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Abstract. In this paper, we investigate the Dirichlet eigenvalue problem of the Lamé system:
Δu+ αgrad(divu) = −σu on a bounded domain Ω in an n -dimensional Euclidean space R

n ,
where α is a nonnegative constant and u is a vector-valued function on Ω . We establish
a Levitin-Parnovski-type inequality for its eigenvalues, which gives an estimate for the upper
bounds of ∑n

i=1 σi+ j for any positive integer j . Moreover, we obtain some other universal in-
equalities for eigenvalues of this problem.

1. Introduction

Let Ω be a bounded domain in an n -dimensional Euclidean space R
n . Let u =

(u1, · · · ,ul, · · · ,un) be a vector-valued function on Ω . Denote by div the divergence
operator and grad the gradient operator. The Dirichlet eigenvalue problem of the Lamé
system is described by {

Δu+ αgrad(divu) = −σu, in Ω,

u|∂Ω = 0,
(1.1)

where α is a nonnegative constant and Δ is the Laplacian in R
n . This problem has def-

inite physical background. When n = 3, it describes the behavior of an elastic medium.
Its eigenvectors describe the deformation of vibrating elastic bodies with fixed bound-
aries (cf. [16, 12]). This problem has a real discrete spectrum

0 < σ1 � σ2 � · · · � σl � · · · → ∞, (1.2)

where each eigenvalue is repeated according to its multiplicity.
Eigenvalues of problem (1.1) have been studied from different angles (see [7, 9, 10,

14]). In particular, some universal inequalities for its eigenvalues have been established.
In 1990, Hook [6] proved

k

∑
i=1

σi

σk+1−σi
� n2k

4(n+ α)
. (1.3)
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Keywords and phrases: Lamé system, eigenvalue, universal inequality.
The first author was supported by the National Natural Science Foundation of China (Grant No. 11001130).

c© � � , Zagreb
Paper OaM-07-50

905

http://dx.doi.org/10.7153/oam-07-50


906 HE-JUN SUN AND YE-JUAN PENG

In 2002, Levitin and Parnovski [11] derived

σk+1 −σk � max{4+ α2;(n+2)α +8}
n+ α

1
k

k

∑
i=1

σi, (1.4)

which gives an estimate for the gap of σk+1 −σk in terms of the first k eigenvalues. In
2009, Cheng and Yang [5] obtained

k

∑
i=1

(σk+1−σi) � 2
√

n+ α
n

[ k

∑
i=1

(σk+1−σi)
1
2

k

∑
i=1

(σk+1−σi)
1
2 σi

] 1
2

. (1.5)

It implies

σk+1 �
[
1+

4(n+ α)
n2

]
1
k

n

∑
i=1

σi, (1.6)

which gives an estimate for the upper bound of σk+1 in terms of the first k eigenvalues.
In 2012, Chen, Cheng, Wang and Xia [4] further strengthened (1.5) to

k

∑
i=1

(σk+1−σi)2 � B(n,α)
k

∑
i=1

(σk+1 −σi)σi,

where B(n,α) is a constant depended on n and α . Cheng and Yang [5] also gave the
following estimate for the upper bound of the sum of consecutive eigenvalues:

n

∑
i=1

σi+1 � (n+4+4α)σ1. (1.7)

It is interesting to relate problem (1.1) with the fixed membrane problem which is
described by {

Δu = −λu, in Ω,

u|∂Ω = 0,
(1.8)

where Ω is a bounded domain in R
n . When n = 2 (namely for Ω ⊂R

2 ), Payne, Pólya
and Weinberger [13] proved

λ2 + λ3 � 6λ1. (1.9)

It lead us to the famous Payne, Pólya and Weinberger conjecture (cf. [1]). In 1993,
Ashbaugh and Benguria [2] derived

n

∑
i=1

λi+1 � (n+4)λ1 (1.10)

for Ω ⊂ R
n . On the one hand, (1.10) have been extended to bounded domains in some

other Riemannian manifolds. In 2008, Sun, Cheng and Yang [15] obtained

n

∑
i=1

λi+1 � n2 +(n+4)λ1. (1.11)
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on a bounded domain in the unite sphere Sn(1) . It is optimal for the unite sphere since
it becomes an equality when Ω = Sn(1) . Chen and Cheng [3] proved that (1.10) also
holds on bounded domains in complete Riemannian manifolds. On the other hand,
Levitin and Parnovski [11] generalized (1.10) to

n

∑
i=1

λi+ j � (n+4)λ j, (1.12)

where j is any positive integer. A remarkable point of (1.12) is that it gives some
estimates for the upper bounds of λ j+1 + · · ·+ λ j+n in terms of λ j . Moreover, it cov-
ers (1.10) when j = 1. This inequality will be referred to henceforth as the Levitin-
Parnovski inequality. Observe that (1.7) also becomes the same as (1.10) when α = 0.
It is natural to consider the following question: Whether can one obtain a Levitin-
Parnovski-type inequality for problem (1.1)?

The purpose of this paper is to establish a Levitin-Parnovski-type inequality and
some other universal inequalities for problem (1.1). In this paper, we obtain the follow-
ing result:

THEOREM 1. Let Ω be a bounded domain in R
n . Denote by σi the i-th eigen-

value of problem (1.1). For any positive integer j , we have
n

∑
i=1

σi+ j �
(
n+C(n,α)

)
σ j −α(σ j+1−σ j), (1.13)

where the constant

C(n,α) =

⎧⎪⎪⎨
⎪⎪⎩

(n+2)α +8, when 0 � α �
√

(n+2)2 +16+n+2
2

;

4+ α2, when α �
√

(n+2)2 +16+n+2
2

.

Hence, we answer the preceding question. Observe that (1.13) becomes
n

∑
i=1

σi+ j � (n+8)σ j,

when α = 0. Of course, it is also interesting to consider whether it is possible to
establish a sharper inequality which becomes the same as (1.12) when α = 0.

Furthermore, we derive some other universal inequalities for problem (1.1).

THEOREM 2. Let Ω be a bounded domain in R
n . Denote by σi the i-th eigen-

value of problem (1.1). Then we have

k

∑
i=1

(σk+1−σi)2 � 2
√

n+ α
n

[ k

∑
i=1

σi

k

∑
i=1

(σk+1 −σi)3
] 1

2

(1.14)

and
k

∑
i=1

(σk+1−σi)
3
2 � 4(n+ α)

n2

k

∑
i=1

(σk+1 −σi)
1
2 σi. (1.15)
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REMARK 1. In the proof of Theorem 2, we obtain inequality (2.32) by making
use of an abstract inequality attributed to Ilias and Makhoul [8]. Besides (1.14) and
(1.15), we can also get (1.5) and (1.6) of Cheng and Yang [5] by using (2.32). In fact,
taking f (σi) = σk+1 − σi and g(σi) = (σk+1 − σi)

1
2 in (2.32), we can derive (1.5).

Taking f (σi) = g(σi) = σk+1−σi in (2.32), we can get (1.6).

2. Proofs of the main results

In this section, we give the proofs of Theorems 1 and 2. The proof of Theorem
1 is based on the observation that estimates in the proof of Corollary 2.7 of [11] can
be sharpened. In the proof of Theorem 1, we need the following abstract formula
established by Levitin and Parnovski [11].

LEMMA 1. Let H be a complex Hilbert space with a given inner product 〈,〉 . Let
H : D ⊂ H −→ H be a self-adjoint operator defined on a dense domain D which
is semibounded beblow and has a discrete spectrum μ1 � μ2 � μ3 � · · · . Let {Gl :
H(D) −→ H }N

l=1 be a collection of symmetric operators which leave D invariant.
Denote by {ui}∞

i=1 the normalized eigenvectors of H and ui corresponding to the i-
th eigenvalue μi . Moreover, this family of eigenvectors is further assumed to be an
orthonormal basis for H . For any positive integer j , we have

∞

∑
k=1

|〈[H,Gl]u j,uk〉|2
μk − μ j

= −1
2
〈[[H,Gl ],Gl]u j,u j〉, (2.1)

where [H,Gl] := HGl −GlH is the commutator of H and Gl .

Now we give the proof of Theorem 1.

Proof of Thereom 1. Denote by e1 = (1,0, · · · ,0) , · · · , en = (0, · · · ,1) the unit vec-
tors in R

n . Then we have ul = u ·el for a vector-valued function u = (u1, · · · ,ul, · · · ,un)
on Ω . For the sake of convenience, we denote by

Lu = −Δu+ αMu,

where Mu = −grad(divu) . Let ui be the orthonormal eigenvectors corresponding to
the i-th eigenvalues σi of problem (1.1). That is to say, ui satisfies

⎧⎪⎪⎨
⎪⎪⎩

Lui = σiui, in Ω,

ui|∂Ω = 0,∫
Ω

ui ·u j = δi j.

(2.2)

We claim that we can choose the functions x1, · · · ,xn as the standard coordinates
functions of R

n such that

〈[L,xl ]u j,u j+k〉 = 0, for 1 � k < l � n. (2.3)
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In fact, let y1, · · · ,yn be the standard coordinate functions of R
n . Consider an n× n

matrix B defined by

B :=

⎛
⎜⎜⎝
〈[L,y1]u j,u j+1〉 〈[L,y1]u j,u j+2〉 · · · 〈[L,y1]u j,u j+n〉
〈[L,y2]u j,u j+1〉 〈[L,y2]u j,u j+2〉 · · · 〈[L,y2]u j,u j+n〉

· · · · · · · · · · · ·
〈[L,yn]u j,u j+1〉 〈[L,yn]u j,u j+2〉 · · · 〈[L,yn]u j,u j+n〉

⎞
⎟⎟⎠ .

According to the QR-factorization theorem, we know that there is an orthogonal n×n
matrix Q = (qlr)n×n such that A = QB is an upper triangle matrix. Namely, it holds

n

∑
r=1

qlr〈[L,yr]u j,u j+k〉 = 0, for 1 � k < l � n.

Putting xl = ∑n
r=1 qlryr , we know that our claim is true. Therefore, according to (2.3),

we find that it holds
l−1

∑
k=1

|〈[L,xl ]u j,u j+k〉|2
σ j+k −σ j

= 0. (2.4)

Taking H = L and Gl = xl in (2.1), we have

∞

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

= −1
2
〈[[L,xl ],xl]u j,u j〉. (2.5)

Utilizing (2.4), we can get an inequality. In fact, rewriting the summation index, one
can deduce

∞

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

=
j−1

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

+
j+l−1

∑
k= j+1

|〈[L,xl ]u j,uk〉|2
σk −σ j

+
∞

∑
k= j+l

|〈[L,xl ]u j,uk〉|2
σk −σ j

=
j−1

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

+
l−1

∑
k=1

|〈[L,xl ]u j,u j+k〉|2
σ j+k −σ j

+
∞

∑
k= j+l

|〈[L,xl ]u j,uk〉|2
σk −σ j

.

(2.6)

Moreover, it follows from (1.2) that

j−1

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

� 0. (2.7)

Combining (2.4), (2.6) and (2.7), we have

∞

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

�
∞

∑
k= j+l

|〈[L,xl ]u j,uk〉|2
σk −σ j

� 1
σ j+l −σ j

∞

∑
k=1

|〈[L,xl ]u j,uk〉|2.
(2.8)
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Furthermore, Parseval’s identity implies

∞

∑
k=1

|〈[L,xl ]u j,uk〉|2 = ‖[L,xl]u j‖2. (2.9)

Combining (2.8) and (2.9), we obtain

∞

∑
k=1

|〈[L,xl ]u j,uk〉|2
σk −σ j

� 1
σ j+l −σ j

‖[L,xl]u j‖2. (2.10)

Substituting (2.10) into (2.5) and taking sum on l from 1 to n , we derive

− 1
2

n

∑
l=1

(σ j+l −σ j)〈[[L,xl ],xl ]u j,u j〉 �
n

∑
l=1

‖[L,xl]u j‖2. (2.11)

Now we calculate the terms in the both sides of (2.11). On the one hand, according
to

div(xlu) = gradxl ·u+ xldivu,

it yields (cf. Lemma 5 of [6])

[−Δ,xl]u = −2
∂u
∂xl

(2.12)

and
[M,xl ]u = −Rlu, (2.13)

where Rlu = (divu)gradxl + grad(u · el) . Hence, making use of (2.12) and (2.13), we
deduce

−1
2
〈[[L,xl ],xl]u j,u j〉 =

1
2
〈[[Δ,xl ],xl]u j,u j〉− 1

2
α〈[[M,xl ],xl ]u j,u j〉

=
〈[ ∂

∂xl
,xl

]
u j,u j

〉
+

1
2

α〈[Rl ,xl]u j,u j〉

=
∫

Ω
u j ·

[ ∂
∂xl

(xlu j)− xl
∂u j

∂xl

]
+

1
2

α
∫

Ω
u j · [(gradxl ·u)gradxl +(u · el)gradxl]

=‖u j‖2 + α
∫

Ω
(u j · el)gradxl ·u j

=1+ α
∫

Ω
(u j · el)2.

(2.14)

On the other hand, it follows from (2.12) and (2.13) that

n

∑
l=1

‖ [L,xl]u j ‖2=
n

∑
l=1

(
4
∥∥∥ ∂

∂xl
u j

∥∥∥2
+ α2‖Rlu j‖2 +4α

〈∂u j

∂xl
,Rlu j

〉)
. (2.15)
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According to Lemma 4.5 of [11], it holds

n

∑
l=1

‖Rlu j‖2 = (n+2)
∫

Ω
(divu j)2−

∫
Ω

u j ·Δu j (2.16)

and
n

∑
l=1

〈∂u j

∂xl
,Rlu j

〉
=−2

∫
Ω

u j ·grad(divu j). (2.17)

Substituting (2.16), (2.17) and

n

∑
l=1

∥∥∥∂u j

∂xl

∥∥∥2
= −

∫
Ω

u j ·Δu j

into (2.15), we obtain
n

∑
l=1

‖ [L,xl ]u j ‖2= wj, (2.18)

where

wj = −(4+ α2)
∫

Ω
u j ·Δu j − [(n+2)α2 +8α]

∫
Ω

u j ·grad(divu j).

When α � 1
2 [n+ 2+

√
(n+2)2 +16] , it yields α2 − (n+ 2)α − 4 � 0. In this case,

we have

wj =(4+ α2)σ j − [α2− (n+2)α −4]
∫

Ω
(divu j)2 � (4+ α2)σ j. (2.19)

When 0 � α � 1
2 [n + 2+

√
(n+2)2 +16] , it yields α2 − (n + 2)α − 4 � 0. In this

case, since

−
∫

Ω
u j ·Δu j � 0,

we get

wj =[(n+2)α +8]σ j − [α2− (n+2)α −4]
∫

Ω
u j ·Δu j

�[(n+2)α +8]σ j.
(2.20)

It follows from (2.18), (2.19) and (2.20) that

n

∑
l=1

‖ [L,xl ]u j ‖2� C(n,α)σ j. (2.21)

Substituting (2.14) and (2.21) into (2.11), we get

n

∑
l=1

(σ j+l −σ j)
[
1+ α

∫
Ω
(u j · el)2

]
� C(n,α)σ j. (2.22)

Since
n

∑
l=1

∫
Ω
(u j · el)2 = ‖u j‖2 = 1,
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we deduce
n

∑
l=1

(σ j+l −σ j)
[
1+ α

∫
Ω
(u j · el)2

]
�

n

∑
l=1

(σ j+l −σ j)+ α(σ j+1−σ j)
n

∑
l=1

∫
Ω
(u j · el)2

=
n

∑
l=1

(σ j+l −σ j)+ α(σ j+1−σ j).

(2.23)
Finally, combining (2.22) and (2.23), we obtain

n

∑
l=1

(σ j+l −σ j)+ α(σ j+1−σ j) � C(n,α)σ j. (2.24)

It yields (1.13). This completes the proof of Theorem 1. �

In the proof of Theorem 2, we use the following lemma of Ilias and Makhoul [8].

LEMMA 2. Let H be a complex Hilbert space with a given inner product 〈,〉 .
The notations of H , Gl , μi and ui denote the same meanings as Lemma 1. Let {Tl :
D −→ H }N

l=1 be a collection of skew-symmetric operators which leave D invariant.
A couple ( f ,g) of functions defined on ]0,μ [ belongs to Jμ provided that f and g are
positive functions which satisfy[

f (x)− f (y)
x− y

]2

+
g(x)−g(y)

x− y

[
f 2(x)

g(x)(μ − x)
+

f 2(y)
g(y)(μ − y)

]
� 0,

for any x,y ∈]0,μ [ and x 	= y. Then we have[ k

∑
i=1

n

∑
l=1

f (μi)〈
[
Tl,Gl

]
ui,ui〉

]2

�4

[ k

∑
i=1

n

∑
l=1

g(μi)〈
[
H,Gl

]
ui,Glui〉

][ k

∑
i=1

n

∑
l=1

f 2(μi)
g(μi)(μk+1− μi)

‖Tlui‖2
]
,

(2.25)

where ‖Tlui‖ denotes the norm of Tlui .

Now we give the proof of Theorem 2.

Proof of Thereom 2. Taking H = L , Gl = xl and Tl = ∂
∂xl

in (2.25), we have

[ k

∑
i=1

n

∑
l=1

f (σi)
〈[ ∂

∂xl
,xl

]
ui,ui

〉]2

�4

[ k

∑
i=1

n

∑
l=1

g(σi)〈
[
L,xl

]
ui,xlui〉

][ k

∑
i=1

n

∑
l=1

f 2(σi)
g(σi)(σk+1 −σi)

‖ ∂
∂xl

ui‖2
]
.

(2.26)

Now we need to calculate the terms in the both side of (2.26). Since〈∂ui

∂xl
,xlui

〉
=

∫
Ω

xlui · ∂ui

∂xl
= −

∫
Ω

u2
i −

∫
Ω

xlui · ∂ui

∂xl
,
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we get 〈∂ui

∂xl
,xlui

〉
= −1

2

∫
Ω

ui ·ui = −1
2
. (2.27)

Moreover, we have

〈Rlui,xlui〉 =
∫

Ω
xlui · [(divui)gradxl +grad(ui · el)]

=
∫

Ω
xl(divui)ui · el −

∫
Ω

ui · el[xl(divui)+ui · el]

=−
∫

Ω
(ui · el)2.

(2.28)

Hence, it follows from (2.12), (2.13), (2.27) and (2.28) that

n

∑
l=1

〈[L,xl ]ui,xlui〉 =
n

∑
l=1

〈([−Δ,xl]+ α[M,xl])ui,xlui〉

=−2
n

∑
l=1

〈∂ui

∂xl
,xlui

〉
−α

n

∑
l=1

〈Rlui,xlui〉

=
n

∑
l=1

[
1+ α

∫
Ω
(ui · el)2

]

=n+ α.

(2.29)

At the same time, we derive〈[ ∂
∂xl

,xl

]
ui,ui

〉
=

∫
Ω

ui ·
[

∂
∂xl

(xlui)− xl
∂ui

∂xl

]
= ‖ui‖2 = 1. (2.30)

Since α � 0, it holds

n

∑
l=1

‖ ∂
∂xl

ui‖2 = −
∫

Ω
ui ·Δui = σi −α

∫
Ω
(divui)2 � σi. (2.31)

Substituting (2.29), (2.30) and (2.31) into (2.26), we can deduce[ k

∑
i=1

f (σi)
]2

� 4(n+ α)
n2

k

∑
i=1

g(σi)
k

∑
i=1

f 2(σi)
g(σi)(σk+1 −σi)

σi. (2.32)

Taking f (σi) = (σk+1−σi)2 and g(σi) = (σk+1−σi)3 in (2.32), we obtain (1.14).

Taking f (σi) = g(σi) = (σk+1−σi)
3
2 in (2.32), we get (1.15). This concludes the proof

of Theorem 2. �
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