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A NOTE ON FROBENIUS NORM PRESERVERS OF JORDAN PRODUCT

BOJAN KUZMA AND TATJANA PETEK

(Communicated by N.-C. Wong)

Abstract. We classify maps on n–by–n complex matrices which preserve the Frobenius norm
of Jordan product.

1. Introduction

Recently, preserver problems with respect to various algebraic operations on Mn,
the algebra of all n× n complex matrices, attracted a lot of attention. In our recent
work [4], we completely characterized surjective maps on Mn, n � 3, the algebra of
n×n complex matrices, having the following property:

‖φ (A)φ (B)+ φ (B)φ (A)‖ = ‖AB+BA‖ for all A,B ∈ Mn, (1)

where ‖ · ‖ denotes the Frobenius norm,

∥∥(ai j)
∥∥=

√
trace(A∗A) =

(
n

∑
i, j=1

∣∣ai j
∣∣2)1/2

.

As it is well known, the Frobenius norm is unitary invariant; i.e. ‖UAV‖ = ‖A‖ for all
unitary U,V and A ∈ Mn .

In this note we characterize maps on Mn, n � 2, having the property (1) without
surjectivity assumption. We replace it by demand that φ is also norm preserving in a
sense that ‖A‖ = ‖φ(A)‖ for all A .

REMARK. To counter the lack of surjectivity, we might have assumed unitality.
However, we decided to assume that φ preserves the norm of every matrix. Namely,
the assumption that φ (I) = μI, for some unimodular complex number μ , immediately
implies that ‖φ (A)‖ = ‖A‖ for every matrix A. Indeed,

‖A‖ =
1
2
‖A◦I‖ =

1
2
‖φ (A)◦ φ (I)‖ =

1
2
‖φ (A)◦μI‖ = ‖φ (A)‖ .

The converse statement, that property (1) together with norm preserving property imply
that all unimodular scalar multiples of the identity are preserved, is not that obvious.
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The following four standard bijective maps on Mn will be used:

X �→ X identity map, X �→ X complex conjugation,
X �→ X tr transposition, X �→ X∗ conjugate transposition.

By the map # : Mn → Mn, A �→ A#, any of the above standard maps will be referred
to.

Denote by C and T⊂ C the complex field and the unit circle, respectively. By
projections we mean Hermitian idempotents, i.e. matrices P satisfying P2 = P = P∗ .
As usual, Cn is the vector space of complex column vectors of length n and e1, . . . ,en

is its standard orthonormal basis. Let Ei j = eie∗j , 1 � i, j � n , be the standard basis for
Mn .

In the sequel, we will often, possibly without referencing, use the folowing ele-
mentary fact on complex numbers [4, Lemma 3.2].

LEMMA 1.1. Let a1,a2, . . . ,an and b1,b2, . . . ,bn, n � 2, be complex numbers
such that

|ai| = |bi| , i = 1,2, . . . ,n,∣∣ai +a j
∣∣= ∣∣bi +b j

∣∣ , j 	= i, i, j = 1,2, . . . ,n.

Then there exists a μ ∈T such that at least one of the following two possibilities holds:
(1) (a1,a2, . . . ,an) = μ (b1,b2, . . . ,bn) ; (2) (a1,a2, . . . ,an) = μ

(
b1,b2, . . . ,bn

)
.

2. Main result and proofs

Our aim is to prove the following Theorem.

THEOREM 2.1. Let ‖ · ‖ be the Frobenius norm. A map φ : Mn → Mn, n � 2,
satisfies

‖φ (A)◦ φ (B)‖ = ‖A◦B‖ , A, B ∈ Mn, (2)

‖φ (A)‖ = ‖A‖ , A ∈ Mn, (3)

if and only if there exist:
(1) a unitary matrix W ;
(2) a map γ : Mn → T;
(3) a standard map X �→ X#;
(4) a subset N0, possibly empty, of Nn, the set of n× n normal matrices, such

that

φ (X) =
{

γ (X)WX#W ∗ if X ∈ Mn\N0,

γ (X)W
(
X#
)∗

W ∗ if X ∈ N0.
(4)

Before presenting the proof we need some Lemmas. The first one is a characteri-
zation of multiples of rank-one projections via equality of Frobenius norms.
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LEMMA 2.2. Let ‖ · ‖ be the Frobenius norm. A matrix B is a scalar multiple of
a rank-one projection if and only if

∥∥B2
∥∥= ‖B‖2 .

Proof. Let B = λP, λ ∈ C , P2 = P , P = P∗ and rankP = 1. Then there exists a
unitary matrix U such that B = λU∗E11U. Since ‖U∗E11U‖ = 1,∥∥B2

∥∥=
∣∣λ 2
∣∣‖U∗E11U‖ =

∣∣λ 2
∣∣= ‖λU∗E11U‖2 = ‖B‖2 .

Assume now that
∥∥B2

∥∥= ‖B‖2 . Then, a singular value decomposition gives B =UDV
for some unitary U,V and some diagonal D = diag(s1, . . . ,sn) , with s1 � s2 � . . . �
sn � 0. Therefore, by the unitary invariance,

‖B2‖ = ‖UDVUDV‖ = ‖DWD‖; (W = (wi j) := VU).

We claim that rankB � 1. From DWD = (sis jwi j) we deduce that

∥∥B2
∥∥=

(
n

∑
i, j=1

s2
i s

2
j

∣∣wi j
∣∣2)1/2

.

As
∣∣wi j

∣∣� 1, for all i, j, we have

‖B2‖ =

(
n

∑
i, j=1

s2
i s

2
j

∣∣wi j
∣∣2)1/2

�
(

n

∑
i, j=1

s2
i s

2
j

)1/2

=
n

∑
i, j=1

s2
i = ‖B‖2 .

Squaring both sides reveals that the equality ‖B2‖ = ‖B‖2 holds if and only if we have

s2
i s

2
j

(
1− ∣∣wi j

∣∣2) = 0 for all i, j . Assume for distinct indices i, j we have that si and

s j are both nonzero. Then |wii| = 1 = |wj j| = |wi j| , which contradicts the fact that W
is unitary. Hence, at most one singular value of B can be nonzero and so rankB � 1.

If s1 = 0, then B = 0. Else, s1 > 0 = s2 = . . . = sn . It is easy to see that
|w11|= 1, wherefrom W = w11⊕W ′ because W is unitary. Using W =VU we get that
V = (w11 ⊕W ′)U∗ , so that B = UDV = Us1E11V = s1U(w11E11)U∗ must be a scalar
multiple of a rank-one projection. �

LEMMA 2.3. Let ‖ · ‖ be the Frobenius norm. Suppose that for matrices A =
(ai j) , B = (bi j) ∈ Mn we have ‖A‖ = ‖B‖ and ‖A◦Eii‖ = ‖B◦Eii‖ , i = 1,2, . . . ,n.
Then

∑
1�i, j�n

i 	= j

∣∣ai j
∣∣2 = ∑

1�i, j�n
i 	= j

∣∣bi j
∣∣2 (5)

and
n

∑
i=1

|aii|2 =
n

∑
i=1

|bii|2 .

Moreover, if n = 2, we have |aii| = |bii| , i = 1,2.
Hence, the matrix A is diagonal if and only if B is diagonal and in that case, we

have also |aii| = |bii| , i = 1,2, . . .n.
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Proof. Equality of norms of A and B implies that

n

∑
i, j=1

∣∣ai j
∣∣2 =

n

∑
i, j=1

∣∣bi j
∣∣2 . (6)

From ‖A◦Eii‖ = ‖B◦Eii‖ it follows that

‖A◦Eii‖2 = 4 |aii|2 + ∑
i< j

(∣∣ai j
∣∣2 +

∣∣a ji
∣∣2) (7)

n

∑
i=1

‖A◦Eii‖2 = 4
n

∑
i=1

|aii|2 +
n

∑
i=1

∑
i< j

(∣∣ai j
∣∣2 +

∣∣a ji
∣∣2)

= 2
n

∑
i=1

|aii|2 +2‖A‖2

n

∑
i=1

‖B◦Eii‖2 = 4
n

∑
i=1

|bii|2 +
n

∑
i=1

∑
i< j

(∣∣bi j
∣∣2 +

∣∣b ji
∣∣2)

= 2
n

∑
i=1

|bii|2 +2‖B‖2

wherefrom it follows that ∑n
i=1 |aii|2 = ∑n

i=1 |bii|2 . Equality (5) then follows from the
equality of norms of A and B .

Clearly, A is diagonal if and only if ∑i	= j

∣∣ai j
∣∣2 = 0 = ∑i	= j

∣∣bi j
∣∣2 which is equiva-

lent to the diagonality of B . That |aii|= |bii| , i = 1,2, . . . ,n, in this case, follows from
(7).

Let now n = 2. Then |a11|2 + |a22|2 = |b11|2 + |b22|2 and also, as

‖A◦E11‖2−‖A◦E22‖2 = 4 |a11|2−4 |a22|2

‖B◦E11‖2−‖B◦E22‖2 = 4 |b11|2−4 |b22|2 ,

|a11|2 −|a22|2 = |b11|2−|b22|2 , the desired conclusion follows. �

LEMMA 2.4. Let φ : M2 → M2 have the properties (2) and (3) from Theorem 2.1
and let φ (Eii) = μiiEii , |μii|= 1 , i = 1,2. Then there exist functions μ12, μ21 : C→C,
such that

∣∣μi j (x)
∣∣= |x| for every x ∈ C and

φ (xE12) = μ12 (x)E12 and φ (xE21) = μ21 (x)E21,

or,
φ (xE12) = μ12 (x)E21 and φ (xE21) = μ21 (x)E12.

Proof. Let x 	= 0 and let B = φ (xE12) = (bi j) . By Lemma 2.3, b11 = b22 = 0 and
|b12|2 + |b21|2 = |x|2 . Since xE12 is a square-zero nilpotent, ‖(xE12)◦(xE12)‖ = 0,
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therefore, 1
2 ‖B◦B‖ =

∥∥B2
∥∥ = ‖b12b21I‖ = 0. So, either B = b12E12 or B = b21E21.

Consider φ (yE21) =C = (ci j) , y 	= 0. In the same way as above we get C = c12E12 or
C = c21E21. But it is impossible that B = b12E12 and C = c12E12 since xE12◦yE21 =
xyE11 but B◦C = 0. Also B = b21E21 and C = c21E21 cannot hold true simultaneously.
So, either B = b12E12, C = c21E21 or, B = b21E21, C = c12E12. Clearly, bi j and ci j are
dependent on x so the equality

∣∣μi j (x)
∣∣= |x| follows from the equality of norms. �

LEMMA 2.5. Let φ : M2 → M2 have the properties (2) and (3) from Theorem
2.1. Assume further that it maps rank-one projections to scalar multiples of rank-one
projections and that φ (Ei j) = μi jEi j, μi j ∈ T, i, j = 1,2 . Then there exists a diagonal
unitary matrix U such that either

φ (P) = μPUPU∗, μP ∈ T,

for every rank-one projection P, or,

φ (P) = μPUPU∗, μP ∈ T,

for every rank-one projection P.

Proof. We will first show that there exists a diagonal unitary matrix U such that
for every x ∈ C and every i, j,k = 1,2, i 	= j, φ (Ekk + xEi j) = αxU (Ekk + xEi j)U∗
simultaneously or, φ (Ekk + xEi j) = αxU (Ekk + xEi j)U∗ simultaneously, where αx ∈T
is also dependent on i, j,k . Let us start with (i, j) = (1,2) , and set φ (E11 + xE12) =(

a b
c d

)
. Since φ (Eii) = μiiEii, by Lemma 2.3 it follows that |a| = 1, |d| = 0, |b|2 +

|c|2 = |x|2 . By equating the norms of matrices

(E11 + xE12)◦E12 = E12

and

φ (E11 + xE12)◦ φ (E12) = φ (E11 + xE12)◦μ12E12 = μ12

(
c a
0 c

)

it follows 2 |c|2 + |a|2 = 1, so c = 0. Moreover, |b| = |x| , so

φ (E11 + xE12) = αx (E11 +bxE12)

for some αx ∈ T , |bx| = |x| . Similarly we get that φ (E22− xE12) = β−x (E22 +b′xE12)
for some β−x ∈ T , |b′x| = |x| . Since (E11 + xE12) ◦ (E22− xE12) = 2E11 we get b′x =
−bx. Let φ (E11 +E12) = α1 (E11 +b1E12) . Then by the equality of norms of matrices

(E11 +E12)◦ (E11 + xE12) = 2E11 +(1+ x)E12

α1 (E11 +b1E12)◦αx (E11 +bxE12) = α1αx (2E11 +(b1 +bx)E12)

we obtain |b1 +bx|= |1+ x| whence it follows (b1,bx) = μ (1,x) or (b1,bx) = μ (1,x)
for some μ ∈ T . Then μ = b1 and bx = b1x or bx = b1x . Replacing φ by X �→
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Bφ (X)B∗ , B = diag(1,b1) , we may assume b1 = 1. Next we show that bx = x for all
x, or, bx = x for all x ∈ C . Assume that x 	= x and y 	= y and that bx = x and by = y .
Comparing the norms of

(E11 + xE12)◦ (E11 + yE12) = 2E11 +(x+ y)E12

αx (E11 + xE12)◦αy (E11 + yE12) = αxαy (2E11 +(x+ y)E12)

we see that |x+ y|= |x+ y| , so (x,y) = μ ′ (x, y) or (x,y) = μ ′ (x ,y) for some μ ′ ∈T .
Since x 	= x and y 	= y , both cases lead to a contradiction. Therefore, we conclude that

φ (E11 + xE12) = αx (E11 + xE12) , x ∈ C,

or,
φ (E11 + xE12) = αx (E11 + xE12) , x ∈ C.

In the second case we compose φ with conjugation to achieve that for all x ∈ C

φ (E11 + xE12) = αx (E11 + xE12) .

Note that A = E22 − xE12 is the only matrix, up to scalar multiplication, with (E11 +
xE12)◦A = 0 which further implies that

φ (E22− xE12) = β−x (E22− xE12) .

In the same way as above, we get that φ (E11 + xE21) = γx (E11 + cxE21) , and
φ (E22− xE21) = δ−x (E22− cxE21) , where |cx| = |x| , γx, δ−x ∈ T. Then

(E11 + xE12)◦ (E11 + yE21) =
(

2+ xy x
y xy

)

implies that

αx (E11 + xE12)◦ δy (E11 + cyE21) = αxδy

(
2+ xcy x

y xcy

)
,

and by equating the norms we get |2+ xy| =
∣∣2+ xcy

∣∣ for every x ∈ C . It follows
that either cy = y or cy = xy

x . The later case wrongly implies cy is dependent on x ,
wherefrom cy = y .

In order to finish the proof of the Lemma let

P =
1

1+ |x|2
(

1 x
x |x|2

)
and Q = φ (P) =

μP

1+ |y|2
(

1 y
y |y|2

)
,

for some μP ∈ T and y ∈ C . Note that if P = E11 or P = E22 (= lim|x|→∞ P) there is
nothing to do. So assume x 	= 0. We will show first that |x| = |y| . Computing

P◦E11 =
1

1+ |x|2
(

2 x
x 0

)
, Q◦E11 =

μP

1+ |y|2
(

2 y
y 0

)
,
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and comparing the norms, we get 4+2|x|2
(1+|x|2)2 = 4+2|y|2

(1+|y|2)2 , wherefrom |x| = |y| easily fol-

lows. It remains to show that x = y . Compare the norms of

1

1+ |x|2
(

1 x
x |x|2

)
◦
(

0 1
0 1

)
=

1

1+ |x|2
(

x 1+ |x|2 + x
x 2 |x|2 + x

)

μP

1+ |y|2
(

1 y
y |y|2

)
◦β1

(
0 1
0 1

)
=

μPβ1

1+ |y|2
(

y 1+ |y|2 + y
y 2 |y|2 + y

)

and

1

1+ |x|2
(

1 x
x |x|2

)
◦
(

0 i
0 1

)
=

1

1+ |x|2
(

ix
(
1+ |x|2

)
i+ x

x 2 |x|2 + ix

)

μP

1+ |y|2
(

1 y
y |y|2

)
◦βi

(
0 i
0 1

)
=

μPβi

1+ |y|2
(

iy
(
1+ |y|2

)
i+ y

y 2 |y|2 + iy

)
,

and use |x| = |y| to obtain that Rex = Rey and Re ix = Re iy. So, y = x and Q =
μPP . �

In our subsequent Lemmas 2.6 and 2.7 we assume that φ : Mn →Mn is a map with
the properties (2) and (3) from Theorem 2.1.

LEMMA 2.6. Assume φ (Eii) = μiiEii, for all i . Then either φ (Ei j) = μi jEi j ,
i, j = 1,2, . . . ,n, or, φ (Ei j) = μi jE ji, i, j = 1,2, . . . ,n. If φ (E12) = μ12E12, μ12 ∈ T,
then φ (Ei j) = μi jEi j for all i 	= j .

Proof. Given indices i < j let φi j be the restriction of φ to the space Wi j :=
span

{
Eii,Ei j,Eji,Ej j

}
. Since for every matrix A ∈ Wi j it holds that A◦Ekk = 0 if

k 	= i, j, then φ (A)◦Ekk = 0 for all k 	= i, j, as well. Therefore, φ (A) ∈ Wij. Map-
ping φi j : Wi j → Wi j satisfies hypotheses of Lemma 2.4, therefore, φi j (Ei j) = μi jEi j

and φi j (Eji) = μ jiE ji, or, φi j (Ei j) = μi jE ji and φi j (Eji) = μ jiEi j. So, for any i < j ,
φ (Ei j) = μi jEi j and φ (Eji) = μ jiE ji, or, φ (Ei j) = μi jE ji and φ (Eji) = μ jiEi j. Hence,
by composing φ with transposition, if necessary, we assume that φ (E12) = μ12E12 .
Then it follows φ (E1k) = μ1kE1k , k = 3, . . . ,n, because otherwise φ (E1k) = μ1kEk1,
for some k, would imply E12◦E1k = 0, while φ (E12)◦ φ (E1k) = μ12μ1k (E12 ◦Ek1) =
μ12μ1kEk2 	= 0, a contradiction. With a similar argument we then show φ (Eik) =
μikEik , k = 1,2, . . . ,n , i 	= k . �

LEMMA 2.7. If φ (Ei j) = μi jEi j, i, j = 1,2, . . . ,n, or if φ (Ei j) = μi jE ji, i, j =
1,2, . . . ,n, then for every diagonal matrix D, there exists a μD ∈ T such that φ (D) =
μDD or φ (D) = μDD.

Proof. Let D = diag(d1, . . . ,dn) . By Lemma 2.3, B = φ (D) = diag(b1, . . . ,bn)
and |bi| = |di| , i = 1,2, . . . ,n . Then∥∥D◦Ei j

∥∥2 =
∥∥(di +d j)Ei j

∥∥2 =
∣∣di +d j

∣∣2
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and ∥∥B◦Ei j
∥∥2 =

∥∥(bi +b j)Ei j
∥∥2 =

∣∣bi +b j
∣∣2 .

This implies that
∣∣di +d j

∣∣ = ∣∣bi +b j
∣∣ , i, j = 1,2, . . . ,n, i 	= j. From Lemma 1.1 the

desired conclusion follows. �

LEMMA 2.8. Let A be an upper or lower triangular n× n matrix and assume
that

∥∥A◦Ei j
∥∥=

∥∥A∗◦Ei j
∥∥ for all i, j = 1,2, . . . ,n. Then A is diagonal.

Proof. Using adjoints, it suffices to consider only upper triangular matrices. As-
sume, to reach a contradiction, that A is nondiagonal, and let i-th row be the first row
of A with nonzero off-diagonal entry. Then, A◦Ein = (αii + αnn)Ein while A∗◦Ein =
(αii + αnn)Ein + ∑k>i αikEkn + ∑i�k<n αknEik . Comparing the Frobenius norms reveals
that αik = 0, for k = i+1, . . . ,n which contradicts the fact that the i-th row of upper-
triangular A contains nonzero off-diagonal entry. Recall that a unitary U is general-
ized permutation matrix, corresponding to a permutation π on the set {1,2, . . . ,n} if
EiiU = UEπ(i),π(i) for i = 1, . . . ,n. Equivalently, if each row of U contains only one
nonzero entry. �

LEMMA 2.9. Let Tn be the subspace of all upper-triangular matrices. Then, for
every unitary U , either the intersection Tn∩ (UTnU∗) contains a nondiagonal matrix
or, U is a generalized permutation matrix, corresponding to the permutation π defined
by π (i) = n+ 1− i, i = 1,2, . . . ,n. In the latter case, UTnU∗ is the set of all lower
triangular matrices.

Proof. Note that codim(Tn∩(UTnU∗))� codimTn+codim(UTnU∗)= 2 n(n−1)
2 .

Wherefrom, dim(Tn∩(UTnU∗))� n . Therefore, if Tn∩(UTnU∗) contains only diag-
onal matrices, then its dimension implies that it is equal to the space of diagonal matri-
ces. In which case we conclude that there exists a permutation π on the set {1,2, . . . ,n}
such that for every i we have Eii = UEπ(i),π(i)U

∗. So, U is a generalized permutation
matrix, corresponding to the permutation π .

Writing π as product of cycles we find that either there exist indices i < j, such
that π(i) < π( j) , or, π is strictly decreasing, i.e. for every i < j, we have π (i) > π ( j) .
In the first case, UEi jU∗ = ui jEπ(i)π( j) , |ui j| = 1, is the desired nondiagonal matrix in
the intersection while in the second case, π (i) = n+1− i, i = 1,2, . . . ,n . �

Proof of Theorem 2.1. Let us begin with a simple fact that
∥∥A2

∥∥ = 1
2 ‖A◦A‖ =

1
2 ‖φ (A)◦ φ (A)‖ =

∥∥∥φ (A)2
∥∥∥ for every A ∈ Mn . Next, we observe that φ maps the set

of nonzero scalar multiples of rank-one projections into itself. Indeed, let A = λP , P
being a rank-one projection, λ ∈C\{0} , and denote B = φ (A) . In view of Lemma 2.2

‖B‖2 = ‖φ (A)‖2 = ‖A‖2 =
∥∥A2

∥∥=
∥∥∥φ (A)2

∥∥∥=
∥∥B2

∥∥
imply that B = δQ, where Q is a rank-one projection and δ ∈ C . Furthermore, ‖B‖ =
‖A‖ gives that |δ | = |λ | 	= 0. Clearly, A = 0 if and only if φ (A) = 0.
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Moreover, if P1,P2 are mutually orthogonal rank-one projections, then we claim
that φ (P1)φ (P2) = φ (P2)φ (P1) = 0. Namely, there exist unimodular numbers μ1,μ2

and rank-one projections Q1,Q2 , such that φ (Pi) = μiQi, μi ∈ T, i = 1,2. Note that
for every rank-one projections Q1,Q2, Q1 ⊥ Q2 if and only if Q1◦Q2 = 0. Thus it
suffices to show that ‖Q1◦Q2‖ = 0 which follows from

‖Q1◦Q2‖ = ‖μ1μ2Q1◦Q2‖ = ‖φ (P1)◦ φ (P2)‖ = ‖P1◦P2‖ = 0.

Since each rank-one projection equals xx∗ for some unit vector x ∈ Cn, it follows
that for every x ∈ Cn, ‖x‖ = 1, there exist a unit vector y ∈ Cn and μ ∈T such that
φ (xx∗) = μyy∗ .

If n = 2, there exists a unitary matrix V such that V ∗φ (Eii)V = μiiEii, i = 1,2,
μii ∈T . Then by Lemma 2.4, V ∗φ (Ei j)V = μi jEi j, i, j = 1,2, or, V ∗φ (Ei j)V = μi jE ji,
i, j = 1,2. Replacing φ by X �→V ∗φ (X)V or X �→ (V ∗φ (X)V )∗ , if necessary, we may
assume that φ (Ei j) = μi jEi j, i, j = 1,2, μi j ∈ T . By Lemma 2.5 there is a diagonal
unitary matrix U such that φ (P) = μPUPU∗, μP ∈ T, for every rank-one projection
P, or φ (P) = μPUPU∗, μP ∈ T, for every rank-one projection P . Replacing φ by
X �→ U∗φ (X)U or, by X �→ U∗φ (X)U , if neccessary, enables us to further assume
that φ (P) = μPP, μP ∈ T , for every rank-one projection P ; the new map still satisfies
assumptions (2) and (3) of Theorem 2.1. �

If n � 3, then φ induces a map from the projective space

P(Cn) = {[x] = Cx; x ∈ C
n\{0}}

into itself which preserves orthogonality. We can now use the following Lemma from
[1].

LEMMA 2.10. Let n � 3. Suppose a map ϕ : P(Cn) → P(Cn) preserves orthog-
onality. Then there exists a unitary matrix V such that ϕ ([x]) = [Vx] , x ∈ Cn, or
ϕ ([x]) = [Vx] , x ∈ Cn.

It follows that φ (xx∗)= μxVx(Vx)∗ = μxVxx∗V ∗ for all unit vectors x, or, φ (xx∗)
= μxVxx∗V ∗ for all unit x . We may replace φ by the map X �→ V ∗φ (X)V or by
X �→V ∗φ (X)V , to achieve φ (P) = μPP, μP ∈ T , for every rank-one projection P .

Let now n � 2. We will next show that for every normal matrix A there exists
μA ∈T such that φ (A) = μAA or φ (A) = μAA∗ . In order to do it let us choose a unitary
matrix U such that U∗AU = D is a diagonal matrix. Let φ1 (X) := U∗φ (UXU∗)U.
Then we have φ1 (Eii) = μiiEii, μii ∈T, for every i = 1,2, . . . ,n. By Lemma 2.6, we
have either φ1 (Ei j) = μi jEi j for all i, j or, φ1 (Ei j) = μi jE ji for all i, j . Then Lemma
2.7 assures that there exists a μD ∈T such that φ1 (D) = μDD or φ1 (D) = μDD. This
now implies that φ (A) = μAA or φ (A) = μAA∗ for some unimodular μA .

Replacing φ by X �→ φ (X)∗ , if necessary, we can now assume that φ (Ei j) =
μi jEi j for all i, j. Note that in the Frobenius norm, ‖μAA∗◦ φ (B)‖ = ‖A◦ φ (B)‖ , for
every normal matrix A [4, Lemma 6.4]. Therefore, we can further adjust the map φ on
normal matrices so that φ fixes every normal matrix.
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Pick now any nonnormal matrix A and let B = φ (A) . Then

‖A◦X‖ = ‖φ (A)◦ φ (X)‖ = ‖B◦X‖

for every normal X . By [4, Lemma 6.6] there exists γ ∈ T such that either diagv(A) =
γ diagv(B) , or diagv(A) = γ diagv(B) where diagv((ci j)) = (c11,c22, . . . ,cnn)tr ∈ Cn.
We remark that if n = 2, the same result can be more directly obtained by applying
Lemma 2.3 to get |aii| = |bii| , i = 1,2, and |a12|2 + |a21|2 = |b12|2 + |b21|2 . Then, by
summing up the equalities

|a11 +a22|2 +2 |a21|2 = ‖A◦E12‖ = ‖φ (A)◦μ12E12‖ = |b11 +b22|2 +2 |b21|2
|a11 +a22|2 +2 |a12|2 = ‖A◦E21‖ = ‖φ (A)◦μ21E21‖ = |b11 +b22|2 +2 |b12|2

and using Lemma 1.1 it follows that diagv(A)= γ diagv(B) , or diagv(A)= γ diagv(B)
for some γ ∈ T . Then [3, Theorem 3.2] implies B = γAA or B = γAA∗ , γA ∈ T .

To bring the proof to the end, it suffices to show that the latter is impossible.
Since A is not normal, there exists a unitary matrix U such that U∗AU = T0 is non-
diagonal upper triangular matrix. Recall that φ (Ei j) = μi jEi j for all i, j, so, the Lemma
2.8 provides that φ (T ) = γT T for every upper or lower triangular matrix T . Since
φ (UEiiU∗) = γiiUEiiU∗, γii ∈ T, for every i, passing to X �→U∗φ (UXU∗)U and ap-
plying Lemma 2.6, we get either φ (UEi jU∗)= γi jUEi jU∗, for all i, j, or, φ (UEi jU∗)=
γi jUE jiU∗ for all i, j .

Lemma 2.8 shows that the latter case would imply that U∗φ(UTU∗)U = γT T ∗
or, equivalently, φ(UTU∗) = γTUT ∗U∗ for every upper-triangular T . However, by
Lemma 2.10, either U is a generalized permutation matrix, corresponding to permu-
tation π , π (i) = n + 1− i, i = 1,2, . . . ,n, or, there exists a nondiagonal T ∈ Tn ∩
(UTnU∗) . In the first case, A ∈UTnU∗ is in fact lower triangular, so, φ (A) = γAA .
But on the other hand, φ (A) = φ (UT0U∗) = γ ′UT ∗

0 U∗ = γ ′A∗, which is impossible
since A is not diagonal. In the second case, T ∈ Tn implies φ(T ) = γ1T , while
T = UT1U∗ ∈ (UTnU∗) implies φ(T ) = φ(UT1U∗) = γ2UT ∗

1 U∗ = γ2T ∗ , a contra-
diction.

That any map of the form (4) satisfies (2) and (3), is easy to check and was done
in [4].
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