A NOTE ON FROBENIUS NORM PRESERVERS OF JORDAN PRODUCT

Bojan Kuzma and Tatjana Petek

(Communicated by N.-C. Wong)

Abstract. We classify maps on $n-b y-n$ complex matrices which preserve the Frobenius norm of Jordan product.

1. Introduction

Recently, preserver problems with respect to various algebraic operations on M_{n}, the algebra of all $n \times n$ complex matrices, attracted a lot of attention. In our recent work [4], we completely characterized surjective maps on $M_{n}, n \geqslant 3$, the algebra of $n \times n$ complex matrices, having the following property:

$$
\begin{equation*}
\|\phi(A) \phi(B)+\phi(B) \phi(A)\|=\|A B+B A\| \text { for all } A, B \in M_{n} \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Frobenius norm,

$$
\left\|\left(a_{i j}\right)\right\|=\sqrt{\operatorname{trace}\left(A^{*} A\right)}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

As it is well known, the Frobenius norm is unitary invariant; i.e. $\|U A V\|=\|A\|$ for all unitary U, V and $A \in M_{n}$.

In this note we characterize maps on $M_{n}, n \geqslant 2$, having the property (1) without surjectivity assumption. We replace it by demand that ϕ is also norm preserving in a sense that $\|A\|=\|\phi(A)\|$ for all A.

REMARK. To counter the lack of surjectivity, we might have assumed unitality. However, we decided to assume that ϕ preserves the norm of every matrix. Namely, the assumption that $\phi(I)=\mu I$, for some unimodular complex number μ, immediately implies that $\|\phi(A)\|=\|A\|$ for every matrix A. Indeed,

$$
\|A\|=\frac{1}{2}\|A \circ I\|=\frac{1}{2}\|\phi(A) \circ \phi(I)\|=\frac{1}{2}\|\phi(A) \circ \mu I\|=\|\phi(A)\|
$$

The converse statement, that property (1) together with norm preserving property imply that all unimodular scalar multiples of the identity are preserved, is not that obvious.

[^0]The following four standard bijective maps on M_{n} will be used:

$$
\begin{array}{ll}
X \mapsto X \text { identity map, } & X \mapsto \bar{X} \text { complex conjugation, } \\
X \mapsto X^{\operatorname{tr}} \text { transposition, } & X \mapsto X^{*} \text { conjugate transposition. }
\end{array}
$$

By the map \# : $M_{n} \rightarrow M_{n}, \quad A \mapsto A^{\#}$, any of the above standard maps will be referred to.

Denote by \mathbb{C} and $\mathrm{T} \subset \mathbb{C}$ the complex field and the unit circle, respectively. By projections we mean Hermitian idempotents, i.e. matrices P satisfying $P^{2}=P=P^{*}$. As usual, \mathbb{C}^{n} is the vector space of complex column vectors of length n and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is its standard orthonormal basis. Let $E_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{*}, 1 \leqslant i, j \leqslant n$, be the standard basis for M_{n}.

In the sequel, we will often, possibly without referencing, use the folowing elementary fact on complex numbers [4, Lemma 3.2].

LEMMA 1.1. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}, n \geqslant 2$, be complex numbers such that

$$
\begin{aligned}
\left|a_{i}\right| & =\left|b_{i}\right|, \quad i=1,2, \ldots, n \\
\left|a_{i}+a_{j}\right| & =\left|b_{i}+b_{j}\right|, \quad j \neq i, \quad i, j=1,2, \ldots, n
\end{aligned}
$$

Then there exists a $\mu \in \mathrm{T}$ such that at least one of the following two possibilities holds:
(1) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\mu\left(b_{1}, b_{2}, \ldots, b_{n}\right)$;
(2) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\mu\left(\overline{b_{1}}, \overline{b_{2}}, \ldots, \overline{b_{n}}\right)$.

2. Main result and proofs

Our aim is to prove the following Theorem.
THEOREM 2.1. Let $\|\cdot\|$ be the Frobenius norm. A map $\phi: M_{n} \rightarrow M_{n}, n \geqslant 2$, satisfies

$$
\begin{align*}
\|\phi(A) \circ \phi(B)\| & =\|A \circ B\|, \quad A, B \in M_{n} \tag{2}\\
\|\phi(A)\| & =\|A\|, \quad A \in M_{n} \tag{3}
\end{align*}
$$

if and only if there exist:
(1) a unitary matrix W;
(2) a map $\gamma: M_{n} \rightarrow \mathrm{~T}$;
(3) a standard map $X \mapsto X^{\#}$;
(4) a subset \mathscr{N}_{0}, possibly empty, of \mathscr{N}_{n}, the set of $n \times n$ normal matrices, such that

$$
\phi(X)= \begin{cases}\gamma(X) W X^{\#} W^{*} & \text { if } X \in M_{n} \backslash \mathscr{N}_{0} \tag{4}\\ \gamma(X) W\left(X^{\#}\right)^{*} W^{*} & \text { if } X \in \mathscr{N}_{0}\end{cases}
$$

Before presenting the proof we need some Lemmas. The first one is a characterization of multiples of rank-one projections via equality of Frobenius norms.

Lemma 2.2. Let $\|\cdot\|$ be the Frobenius norm. A matrix B is a scalar multiple of a rank-one projection if and only if $\left\|B^{2}\right\|=\|B\|^{2}$.

Proof. Let $B=\lambda P, \lambda \in \mathbb{C}, P^{2}=P, P=P^{*}$ and $\operatorname{rank} P=1$. Then there exists a unitary matrix U such that $B=\lambda U^{*} E_{11} U$. Since $\left\|U^{*} E_{11} U\right\|=1$,

$$
\left\|B^{2}\right\|=\left|\lambda^{2}\right|\left\|U^{*} E_{11} U\right\|=\left|\lambda^{2}\right|=\left\|\lambda U^{*} E_{11} U\right\|^{2}=\|B\|^{2} .
$$

Assume now that $\left\|B^{2}\right\|=\|B\|^{2}$. Then, a singular value decomposition gives $B=U D V$ for some unitary U, V and some diagonal $D=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)$, with $s_{1} \geqslant s_{2} \geqslant \ldots \geqslant$ $s_{n} \geqslant 0$. Therefore, by the unitary invariance,

$$
\left\|B^{2}\right\|=\|U D V U D V\|=\|D W D\| ; \quad\left(W=\left(w_{i j}\right):=V U\right)
$$

We claim that $\operatorname{rank} B \leqslant 1$. From $D W D=\left(s_{i} s_{j} w_{i j}\right)$ we deduce that

$$
\left\|B^{2}\right\|=\left(\sum_{i, j=1}^{n} s_{i}^{2} s_{j}^{2}\left|w_{i j}\right|^{2}\right)^{1 / 2}
$$

As $\left|w_{i j}\right| \leqslant 1$, for all i, j, we have

$$
\left\|B^{2}\right\|=\left(\sum_{i, j=1}^{n} s_{i}^{2} s_{j}^{2}\left|w_{i j}\right|^{2}\right)^{1 / 2} \leqslant\left(\sum_{i, j=1}^{n} s_{i}^{2} s_{j}^{2}\right)^{1 / 2}=\sum_{i, j=1}^{n} s_{i}^{2}=\|B\|^{2}
$$

Squaring both sides reveals that the equality $\left\|B^{2}\right\|=\|B\|^{2}$ holds if and only if we have $s_{i}^{2} s_{j}^{2}\left(1-\left|w_{i j}\right|^{2}\right)=0$ for all i, j. Assume for distinct indices i, j we have that s_{i} and s_{j} are both nonzero. Then $\left|w_{i i}\right|=1=\left|w_{j j}\right|=\left|w_{i j}\right|$, which contradicts the fact that W is unitary. Hence, at most one singular value of B can be nonzero and so $\operatorname{rank} B \leqslant 1$.

If $s_{1}=0$, then $B=0$. Else, $s_{1}>0=s_{2}=\ldots=s_{n}$. It is easy to see that $\left|w_{11}\right|=1$, wherefrom $W=w_{11} \oplus W^{\prime}$ because W is unitary. Using $W=V U$ we get that $V=\left(w_{11} \oplus W^{\prime}\right) U^{*}$, so that $B=U D V=U s_{1} E_{11} V=s_{1} U\left(w_{11} E_{11}\right) U^{*}$ must be a scalar multiple of a rank-one projection.

Lemma 2.3. Let $\|\cdot\|$ be the Frobenius norm. Suppose that for matrices $A=$ $\left(a_{i j}\right), B=\left(b_{i j}\right) \in M_{n}$ we have $\|A\|=\|B\|$ and $\left\|A \circ E_{i i}\right\|=\left\|B \circ E_{i i}\right\|, i=1,2, \ldots, n$. Then

$$
\begin{equation*}
\sum_{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}}\left|a_{i j}\right|^{2}=\sum_{\substack{1 \leqslant i, j \leqslant n \\ i \neq j}}\left|b_{i j}\right|^{2} \tag{5}
\end{equation*}
$$

and

$$
\sum_{i=1}^{n}\left|a_{i i}\right|^{2}=\sum_{i=1}^{n}\left|b_{i i}\right|^{2}
$$

Moreover, if $n=2$, we have $\left|a_{i i}\right|=\left|b_{i i}\right|, i=1,2$.
Hence, the matrix A is diagonal if and only if B is diagonal and in that case, we have also $\left|a_{i i}\right|=\left|b_{i i}\right|, i=1,2, \ldots n$.

Proof. Equality of norms of A and B implies that

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{i, j=1}^{n}\left|b_{i j}\right|^{2} \tag{6}
\end{equation*}
$$

From $\left\|A \circ E_{i i}\right\|=\left\|B \circ E_{i i}\right\|$ it follows that

$$
\begin{align*}
\left\|A \circ E_{i i}\right\|^{2} & =4\left|a_{i i}\right|^{2}+\sum_{i<j}\left(\left|a_{i j}\right|^{2}+\left|a_{j i}\right|^{2}\right) \tag{7}\\
\sum_{i=1}^{n}\left\|A \circ E_{i i}\right\|^{2} & =4 \sum_{i=1}^{n}\left|a_{i i}\right|^{2}+\sum_{i=1}^{n} \sum_{i<j}\left(\left|a_{i j}\right|^{2}+\left|a_{j i}\right|^{2}\right) \\
& =2 \sum_{i=1}^{n}\left|a_{i i}\right|^{2}+2\|A\|^{2} \\
\sum_{i=1}^{n}\left\|B \circ E_{i i}\right\|^{2} & =4 \sum_{i=1}^{n}\left|b_{i i}\right|^{2}+\sum_{i=1}^{n} \sum_{i<j}\left(\left|b_{i j}\right|^{2}+\left|b_{j i}\right|^{2}\right) \\
& =2 \sum_{i=1}^{n}\left|b_{i i}\right|^{2}+2\|B\|^{2}
\end{align*}
$$

wherefrom it follows that $\sum_{i=1}^{n}\left|a_{i i}\right|^{2}=\sum_{i=1}^{n}\left|b_{i i}\right|^{2}$. Equality (5) then follows from the equality of norms of A and B.

Clearly, A is diagonal if and only if $\sum_{i \neq j}\left|a_{i j}\right|^{2}=0=\sum_{i \neq j}\left|b_{i j}\right|^{2}$ which is equivalent to the diagonality of B. That $\left|a_{i i}\right|=\left|b_{i i}\right|, i=1,2, \ldots, n$, in this case, follows from (7).

Let now $n=2$. Then $\left|a_{11}\right|^{2}+\left|a_{22}\right|^{2}=\left|b_{11}\right|^{2}+\left|b_{22}\right|^{2}$ and also, as

$$
\begin{aligned}
& \left\|A \circ E_{11}\right\|^{2}-\left\|A \circ E_{22}\right\|^{2}=4\left|a_{11}\right|^{2}-4\left|a_{22}\right|^{2} \\
& \left\|B \circ E_{11}\right\|^{2}-\left\|B \circ E_{22}\right\|^{2}=4\left|b_{11}\right|^{2}-4\left|b_{22}\right|^{2},
\end{aligned}
$$

$\left|a_{11}\right|^{2}-\left|a_{22}\right|^{2}=\left|b_{11}\right|^{2}-\left|b_{22}\right|^{2}$, the desired conclusion follows.
LEMMA 2.4. Let $\phi: M_{2} \rightarrow M_{2}$ have the properties (2) and (3) from Theorem 2.1 and let $\phi\left(E_{i i}\right)=\mu_{i i} E_{i i},\left|\mu_{i i}\right|=1, i=1,2$. Then there exist functions $\mu_{12}, \mu_{21}: \mathbb{C} \rightarrow \mathbb{C}$, such that $\left|\mu_{i j}(x)\right|=|x|$ for every $x \in \mathbb{C}$ and

$$
\phi\left(x E_{12}\right)=\mu_{12}(x) E_{12} \text { and } \phi\left(x E_{21}\right)=\mu_{21}(x) E_{21}
$$

or,

$$
\phi\left(x E_{12}\right)=\mu_{12}(x) E_{21} \text { and } \phi\left(x E_{21}\right)=\mu_{21}(x) E_{12} .
$$

Proof. Let $x \neq 0$ and let $B=\phi\left(x E_{12}\right)=\left(b_{i j}\right)$. By Lemma 2.3, $b_{11}=b_{22}=0$ and $\left|b_{12}\right|^{2}+\left|b_{21}\right|^{2}=|x|^{2}$. Since $x E_{12}$ is a square-zero nilpotent, $\left\|\left(x E_{12}\right) \circ\left(x E_{12}\right)\right\|=0$,
therefore, $\frac{1}{2}\|B \circ B\|=\left\|B^{2}\right\|=\left\|b_{12} b_{21} I\right\|=0$. So, either $B=b_{12} E_{12}$ or $B=b_{21} E_{21}$. Consider $\phi\left(y E_{21}\right)=C=\left(c_{i j}\right), y \neq 0$. In the same way as above we get $C=c_{12} E_{12}$ or $C=c_{21} E_{21}$. But it is impossible that $B=b_{12} E_{12}$ and $C=c_{12} E_{12}$ since $x E_{12} \circ y E_{21}=$ $x y E_{11}$ but $B \circ C=0$. Also $B=b_{21} E_{21}$ and $C=c_{21} E_{21}$ cannot hold true simultaneously. So, either $B=b_{12} E_{12}, C=c_{21} E_{21}$ or, $B=b_{21} E_{21}, C=c_{12} E_{12}$. Clearly, $b_{i j}$ and $c_{i j}$ are dependent on x so the equality $\left|\mu_{i j}(x)\right|=|x|$ follows from the equality of norms.

Lemma 2.5. Let $\phi: M_{2} \rightarrow M_{2}$ have the properties (2) and (3) from Theorem 2.1. Assume further that it maps rank-one projections to scalar multiples of rank-one projections and that $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}, \mu_{i j} \in \mathrm{~T}, i, j=1,2$. Then there exists a diagonal unitary matrix U such that either

$$
\phi(P)=\mu_{P} U P U^{*}, \quad \mu_{P} \in \mathrm{~T}
$$

for every rank-one projection P, or,

$$
\phi(P)=\mu_{P} U \bar{P} U^{*}, \quad \mu_{P} \in \mathrm{~T}
$$

for every rank-one projection P.

Proof. We will first show that there exists a diagonal unitary matrix U such that for every $x \in \mathbb{C}$ and every $i, j, k=1,2, i \neq j, \phi\left(E_{k k}+x E_{i j}\right)=\alpha_{x} U\left(E_{k k}+x E_{i j}\right) U^{*}$ simultaneously or, $\phi\left(E_{k k}+x E_{i j}\right)=\alpha_{x} U\left(E_{k k}+\bar{x} E_{i j}\right) U^{*}$ simultaneously, where $\alpha_{x} \in \mathrm{~T}$ is also dependent on i, j, k. Let us start with $(i, j)=(1,2)$, and set $\phi\left(E_{11}+x E_{12}\right)=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Since $\phi\left(E_{i i}\right)=\mu_{i i} E_{i i}$, by Lemma 2.3 it follows that $|a|=1,|d|=0,|b|^{2}+$ $|c|^{2}=|x|^{2}$. By equating the norms of matrices

$$
\left(E_{11}+x E_{12}\right) \circ E_{12}=E_{12}
$$

and

$$
\phi\left(E_{11}+x E_{12}\right) \circ \phi\left(E_{12}\right)=\phi\left(E_{11}+x E_{12}\right) \circ \mu_{12} E_{12}=\mu_{12}\left(\begin{array}{ll}
c & a \\
0 & c
\end{array}\right)
$$

it follows $2|c|^{2}+|a|^{2}=1$, so $c=0$. Moreover, $|b|=|x|$, so

$$
\phi\left(E_{11}+x E_{12}\right)=\alpha_{x}\left(E_{11}+b_{x} E_{12}\right)
$$

for some $\alpha_{x} \in \mathrm{~T},\left|b_{x}\right|=|x|$. Similarly we get that $\phi\left(E_{22}-x E_{12}\right)=\beta_{-x}\left(E_{22}+b_{x}^{\prime} E_{12}\right)$ for some $\beta_{-x} \in \mathrm{~T},\left|b_{x}^{\prime}\right|=|x|$. Since $\left(E_{11}+x E_{12}\right) \circ\left(E_{22}-x E_{12}\right)=2 E_{11}$ we get $b_{x}^{\prime}=$ $-b_{x}$. Let $\phi\left(E_{11}+E_{12}\right)=\alpha_{1}\left(E_{11}+b_{1} E_{12}\right)$. Then by the equality of norms of matrices

$$
\begin{aligned}
\left(E_{11}+E_{12}\right) \circ\left(E_{11}+x E_{12}\right) & =2 E_{11}+(1+x) E_{12} \\
\alpha_{1}\left(E_{11}+b_{1} E_{12}\right) \circ \alpha_{x}\left(E_{11}+b_{x} E_{12}\right) & =\alpha_{1} \alpha_{x}\left(2 E_{11}+\left(b_{1}+b_{x}\right) E_{12}\right)
\end{aligned}
$$

we obtain $\left|b_{1}+b_{x}\right|=|1+x|$ whence it follows $\left(b_{1}, b_{x}\right)=\mu(1, x)$ or $\left(b_{1}, b_{x}\right)=\mu(1, \bar{x})$ for some $\mu \in \mathrm{T}$. Then $\mu=b_{1}$ and $b_{x}=b_{1} x$ or $b_{x}=b_{1} \bar{x}$. Replacing ϕ by $X \mapsto$
$B \phi(X) B^{*}, B=\operatorname{diag}\left(1, b_{1}\right)$, we may assume $b_{1}=1$. Next we show that $b_{x}=x$ for all x, or, $b_{x}=\bar{x}$ for all $x \in \mathbb{C}$. Assume that $x \neq \bar{x}$ and $y \neq \bar{y}$ and that $b_{x}=x$ and $b_{y}=\bar{y}$. Comparing the norms of

$$
\begin{aligned}
\left(E_{11}+x E_{12}\right) \circ\left(E_{11}+y E_{12}\right) & =2 E_{11}+(x+y) E_{12} \\
\alpha_{x}\left(E_{11}+x E_{12}\right) \circ \alpha_{y}\left(E_{11}+\bar{y} E_{12}\right) & =\alpha_{x} \alpha_{y}\left(2 E_{11}+(x+\bar{y}) E_{12}\right)
\end{aligned}
$$

we see that $|x+\bar{y}|=|x+y|$, so $(x, y)=\mu^{\prime}(x, \bar{y})$ or $(x, y)=\mu^{\prime}(\bar{x}, y)$ for some $\mu^{\prime} \in \mathrm{T}$. Since $x \neq \bar{x}$ and $y \neq \bar{y}$, both cases lead to a contradiction. Therefore, we conclude that

$$
\phi\left(E_{11}+x E_{12}\right)=\alpha_{x}\left(E_{11}+x E_{12}\right), \quad x \in \mathbb{C}
$$

or,

$$
\phi\left(E_{11}+x E_{12}\right)=\alpha_{x}\left(E_{11}+\bar{x} E_{12}\right), \quad x \in \mathbb{C} .
$$

In the second case we compose ϕ with conjugation to achieve that for all $x \in \mathbb{C}$

$$
\phi\left(E_{11}+x E_{12}\right)=\alpha_{x}\left(E_{11}+x E_{12}\right)
$$

Note that $A=E_{22}-x E_{12}$ is the only matrix, up to scalar multiplication, with $\left(E_{11}+\right.$ $\left.x E_{12}\right) \circ A=0$ which further implies that

$$
\phi\left(E_{22}-x E_{12}\right)=\beta_{-x}\left(E_{22}-x E_{12}\right) .
$$

In the same way as above, we get that $\phi\left(E_{11}+x E_{21}\right)=\gamma_{x}\left(E_{11}+c_{x} E_{21}\right)$, and $\phi\left(E_{22}-x E_{21}\right)=\delta_{-x}\left(E_{22}-c_{x} E_{21}\right)$, where $\left|c_{x}\right|=|x|, \gamma_{x}, \delta_{-x} \in \mathrm{~T}$. Then

$$
\left(E_{11}+x E_{12}\right) \circ\left(E_{11}+y E_{21}\right)=\left(\begin{array}{cc}
2+x y & x \\
y & x y
\end{array}\right)
$$

implies that

$$
\alpha_{x}\left(E_{11}+x E_{12}\right) \circ \delta_{y}\left(E_{11}+c_{y} E_{21}\right)=\alpha_{x} \delta_{y}\left(\begin{array}{cc}
2+x c_{y} & x \\
y & x c_{y}
\end{array}\right)
$$

and by equating the norms we get $|2+x y|=\left|2+x c_{y}\right|$ for every $x \in \mathbb{C}$. It follows that either $c_{y}=y$ or $c_{y}=\frac{\overline{x y}}{x}$. The later case wrongly implies c_{y} is dependent on x, wherefrom $c_{y}=y$.

In order to finish the proof of the Lemma let

$$
P=\frac{1}{1+|x|^{2}}\left(\begin{array}{cc}
1 & x \\
\bar{x}|x|^{2}
\end{array}\right) \quad \text { and } \quad Q=\phi(P)=\frac{\mu_{P}}{1+|y|^{2}}\left(\begin{array}{cc}
1 & y \\
\bar{y}|y|^{2}
\end{array}\right),
$$

for some $\mu_{P} \in \mathrm{~T}$ and $y \in \mathbb{C}$. Note that if $P=E_{11}$ or $P=E_{22}\left(=\lim _{|x| \rightarrow \infty} P\right)$ there is nothing to do. So assume $x \neq 0$. We will show first that $|x|=|y|$. Computing

$$
P \circ E_{11}=\frac{1}{1+|x|^{2}}\left(\begin{array}{cc}
2 & x \\
\bar{x} & 0
\end{array}\right), \quad Q \circ E_{11}=\frac{\mu_{P}}{1+|y|^{2}}\left(\begin{array}{cc}
2 & y \\
\bar{y} & 0
\end{array}\right),
$$

and comparing the norms, we get $\frac{4+2|x|^{2}}{\left(1+|x|^{2}\right)^{2}}=\frac{4+2|y|^{2}}{\left(1+|y|^{2}\right)^{2}}$, wherefrom $|x|=|y|$ easily follows. It remains to show that $x=y$. Compare the norms of

$$
\begin{aligned}
& \frac{1}{1+|x|^{2}}\left(\begin{array}{cc}
1 & x \\
\bar{x} & |x|^{2}
\end{array}\right) \circ\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\frac{1}{1+|x|^{2}}\left(\begin{array}{cc}
\bar{x} & 1+|x|^{2}+x \\
\bar{x} & 2|x|^{2}+\bar{x}
\end{array}\right) \\
& \frac{\mu_{P}}{1+|y|^{2}}\left(\begin{array}{cc}
1 & y \\
\bar{y}|y|^{2}
\end{array}\right) \circ \beta_{1}\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\frac{\mu_{P} \beta_{1}}{1+|y|^{2}}\left(\begin{array}{cc}
\bar{y} & 1+|y|^{2}+y \\
\bar{y} & 2|y|^{2}+\bar{y}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{1+|x|^{2}}\left(\begin{array}{cc}
1 & x \\
\bar{x}|x|^{2}
\end{array}\right) \circ\left(\begin{array}{ll}
0 & i \\
0 & 1
\end{array}\right) & =\frac{1}{1+|x|^{2}}\left(\begin{array}{c}
i \bar{x}\left(1+|x|^{2}\right) i+x \\
\bar{x} \\
2|x|^{2}+i \bar{x}
\end{array}\right) \\
\frac{\mu_{P}}{1+|y|^{2}}\left(\begin{array}{cc}
1 & y \\
\bar{y}|y|^{2}
\end{array}\right) \circ \beta_{i}\left(\begin{array}{ll}
0 & i \\
0 & 1
\end{array}\right) & =\frac{\mu_{P} \beta_{i}}{1+|y|^{2}}\left(\begin{array}{cc}
i \bar{y}\left(1+|y|^{2}\right) i+y \\
\bar{y} & 2|y|^{2}+i \bar{y}
\end{array}\right),
\end{aligned}
$$

and use $|x|=|y|$ to obtain that $\operatorname{Re} x=\operatorname{Re} y$ and $\operatorname{Re} i x=\operatorname{Re} i y$. So, $y=x$ and $Q=$ $\mu_{P} P$.

In our subsequent Lemmas 2.6 and 2.7 we assume that $\phi: M_{n} \rightarrow M_{n}$ is a map with the properties (2) and (3) from Theorem 2.1.

Lemma 2.6. Assume $\phi\left(E_{i i}\right)=\mu_{i i} E_{i i}$, for all i. Then either $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}$, $i, j=1,2, \ldots, n$, or, $\phi\left(E_{i j}\right)=\mu_{i j} E_{j i}, i, j=1,2, \ldots, n$. If $\phi\left(E_{12}\right)=\mu_{12} E_{12}, \mu_{12} \in \mathrm{~T}$, then $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}$ for all $i \neq j$.

Proof. Given indices $i<j$ let $\phi_{i j}$ be the restriction of ϕ to the space $\mathscr{W}_{i j}:=$ $\operatorname{span}\left\{E_{i i}, E_{i j}, E_{j i}, E_{j j}\right\}$. Since for every matrix $A \in \mathscr{W}_{i j}$ it holds that $A \circ E_{k k}=0$ if $k \neq i, j$, then $\phi(A) \circ E_{k k}=0$ for all $k \neq i, j$, as well. Therefore, $\phi(A) \in W_{i j}$. Mapping $\phi_{i j}: \mathscr{W}_{i j} \rightarrow \mathscr{W}_{i j}$ satisfies hypotheses of Lemma 2.4, therefore, $\phi_{i j}\left(E_{i j}\right)=\mu_{i j} E_{i j}$ and $\phi_{i j}\left(E_{j i}\right)=\mu_{j i} E_{j i}$, or, $\phi_{i j}\left(E_{i j}\right)=\mu_{i j} E_{j i}$ and $\phi_{i j}\left(E_{j i}\right)=\mu_{j i} E_{i j}$. So, for any $i<j$, $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}$ and $\phi\left(E_{j i}\right)=\mu_{j i} E_{j i}$, or, $\phi\left(E_{i j}\right)=\mu_{i j} E_{j i}$ and $\phi\left(E_{j i}\right)=\mu_{j i} E_{i j}$. Hence, by composing ϕ with transposition, if necessary, we assume that $\phi\left(E_{12}\right)=\mu_{12} E_{12}$. Then it follows $\phi\left(E_{1 k}\right)=\mu_{1 k} E_{1 k}, k=3, \ldots, n$, because otherwise $\phi\left(E_{1 k}\right)=\mu_{1 k} E_{k 1}$, for some k, would imply $E_{12} \circ E_{1 k}=0$, while $\phi\left(E_{12}\right) \circ \phi\left(E_{1 k}\right)=\mu_{12} \mu_{1 k}\left(E_{12} \circ E_{k 1}\right)=$ $\mu_{12} \mu_{1 k} E_{k 2} \neq 0$, a contradiction. With a similar argument we then show $\phi\left(E_{i k}\right)=$ $\mu_{i k} E_{i k}, k=1,2, \ldots, n, i \neq k$.

LEMMA 2.7. If $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}, i, j=1,2, \ldots, n$, or if $\phi\left(E_{i j}\right)=\mu_{i j} E_{j i}, \quad i, j=$ $1,2, \ldots, n$, then for every diagonal matrix D, there exists a $\mu_{D} \in \mathrm{~T}$ such that $\phi(D)=$ $\mu_{D} D$ or $\phi(D)=\mu_{D} \bar{D}$.

Proof. Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. By Lemma 2.3, $B=\phi(D)=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ and $\left|b_{i}\right|=\left|d_{i}\right|, i=1,2, \ldots, n$. Then

$$
\left\|D \circ E_{i j}\right\|^{2}=\left\|\left(d_{i}+d_{j}\right) E_{i j}\right\|^{2}=\left|d_{i}+d_{j}\right|^{2}
$$

and

$$
\left\|B \circ E_{i j}\right\|^{2}=\left\|\left(b_{i}+b_{j}\right) E_{i j}\right\|^{2}=\left|b_{i}+b_{j}\right|^{2}
$$

This implies that $\left|d_{i}+d_{j}\right|=\left|b_{i}+b_{j}\right|, i, j=1,2, \ldots, n, i \neq j$. From Lemma 1.1 the desired conclusion follows.

LEMMA 2.8. Let A be an upper or lower triangular $n \times n$ matrix and assume that $\left\|A \circ E_{i j}\right\|=\left\|A^{*} \circ E_{i j}\right\|$ for all $i, j=1,2, \ldots, n$. Then A is diagonal.

Proof. Using adjoints, it suffices to consider only upper triangular matrices. Assume, to reach a contradiction, that A is nondiagonal, and let i-th row be the first row of A with nonzero off-diagonal entry. Then, $A \circ E_{i n}=\left(\alpha_{i i}+\alpha_{n n}\right) E_{\text {in }}$ while $A^{*} \circ E_{\text {in }}=$ $\left(\overline{\alpha_{i i}}+\overline{\alpha_{n n}}\right) E_{i n}+\sum_{k>i} \overline{\alpha_{i k}} E_{k n}+\sum_{i \leqslant k<n} \overline{\alpha_{k n}} E_{i k}$. Comparing the Frobenius norms reveals that $\alpha_{i k}=0$, for $k=i+1, \ldots, n$ which contradicts the fact that the i-th row of uppertriangular A contains nonzero off-diagonal entry. Recall that a unitary U is generalized permutation matrix, corresponding to a permutation π on the set $\{1,2, \ldots, n\}$ if $E_{i i} U=U E_{\pi(i), \pi(i)}$ for $i=1, \ldots, n$. Equivalently, if each row of U contains only one nonzero entry.

LEMMA 2.9. Let \mathscr{T}_{n} be the subspace of all upper-triangular matrices. Then, for every unitary U, either the intersection $\mathscr{T}_{n} \cap\left(U \mathscr{T}_{n} U^{*}\right)$ contains a nondiagonal matrix or, U is a generalized permutation matrix, corresponding to the permutation π defined by $\pi(i)=n+1-i, i=1,2, \ldots, n$. In the latter case, $U \mathscr{T}_{n} U^{*}$ is the set of all lower triangular matrices.

Proof. Note that codim $\left(\mathscr{T}_{n} \cap\left(U \mathscr{T}_{n} U^{*}\right)\right) \leqslant \operatorname{codim} \mathscr{T}_{n}+\operatorname{codim}\left(U \mathscr{T}_{n} U^{*}\right)=2 \frac{n(n-1)}{2}$. Wherefrom, $\operatorname{dim}\left(\mathscr{T}_{n} \cap\left(U \mathscr{T}_{n} U^{*}\right)\right) \geqslant n$. Therefore, if $\mathscr{T}_{n} \cap\left(U \mathscr{T}_{n} U^{*}\right)$ contains only diagonal matrices, then its dimension implies that it is equal to the space of diagonal matrices. In which case we conclude that there exists a permutation π on the set $\{1,2, \ldots, n\}$ such that for every i we have $E_{i i}=U E_{\pi(i), \pi(i)} U^{*}$. So, U is a generalized permutation matrix, corresponding to the permutation π.

Writing π as product of cycles we find that either there exist indices $i<j$, such that $\pi(i)<\pi(j)$, or, π is strictly decreasing, i.e. for every $i<j$, we have $\pi(i)>\pi(j)$. In the first case, $U E_{i j} U^{*}=u_{i j} E_{\pi(i) \pi(j)},\left|u_{i j}\right|=1$, is the desired nondiagonal matrix in the intersection while in the second case, $\pi(i)=n+1-i, i=1,2, \ldots, n$.

Proof of Theorem 2.1. Let us begin with a simple fact that $\left\|A^{2}\right\|=\frac{1}{2}\|A \circ A\|=$ $\frac{1}{2}\|\phi(A) \circ \phi(A)\|=\left\|\phi(A)^{2}\right\|$ for every $A \in M_{n}$. Next, we observe that ϕ maps the set of nonzero scalar multiples of rank-one projections into itself. Indeed, let $A=\lambda P, P$ being a rank-one projection, $\lambda \in \mathbb{C} \backslash\{0\}$, and denote $B=\phi(A)$. In view of Lemma 2.2

$$
\|B\|^{2}=\|\phi(A)\|^{2}=\|A\|^{2}=\left\|A^{2}\right\|=\left\|\phi(A)^{2}\right\|=\left\|B^{2}\right\|
$$

imply that $B=\delta Q$, where Q is a rank-one projection and $\delta \in \mathbb{C}$. Furthermore, $\|B\|=$ $\|A\|$ gives that $|\delta|=|\lambda| \neq 0$. Clearly, $A=0$ if and only if $\phi(A)=0$.

Moreover, if P_{1}, P_{2} are mutually orthogonal rank-one projections, then we claim that $\phi\left(P_{1}\right) \phi\left(P_{2}\right)=\phi\left(P_{2}\right) \phi\left(P_{1}\right)=0$. Namely, there exist unimodular numbers μ_{1}, μ_{2} and rank-one projections Q_{1}, Q_{2}, such that $\phi\left(P_{i}\right)=\mu_{i} Q_{i}, \mu_{i} \in \mathrm{~T}, i=1,2$. Note that for every rank-one projections $Q_{1}, Q_{2}, Q_{1} \perp Q_{2}$ if and only if $Q_{1} \circ Q_{2}=0$. Thus it suffices to show that $\left\|Q_{1} \circ Q_{2}\right\|=0$ which follows from

$$
\left\|Q_{1} \circ Q_{2}\right\|=\left\|\mu_{1} \mu_{2} Q_{1} \circ Q_{2}\right\|=\left\|\phi\left(P_{1}\right) \circ \phi\left(P_{2}\right)\right\|=\left\|P_{1} \circ P_{2}\right\|=0 .
$$

Since each rank-one projection equals $\mathbf{x x}$ * for some unit vector $\mathbf{x} \in \mathbb{C}^{n}$, it follows that for every $\mathbf{x} \in \mathbb{C}^{n},\|\mathbf{x}\|=1$, there exist a unit vector $\mathbf{y} \in \mathbb{C}^{n}$ and $\mu \in \mathrm{T}$ such that $\phi\left(\mathbf{x x}^{*}\right)=\mu \mathbf{y} \mathbf{y}^{*}$.

If $n=2$, there exists a unitary matrix V such that $V^{*} \phi\left(E_{i i}\right) V=\mu_{i i} E_{i i}, i=1,2$, $\mu_{i i} \in \mathrm{~T}$. Then by Lemma $2.4, V^{*} \phi\left(E_{i j}\right) V=\mu_{i j} E_{i j}, i, j=1,2$, or, $V^{*} \phi\left(E_{i j}\right) V=\mu_{i j} E_{j i}$, $i, j=1,2$. Replacing ϕ by $X \mapsto V^{*} \phi(X) V$ or $X \mapsto\left(V^{*} \phi(X) V\right)^{*}$, if necessary, we may assume that $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}, i, j=1,2, \mu_{i j} \in \mathrm{~T}$. By Lemma 2.5 there is a diagonal unitary matrix U such that $\phi(P)=\mu_{P} U P U^{*}, \mu_{P} \in \mathrm{~T}$, for every rank-one projection P, or $\phi(P)=\mu_{P} U \bar{P} U^{*}, \mu_{P} \in \mathrm{~T}$, for every rank-one projection P. Replacing ϕ by $X \mapsto U^{*} \phi(X) U$ or, by $X \mapsto \overline{U^{*} \phi(X) U}$, if neccessary, enables us to further assume that $\phi(P)=\mu_{P} P, \mu_{P} \in \mathrm{~T}$, for every rank-one projection P; the new map still satisfies assumptions (2) and (3) of Theorem 2.1.

If $n \geqslant 3$, then ϕ induces a map from the projective space

$$
\mathbb{P}\left(\mathbb{C}^{n}\right)=\left\{[\mathbf{x}]=\mathbb{C} \mathbf{x} ; \mathbf{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}\right\}
$$

into itself which preserves orthogonality. We can now use the following Lemma from [1].

Lemma 2.10. Let $n \geqslant 3$. Suppose a map $\varphi: \mathbb{P}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{n}\right)$ preserves orthogonality. Then there exists a unitary matrix V such that $\varphi([\mathbf{x}])=[V \mathbf{x}], \mathbf{x} \in \mathbb{C}^{n}$, or $\varphi([\mathbf{x}])=[V \overline{\mathbf{x}}], \mathbf{x} \in \mathbb{C}^{n}$.

It follows that $\phi\left(\mathbf{x x}^{*}\right)=\mu_{\mathbf{x}} V \mathbf{x}(V \mathbf{x})^{*}=\mu_{\mathbf{x}} V \mathbf{x x}^{*} V^{*}$ for all unit vectors \mathbf{x}, or, $\phi\left(\mathbf{x x}^{*}\right)$ $=\mu_{\mathbf{x}} V \overline{\mathbf{x x}^{*}} V^{*}$ for all unit \mathbf{x}. We may replace ϕ by the map $X \mapsto V^{*} \phi(X) V$ or by $X \mapsto V^{*} \overline{\phi(X)} V$, to achieve $\phi(P)=\mu_{P} P, \mu_{P} \in \mathrm{~T}$, for every rank-one projection P.

Let now $n \geqslant 2$. We will next show that for every normal matrix A there exists $\mu_{A} \in \mathrm{~T}$ such that $\phi(A)=\mu_{A} A$ or $\phi(A)=\mu_{A} A^{*}$. In order to do it let us choose a unitary matrix U such that $U^{*} A U=D$ is a diagonal matrix. Let $\phi_{1}(X):=U^{*} \phi\left(U X U^{*}\right) U$. Then we have $\phi_{1}\left(E_{i i}\right)=\mu_{i i} E_{i i}, \mu_{i i} \in \mathrm{~T}$, for every $i=1,2, \ldots, n$. By Lemma 2.6, we have either $\phi_{1}\left(E_{i j}\right)=\mu_{i j} E_{i j}$ for all i, j or, $\phi_{1}\left(E_{i j}\right)=\mu_{i j} E_{j i}$ for all i, j. Then Lemma 2.7 assures that there exists a $\mu_{D} \in \mathrm{~T}$ such that $\phi_{1}(D)=\mu_{D} D$ or $\phi_{1}(D)=\mu_{D} \bar{D}$. This now implies that $\phi(A)=\mu_{A} A$ or $\phi(A)=\mu_{A} A^{*}$ for some unimodular μ_{A}.

Replacing ϕ by $X \mapsto \phi(X)^{*}$, if necessary, we can now assume that $\phi\left(E_{i j}\right)=$ $\mu_{i j} E_{i j}$ for all i, j. Note that in the Frobenius norm, $\left\|\mu_{A} A^{*} \circ \phi(B)\right\|=\|A \circ \phi(B)\|$, for every normal matrix A [4, Lemma 6.4]. Therefore, we can further adjust the map ϕ on normal matrices so that ϕ fixes every normal matrix.

Pick now any nonnormal matrix A and let $B=\phi(A)$. Then

$$
\|A \circ X\|=\|\phi(A) \circ \phi(X)\|=\|B \circ X\|
$$

for every normal X. By [4, Lemma 6.6] there exists $\gamma \in \mathrm{T}$ such that either diagv $(A)=$ $\gamma \operatorname{diagv}(B)$, or diagv $(A)=\gamma \overline{\operatorname{diagv}(B)}$ where $\operatorname{diagv}\left(\left(c_{i j}\right)\right)=\left(c_{11}, c_{22}, \ldots, c_{n n}\right)^{\operatorname{tr}} \in \mathbb{C}^{n}$. We remark that if $n=2$, the same result can be more directly obtained by applying Lemma 2.3 to get $\left|a_{i i}\right|=\left|b_{i i}\right|, i=1,2$, and $\left|a_{12}\right|^{2}+\left|a_{21}\right|^{2}=\left|b_{12}\right|^{2}+\left|b_{21}\right|^{2}$. Then, by summing up the equalities

$$
\begin{aligned}
& \left|a_{11}+a_{22}\right|^{2}+2\left|a_{21}\right|^{2}=\left\|A \circ E_{12}\right\|=\left\|\phi(A) \circ \mu_{12} E_{12}\right\|=\left|b_{11}+b_{22}\right|^{2}+2\left|b_{21}\right|^{2} \\
& \left|a_{11}+a_{22}\right|^{2}+2\left|a_{12}\right|^{2}=\left\|A \circ E_{21}\right\|=\left\|\phi(A) \circ \mu_{21} E_{21}\right\|=\left|b_{11}+b_{22}\right|^{2}+2\left|b_{12}\right|^{2}
\end{aligned}
$$

and using Lemma 1.1 it follows that $\operatorname{diagv}(A)=\gamma \operatorname{diagv}(B)$, or $\operatorname{diagv}(A)=\gamma \overline{\operatorname{diagv}(B)}$ for some $\gamma \in \mathrm{T}$. Then [3, Theorem 3.2] implies $B=\gamma_{A} A$ or $B=\gamma_{A} A^{*}, \gamma_{A} \in \mathrm{~T}$.

To bring the proof to the end, it suffices to show that the latter is impossible. Since A is not normal, there exists a unitary matrix U such that $U^{*} A U=T_{0}$ is nondiagonal upper triangular matrix. Recall that $\phi\left(E_{i j}\right)=\mu_{i j} E_{i j}$ for all i, j, so, the Lemma 2.8 provides that $\phi(T)=\gamma_{T} T$ for every upper or lower triangular matrix T. Since $\phi\left(U E_{i i} U^{*}\right)=\gamma_{i i} U E_{i i} U^{*}, \gamma_{i i} \in \mathrm{~T}$, for every i, passing to $X \mapsto U^{*} \phi\left(U X U^{*}\right) U$ and applying Lemma 2.6, we get either $\phi\left(U E_{i j} U^{*}\right)=\gamma_{i j} U E_{i j} U^{*}$, for all i, j, or, $\phi\left(U E_{i j} U^{*}\right)=$ $\gamma_{i j} U E_{j i} U^{*}$ for all i, j.

Lemma 2.8 shows that the latter case would imply that $U^{*} \phi\left(U T U^{*}\right) U=\gamma_{T} T^{*}$ or, equivalently, $\phi\left(U T U^{*}\right)=\gamma_{T} U T^{*} U^{*}$ for every upper-triangular T. However, by Lemma 2.10, either U is a generalized permutation matrix, corresponding to permutation $\pi, \pi(i)=n+1-i, i=1,2, \ldots, n$, or, there exists a nondiagonal $T \in \mathscr{T}_{n} \cap$ $\left(U \mathscr{T}_{n} U^{*}\right)$. In the first case, $A \in U \mathscr{T}_{n} U^{*}$ is in fact lower triangular, so, $\phi(A)=\gamma_{A} A$. But on the other hand, $\phi(A)=\phi\left(U T_{0} U^{*}\right)=\gamma^{\prime} U T_{0}^{*} U^{*}=\gamma^{\prime} A^{*}$, which is impossible since A is not diagonal. In the second case, $T \in \mathscr{T}_{n}$ implies $\phi(T)=\gamma_{1} T$, while $T=U T_{1} U^{*} \in\left(U \mathscr{T}_{n} U^{*}\right)$ implies $\phi(T)=\phi\left(U T_{1} U^{*}\right)=\gamma_{2} U T_{1}^{*} U^{*}=\gamma_{2} T^{*}$, a contradiction.

That any map of the form (4) satisfies (2) and (3), is easy to check and was done in [4].

Acknowledgement.

The authors are thankful to Peter Šemrl for initiating this kind of research.

REFERENCES

[1] A. Fošner, B. Kuzma, T. Kuzma, N.-S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear Multilinear Algebra 59, 5 (2011), 507-529.
[2] R. Horn, C. Johnson, Topics in Matrix Analysis. Cambridge UP, 1991.
[3] B. Kuzma, G. Lešnjak, C.-K. Li, T. Petek, L. Rodman, Conditions for linear independence of two operators. Operator Theory: Advances and Applications 202 (2010), 411-434.
[4] B. Kuzma, G. Lešnjak, C.-K. Li, T. Petek, L. Rodman, Norm preservers of Jordan products, Electron. J. Linear Algebra 22 (2011), 959-978.

Bojan Kuzma
Faculty of Mathematics
Natural Sciences and Information Technologies 6000 Koper, Slovenia
and
Institute of Mathematics, Physics and Mechanics
1000 Ljubljana, Slovenia
e-mail: bojan.kuzma@famnit.upr.si, kuzma@fmf.uni-lj.si
Tatjana Petek
Faculty of Electrical Engineering and Computer Science University of Maribor 2000 Maribor, Slovenia and
Institute of Mathematics, Physics and Mechanics
1000 Ljubljana, Slovenia
e-mail: tatjana.petek@uni-mb.si

[^0]: Mathematics subject classification (2010): 15A60, 15A86, 15A30.
 Keywords and phrases: Jordan product, Frobenius norm, isometry.
 Research of both authors was supported in part by grants from the Ministry of Science of Slovenia.

