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UNIVERSAL INEQUALITIES FOR
EIGENVALUES OF THE LAME SYSTEM

HE-JUN SUN AND YE-JUAN PENG

(Communicated by K. Veselic)

Abstract. In this paper, we investigate the Dirichlet eigenvalue problem of the Lamé system:
Au + ograd(divu) = —ou on a bounded domain Q in an n-dimensional Euclidean space R,
where ¢ is a nonnegative constant and u is a vector-valued function on Q. We establish
a Levitin-Parnovski-type inequality for its eigenvalues, which gives an estimate for the upper
bounds of ¥, o;,; for any positive integer j. Moreover, we obtain some other universal in-
equalities for eigenvalues of this problem.

1. Introduction

Let € be a bounded domain in an n-dimensional Euclidean space R". Let u =
(w1, ,uy,---,u,) be a vector-valued function on Q. Denote by div the divergence
operator and grad the gradient operator. The Dirichlet eigenvalue problem of the Lamé

system is described by

Au+ agrad(diva) = —ou, in Q, (L)

u‘aﬂ :07

where o is a nonnegative constant and A is the Laplacian in R”. This problem has def-
inite physical background. When n = 3, it describes the behavior of an elastic medium.
Its eigenvectors describe the deformation of vibrating elastic bodies with fixed bound-
aries (cf. [16, 12]). This problem has a real discrete spectrum

0<or<o < <0< — oo, (1.2)

where each eigenvalue is repeated according to its multiplicity.

Eigenvalues of problem (1.1) have been studied from different angles (see [7, 9, 10,
14]). In particular, some universal inequalities for its eigenvalues have been established.
In 1990, Hook [6] proved

k O; n2k
> . (1.3)
S o1 —0; 4n+oa)
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In 2002, Levitin and Parnovski [11] derived

max{4+a2;(n+2)a+8}lial
n+o k&

Of11— Ok < (1.4)

which gives an estimate for the gap of oy — Oy in terms of the first k£ eigenvalues. In
2009, Cheng and Yang [5] obtained

k k k !
2\/n+a 1 1|2
2 (01— 01) < [Z (k1= 01)2 Y (01 —01)20;| . (L5)
i=1 i=1 i=1
It implies
4( n—|—Oc
Ot1 < [1+ } Za,, (1.6)

which gives an estimate for the upper bound of oy in terms of the first k& eigenvalues.
In 2012, Chen, Cheng, Wang and Xia [4] further strengthened (1.5) to

M=

(Oks1—01)° < B(n, )
1 i

-

(Oks1 — 0) 03,

i 1

where B(n, ) is a constant depended on n and o. Cheng and Yang [5] also gave the
following estimate for the upper bound of the sum of consecutive eigenvalues:

Y i1 < (n+4+4a)or. (1.7)
i=1

It is interesting to relate problem (1.1) with the fixed membrane problem which is
described by

(1.8)

Au= —Au, in Q,
ulaq =0,

where Q is a bounded domain in R”. When n =2 (namely for Q C R?), Payne, Pélya
and Weinberger [13] proved
A+ A3 < 6A44. (1.9)

It lead us to the famous Payne, P6lya and Weinberger conjecture (cf. [1]). In 1993,
Ashbaugh and Benguria [2] derived

Y A1 < (n+4)A (1.10)

for Q C R”. On the one hand, (1.10) have been extended to bounded domains in some
other Riemannian manifolds. In 2008, Sun, Cheng and Yang [15] obtained

S A1 <0+ (n+4)Ar. (1.11)
i=1
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on a bounded domain in the unite sphere S”(1). It is optimal for the unite sphere since
it becomes an equality when Q = §"(1). Chen and Cheng [3] proved that (1.10) also
holds on bounded domains in complete Riemannian manifolds. On the other hand,
Levitin and Parnovski [1 1] generalized (1.10) to

Y Airj < (n+4)A;, (1.12)

where j is any positive integer. A remarkable point of (1.12) is that it gives some
estimates for the upper bounds of A +---+ 4,1, in terms of A;. Moreover, it cov-
ers (1.10) when j = 1. This inequality will be referred to henceforth as the Levitin-
Parnovski inequality. Observe that (1.7) also becomes the same as (1.10) when o = 0.
It is natural to consider the following question: Whether can one obtain a Levitin-
Parnovski-type inequality for problem (1.1)?

The purpose of this paper is to establish a Levitin-Parnovski-type inequality and
some other universal inequalities for problem (1.1). In this paper, we obtain the follow-
ing result:

THEOREM 1. Let Q be a bounded domain in R". Denote by ©; the i-th eigen-
value of problem (1.1). For any positive integer j, we have

Zc;iﬂ-g (n+C(n,a))0; — a(0j41 — 0)), (1.13)

where the constant

V(n+2)2+16 2
(n+2)o+8, when0< a< (n+ + Tt
V(n+2)? +1 +n+2

Cln,o) =
4+a2, when o >

Hence, we answer the preceding question. Observe that (1.13) becomes

Y 0i1j< (n+8)a;,
i=1
when o = 0. Of course, it is also interesting to consider whether it is possible to
establish a sharper inequality which becomes the same as (1.12) when o = 0.
Furthermore, we derive some other universal inequalities for problem (1.1).

THEOREM 2. Let Q be a bounded domain in R". Denote by ©; the i-th eigen-
value of problem (1.1). Then we have

Nl—

k n+a

k k
Z(O-k-&-l — Gi) S O; Z Ok+1 — 05)3 (1.14)
i=1 =1 =1
and . )
OC
Yo -0t <UD S (6 o)t (1.15)

i=1 i=1
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REMARK 1. In the proof of Theorem 2, we obtain inequality (2.32) by making
use of an abstract inequality attributed to Ilias and Makhoul [8]. Besides (1.14) and
(1.15), we can also get (1.5) and (1.6) of Cheng and Yang [5] by using (2.32). In fact,
taking f(0;) = Ox41 — 0; and g(0;) = (Ops1 — Gi)% in (2.32), we can derive (1.5).
Taking f(o;) = g(0i) = Ok4+1 — 0; in (2.32), we can get (1.6).

2. Proofs of the main results

In this section, we give the proofs of Theorems 1 and 2. The proof of Theorem
1 is based on the observation that estimates in the proof of Corollary 2.7 of [11] can
be sharpened. In the proof of Theorem 1, we need the following abstract formula
established by Levitin and Parnovski [11].

LEMMA 1. Let 5 be a complex Hilbert space with a given inner product (). Let
H: 9 C 3 — F be a self-adjoint operator defined on a dense domain & which
is semibounded beblow and has a discrete spectrum ) < tp < Uz < ---. Let {Gj:
H(2) — A}, be a collection of symmetric operators which leave 9 invariant.
Denote by {u;}; | the normalized eigenvectors of H and u; corresponding to the i-
th eigenvalue ;. Moreover, this family of eigenvectors is further assumed to be an
orthonormal basis for €. For any positive integer j, we have

> H Gl uj,uk>|2 1
KA, Glujy u |” _ L H.,G)|,Glu;,u;), (2.1)
1§1 e — 11 2<[[ 1].Gl] J J>

where [H,G;| := HG; — G;H is the commutator of H and G;.

Now we give the proof of Theorem 1.

Proof of Thereom 1. Denote by e; = (1,0,---,0), ---, e, =(0,---,1) the unit vec-
tors in R". Then we have u; = u-¢; for a vector-valued function w= (uy,- -, 1y, ,uy,)
on Q. For the sake of convenience, we denote by

Lu = —Au+ ocMu,

where Mu = —grad(divu). Let u; be the orthonormal eigenvectors corresponding to
the i-th eigenvalues o; of problem (1.1). That is to say, u; satisfies

Lu; = oju;, in Q,
ui‘BQ =0, (2.2)
weu=&i.
/Q iUy ij
We claim that we can choose the functions xi,---,x, as the standard coordinates

functions of R” such that

([L.x/]uj,ujpp) =0, forl <k<l<n. (2.3)
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In fact, let yi,---,y, be the standard coordinate functions of R”. Consider an n X n
matrix B defined by

([Loy]uj ) ([Loyiluj,uj) - ([Loyi]uj,uj)
g | (Loyalujowjin) ([Loyalujujia) - (L, y2]uj,ujin)

(ILyyn]ujujen) ([Lyyn]uj,wjpa) - ([L,yn]uj,wjn)

According to the QR-factorization theorem, we know that there is an orthogonal n x n
matrix Q = (g, )nxn such that A = OB is an upper triangle matrix. Namely, it holds

n
N qir([L,yrJuj ) =0, forl <k<I<n.

r=1

Putting x; = X', ¢iryr, we know that our claim is true. Therefore, according to (2.3),
we find that it holds

i Lxl llj,llj+k>|2zo (2.4)
k=1 Oj+k—0j

Taking H = L and G; = x; in (2.1), we have

- L xl u; ,llk>‘2 1
p2 Tjo, = 5 {([Lx).x]uj,u;). (2.5)

Utilizing (2.4), we can get an inequality. In fact, rewriting the summation index, one
can deduce

i [([L,xi]uj ue) P
1 O%k—0j
- ‘<[L xl}uhukﬂz H ‘<[L7xl}ujvuk>‘2 < ‘<[L7xl}ujvuk>‘2

_y MEaUp W O MW WX 807
Ok = 0j k:%ﬂ Ok —6j k;iﬂ Ok = Oj 20

1
’71\<[Laxl}“j’uk>\2+l_l \([L7xl}“j»“j+k>\2+ & (L ]uy, )2
=1 Ok—0j k=1 9j+k—0j k=j+1 Ok —0j

j—1 2
[([L,x]uj,up)| <0, 27
k=1 Ok — Oj
Combining (2.4), (2.6) and (2.7), we have
i [([L,xiJuj, ug)| (L, xi]uj,up)|
S (2.8)
| » .
< Z |<[L7xl]uj7uk>|



910 HE-JUN SUN AND YE-JUAN PENG

Furthermore, Parseval’s identity implies
2 (L], we) | = || Ly ]ug || (2.9)

Combining (2.8) and (2.9), we obtain

i ([Lxuj ol 1

L 2 2.10
G~ o=, [ [L,xpJu |~ (2.10)

Substituting (2.10) into (2.5) and taking sum on [ from 1 to n, we derive

(011 — o)) ([[L.xi] ]y ug) < Y J|[Lx Juy[|*. (2.11)
=1

[
N =
1=

=1

~

Now we calculate the terms in the both sides of (2.11). On the one hand, according
to
div(x/u) = grady; - u+ x;divu,

it yields (cf. Lemma 5 of [6])

Jdu
[—A,x/]u —Za—xl (2.12)
and
[M,xJu=—Ru, (2.13)

where Rju = (divu)gradx; + grad(u - ¢;). Hence, making use of (2.12) and (2.13), we
deduce

(1A ] u5) — SeM ] g )

NIH

1
L] v wg) =
1
<[8x1 xl}uj7uj>+2a([Rl7xl]uj7uj>
—/ xluj xlguj]
(2.14)
—a/Quj -[(gradx; - w)gradx; + (u - ¢;)gradx;]
=P+ o | (wy-er)grady -w,
=1+(X/Q(llj'el)2.

On the other hand, it follows from (2.12) and (2.13) that

i | [L,x]u; [>= 1(4”%ujH2+a2Rluj2+4a<3—l;;7Rluj>>. (2.15)
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According to Lemma 4.5 of [11], it holds

2||R,u,|| n+2)/Q(divuj)2—/Quj-Auj (2.16)
and
Jdu;
Z<8 » Rluj 2/ u; - grad(divu;). (2.17)
Substituting (2.16), (2.17) and
i 8u]” /u -Au;
& 8)61 J J
into (2.15), we obtain
n
Z [L,xi]u; ||*=w;, (2.18)

where

—(4+a2)/guj-Auj—[(n+2)(x2+8(x}/Quj-grad(divuj).

When o > %n+2—|—\/ n+2)2416], it yields a®> — (n+2)a —4 > 0. In this case,
we have

:(4+a2)q,»—[a2—(n+2)a—4}/g(divuj)2 < (4+0?)o;. (2.19)
When 0 < o0 < $[n+2+/(n+2)2+16], it yields o> — (n+2)az —4 < 0. In this

case, since
— /Quj 'Allj > O,

we get
wi=[n+2)o+8]o;—[a®> — (n+2 a—4/u--Au-
j=ln+2)a+ 8o~ [0~ (n+2)o—4] [ uj- v, 20
<[(n+2)a+8]o;.
It follows from (2.18), (2.19) and (2.20) that
2 [L,x|u; ||*< C(n, &) 0. (2.21)
Substituting (2.14) and (2.21) into (2.11), we get
2 Ojy— |:1—|—OC/ (ui,we;)z] SC(n,OC)Gj. (2.22)

Since

M=

/g(“j'ez)2 = Jluj|* =1,

~

1
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we deduce

(Gj+l—6/)[1+a/g(uj-e1)2} >

M=
M=

n
(Cj41—0j) +0(0j41 — 0j) Z/ uj-e)’
=1

~
~
—

1

I
M=

(0j+1—0j) + (011 — 0j).

—
Il
—_

(2.23)
Finally, combining (2.22) and (2.23), we obtain

n
2 0j+1—0j)+ a(0j41 —0j) < C(n, ) 0;. (2.24)
It yields (1.13). This completes the proof of Theorem 1. [J

In the proof of Theorem 2, we use the following lemma of Ilias and Makhoul [8].

LEMMA 2. Let € be a complex Hilbert space with a given inner product {,).
The notations of H, Gy, L and u; denote the same meanings as Lemma 1. Let {T; :
D — A }g\/: | be a collection of skew-symmetric operators which leave 7 invariant.
A couple (f,g) of functions defined on )0, || belongs to 3, provided that f and g are
positive functions which satisfy

fO—f0)]° | g —e [ ) )
{ x—y } Ty [ (X)(u—X)Jrg(y)(u—y)} =0
forany x,y €]0,u[ and x #y. Then we have

n

[ﬁEf (1) [Tz,Gz]ui,u»r

= (2.25)

<43 3 sG] [ 3 L)

i=11=1 S5 8 (i) (ke
where ||Tu;|| denotes the norm of Tju;.

Now we give the proof of Theorem 2.

Proof of Thereom 2. Taking H=L, G;=x; and T} = W in (2.25), we have

33 o[ )|

== (2.26)

1
n

“[gEsenteatnm] (35 it =aramer]

Now we need to calculate the terms in the both side of (2.26). Since

<3—zj,xlu,~>=/gxlu, / /xluz B X’
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we get
Ju; 1 1
<i,x1lli>=—— U =—=. (2.27)
X[ 2
Moreover, we have
(Ryju;, xpu;) :/ xpu; - [(divu;)gradyx; + grad(u; - €7)]
Q
:/ xl(divui)ui -€ — / u; - € [xl (diVlli) +u;- el] (2.28)
Q Q

=— /Q(ui-el)z.

Hence, it follows from (2.12), (2.13), (2.27) and (2.28) that

(L xiJu v} = i«[—A,m T oM x) s )
1 =1

S

—
Il

[
|
[\S)
=
/\
Q:
F
5
£
\/
HM:
=
£
&
£

(2.29)

At the same time, we derive

P J dul o
<[a . x;}u,,u,>_/gu,~ [a—m(xlu,)—xla)q] —wlP=1.  (2.30)

Since o > 0, it holds

n

2 ll,H2 / ll,"All,‘ZG,‘—OC/(diVll,‘)2 < 0;. (2.31)
Q Q

Substituting (2.29), (2.30) and (2.31) into (2.26), we can deduce

2
{if(m)] < M Z i A@-. (2.32)
i=1 n? i—1

i—1 g(0i) (01— 0i)

Taking f(0;) = (041 — 0;)% and g(o;) = (041 — 07)° in (2.32), we obtain (1.14).
Taking f(0;) = g(0;) = (Op41 — O'i)% in (2.32), we get (1.15). This concludes the proof
of Theorem2. [l
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