr{S}_{n}$, then $T_{1} \cong T_{2}$ if and only if $W\left(T_{1}\right) \subseteq W\left(T_{2}\right)$. Hence $W\left(A_{t_{1}}\right) \nsubseteq W\left(A_{t_{2}}\right)$ for any $0 \leqslant t_{1} \neq t_{2}<1$.

In the end of this paper, we give a generalization of Chien and Nakazato's result [3]. In [3], they study the numerical range of the tridiagonal matrix

$$
A=A(n, r)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
r & 0 & 1 & 0 & \cdots & 0 \\
0 & r^{2} & 0 & 1 & \cdots & 0 \\
0 & 0 & r^{3} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & r^{n-1} & 0
\end{array}\right]
$$

In particular, they examined more details on the numerical range of $A(n,-1)$. For $n \geqslant 4$, they show that $W(A(n,-1))$ is contained in the square

$$
Q=\{z \in \mathbb{C}:|\operatorname{Re} z| \leqslant 1 \text { and }|\operatorname{Im} z| \leqslant 1\}
$$

Moreover, if $n$ is even, they show that the numerical range $W(A(n,-1))$ has 4 flat portions on its boundary $\partial W(A(n,-1))$ (cf. [3, Theorem 8]). In fact, these 4 flat portions lie on the boundary $\partial Q$ of the square $Q$. Note that if $\left\{e_{1}, \ldots, e_{2 k}\right\}$ denotes the standard basis for $\mathbb{C}^{2 k}$ and $P$ is the $2 k$-by- $2 k$ permutation matrix so that $P e_{2 j-1}=e_{j}$ and $P e_{2 j}=e_{k+j}$ for $1 \leqslant j \leqslant k$, then

$$
P A(2 k,-1) P^{*}=\left[\begin{array}{cc}
0 & I_{k}+J_{k}^{*} \\
-I_{k}+J_{k} & 0
\end{array}\right]
$$

where $J_{k}$ is the $k$-by- $k$ Jordan block as the form

$$
\left[\begin{array}{cccc}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

The next theorem generalizes the Chien and Nakazato's result about $A(2 k,-1)$ to the 2-by-2 block matrix $\left[\begin{array}{cc}0 & I_{k}+B^{*} \\ -I_{k}+B & 0\end{array}\right] \in M_{2 k}$ for general contraction $B \in M_{k}$.

THEOREM 3.3. For any $B \in M_{k}$ with $\|B\| \leqslant 1$ and $k \geqslant 1$, let

$$
A=\left[\begin{array}{cc}
0 & I_{k}+B^{*} \\
-I_{k}+B & 0
\end{array}\right] \in M_{2 k}
$$

Then the numerical range of $A$ is contained in the square

$$
Q=\{z \in \mathbb{C}:|\operatorname{Re} z| \leqslant 1 \text { and }|\operatorname{Im} z| \leqslant 1\}
$$

Moreover, the flat portions on $\partial W(A)$ are

$$
\{ \pm(t+i): t \in W(\operatorname{Im} B)\} \quad \text { and } \quad\left\{ \pm(1+i t): t \in W\left(\operatorname{Im} B_{M}\right)\right\}
$$

where $M=\operatorname{ker}\left(I_{k}-B^{*} B\right)$ and $B_{M}$ is the compression of $B$ on $M$.
Proof. Note that

$$
\operatorname{Re} A=\left[\begin{array}{cc}
0 & B^{*} \\
B & 0
\end{array}\right] \quad \text { and } \quad \operatorname{Im} A=\left[\begin{array}{cc}
0 & -i I_{k} \\
i I_{k} & 0
\end{array}\right]
$$

Since

$$
\left[\begin{array}{cc}
0 & B^{*} \\
B & 0
\end{array}\right]\left[\begin{array}{cc}
0 & B^{*} \\
B & 0
\end{array}\right]=\left[\begin{array}{cc}
B^{*} B & 0 \\
0 & B B^{*}
\end{array}\right]
$$

and $\left\|B^{*} B\right\|=\left\|B B^{*}\right\|=\|B\|^{2} \leqslant 1$, we have $\|\operatorname{Re} A\| \leqslant 1$ and $W(\operatorname{Re} A) \subseteq[-1,1]$. On the other hand, since

$$
\left[\begin{array}{cc}
0 & -i I_{k}^{*} \\
i I_{k}^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -i I_{k} \\
i I_{k} & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & I_{k}
\end{array}\right]
$$

it is obviously that $\|\operatorname{Im} A\|=1$ and $W(\operatorname{Im} A) \subseteq[-1,1]$. Hence $W(A)$ is contained in the square $Q$.

For any $x, y \in \mathbb{C}^{k}$ with $\|x\|^{2}+\|y\|^{2}=1$,

$$
\begin{align*}
& \left\langle A\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle=\left\langle(\operatorname{Re} A+i \operatorname{Im} A)\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle \\
= & \left\langle\left[\begin{array}{ll}
0 & B^{*} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle+i\left\langle\left[\begin{array}{cc}
0 & -i I_{k} \\
i I_{k} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle \\
= & 2 \operatorname{Re}\langle B x, y\rangle+i 2 \operatorname{Im}\langle y, x\rangle . \tag{6}
\end{align*}
$$

We first prove that $2 \operatorname{Im}\langle y, x\rangle=1$ if and only if $y=i x$ and $\|x\|=\|y\|=1 / \sqrt{2}$. Assume $2 \operatorname{Im}\langle y, x\rangle=1$, then

$$
1=2 \operatorname{Im}\langle y, x\rangle \leqslant 2|\langle y, x\rangle| \leqslant 2\|y\|\|x\| \leqslant 2 \cdot \frac{\|x\|^{2}+\|y\|^{2}}{2}=1
$$

It follows that $|\langle y, x\rangle|=\|y\|\|x\|$ and $y=e^{i \theta} x$. Therefore,

$$
1=2 \operatorname{Im}\left\langle e^{i \theta} x, x\right\rangle=2 \operatorname{Im} e^{i \theta}\|x\|^{2}=\operatorname{Im}(\cos \theta+i \sin \theta)=\sin \theta
$$

This implies that $y=i x$. Moreover,

$$
2 \operatorname{Re}\langle B x, y\rangle=2 \operatorname{Re}(-i)\|x\|^{2}\left\langle B \frac{x}{\|x\|}, \frac{x}{\|x\|}\right\rangle=\operatorname{Re}(-i)\left\langle B \frac{x}{\|x\|}, \frac{x}{\|x\|}\right\rangle \in W(\operatorname{Im} B),
$$

and applying (6), we deduce that

$$
W(A) \cap\{z \in \mathbb{C}: \operatorname{Im} z=1\} \subseteq\{t+i: t \in W(\operatorname{Im} B)\}
$$

Conversely, for any $t \in W(\operatorname{Im} B)$, let $t=\langle(\operatorname{Im} B) x, x\rangle$ for some unit vector $x \in \mathbb{C}^{k}$. Replace $\left[\begin{array}{l}x \\ y\end{array}\right]$ by $\frac{1}{\sqrt{2}}\left[\begin{array}{c}x \\ i x\end{array}\right]$ in (6), we obtain that

$$
\left\langle A\left[\begin{array}{l}
\frac{x}{\sqrt{2}} \\
\frac{i x}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
\frac{x}{\sqrt{2}} \\
\frac{x}{\sqrt{2}}
\end{array}\right]\right\rangle=t+i,
$$

and hence

$$
W(A) \cap\{z \in \mathbb{C}: \operatorname{Im} z=1\}=\{t+i: t \in W(\operatorname{Im} B)\}
$$

For any $x, y \in \mathbb{C}^{k}$ with $\|x\|^{2}+\|y\|^{2}=1$, we now check that $2 \operatorname{Re}\langle B x, y\rangle=1$ if and only if $y=B x, x \in M$ and $\|x\|=\|y\|=1 / \sqrt{2}$. Suppose that $2 \operatorname{Re}\langle B x, y\rangle=1$, then

$$
1=2 \operatorname{Re}\langle B x, y\rangle \leqslant 2|\langle B x, y\rangle| \leqslant 2\|B x\|\|y\| \leqslant 2\|x\|\|y\| \leqslant 2 \cdot \frac{\|x\|^{2}+\|y\|^{2}}{2}=1
$$

We obtain that $\|x\|=\|y\|=1 / \sqrt{2},\|B\|=1$ and $\|B x\|=\|B\|\|x\|=\|x\|$. This implies that

$$
x \in \operatorname{ker}\left(I-B^{*} B\right)=M
$$

On the other hand, since $|\langle B x, y\rangle|=\|B x\|\|y\|$, it follows that $y=e^{i \theta} B x$. Hence

$$
1=2 \operatorname{Re}\langle B x, y\rangle=2 \operatorname{Re}\left(e^{-i \theta}\|B x\|^{2}\right)=2 \operatorname{Re}\left(e^{-i \theta}\|x\|^{2}\right)=\operatorname{Re}(\cos \theta-i \sin \theta)=\cos \theta
$$

We thus get $y=B x$. Moreover,

$$
2 \operatorname{Im}\langle y, x\rangle=2 \operatorname{Im}\|x\|^{2}\left\langle B \frac{x}{\|x\|}, \frac{x}{\|x\|}\right\rangle=\operatorname{Im}\left\langle B \frac{x}{\|x\|}, \frac{x}{\|x\|}\right\rangle \in W\left(\operatorname{Im}\left(\left.P_{M} B\right|_{M}\right)\right)
$$

and

$$
W(A) \cap\{z \in \mathbb{C}: \operatorname{Re} z=1\} \subseteq\left\{1+i t: t \in W\left(\operatorname{Im} B_{M}\right)\right\}
$$

Conversely, for any unit vector $x \in M$, then $\|B x\|=\|x\|=1$. A simple computation shows that

$$
\left\langle A\left[\begin{array}{c}
\frac{x}{\sqrt{2}} \\
\frac{B x}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
\frac{x}{\sqrt{2}} \\
\frac{B x}{\sqrt{2}}
\end{array}\right]\right\rangle=1+i\left\langle\left(\operatorname{Im} B_{M}\right) x, x\right\rangle
$$

and hence

$$
W(A) \cap\{z \in \mathbb{C}: \operatorname{Re} z=1\}=\left\{1+i t: t \in W\left(\operatorname{Im} B_{M}\right)\right\}
$$

Note that

$$
\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{k}
\end{array}\right] A\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{k}
\end{array}\right]=-A
$$

Hence our assertion follows from the fact that $W(A)=W(-A)$.
We remark that if $B=J_{k}$, then $W(\operatorname{Im} B)=[-\cos (\pi /(k+1)), \cos (\pi /(k+1))]$ and $W\left(\operatorname{Im} B_{M}\right)=[-\cos (\pi / k), \cos (\pi / k)]$. Therefore, the numerical range $W(A(2 k,-1))$ can be described clearly.

For odd $n=2 k-1, k \geqslant 3$, Chien and Nakazato show that $W(A(2 k-1,-1))$ is the convex hull of the two ellipses $e^{i \pi / 4} E$ and $e^{3 i \pi / 4} E$, where $E$ is the ellipse given by the equation: $x^{2} /(1+\cos (\pi / k))+y^{2} /(1-\cos (\pi / k))=1$ (cf. [3, Theorem 7]). Now we can see that

$$
e^{i \pi / 4} E=\partial W\left(\left[\begin{array}{cc}
(1+i) \sqrt{\cos (\pi / k)} & 2 \sqrt{1-\cos (\pi / k)} \\
0 & (-1-i) \sqrt{\cos (\pi / k)}
\end{array}\right]\right)
$$

and

$$
e^{3 i \pi / 4} E=\partial W\left(\left[\begin{array}{cc}
(-1+i) \sqrt{\cos (\pi / k)} & 2 \sqrt{1-\cos (\pi / k)} \\
0 & (1-i) \sqrt{\cos (\pi / k)}
\end{array}\right]\right)
$$

Moreover, these two ellipses $e^{i \pi / 4} E$ and $e^{3 i \pi / 4} E$ are inscribed in the square $Q$. Notice that if $B$ is the $k$-by- $(k-1)$ submatrix of $J_{k}^{*}$ obtained by deleting its last column, then $B^{*} B=I_{k-1}$. On the other hand, if $\left\{e_{1}, \ldots, e_{2 k-1}\right\}$ denotes the standard basis for $\mathbb{C}^{2 k-1}$ and $P$ is the $(2 k-1)$-by- $(2 k-1)$ permutation matrix so that $P e_{2 j-1}=e_{j}$ for $1 \leqslant j \leqslant k$ and $P e_{2 j}=e_{k+j}$ for $1 \leqslant j \leqslant k-1$, then

$$
P A(2 k-1,-1) P^{*}=\left[\begin{array}{cc}
0 & I_{k}^{\prime}+B \\
-I_{k}^{\prime}+B^{*} & 0
\end{array}\right]
$$

where $I_{k}^{\prime}$ is the $k$-by- $(k-1)$ submatrix of $I_{k}$ obtained by deleting its last column. Therefore, we are interested in the numerical ranges of such a 2-by-2 block matrices for any $k$-by- $(k-1)$ matrix $B$ with $B^{*} B=I_{k-1}$. The next theorem shows that the numerical range of such 2-by-2 block matrix is also the convex hull of two ellipses.

Among other things, the $k$-by- $(k-1)$ matrix $B$ with $B^{*} B=I_{k-1}$ is a submatrix of an $\mathscr{S}_{k}$-matrix obtained by deleting its last column. Indeed, let $T$ be an operator in $\mathscr{S}_{k}$. We will consider a special matrix representation for $T$. Since $K=\operatorname{ker}\left(I_{k}-\right.$ $\left.T^{*} T\right)$ has codimension 1 , there is an orthonormal basis $\left\{h_{1}, \cdots, h_{k}\right\}$ of $\mathbb{C}^{k}$ such that $\left\{h_{1}, \cdots, h_{k-1}\right\}$ forms a basis for $K$. Let $T$ have the matrix representation $\left[f_{1} \cdots f_{k}\right]$ with respect to this basis, where each $f_{j}=T h_{j}$ represents a column vector. Since
$K$ consists of all vectors $x$ in $\mathbb{C}^{k}$ with the property $\|T x\|=\|x\|$, we have $\left\|f_{j}\right\|=1$ $(1 \leqslant j \leqslant k-1),\left\|f_{k}\right\|<1$ and $f_{i} \perp f_{j}(1 \leqslant i \neq j \leqslant k)$. Let $B=\left[f_{1} \cdots f_{k-1}\right]$. It is clear that $B^{*} B=I_{k-1}$. We can see that $J_{k}^{*} \in \mathscr{S}_{k}$ and the standard basis $\left\{e_{1}, \cdots, e_{k}\right\}$ for $\mathbb{C}^{k}$ satisfies $\vee\left\{e_{1}, \cdots, e_{k-1}\right\}=\operatorname{ker}\left(I_{k}-J_{k} J_{k}^{*}\right)$. Hence the result of Chien and Nakazato [3, Theorem 7] is a special case of the following theorem.

THEOREM 3.4. Suppose that $B$ is an $k-b y-(k-1)(k \geqslant 3)$ matrix with $B^{*} B=$ $I_{k-1}$ and $I_{k}^{\prime}$ is the $k$-by- $(k-1)$ submatrix of $I_{k}$ obtained by deleting its last column. Let

$$
A=\left[\begin{array}{cc}
0 & I_{k}^{\prime}+B \\
-I_{k}^{*}+B^{*} & 0
\end{array}\right] \in M_{2 k-1}
$$

then the numerical range

$$
W(A)=W\left(\left[\begin{array}{cc}
\sqrt{\beta}(-1+i) & 2 \sqrt{1-\beta} \\
0 & \sqrt{\beta}(1-i)
\end{array}\right] \oplus\left[\begin{array}{cc}
\sqrt{(-\alpha)}(1+i) & 2 \sqrt{1+\alpha} \\
0 & \sqrt{(-\alpha)}(-1-i)
\end{array}\right]\right)
$$

where $\alpha=\min \sigma\left(\operatorname{Im} B^{\prime}\right) \leqslant 0, \beta=\max \sigma\left(\operatorname{Im} B^{\prime}\right) \geqslant 0$ and $B^{\prime}=I_{k}^{\prime *} B \oplus[0]$.
Proof. Let $\widetilde{A}=A \oplus[0]$, that is,

$$
\widetilde{A}=\left[\begin{array}{cc}
0 & I_{k}^{\prime \prime}+B_{1} \\
-I_{k}^{\prime \prime}+B_{1}^{*} & 0
\end{array}\right] \in M_{2 k}
$$

where $I_{k}^{\prime \prime}=\left[\begin{array}{ll}I_{k}^{\prime} & 0\end{array}\right]=I_{k-1} \oplus[0] \in M_{k}$ and $B_{1}=\left[\begin{array}{ll}B & 0\end{array}\right] \in M_{k}$. Notice that

$$
\operatorname{Re} \tilde{A}=\left[\begin{array}{cc}
0 & B_{1} \\
B_{1}^{*} & 0
\end{array}\right] \quad \text { and } \quad \operatorname{Im} \tilde{A}=\left[\begin{array}{cc}
0 & -i I_{k}^{\prime \prime} \\
i I_{k}^{\prime \prime} & 0
\end{array}\right]
$$

Let $f(\theta)=\max \sigma\left(\operatorname{Re}\left(e^{-i \theta} \tilde{A}\right)\right)$ for $\theta \in[0,2 \pi)$. Observe that

$$
\operatorname{Re}\left(e^{-i \theta} \tilde{A}\right)=\cos \theta \operatorname{Re} \tilde{A}+\sin \theta \operatorname{Im} \tilde{A}=\left[\begin{array}{cc}
0 & T_{\theta} \\
T_{\theta}^{*} & 0
\end{array}\right]
$$

where $T_{\theta}=\cos \theta \cdot B_{1}-i \sin \theta \cdot I_{k}^{\prime \prime}$. Note that $\left[\begin{array}{cc}0 & T_{\theta} \\ T_{\theta}^{*} & 0\end{array}\right]$ is unitarily equivalent to $\left[\begin{array}{cc}0 & -T_{\theta} \\ -T_{\theta}^{*} & 0\end{array}\right]$. This gives $\sigma\left(\operatorname{Re}\left(e^{-i \theta} \tilde{A}\right)\right)=\sigma\left(-\operatorname{Re}\left(e^{-i \theta} \tilde{A}\right)\right)$. Hence

$$
f(\theta)=\left\|\operatorname{Re}\left(e^{-i \theta} \tilde{A}\right)\right\|=\left\|\left[\begin{array}{cc}
0 & T_{\theta} \\
T_{\theta}^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & T_{\theta} \\
T_{\theta}^{*} & 0
\end{array}\right]\right\|^{1 / 2}=\left\|\left[\begin{array}{cc}
T_{\theta} T_{\theta}^{*} & 0 \\
0 & T_{\theta}^{*} T_{\theta}
\end{array}\right]\right\|^{1 / 2}
$$

Since $T_{\theta}^{*} T_{\theta}=I_{k}^{\prime \prime}-\sin 2 \theta \cdot \operatorname{Im} B^{\prime}$ and $\left\|T_{\theta}^{*} T_{\theta}\right\|=\left\|T_{\theta} T_{\theta}^{*}\right\|$, we have

$$
\begin{aligned}
& f(\theta)=\left\|I_{k}^{\prime \prime}-\sin 2 \theta \cdot \operatorname{Im} B^{\prime}\right\|^{1 / 2}
\end{aligned}
$$

Next, let

$$
C=\left[\begin{array}{cc}
\sqrt{\beta}(-1+i) & 2 \sqrt{1-\beta} \\
0 & \sqrt{\beta}(1-i)
\end{array}\right]
$$

and $g(\theta)=\max \sigma\left(\operatorname{Re}\left(e^{-i \theta} C\right)\right)$ for $\theta \in[0,2 \pi)$. An easy computation shows that

$$
\operatorname{Re}\left(e^{-i \theta} C\right)=\left[\begin{array}{cc}
-\sqrt{\beta}(\cos \theta-\sin \theta) & \sqrt{1-\beta}(\cos \theta-i \sin \theta) \\
\sqrt{1-\beta}(\cos \theta+i \sin \theta) & \sqrt{\beta}(\cos \theta-\sin \theta)
\end{array}\right]
$$

and $g(\theta)=\sqrt{1-\beta \sin 2 \theta}$ for $\theta \in[\pi / 2, \pi] \cup[3 \pi / 2,2 \pi]$. Similarly, let

$$
D=\left[\begin{array}{cc}
\sqrt{(-\alpha)}(1+i) & 2 \sqrt{1+\alpha} \\
0 & \sqrt{(-\alpha)}(-1-i)
\end{array}\right]
$$

and $h(\theta)=\max \sigma\left(\operatorname{Re}\left(e^{-i \theta} D\right)\right)$ for all $\theta \in[0,2 \pi)$. Since

$$
\operatorname{Re}\left(e^{-i \theta} D\right)=\left[\begin{array}{cl}
\sqrt{-\alpha}(\cos \theta+\sin \theta) & \sqrt{1+\alpha}(\cos \theta-i \sin \theta) \\
\sqrt{1+\alpha}(\cos \theta+i \sin \theta) & -\sqrt{-\alpha}(\cos \theta+\sin \theta)
\end{array}\right]
$$

it is easy to check that $h(\theta)=\sqrt{1-\alpha \sin 2 \theta}$ for $\theta \in[0, \pi / 2] \cup[\pi, 3 \pi / 2]$. Hence we conclude that

$$
f(\theta)= \begin{cases}h(\theta), \text { if } 0 \leqslant \theta \leqslant \frac{\pi}{2} & \text { or } \quad \pi \leqslant \theta \leqslant \frac{3 \pi}{2} \\ g(\theta), \text { if } \frac{\pi}{2} \leqslant \theta \leqslant \pi & \text { or } \quad \frac{3 \pi}{2} \leqslant \theta \leqslant 2 \pi\end{cases}
$$

or, $W(\tilde{A})=W(A)=W(C \oplus D)$, thus completing the proof.

Acknowledgement. The authors would like to thank the referee for many helpful suggestions and careful reading of the paper.

## REFERENCES

[1] H. Bercovici, Operator Theory and Arithmetic in $H^{\infty}$, Amer. Math. Soc., Providence, RI, 1988.
[2] R. Bhatia, Matrix analysis, Springer, New York, 1997
[3] M. T. Chien, H. Nakazato, The numerical range of a tridiagonal operator, J. Math. Anal. Appl. 373 (2011) 297-304.
[4] H.-L. GAU, Numerical ranges of reducible companion matrices, Linear Algebra Appl. 432 (2010) 1310-1321.
[5] H.-L. GAU, P. Y. Wu, Numerical range of $S(\phi)$, Linear Multilinear Algebra 45 (1998) 49-73.
[6] H.-L. Gau, P. Y. Wu, Lucas' theorem refined, Linear Multilinear Algebra 45 (1999) 359-373.
[7] H.-L. GaU, P. Y. WU, Finite Blaschke products of contractions, Linear Algebra Appl. 368 (2003) 359-370.
[8] H.-L. GaU, P. Y. WU, Numerical range and Poncelet property, Taiwanese J. Math. 7 (2003) 173-193.
[9] H.-L. Gau, P. Y. Wu, Unitary part of a contraction, J. Math. Anal. Appl. 366 (2010) 700-705.
[10] H.-L. GAU, P. Y. Wu, Defect indices of powers of a contraction, Linear Algebra Appl. 432 (2010) 2824-2833.
[11] K. E. Gustafson, D. K. M. Rao, Numerical range, the field of values of linear operators and matrices, Springer, New York, 1997.
[12] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
[13] C.-K. LI, A note on the unitary part of a contraction, Linear Algebra Appl. 433 (2010) 1533-1535.
[14] B. Mirman, Numerical ranges and Poncelet curves, Linear Algebra Appl. 281 (1998) 59-85.
[15] B. SZ.-NAGY, C. FoiAş, Harmonic Analysis of Operators on Hilbert Space, North Holland, Amsterdam, 1970.
[16] D. Sarason, Generalized interpolation in $H^{\infty}$, Trans. Amer. Math. Soc. 127 (1967) 179-203.
[17] P. Y. Wu, Polar decompositions of $C_{0}(N)$ contractions, Integral Equations Operator Theory, 56 (2006) 559-569.
[18] S.-C. Wu, A study on matrices of defect index one, Master Thesis, National Central University, Taiwan, 2008.
(Received October 21, 2011)

Cheng-Chun Chang<br>Department of Mathematics<br>National Central University<br>Chung-Li 320, Taiwan<br>e-mail: kent.chang0709@gmail.com<br>Hwa-Long Gau<br>Department of Mathematics<br>National Central University<br>Chung-Li 320, Taiwan<br>e-mail: hlgau@math.ncu.edu.tw<br>Ya-Shu Wang<br>Department of Mathematics National Central University<br>Chung-Li 320, Taiwan<br>e-mail: wangys@math.ncu.edu.tw<br>Szu-Chieh Wu<br>Department of Mathematics National Central University<br>Chung-Li 320, Taiwan<br>e-mail: pmat7@hotmail.com<br>Ya-Ting Yeh<br>Department of Mathematics<br>National Central University<br>Chung-Li 320, Taiwan<br>e-mail: pmat7@hotmail.com

