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(Communicated by L. Rodman)

Abstract. Let Γ be a compact subset of R of Lebesgue measure zero. The notion ’Schrödinger
operator defining a δ ′ -interaction on Γ ’ is introduced. The dimension of the range of the spectral
projection χ(−∞,0)(A) of a Schrödinger operator A defining a δ ′ -interaction on Γ is not less
than the number of isolated points of Γ where the intensity of the δ ′ -interaction is negative.
In the case that the set Γ is endowed with a Radon measure a method how to construct a large
class of such operators is presented and for the operators from this class it is shown that their
absolutely continuous spectra and their essential spectra are equal to the nonnegative real half-
axis. Constructive examples of such operators with infinitely many negative eigenvalues are
given.

1. Introduction

Let Γ be a compact subset of R of Lebesgue measure zero. One says that A is
a Schrödinger operator defining an interaction on Γ , if A is a self-adjoint operator in
L2(R) , its domain D(A) contains the space C∞

0 (R\Γ) of smooth functions with com-
pact support in R\Γ and Aψ = −ψ ′′ for every ψ ∈C∞

0 (R\Γ) . Since the pioneering
work of Berezin and Faddeev [8] such singular Schrödinger operators have been studied
in numerous publications, cf., e.g., [1, 4, 5, 7, 9–12, 14–16, 19–23].

One is strongly interested in point interactions, i.e. interactions on a discrete set,
because in this case one gets solvable models in quantum mechanics [2, 3]. The starting
point for this paper is a certain kind of point interactions, the so called δ ′ -interactions.
Usually δ ′ -interactions on a finite set are described with the aid of certain boundary
conditions, cf. (2.10). We solve the problem how to define δ ′ -interactions on an ar-
bitrary compact subset Γ of R of Lebesgue measure zero in the following way. We
give certain properties P1(Γ) , P2(Γ) , P3(Γ) for operators A in L2(R) and prove that
an operator A in L2(R) defines a δ ′ -interaction on the finite set X if, and only if, it
has the properties P1(X) , P2(X) , P3(X) (Proposition 2.3). Our new characterization of
δ ′ -interactions on finite sets X is then used in order to introduce δ ′ -interactions on Γ .
By definition the operator A in L2(R) defines a δ ′ -interaction on Γ if, and only if, it
has the properties P1(Γ) , P2(Γ) , P3(Γ) (Definition 2.3).

For operators A defining a δ ′ -interaction on a compact null set Γ we show that the
dimension of the range of the spectral projection χ(−∞,0)(A) is not less than the number
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of isolated points of Γ where the intensity of the δ ′ -interaction is negative (Theorem
3.1). If A has a pure point spectrum below zero than this dimension is equal to the
number (counting multiplicities) of negative eigenvalues of A .

We present a method how to construct a large class of operators defining a δ ′ -
interaction with the aid of Radon measures supported by Γ and certain boundary con-
ditions on Γ (Theorem 5.2, 1◦ ). For the operators from this special class we prove that
their absolutely continuous spectra and their essential spectra are equal to the nonneg-
ative real half-axis, and zero is not an accumulation point of the set of their negative
eigenvalues (Theorem 5.2, 2◦ , 3◦ ). Moreover we give a condition that is sufficient in
order that such operators have infinitely many negative eigenvalues (Theorem 5.3).

2. Local interactions on a set of measure zero

Let Γ be a compact subset of R of Lebesgue measure zero. The minimal operator
Lmin,Γ in the space L2(R) is defined as follows:

D(Lmin,Γ) = C∞
0 (R\Γ), Lmin,Γϕ(x) = −ϕ ′′(x).

The maximal operator Lmax,Γ in L2(R) is the adjoint of the minimal operator:

D(Lmax,Γ) = W 2
2 (R\Γ), Lmax,Γψ(x) = −ψ ′′(x), x �∈ Γ,

where the Sobolev space W 2
2 (R \Γ) consists of the functions ψ , such that ψ and ψ ′

are absolutely continuous on R \Γ and ψ ,ψ ′,ψ ′′ are square integrable. Note that for
ψ ∈ W 2

2 (R \Γ) the limits ψ(a + 0),ψ ′(a + 0),ψ(b− 0),ψ ′(b− 0) exist, if the open
interval (a,b) is contained in R\Γ .

DEFINITION 2.1. An operator A in L2(R) defines a local interaction on Γ if A is
a Schrödinger operator defining an interaction on Γ , and ψ ∈ D(A) implies that χψ ∈
D(A) for every function χ ∈C∞(R) such that χ ′ ∈C∞

0 (R\Γ) .

REMARK 2.1. We neither exclude the trivial case Γ = /0 nor ’the trivial interac-
tion’, i.e. the kinetic energy Hamiltonian −Δ in L2(R) , viz.

−Δψ = −ψ ′′, ψ ∈ D(−Δ) = W 2
2 (R),

defines an interaction on Γ for every compact subset Γ of R of Lebesgue measure
zero.

LEMMA 2.1. Let A be a self-adjoint operator in the space L2(R) defining a local
interaction on Γ . Let x0 ∈ R\Γ or let x0 be an isolated point of the set Γ . Then, for
all functions ϕ ,ψ ∈ D(A)

x0∫
−∞

[(Aϕ)(x)ψ(x)−ϕ(x)(Aψ)(x)]dx = ϕ(x0 −0)ψ ′(x0 −0)−ϕ ′(x0 −0)ψ(x0−0),

(2.1)
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+∞∫
x0

[(Aϕ)(x)ψ(x)−ϕ(x)(Aψ)(x)]dx = ϕ ′(x0 +0)ψ(x0 +0)−ϕ(x0 +0)ψ ′(x0 +0).

(2.2)

Proof. (2.2) follows from (2.1). In fact, since for any a

∞∫
a

[(Aϕ)(x)ψ(x)−ϕ(x)(Aψ)(x)]dx = −
a∫

−∞

[(Aϕ)(x)ψ(x)−ϕ(x)(Aψ)(x)]dx,

we obtain the equality (2.2) if we set a = x0 + ε �∈ Γ, apply (2.1) and pass to the limit
ε → +0.

In order to prove (2.1) first consider the case that x0 �∈ Γ . Let b > x0 be such that
the interval (x0,b) does not contain any point of Γ . We may assume that ϕ(x) = 0 and
ψ(x) = 0 for every x � b. This may be achieved by multiplying ϕ and ψ by a function
χ ∈C∞(R) such that χ(x) = 1 for x � x0 and χ(x) = 0 for x � b. The functions χϕ
and χψ belong to the domain of the operator A since the operator A defines a local
interaction on Γ . Therefore

x0∫
−∞

[(Aϕ)(x)ψ(x)−ϕ(x)(Aψ)(x)]dx = (Aϕ ,ψ)− (ϕ ,Aψ)−
b∫

x0

[ϕ ·ψ ′′ −ϕ ′′ϕ ]dx.

This leads to equality (2.1) since A is self–adjoint and ϕ(b) = ϕ ′(b) = ψ(b) = ψ ′(b) =
0.

Finally let x0 ∈ Γ be an isolated point of the set Γ . Then x0 − ε �∈ Γ for small
ε > 0. Applying equality (2.1) for x0 − ε and passing to the limit ε → +0, we receive
that (2.1) holds. �

PROPOSITION 2.1. Let x0 be an isolated point of Γ or let x0 ∈ R \Γ . Let A be
an operator in L2(R) defining a local interaction on Γ and let A◦ be the restriction of
A on the set

D(A◦) := {ψ ∈ D(A) : ψ(x0±0) = 0 = ψ ′(x0 ±0)}.
Then the following holds:

1◦ A◦ has deficiency indices (2,2) .

2◦

D(A∗
◦)= {ψ1+ψ2 : ψ1 ∈D(A◦), ψ2 ∈W 2

2 (R\{x0}), supp(ψ2)∩Γ⊂{x0}}.
(2.3)

3◦ Ã is a self-adjoint extension of A◦ if, and only if, there exists a Lagrangian plane
L for the form

ω(v,w) := v3w1 − v1w3 − v4w2 + v2w4, v,w ∈ C
4, (2.4)
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such that Ã is the restriction of A∗◦ on the space

D(Ã) = {ψ ∈ D(A∗
◦) : Jψ ∈ L}, (2.5)

where

Jψ :=

⎡
⎢⎢⎣

ψ(x0 +0)
ψ(x0−0)
ψ ′(x0 +0)
ψ ′(x0 −0)

⎤
⎥⎥⎦ , ψ ∈W 2

2 (R\ {x0}). (2.6)

(Recall that a Lagrangrian plane L for ω is a maximal subspace of C4 such that
ω(v,v) = 0 for every v ∈ L).

4◦ Every self-adjoint extension of A◦ defines a local interaction on Γ∪{x0} .

5◦ The restriction of Lmax,Γ on the set

{ψ1 + ψ2 : ψ1 ∈ D(A◦),ψ2 ∈W 2
2 (R),supp(ψ2)∩Γ ⊂ {x0}}

defines a local interaction on Γ\ {x0} .

6◦ If Ã1 and Ã2 are self-adjoint extensions of A◦ , then the difference (Ã1 − z)−1 −
(Ã2− z)−1 is a finite-rank-operator for every z that belongs both to the resolvent
set of Ã1 and to the resolvent set of Ã2 .

Proof. 1◦ Put Γ̂ := Γ∪{x0} and

D0 := {ψ ∈W 2
2 (R\ {x0}) : supp(ψ)∩Γ ⊂ {x0}}.

Integrating by parts we obtain that

(Lmax,Γ̂ψ ,ϕ)− (ψ ,Lmax,Γ̂ϕ) = ω(Jψ ,Jϕ), ψ ∈ D0, ϕ ∈W 2
2 (R\ Γ̂). (2.7)

Since A defines a local interaction, its domain is contained in

D1 := {ψ1 + ψ2 : ψ1 ∈ D(A◦),ψ2 ∈ D0}.

By (2.1), (2.2), and (2.7),

(Lmax,Γ̂ψ ,ϕ)− (ψ ,Lmax,Γ̂ϕ) = ω(Jψ ,Jϕ), ψ ,ϕ ∈ D1. (2.8)

Since A is a restriction of Lmax,Γ̂ this implies that ω(Jψ ,Jψ) = 0 for every ψ ∈D(A) .
Choose a Lagrangian plane L for ω such that {Jψ : ψ ∈ D(A)} ⊂ L . By (2.8), the
restriction of Lmax,Γ̂ on the space {ψ ∈ D1 : Jψ ∈ L} is a symmetric extension of A .
Since A is self-adjoint, it is, in particular, maximal symmetric, i.e. it is symmetric and
does not possess any proper symmetric extension. Thus

D(A) = {ψ ∈ D1 : Jψ ∈ L}.
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Since the mapping J : D1 −→C4 is surjective, {Jψ : ψ ∈D(A)}= L . Choose ψ1,ψ2 ∈
D(A) such that Jψ1,Jψ2 is a basis of L . Then for every ψ ∈ D(A) there exist c1,c2 ∈
C such that J(ψ − c1ψ1 − c2ψ2) = 0 and hence ψ − c1ψ1 − c2ψ2 ∈ D(A◦) . Thus the
dimension of the quotient space D(A)/D(A◦) is equal to 2. This implies that A◦ has
deficiency indices (2,2) .

2◦ : By 1◦ , the dimension of the quotient space D(A∗◦)/D(A◦) is equal to 4. Since
dim(D1/D(A◦)) = 4 and, by (2.8), D1 ⊂ D(A∗◦) , it follows that

D(A∗
◦) = D1.

3◦ By 1◦ , an extension Ã of A◦ is self-adjoint if, and only if, it is a maximal
symmetric restriction of A∗◦ . Since A∗ is a restriction of Lmax,Γ̂ , it follows from (2.3)
and (2.8), that

(A∗
◦ψ ,ϕ)− (ψ ,A∗

◦ϕ) = ω(Jψ ,Jϕ), ψ ,ϕ ∈ D(A∗
◦),

and the mapping J : D(A∗◦)−→ C4 is surjective. Thus a restriction Ã of A∗◦ is maximal
symmetric if, and only if, there exists a Lagrangian plane L for ω such that

D(Ã) = {ψ ∈ D(A∗
◦) : Jψ ∈ L}.

4◦ Let Ã be a self-adjoint extension of A◦ and L the Lagrangian plane for ω such
that (2.5) holds. Let χ ∈C∞(R) and χ ′ ∈C∞

0 (R\ Γ̂) . Then χψ1 ∈D(A) for every ψ1 ∈
D(A) , since A defines a local interaction on Γ . Moreover J(χψ) = χ(x0)Jψ for every
ψ ∈W 2

2 (R\ {x0}) , since χ is constant on a neighborhood of x0 . Thus χψ1 ∈ D(A◦)
and χψ2 ∈ D0 for every ψ1 ∈ D(A◦) and every ψ2 ∈ D0 , respectively. It follows now
from (2.3), that χψ ∈ D(A∗◦) for every ψ ∈ D(A∗◦) . Since J(χψ) = χ(x0)Jψ ∈ L for
every ψ ∈ D(Ã) , this implies that χψ ∈ D(Ã) for every ψ ∈ D(Ã) and Ã defines a
local interaction on Γ̂ .

5◦ L0 := {v ∈ C4 : v1 = v2,v3 = v4} is a Lagrangian plane for ω , and A∗◦ is a
restriction of Lmax,Γ̂ . By 3◦ , this implies that the restriction Ã0 of Lmax,Γ̂ on the space
{ψ ∈ D(A∗) : Jψ ∈ L0} is a self-adjoint extension of A◦ and hence it defines a local
interaction on Γ . Let ψ2 ∈W 2

2 (R\{x0}) . Then ψ2 ∈W 2
2 (R) if, and only if, Jψ2 ∈ L0 ,

and it follows from 1◦ that

D(Ã0) = {ψ1 + ψ2 : ψ1 ∈ D(A◦),ψ2 ∈W 2
2 (R),supp(ψ2)∩Γ ⊂ {x0}}.

Thus the space C∞
0 (R \ (Γ \ {x0})) is contained in the domain of Ã0 and Ã0 defines

even a local interaction on Γ\ {x0} .
6◦ follows immediately from 1◦ and Krein’s resolvent formula. �

REMARK 2.2. 1◦ Since the form ω in the preceeding proposition satisfies

ω(v,w) =
([

v3

−v4

]
,

[
w1

w2

])
C2

−
([

v1

v2

]
,

[
w3

−w4

])
C2

, v,w ∈ C
4,
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L is a Lagrangian plane for ω if, and only if, there exists a U ∈U(2) such that

L = {v ∈ C
4 :

[
v3 + iv1

−v4 + iv2

]
= U ·

[
v3− iv1

−v4− iv2

]
}.

By assertion 3◦ in the preceeding proposition this implies that Ã is a self-adjoint
extension of A◦ if, and only if, there exists a U ∈U(2) such that Ã is the restric-
tion of A∗◦ on the space of all ψ from the domain of A∗◦ satisfying the following
boundary condition:

[
ψ ′(x0 +0)+ iψ(x0 +0)

−ψ ′(x0−0)+ iψ(x0−0)

]
=U ·

[
ψ ′(x0 +0)− iψ(x0 +0)

−ψ ′(x0−0)− iψ(x0−0)

]
.

2◦ In the special case that Γ = /0 the operator A is the kinetic energy Hamiltonian −Δ
and every self-adjoint extension of A◦ defines a so called point-interaction at the
point x0 .

We are interested in a special kind of local interaction, the so called δ ′ -interaction.
For an isolated point x0 of the set Γ a δ ′ -interaction at x0 is defined as follows:

DEFINITION 2.2. Let A be a self-adjoint operator in L2(R) defining a local in-
teraction on Γ and let x0 be an isolated point of Γ . The operator A defines a δ ′ -
interaction at the point x0 , if there exists a real number β such that

ψ ′(x0−0) = ψ ′(x0 +0) =: ψ ′
r(x0), ψ(x0 +0)−ψ(x0−0) = β ψ ′

r(x0), ψ ∈ D(A).
(2.9)

The real number β is called the intensity of the δ ′ -interaction at the point x0 .

For a Borel subset B of R we denote the characteristic function of B by χB , i.e.
χB(x) = 1 for x ∈ B and χB(x) = 0 for x ∈ R \B , and we put L2(B) := {χBψ : ψ ∈
L2(R)} . The following simple observation will play a key role in our discussion of
δ ′ -interactions at isolated points.

PROPOSITION 2.2. Let A be a self-adjoint operator in L2(R) defining a local
interaction on Γ and let x0 be an isolated point of Γ . Suppose that there exists a
differentiable function χ ∈ D(A) such that χ(x0) �= 0 and χ ′(x0) = 0 . Then

either there exists a real number β such that the operator A defines a δ ′ -interaction
at the point x0 with intensity β and every ψ ∈W 2

2 (R\{x0}) such that supp(ψ)∩
Γ ⊂ {x0} and ψ satisfies the boundary condition (2.9) belongs to the domain of
A,

or every ψ ∈ D(A) satisfies Neumann boundary conditions at x0 , i.e

ψ ′(x0 −0) = ψ ′(x0 +0) = 0, ψ ∈ D(A),

and there exists an operator A1 in L2(−∞,x0) and an operator A2 in L2(x0,∞)
such that A = A1 ⊕A2 .
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Proof. We may assume that χ(x0) = 1. As in the previous proposition let A◦ be
the restriction of A on the space of all ψ ∈D(A) such that ψ(x0±0) = ψ ′(x0±0) = 0
and let L be the Lagrangian plane for the form

ω(v,w) = v3w1− v1w3 − v4w2 + v2w4, v,w ∈ C
4,

satisfying D(A) = {ψ ∈ D(A∗◦) : Jψ ∈ L} . Since ω(Jχ ,v) = v4 − v3 = 0 for every
v ∈ L , we have that v3 = v4 for every v ∈ L .

If there exists a v∈ L such that v3 �= 0, then there exist v∈L such that v3 = v4 = 1.
For v,w ∈ L such that v3 = v4 = w3 = w4 = 1 we have

ω(v,w) = w1− v1−w2 + v2 = 0;

the special case that v = w provides that v1 − v2 is real and then it follows that there
exists a real number β such that v1 − v2 = β for every v ∈ L satisfying v3 = v4 =
1. Since L is a linear space it follows that v1 − v2 = βv3 , if v ∈ L and v3 �= 0. If
v ∈ L and v3 = 0, then v4 = 0 and for every w ∈ L such that w3 = 1 = w4 we have
ω(v,w) =−v1+v2 = 0. Thus v3 = v4 and v1−v2 = βv3 for every v∈ L . It follows that
ψ ∈W 2

2 (R\ {x0}) satisfies Jψ ∈ L if, and only if, ψ satisfies the boundary condition
(2.9). Thus A defines a δ ′ -interaction with intensity β at the point x0 and every
ψ ∈W 2

2 (R\{x0}) such that supp(ψ)∩Γ⊂{x0} and ψ satisfies the boundary condition
(2.9) belongs to the domain of A .

In the case that v3 = v4 = 0 for every v∈ L the functions ψ from the domain of A
satisfy Neumann boundary conditions at the point x0 , the Lagrangian plane L is equal
to the space of all v ∈ C4 such that v3 = v4 = 0, and A does not define a δ ′ -interaction
at the point x0 . It only remains to prove that χ(−∞,x0)ψ belongs to the domain of A for
every ψ from the domain of A . Let ψ ∈ D(A) . Then J(χ(−∞,x0)ψ) ∈ L and, by (2.1),
χ(−∞,x0)ψ ∈ D(A∗◦) , and hence χ(−∞,x0)ψ ∈ D(A) . �

Definition 2.2 is motivated by the well known work on δ ′ -point interactions. Let
X = {xk}n

k=1 be a finite subset of R with n points and let β = {βk}n
k=1 be a family

of real numbers. Denote by LX ,β the restriction of Lmax,X on the space of all ψ ∈
W 2

2 (R\X) satisfying the following boundary condition:

ψ ′(xk −0) = ψ ′(xk +0) =: ψ ′
r(xk), ψ(xk +0)−ψ(xk−0) = βkψ ′

r(xk), 1 � k � n.
(2.10)

One says that LX ,β defines a δ ′ -interaction on X with intensity β . Note that the trivial
interaction, i.e. the case βk = 0, is not excluded. With the aid of Proposition 2.2, we
can derive another characterization of operators defining a δ ′ -interaction on a finite set
X :

PROPOSITION 2.3. Let X be a finite subset of R . The operator A in L2(R) de-
fines a δ ′ -interaction on X if, and only if, it has the following three properties:

P1(X) A defines a local interaction on X .

P2(X) Every function χ from C∞
0 (R) such that χ ′ ∈C∞

0 (R\X) belongs to the domain
of A.
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P3(X) There does not exist a point a ∈ X such that A = A1⊕A2 for any operators A1

and A2 in L2(−∞,a) and L2(a,∞) , respectively.

Proof. Necessity. Let A be an operator in L2(R) that defines a δ ′ -interaction on
X .

P1(X) A is a self-adjoint extension of the minimal operator Lmin,X ([2], p. 155).
Let χ ∈ C∞(R) and χ ′ ∈ C∞

0 (R \X) . Then for every point a of X the function χ is
constant on a neighborhood of a . Thus χψ satisfies the boundary condition (2.10), if
ψ satisfies (2.10), and hence χψ ∈D(A) for every ψ ∈D(A) . Thus A has the property
P1(X) .

P2(X) Every χ ∈C∞
0 (R) such that χ ′ ∈C∞

0 (R\X) satisfies the boundary condi-
tion (2.10) for every choice of the real numbers βk and hence it belongs to the domain
of A .

P3(X) Choose any χ ∈ C∞
0 (R) that is equal to 1 on a neighborhood of X . Let

a ∈ X . Then χ ∈ D(A) and χ(−∞,a)χ �∈ D(A) . Thus A cannot be decomposed as
A = A1⊕A2 for an operator A1 and A2 in L2(−∞,a) and L2(a,∞) , respectively.

Sufficiency. Suppose that the operator A in L2(R) has the properties P1(X) , P2(X)
and P3(X) and X consists of the n points x1,x2, . . . ,xn . Let 1 � k � n . Since there
exists a differentiable function χ from the domain of A such that χ ′(xk) = 0 and
χ(xk) �= 0, it follows from Proposition 2.2, that there exists a real number βk such
that A defines a δ ′ -interaction at the point xk with intensity βk . Thus A is a restriction
of the operator LX ,{βk}n

k=1
. Since A and LX ,{βk}n

k=1
are self-adjoint, this implies that

A = LX ,{βk}n
k=1

. �

By the preceeding proposition, the following definition generalizes the definition
of δ ′ -interactions on finite sets.

DEFINITION 2.3. Let Γ be a compact subset of R of Lebesgue measure zero. The
operator A in L2(R) defines a δ ′ -interaction on Γ if, and only if, it has the following
three properties:

P1(Γ) A defines a local interaction on Γ .

P2(Γ) Every function χ from C∞
0 (R) such that χ ′ ∈C∞

0 (R\Γ) belongs to the domain
of A .

P3(Γ) There does not exist a point a ∈ Γ such that A = A1 ⊕A2 for any operators A1

and A2 in L2(−∞,a) and L2(a,∞) , respectively.

3. Number of negative eigenvalues for δ ′ -interactions

It is known [13, 17, 18] that for an operator A that defines a δ ′ -interaction on a
discrete set the number (counting multiplicities) of negative eigenvalues of A and hence
the dimension of the range of the spectral projection χ(−∞,0)(A) is equal to the number
of points where the intensity of the δ ′ -interaction is negative. An analogous result is
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true for operators defining a δ ′ -interaction on any compact set Γ of Lebesgue measure
zero, cf. Theorem 3.1 and Remark 3.3 below.

For the proof of the theorem we shall use special test functions: Let Γ be a com-
pact subset of R of Lebesgue measure zero. Let x0 be an isolated point of Γ . Let A be
a self-adjoint operator in L2(R) that defines a δ ′ -interaction on Γ . Then, in particular,
the functions ψ ∈D(A) satisfy the boundary condition (2.9) at the point x0 where β is
the intensity of the δ ′ -interaction at the point x0 . We construct a function that belongs
to D(A) , has compact support, satisfies condition (2.9) at the point x0 , and consists
piecewise of parabolas and constants.

DEFINITION 3.4. Consider the following test function that depends on 4 param-
eters ε, β , l, r :

t(x,ε,β , l,r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � −ε,

1
2ε

(x+ ε)2, −ε � x < 0,

β + ε − 1
2ε (x− ε)2, 0 < x � ε,

β + ε, ε � x � l,

β + ε − β+ε
2r2

(l− x)2, l � x � l + r,

β + ε
2r2 (l +2r− x)2, l + r � x � l +2r,

0, l +2r � x.

It is straightforward to prove the following proposition:

PROPOSITION 3.4. Let ε, l.r > 0 and x0,β ∈ R . Put

t̃(x) := t(x0− x,ε,β , l.r), x ∈ R.

Then the following holds:

10 The function t̃ belongs to the space W 2
2 (R\ {x0}) and has compact support.

20 t̃ satisfies the boundary condition (2.9).

30 If 0 < ε � ε0 is such that the 2ε0 -neighborhood of the point x0 does not contain
any point of Γ different from x0 and the value of l is larger than the diameter
of Γ , then t̃ belongs to the domain of every self-adjoint operator A defining a
δ ′ -interaction on Γ and the δ ′ -interaction with intensity β at the point x0 .

40 If 30 holds, then (At̃, t̃) = β +
2
3

ε +
2
3r

(β + ε)2 for every self-adjoint operator A

defining a δ ′ -interaction on Γ and the δ ′ -interaction with intensity β at the
point x0 .
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THEOREM 3.1. Let A be an operator in L2(R) that defines a δ ′ -interaction on
a compact set Γ of Lebesgue measure zero. Then the dimension of the range of the
spectral projection χ(−∞,0)(A) is not less than the number of isolated points of Γ where
the intensity of the δ ′ -interaction is negative.

Proof. Let x1, ...,xn be isolated points of the set Γ such that the intensity of the δ ′ -
interaction at the point xk , k = 1, ...,n , is equal to the negative number βk . Let ε0 > 0
be such that for k = 1, ...,n the 2ε0 -neighborhood of xk does not contain any point of
the set Γ different from xk .

Let Ln be the n -dimensional subspace of D(A) spanned by the test-functions
tk(x) = t(x− xk;βk,εk, lk,rk) , k = 1, ...,n . Here the numbers εk,rk and lk are chosen
such that 0 < εk � ε0 ,

βk +
2
3

εk +
2

3rk
(βk + εk)2 =

1
2

βk < 0 (3.1)

and lk is larger than the diameter of Γ for k = 1, ...,n and the intervals Ik =(lk, lk +2rk) ,
k = 1, ...,n , are pairwise disjoint.

Every function ψ ∈ Ln can be represented as

ψ(x) =
n

∑
k=1

aktk(x), (3.2)

where ak are complex constants. By Proposition 3.4 and (3.1) it is easy to see that the
quadratic form (Aψ ,ψ) is negative definite on the n -dimensional subspace Ln , i.e.
for ψ ∈ Ln \ {0} we have

(Aψ ,ψ) =
n

∑
k=1

|ak|2(Atk,tk) =
1
2

n

∑
k=1

βk|ak|2 < 0. (3.3)

Let L− be the range of the spectral projection χ(−∞,0)(A) . If the dimension of L−
would be smaller than n , then we could choose ψ ∈ Ln \ {0} that are orthogonal to
L− and hence satisfy (Aψ ,ψ) � 0. This contradicts (3.3). �

REMARK 3.3. If, in addition, the operator A in the previous theorem has a pure
point spectrum below 0, then it follows that the number (counting multiplicities) of
negative eigenvalues of A is not less than the number of isolated points of Γ where the
intensity of the δ ′ -interaction is negative. In the following section we shall introduce
a large class of Schrödinger operators defining a δ ′ -interaction on Γ such that their
negative spectra are even discrete.

4. Boundary conditions for δ ′ -interactions

In this section we shall show how to construct a large class of operators defining
a δ ′ -interaction on Γ . For this construction we shall use derivatives with respect to a
measure. Let μ be Radon measure and supp(μ) = Γ . Let ψ ∈W 2

2 (R\Γ) be a function
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such that ψ and its derivative ψ ′ have the following representations for x,s∈R\Γ with
s < x :

ψ(x) = ψ(s)+
x∫
s

ψ ′(ξ )dξ +
∫

(s,x)
f (ξ )μ(dξ ),

ψ ′(x) = ψ ′(s)+
x∫
s

ψ ′′(ξ )dξ +
∫

(s,x)
g(ξ )μ(dξ ),

(4.1)

where f and g are defined on Γ and absolutely integrable with respect to the mea-
sure μ . The functions f and g are called derivatives of the functions ψ and ψ ′ with

respect to the measure μ , respectively, and they are denoted by f =
dψ
dμ

, g =
dψ ′

dμ
.

It follows from (4.1) that the functions ψr(x) =
1
2
[ψ(x+ 0)+ ψ(x− 0)] and ψ ′

r(x) =
1
2
[ψ ′(x+0)+ ψ ′(x−0)] on Γ are essentially bounded on Γ , i.e., belong to the space

L∞(Γ,dμ) . The set of all functions in the space W 2
2 (R\Γ) that admit a representation

of the form (4.1) will be denoted by W 2
2 (R\Γ;Γ,μ) . The functions ψr, ψ ′

r,
dψ
dμ

,
dψ ′

dμ
are called boundary values of ψ ∈ W 2

2 (R \Γ;Γ,μ) on Γ . By construction W 2
2 (R) ⊂

W 2
2 (R\Γ;Γ,μ) ⊂W 2

2 (R\Γ).
Let χ ∈ C∞(R) and χ ′ ∈ C∞

0 (R \Γ) . Then there exists finitely many pairwise
disjoint open intervals Ik , k = 1,2, . . . ,n , such that χ is constant on Ik for k = 1,2, . . . ,n
and Γ ⊂ ⋃n

k=1 Ik . It follows that

d(χψ)
dμ

= χ
dψ
dμ

,
d(χψ)′

dμ
= χ

dψ ′

dμ
. (4.2)

For functions ψ , ϕ ∈ W 2
2 (R \ Γ;Γ,μ) , it was proved in [7], Theorem 4.3, that

Green’s first and second formulas hold with boundary values of ψ and ϕ on Γ .
Green’s first formula is

(−ψ ′′,ϕ)L2(R) = (ψ ′,ϕ ′)L2(R) +
∫
Γ

[dψ ′

dμ
ϕr + ψ ′

r
dϕ
dμ

]
dμ . (4.3)

Green’s second formula is

(−ψ ′′,ϕ)L2(R) − (ψ ,−ϕ ′′)L2(R) =
∫
Γ

[dψ ′

dμ
ϕr + ψ ′

r
dϕ
dμ

−ψr
dϕ ′

dμ
− dψ

dμ
ϕ ′

r

]
dμ (4.4)

Green’s second formula allows to consider different self-adjoint boundary con-
ditions that are similar to well known boundary conditions for point interactions. In
particular, we get δ ′ -interactions by the following definition, as we shall show below
(Theorem 5.2).

DEFINITION 4.5. Let β be a real-valued function defined on Γ that is absolutely
integrable with respect to the measure μ . The operator LΓ,β in L2(R) is the restric-
tion of Lmax,Γ on the space of all ψ ∈W 2

2 (R \Γ;Γ,μ) satisfying following boundary
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condition:
dψ ′(x)

dμ
= 0,

dψ(x)
dμ

= β (x)ψ ′
r(x), x ∈ Γ. (4.5)

β is the intensity of the δ ′ -interaction.

5. Spectral properties of Schrödinger operators with δ ′ -interaction

We shall show that the operator LΓ,β defined via the boundary conditions (4.5)
defines a δ ′ -interaction on Γ and its negative spectrum is discrete. We prepare the
proof by the following two lemmata.

LEMMA 5.2. Let Γ be a non-empty compact subset of R of Lebesgue measure
zero. Let μ be a Radon measure such that supp(μ) = Γ and let a and b real numbers
such that Γ ⊂ (a,b) . Let β be a real-valued function defined on Γ that is absolutely

integrable with respect to the measure μ . Define the operator L(a,b)
Γ,β in L2(a,b) as

follows:

L(a,b)
Γ,β ψ(x) := −ψ ′′(x), x ∈ R\ (Γ∪{a,b}),

D(L(a,b)
Γ,β ) := {χ(a,b)ψ : ψ ∈ D(LΓ,β ),ψ(a) = 0 = ψ ′(b)}.

Then L(a,b)
Γ,β is an invertible self-adjoint operator in L2(a,b) and its inverse (L(a,b)

Γ,β )−1

is compact.

Proof. Green’s second formula (4.4) and an integration by parts yields that the

operator L(a,b)
Γ,β is symmetric. Let h ∈ L2(a,b) . Put ψ ′(x) :=

b∫
x

h(s)ds for every x ∈
(a,b) . Then ψ ′(x) = ψ ′

r(x) for every x ∈ (a,b) . Put

ψ(x) :=
x∫

a

ψ ′(s)ds+
∫

(a,x)

β (s)ψ ′(s)μ(ds), x ∈ (a,b)\Γ, ψ(x) := 0, x ∈ R\ (a,b).

(5.1)

Then ψ(a+0)= ψ ′(b−0)= 0, ψ ∈D(L(a,b)
Γ,β )⊂L2(a,b) and ψ(·)=

∞∫
−∞

G (·,s)h(s)ds ,

where G (x,s) = χ(a,b)×(a,b)(x,s)(min(x,s)− a+
∫

(a,min(x,s))
β (ξ )μ(dξ )) . The integral

operator in L2(R) with kernel G (x,s) is compact and self-adjoint and L2(a,b) is an
invariant subspace for this integral operator. Thus the restriction G of this integral op-
erator on L2(a,b) is a compact and self-adjoint operator in L2(a,b) . By formula (5.1),

L(a,b)
Γ,β G h(x) = −ψ ′′(x) = h(x) for x ∈ R \ (Γ∪ {a,b}) and h ∈ L2(a,b) . Hence the

operator G is invertible and L(a,b)
Γ,β is an extension of its inverse G −1 . Since the inverse

of a self-adjoint operator is self-adjoint and a self-adjoint operator does not possess any

proper symmetric extension, it follows that L(a,b)
Γ,β = G −1 . �
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LEMMA 5.3. Let a,b and L(a,b)
Γ,β be as in the previous lemma. Let LD be the

Dirichlet-Laplacian in L2(−∞,a) and let LN be the Neumann-Laplacian in L2(b,∞) .
Then the orthogonal sum A := LD ⊕ L(a,b)

Γ,β ⊕ LN defines a local interaction on Γ̂ :=
Γ∪{a,b} , the essential spectrum σess(A) of A and the absolutely continuous spectrum
σac(A) of A are equal to the nonnegative real half-axis, and their exists an α < 0 such
that the interval (α,0) is contained in the resolvent set of A.

Proof. A is self-adjoint since it is the orthogonal sum of self-adjoint operators.
Obviously it is an extension of Lmin,Γ̂ .

ψ ∈ D(A) if, and only if, it can be represented as ψ = ψ1 + χ(a,b)ψ2 + ψ3 ,
where ψ1 ∈ W 2

2 (R \ {a}) , ψ1(a− 0) = 0 and ψ1 = 0 in (a,∞) , ψ2 ∈ D(LΓ,β ) and
ψ2(a) = 0 = ψ ′

2(b) , and ψ3 ∈W 2
2 (R \ {b}) , ψ ′

3(b + 0) = 0 and ψ3 = 0 in (−∞,b) .
Let χ ∈C∞(R) and χ ′ ∈C∞

0 (R\ Γ̂) . By (4.2), χψ2 ∈D(LΓ,β ) for every ψ2 ∈D(LΓ,β ) .
Moreover χ is constant on a neighborhood of a and on a neighborhood of b . It follows
now that χψ ∈ D(A) for every ψ ∈ D(A) . Hence A defines a local interaction on Γ̂ .

Since A is the orthogonal sum of the self-adjoint operators LD , L(a,b)
Γ,β , and LN ,

σ(A) = σ(LD)∪σ(L(a,b)
Γ,β )∪σ(LN), (5.2)

σx(A) = σx(LD)∪σx(L
(a,b)
Γ,β )∪σx(LN), x ∈ {ess,ac}

(σ(·) denotes the spectrum). It is well known that

σ(LD) = σx(LD) = σ(LN) = σx(LN) = [0,∞), x ∈ {ess,ac}. (5.3)

Since L(a,b)
Γ,β is the inverse of a compact self-adjoint operator, its essential spectrum and

its absolutely continuous spectrum are empty and its resolvent set contains a neighbor-
hood of zero. In conjunction with (5.2) and (5.3), this proves the assertions about the
spectral properties of A . �

THEOREM 5.2. Let Γ be a compact subset of the real line of Lebesgue measure
zero. Let μ be a Radon measure and supp(μ) = Γ , and let β be a real-valued function
on Γ that is absolutely integrable with respect to μ . Let LΓ,β be the operator in L2(R)
given by Definition 4.5. Then the following holds:

10 LΓ,β is self-adjoint and it defines a δ ′ -interaction on Γ .

20 The essential spectrum σess(LΓ,β ) of LΓ,β and the absolutely continuous spec-
trum σac(LΓ,β ) of LΓ,β are equal to the nonnegative real half-axis.

30 There exists an α0 < 0 such that the interval (α0,0) is contained in the resolvent
set of LΓ,β .

40 The number (counting multiplicities) of negative eigenvalues of LΓ,β is not less
than the number of isolated points of Γ where the intensity of the δ ′ -interaction
is negative.
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Proof. 1◦ We have to show that LΓ,β has the properties P1(Γ)-P3(Γ) in Definition
2.3.

P1(Γ) Let A = LD ⊕L(a,b)
Γ,β ⊕LN be the operator from the previous lemma. Define

the operator Ã00 as the restriction of Lmax,Γ on the space of all ψ ∈W 2
2 (R\Γ) that can

be represented as ψ = ψ1 + ψ2 , where ψ1 ∈ D(A),ψ1(a± 0) = ψ ′
1(a± 0) = ψ1(b±

0) = ψ ′
1(b± 0) = 0, and ψ2 ∈ W 2

2 (R) and supp(ψ2)∩Γ = /0 . Applying Proposition
2.1 5◦ twice we obtain that Ã00 is self-adjoint and it defines a local interaction on Γ .
Obviously Ã00 = LΓ,β . Thus LΓ,β has property P1(Γ) .

P2(Γ) Every function χ ∈C∞
0 (R) such that χ ′ ∈C∞

0 (R \Γ) has trivial boundary

data
dχ
dμ

= 0,
dχ ′

dμ
= 0, χ ′

r = 0, χr = χ . Thus it satisfies the boundary conditions (4.5),

and hence χ ∈ D(LΓ,β ) .
P3(Γ) We prove by contradiction that Lβ ,Γ has the property P3(Γ) . Suppose that

there exists a point x0 ∈ Γ such that LΓ,β = A1⊕A2, where A1 and A2 is an operator in
the space L2(−∞,x0) and L2(x0,+∞) , respectively. Choose any function χ0 ∈C∞

0 (R) ,
that is equal to 1 in the interval (a,b)⊃Γ . Then both χ0 and ψ+ := χ(x0,∞)χ0 belong to

D(LΓ,β ) . It follows from representation (4.1) that x0 ∈ Γ , μ({x0}) > 0, dψ+(x)
dμ |x=x0 =

[μ({x0})]−1 �= 0. This contradicts the boundary conditions (4.5), since χ ′
0,r = 0.

2◦,3◦ Applying Proposition 2.1, 1◦ and 6◦ , twice we obtain that A and LΓ,β have
a common restriction with finite deficiency indices and for every z that belongs both to
the resolvent set of A and the resolvent set of LΓ,β the difference (A− z)−1 − (LΓ,β −
z)−1 is a finite rank operator. In conjunction with the previous lemma that proves the
assertions 2◦ and 3◦ .

4◦ follows from 2◦ and Remark 3.3. �

THEOREM 5.3. Let Γ be a compact subset of R of Lebesgue measure zero, μ
a Radon measure and supp(μ) = Γ . Let β be a real-valued function defined on Γ .
Suppose that β is absolutely integrable with respect to μ and assumes negative mean
values on an infinite number of closed pairwise disjoint nonintersecting subsets Γk of
Γ . Then the Schrödinger operator LΓ,β with δ ′ -interaction on Γ , having intensity β ,
is a self-adjoint operator in the space L2(R) , it has infinitely many negative eigenvalues
and the set of its negative eigenvalues is not lower bounded.

Proof. The proof is similar to the proof of Theorem 3.1. By Theorem 5.2, the
operator LΓ,β is self-adjoint in L2(R) , its negative spectrum is discrete and there exists
an α0 < 0 such that the interval (α0,0) does not contain any point of the spectrum of
LΓ,β . Thus it is sufficient to show that the range of the spectral projection χ(−∞,0)(LΓ,β )
is infinite-dimensional. To this end, it is sufficient to show that for every positive in-
teger N there exists an N –dimensional subspace LN of the domain of LΓ,β such that
(LΓ,β u,u) < 0, for every u ∈ LN \ {0} .

Fix N . By the conditions of the theorem there exists an ε > 0 and N pairwise
disjoint closed subsets Γk of Γ , such that μ(Γk) > 0 and

∫
Γk

β (x)μ(dx) � −εμ(Γk)
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for k = 1, ...,N . Consider analogues of the test functions of Section 3. Since the sub-
sets Γk are compact and pairwise disjoint and the number of these subsets is finite,
there exists a δ > 0 such that the δ -neighborhoods Uδ (Γk) = {y : |y− x|< δ , x ∈ Γk}
of the sets Γk are also pairwise disjoint. Let us construct a test function for each set Γk

as follows. Consider the function χk ∈ C∞
0 (R) that is equal to 1 on Γk , takes values

between 0 and 1, and is equal to zero outside of Uδ (Γk) . As a candidate for the test
function, we take

t̂k(x;β ,Γk,δ ) =
x∫

a

χk(ξ )dξ +
∫

(a,x)

β (ξ )χk(ξ )dμ(ξ ), (5.4)

where the number a is chosen so that all bounded sets Uδ (Γk) , k = 1, ...,N , lie to the
left of the set Γ . For x that lie on the right of the set Γ , this function takes the constant
value ck . While the function tk does not belong to the space L2(R) , we can turn it into
a function with compact support using two parabolas on the interval [l, l +2r] that lies
to the right of Γ . We thus get the test function

tk(x;β ,Γk,δ , l,r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t̂k(x), x � l,

− ck

2r2 (l− x)2 + ck, l � x � l + r,
ck

2r2 (l +2r− x)2, l + r � x � l +2r,

0, l +2r < x.

(5.5)

Here, the parameters l and r may depend on k .

PROPOSITION 5.5. The test functions tk , defined by (5.5), have following proper-
ties:

10 tk ∈ D(LΓ,β ) .

20 By choosing δ sufficiently small and r sufficiently large, we have

(LΓ,β tk,tk) � −1
8

εμ(Γk), (5.6)

that is, the quadratic form takes negative values.

30 The quadratic form of the linear combination t =
N
∑

k=1
ak · tk of test functions that

satisfy the condition 10 , if lk and rk are chosen so that the intervals [lk, lk +2rk]
are pairwise disjoint, takes negative values,

(LΓ,β t, t) =
N

∑
k=1

|ak|2(LΓ,β tk,tk) � −1
8

ε min
k

μ(Γk)
N

∑
k=1

|ak|2 < 0. (5.7)
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If these three conditions are satisfied, then we can complete the proof in the same way
as in the proof of Theorem 3.1.

Let us now show that test functions satisfy properties 10 —30 . The first property
is clearly satisfied by the construction of tk and t̂k in (5.4) and (5.5) and the definition
of the operator LΓ,β . The second property is most important. Since the function β is
absolutely integrable on Γ with respect to the Radon measure μ and 0 � χk � 1, we
see that there exists a δ > 0 such that

∣∣∣
∫

Uδ (Γk)∩Γ

β (ξ )χk(ξ )dμ(ξ )−
∫
Γk

β (ξ )dμ(ξ )
∣∣∣< 1

2
εμ(Γk). (5.8)

Moreover, since the set Γ has Lebesgue measure zero, there exists a δ > 0 such that
the following estimate holds for the Lebesgue measure of the set Uδ (Γk) :

|Uδ (Γk)| � 1
4

εμ(Γk). (5.9)

If inequalities (5.8) and (5.9) hold, then the constant ck , which is equal to the value of
the function t̂ for large x , satisfies the estimate

|ck| � (
3
4

ε + ||β ||L1(Γ,dμ))μ(Γk). (5.10)

By choosing rk sufficiently large, we get

lk+2rk∫
lk

|t ′(x)|2 dx � 1
8

εμ(Γk). (5.11)

In virtue of Green’s first formula (4.3), since the function tk satisfies the boundary
conditions (4.5) and because t ′k(x) = χk(x) for x � lk , we have

(LΓ,β tk, tk) =

lk∫
a

|χk(x)|2 dx+

lk+2rk∫
lk

|t ′k(x)|2 dx+
∫
Γ

β (ξ )|χk(ξ )|2 dμ(ξ ). (5.12)

The first integral I1 in (5.12) can be estimated in terms of the Lebesgue measure of
Uδ (Γk) , since the values of the function χk belong to the interval [0,1] . The second
integral I2 = 2

3c2
k · r−1

k can be explicitly calculated, since the function t ′k on the inter-
val [lk, lk +2rk] consists of two parabolas by (5.5). The third integral I3 in (5.12) can
be estimated as follows:

I3 �
∫
Γk

β (ξ )dμ(ξ )+
∣∣∣

∫

Uδ (Γk)

β (ξ )χ2
k (ξ )dμ(ξ )−

∫
Γk

β (ξ )dμ(ξ )
∣∣∣.

Since, by choosing sufficiently small δ and sufficiently large rk we can satisfy esti-
mates (5.8)–(5.11), we see that the quadratic form (LΓ,β tk,tk) is negative, i.e., inequal-
ity (5.6) is satisfied.
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Consider now property 30 . Since the intervals (lk, lk +2rk) and the regions Uδ (Γk)
are mutually disjoint, we have that (LΓ,β tk,t j) = 0 for k �= j . This leads to prop-
erty (5.7). �
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[1] S. ALBEVERIO, J. F. BRASCHE, M. RÖCKNER, Dirichlet forms and generalized Schrödinger opera-
tors, pp. 1–42 in H. Holden, A. Jensen (eds.): Schrödinger operators, Lecture Notes in Physics, Vol.
345, Springer, Berlin 1989.

[2] S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN, AND H. HOLDEN, Solvable models in quantum
mechanics, 2nd ed. with an Appendix by P. Exner, Chelsea, AMS, Providence, 2005.

[3] S. ALBEVERIO, P. KURASOV, Singular Perturbations of Differential Operators. Solvable Schrödinger
Type Operators, Cambridge University Press, Cambridge, 2000.

[4] S. ALBEVERIO, S. KUZHEL, AND L. NIZHNIK, On the perturbation theory of self-adjoint operators,
Tokyo Journal of Mathematics 31, 2 (2008), 273–292.

[5] S. ALBEVERIO AND L. NIZHNIK, Approximation of General Zero-Range Potentials, Ukrain. Mat.
Zh. 52, 5 (2000), 582–589; translation in Ukrainian Math. J. 52, 5 (2000), 664–672 (2001).

[6] S. ALBEVERIO AND L. NIZHNIK,Schrödinger operators with a number of negative eigenvalues equal
to the number of point interactions, Methods Funct. Anal. Topology 9 (2003), 273–286.

[7] S. ALBEVERIO, L. NIZHNIK, A Schrödinger operator with δ ′ -interaction on a Cantor set and Krein-
Feller operators, Mathematische Nachrichten 279, 5–6 (2006), 467–476.

[8] F. A. BEREZIN, L. D. FADDEEV, A remark on Schrödinger’s equation with a singular potential,
Soviet Math. Dok. 2 (1961), 372–375.

[9] J. F. BRASCHE, On eigenvalues and eigensolutions of the Schrödinger equation on the complement of
a set with classical capacity zero, Methods of Functional Analysis and Topology 9, 3 (2003), 189–206.

[10] J. F. BRASCHE, Interactions along Brownian paths in Rd , d � 5 , J. Physics A 38, 22 (2005), 4755–
4767.

[11] J. BRASCHE, L. NIZHNIK, A generalized sum of quadratic forms, Methods of Funct. Anal. Topology
3 (2002), 13–19.

[12] P. EXNER, H. NEIDHARDT, AND V. A. ZAGREBNOV, Potential approximation to δ ′ : An inverse
Klauder phenomenon with norm-resolvent convergence, Comm. Math. Phys. 224 (2001), 593–612.

[13] N. GOLOSCHAPOVA AND L. L. ORIDOROGA,On the number of negative squares of one-dimensional
Schrödinger operators with point interactions, Int. Eq. and Op. Theory 6, 1 (2010), 1–14.

[14] YU. D. GOLOVATY AND R. O. HRYNIV, On norm resolvent convergence of Schrödinger operators
with δ ′ -like potentials, J.Phys.A: Math.Theor. 43 (2010), 155204.

[15] V. I. GORBACHUK, AND M. L. GORBACHUK, Boundary value problems for operator Differential
equations, Kluwer Academic Publishers, 1991.

[16] A. N. KOCHUBEI, Elliptic operators with boundary conditions on a subset of measure zero, Funct.
Anal. Appl. 16 (1982), 137–139.

[17] A. KOSTENKO, M. MALAMUD, 1–D Schrödinger operators with local point interactions on a discrete
set, J. Differential Equations 249 (2010), 253–304.

[18] A. KOSTENKO, M. MALAMUD, Schrödinger operator with δ ′ -interactions and the Krein-Stieltjes
string, Dokl.Math. 81, 3 (2010), 342–247.

[19] L. P. NIZHNIK, Schrödinger operator with δ ′ -interaction, J. Funct. Anal. Appl. 37, 1 (2003), 85–88.
[20] L. P. NIZHNIK, One–dimensional Schrodinger operators with point interactions on Sobolev spaces, J.

Funct. Anal. Appl. 40, 2 (2006), 74–79.



904 J. F. BRASCHE AND L. NIZHNIK
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