LINEAR PRESERVERS ON STRICTLY UPPER TRIANGULAR MATRIX ALGEBRAS

ALI A. JAFARIAN

(Communicated by C.-K. Li)

Abstract. Let $\mathscr{S}_n(\mathbb{F})$ be the algebra of all $n \times n$ strictly upper triangular matrices over a filed \mathbb{F} . In this note, we characterize linear maps $\varphi : \mathscr{S}_n(\mathbb{F}) \to \mathscr{S}_n(\mathbb{F})$, with $|\mathbb{F}| \ge 3$, that preserve the adjugate function; i.e., $adj(\varphi(A)) = \varphi(adj(A))$. Also, some results about rank-1 linear/additive preservers on $\mathscr{S}_n(\mathbb{F})$ and, more generally, on block strictly upper triangular algebras are obtained.

1. Introduction

Throughout \mathbb{F} will denote an arbitrary field and $\mathcal{M}_n(\mathbb{F})$ the algebra of all $n \times n$ matrices over \mathbb{F} . Also, $\mathcal{T}_n(\mathbb{F})$ (respectively, $\mathcal{S}_n(\mathbb{F})$) denotes the algebra of all $n \times n$ *upper triangular* (respectively, *strictly upper triangular*) matrices over \mathbb{F} . For an $n \times n$ matrix A, adj(A) will denote the adjugate (or the classical adjoint) of A. Let \mathcal{S} be any of $\mathcal{M}_n(\mathbb{F})$, $\mathcal{T}_n(\mathbb{F})$, or $\mathcal{S}_n(\mathbb{F})$.

DEFINITION 1.1. We say that a linear map $\varphi : \mathscr{S} \to \mathscr{S}$ preserves the adjugate function if $adj(\varphi(A)) = \varphi(adj(A))$, for any *A* in \mathscr{S} .

Adjugate preserving linear maps on $\mathcal{M}_n(\mathbb{F})$ were first studied by R. Sinkhorn [5] for $\mathbb{F} = \mathbb{C}$. The author used the classical result of Frobenius [4] for determinant preservers. In [2], Chan et al. use the structure of rank-n preservers to generalize Sinkhorn's result for an arbitrary infinite field. In [3], Chooi and Lim first determined the structure of rank-1 linear preservers on $\mathcal{T}_n(\mathbb{F})$ and then used this structure to characterize nonsingular adjugate preserving linear maps on $\mathcal{T}_n(\mathbb{F})$, where \mathbb{F} is an arbitrary field. In section 2, we extend the result of Chooi and Lim to adjugate preserving linear maps on $\mathcal{S}_n(\mathbb{F})$. We do this by using a characterization of linear maps on $\mathcal{T}_n(\mathbb{F})$ preserving singular matrices and nonsingular matrices [3]. As it will be seen, the form of a general linear adjugate preserver on $\mathcal{S}_n(\mathbb{F})$ is completely different from that of such a preserver on $\mathcal{T}_n(\mathbb{F})$.

In Section 3, first we consider linear rank-1 preservers on $\mathscr{S}_n(\mathbb{F})$. And a characterization similar to that of Chooi-Lim [3] is obtained for such rank-1 preservers. Then

© EMN, Zagreb Paper OaM-07-53

Mathematics subject classification (2010): 15A86, 15A15, 15A03.

Keywords and phrases: Linear adjugate preservers, linear ranks-1 preservers, additive rank-1 preservers, (block) strictly upper triangular matrices.

we consider linear rank-1 preservers on certain block strictly upper triangular matrix algebras and arrive at some results, similar to those of Bell and Sourour [1]. Finally, in Section 4, *additive* rank-1 preserver maps on such algebras will be considered. As it will be seen, some results of Bell and Sourour [1] are valid for this case.

The author would like to acknowledge his inspiration by results of [1] and [3].

For easy reference, here we quote a needed result of [3].

THEOREM 1.2. Let $|\mathbb{F}| \ge 3$, and $\varphi : \mathscr{T}_n(\mathbb{F}) \to \mathscr{T}_n(\mathbb{F})$ be linear. Then φ preserves both singular and nonsingular matrices if and only if there exist a permutation σ of $\{1, \ldots, n\}$ and nonzero numbers $\lambda_1, \ldots, \lambda_n$ in \mathbb{F} such that

$$\left[\varphi(\left[a_{ij}\right]\right)\right]_{kk} = \lambda_k a_{\sigma_{(k)}\sigma_{(k)}}, \quad 1 \leq k \leq n.$$

2. Adjugate preservers

In the following, E_{ij} denotes the $n \times n$ matrix which has a 1 at the *ij*-th position and 0 everywhere else. Our main result is

THEOREM 2.1. Let $n \ge 3$ be an integer, $|\mathbb{F}| \ge 3$, and $\varphi : \mathscr{S}_n(\mathbb{F}) \to \mathscr{S}_n(\mathbb{F})$ be a linear map. Then φ preserves the adjugate function if and only if either

(a) $\varphi(E_{1n}) = 0$ and rank $\varphi(A) \leq n-2$ for all A in $\mathscr{S}_n(\mathbb{F})$, or

(b) there exist a permutation σ of $\{1, \ldots, n-1\}$ and nonzero numbers $\lambda_1, \ldots, \lambda_{n-1}$ in \mathbb{F} such that $\varphi(E_{1n}) = \lambda_1 \cdots \lambda_{n-1} E_{1n}$ and

$$[\varphi([a_{ij}])]_{k,k+1} = \lambda_k a_{\sigma_{(k)},\sigma_{(k)}+1},$$
(2.1)

for all k = 1, ..., n - 1.

Proof. The sufficiency part is clear. We will prove the necessity part. Define the map $\psi : \mathscr{S}_n(\mathbb{F}) \to \mathscr{T}_{n-1}(\mathbb{F})$ by

$$\psi(A) = \begin{bmatrix} a_{12} \ a_{13} \ \cdots \ a_{1n} \\ 0 \ a_{23} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \cdots \ a_{n-1,n} \end{bmatrix}, \text{ for every } A = [a_{ij}] \in \mathscr{S}_n(\mathbb{F}).$$
(2.2)

It is clear that ψ is linear and bijective. Let $\phi := \psi \phi \psi^{-1}$. Then $\phi : \mathscr{T}_{n-1}(\mathbb{F}) \to \mathscr{T}_{n-1}(\mathbb{F})$ is linear. Note that for any $A \in \mathscr{S}_n(\mathbb{F})$, the matrix adjA is an $n \times n$ matrix whose entries are zero except possibly the one at (1,n) position with det $(\psi(A))$, i.e., $adj(A) = det(\psi(A))E_{1n}$. Since ϕ preserves the adjugate function, we have

$$(det \psi(A))\varphi(E_{1n}) = \varphi((det \psi(A))E_{1n}) = \varphi(adjA) = adj\varphi(A)$$
(2.3)
= $(det \psi(\varphi(A)))E_{1n}.$

Now we consider two cases:

Case I. rank $\varphi(A) \leq n-2$ for all rank-(n-1) matrices $A \in \mathscr{S}_n(\mathbb{F})$.

Let $B \in \mathscr{S}_n(\mathbb{F})$ with rank $B \leq n-2$. Then adj $\varphi(B) = \varphi(\operatorname{adj} B) = 0$, and so rank $\varphi(B) \leq n-2$. We thus conclude that rank $\varphi(A) \leq n-2$ for all matrices $A \in \mathscr{S}_n(\mathbb{F})$. Let $A \in \mathscr{S}_n(\mathbb{F})$ be of rank n-1. Then det $\psi(\varphi(A)) = 0$. It follows from (2.3) that $\varphi(E_{1n}) = 0$. This proves that (a) is true.

Case II. rank $\varphi(A_0) = n - 1$ for some rank-(n - 1) matrix $A_0 \in \mathscr{S}_n(\mathbb{F})$. So both det $\psi(A_0)$ and det $\psi(\varphi(A_0))$ are nonzero. By (2.3), we have

$$\varphi(E_{1n}) = \lambda E_{1n},\tag{2.4}$$

for some nonzero $\lambda \in \mathbb{F}$. We thus conclude from (2.3)and (2.4) that rank $\varphi(A) = n - 1$ for all rank-(n-1) matrices $A \in \mathscr{S}_n(\mathbb{F})$. Also, since adj $\varphi(A) = 0$ for all matrices $A \in \mathscr{S}_n(\mathbb{F})$ with rank $A \leq n-2$, we conclude that φ preserves singular matrices and nonsingular matrices. By Theorem 1.2, there are a permutation σ of $\{1, \ldots, n-1\}$ and nonzero numbers $\lambda_1, \ldots, \lambda_{n-1}$ in \mathbb{F} such that for every $A \in \mathscr{S}_n(\mathbb{F})$ we have

$$[\varphi(A)]_{k,k+1} = [\phi(\psi(A))]_{kk} = \lambda_k a_{\sigma_{(k)},\sigma_{(k)}+1}; \ 1 \le k \le n-1,$$
(2.5)

which establishes (2.1). Now we use (2.4) and (2.5) to prove $\lambda = \lambda_1 \cdots \lambda_{n-1}$. For

$$A = \begin{bmatrix} 0 \ 1 \ 0 \cdots 0 \\ 0 \ 0 \ 1 \cdots 0 \\ \vdots \vdots \vdots \vdots \cdots 1 \\ 0 \ 0 \ 0 \cdots 0 \end{bmatrix} \in \mathscr{S}_n(\mathbb{F})$$

we have

$$\lambda E_{1n} = \varphi(E_{1n}) = \varphi(adjA) = adj(\varphi(A)) = adj(\begin{pmatrix} 0 \ \lambda_1 & * \cdots & * \\ 0 & 0 \ \lambda_2 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \lambda_{n-1} \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix})$$
$$= (\lambda_1 \cdots \lambda_{n-1}) E_{1n},$$

which proves that λ is as claimed. This proves that (b) holds. \Box

REMARK 1. While a map φ of the form given in (a) is always singular, a map φ of the form given in (b) could be singular or nonsingular. This is shown in below example.

EXAMPLE. Let $n \ge 3$ and $|\mathbb{F}| \ge 3$. Also, let φ_1 and φ_2 be linear maps on $\mathscr{S}_n(\mathbb{F})$ defined by $\varphi_1(A) = A$ and

$$\varphi_2(A) = \begin{bmatrix} 0 & a_{12} & 0 & 0 & \cdots & a_{1n} \\ 0 & 0 & a_{23} & 0 & \cdots & 0 \\ 0 & 0 & 0 & a_{34} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_{n-1,n} \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix},$$

for every $A = [a_{ij}] \in \mathscr{S}_n(\mathbb{F})$. We see that each φ_i is a linear adjugate preserver on $\mathscr{S}_n(\mathbb{F})$ that is of the form (b) of Theorem 2.1. Obviously φ_1 is nonsingular but φ_2 is singular when $n \ge 4$. When n = 3, a φ of the form given in (b) of Theorem 2.1 is necessarily nonsingular.

REMARK 2. For n = 2, it is easy to see that φ is adjugate preserving if and only if it is the identity map.

3. Linear rank-1 preservers

For an $n \times n$ matrix A, we denote by A^+ the matrix obtained from A by taking the symmetric image of its entries with respect to the minor diagonal (i.e., the one through (n, 1) and (1, n) positions) of A. Also, let $\psi : \mathscr{S}_n(\mathbb{F}) \to \mathscr{T}_{n-1}(\mathbb{F})$ be the bijective linear map defined as in (2.2).

THEOREM 3.1. Let $n \ge 2$ and $\varphi : \mathscr{S}_n(\mathbb{F}) \to \mathscr{S}_n(\mathbb{F})$ be linear. Then φ is a rank-1 preserver if and only if either

1. Im φ is an (n-1)-dimensional rank-1 subspace of $\mathscr{S}_n(\mathbb{F})$, or

2. There are invertible matrices P and Q in $\mathscr{T}_{n-1}(\mathbb{F})$ such that either

(a)
$$\varphi(A) = \psi^{-1}(P\psi(A)Q)$$
 for all $A \in \mathscr{S}_n(\mathbb{F})$ or

(b) $\varphi(A) = \psi^{-1}(P(\psi(A))^+ Q)$ for all $A \in \mathscr{S}_n(\mathbb{F})$.

Proof. For n = 2, a linear map $\varphi : \mathscr{S}_2(\mathbb{F}) \to \mathscr{S}_2(\mathbb{F})$ is rank-1 preserver if and only if φ is not the zero map, and the theorem becomes trivially true. Let $n \ge 3$ and assume that φ is a rank-1 preserver. Note that ψ preserves rank and hence $\phi = \psi \varphi \psi^{-1}$ is a rank-1 preserving linear map on $\mathscr{T}_{n-1}(\mathbb{F})$. Now the result follows from Theorem 2.3 of [3]. The sufficiency of the conditions is clear. \Box

REMARK 3. Let *k* be a positive integer $\leq n$ and $\mathscr{J}_k(\mathbb{F})$ be the set of all $n \times n$ matrices $[a_{ij}]$ for which a_{ij} is 0 if $1 \leq j < k+i-1 \leq n$. Note that $\mathscr{J}_2(\mathbb{F}) = \mathscr{S}_n(\mathbb{F})$. A similar version of Theorem 3.1 is true for $\mathscr{J}_k(\mathbb{F})$ in place of $\mathscr{S}_n(\mathbb{F})$.

REMARK 4. If the map φ of Theorem 3.1 is injective or if it preserves rank-1 matrices in both directions (i.e., $\varphi(A)$ is a rank-1 matrix if and only if A is a rank-1 matrix) then the alternative 1 will not occur and φ is in one of the forms given in (a) or (b).

Now we consider a special class of *block* strictly upper triangular matrices. Let n = mk, where $k \ge 2, m \ge 1$, and $A \in \mathcal{M}_n(\mathbb{F})$ be of the form

$$A = \begin{bmatrix} A_{11} A_{12} \cdots A_{1k} \\ 0 & A_{22} \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{kk} \end{bmatrix},$$

where A_{ij} 's are $m \times m$ matrices. The algebra of all such block upper triangular matrices will be denoted by $\mathscr{T}_{m,k}(\mathbb{F})$. By $\mathscr{S}_{m,k}(\mathbb{F})$ we denote the algebra of all *block strictly upper triangular* matrices obtained from $\mathscr{T}_{m,k}(\mathbb{F})$ by setting $A_{ii} = 0$, $1 \le i \le k$. Note that when m = 1 we have k = n and $\mathscr{T}_{1,n}(\mathbb{F})$ and $\mathscr{S}_{1,n}(\mathbb{F})$ become $\mathscr{T}_n(\mathbb{F})$ and $\mathscr{S}_n(\mathbb{F})$ respectively. Define

$$\pi:\mathscr{S}_{m,k}(\mathbb{F})\to\mathscr{T}_{m,k-1}(\mathbb{F})$$
(3.1)

by

$$\begin{bmatrix} 0 & A_{12} & A_{13} & \cdots & A_{1k} \\ 0 & 0 & A_{23} & \cdots & A_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{k-1,k} \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \longmapsto \begin{bmatrix} A_{12} & A_{13} & \cdots & A_{1k} \\ 0 & A_{23} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{k-1,k} \end{bmatrix}$$

Clearly, the map π is linear, bijective, and preserves rank.

THEOREM 3.2. Let k and m be integers such that $k, m \ge 2$, and $\varphi : \mathscr{S}_{m,k}(\mathbb{F}) \to \mathscr{S}_{m,k}(\mathbb{F})$ be linear and injective. Then φ is a rank-1 preserver if and only if there are invertible matrices P and Q in $\mathscr{T}_{m,k-1}(\mathbb{F})$ such that either

1.
$$\varphi(A) = \pi^{-1}(P \psi(A) Q)$$
 for all $A \in \mathscr{S}_{m,k}(\mathbb{F})$, or

2.
$$\varphi(A) = \pi^{-1}(P(\psi(A))^+ Q)$$
 for all $A \in \mathscr{S}_{m,k}(\mathbb{F})$,

where π is the bijective linear map defined in (3.1). Thus φ preserves every rank.

Proof. Let $\phi = \pi \varphi \pi^{-1}$. Then $\phi : \mathscr{T}_{m,k-1}(\mathbb{F}) \to \mathscr{T}_{m,k-1}(\mathbb{F})$ is linear and bijective. If φ preserves rank-1 matrices, then so does ϕ . Now the necessity of the conditions follows from Theorem 4.4 of [1]. The sufficiency of the conditions is clear. \Box

4. Surjective additive rank-1 preservers

Now we consider surjective *additive* maps on $\mathscr{S}_{m,k}(\mathbb{F})$ preserving rank-1 matrices. Every automorphism θ of the field \mathbb{F} induces a map Θ on $\mathscr{M}_n(\mathbb{F})$ defined by $\Theta(A) = [\theta(a_{ij})]$ for every $A = [a_{ij}] \in \mathscr{M}_n(\mathbb{F})$. Obviously Θ preserves rank and is additive. Let us first consider the simple case that m = 1; so k = n and $\mathscr{S}_{m,k}(\mathbb{F}) = \mathscr{S}_n(\mathbb{F})$. Here, we borrow the notation and some definitions from [1]. For additive maps f_1, f_2, \ldots, f_n from \mathbb{F} to \mathbb{F} , where f_1 is bijective, let $\mathbf{f} = (f_1, \ldots, f_n)$, and define $\hat{\mathbf{f}}$ on $\mathscr{T}_n(\mathbb{F})$ by

$$\hat{\mathbf{f}}\left(\begin{bmatrix}a_{11} \ a_{12} \ \cdots \ a_{1n}\\ 0 \ a_{22} \ \cdots \ a_{2n}\\ \vdots \\ 0 \ 0 \ \cdots \ a_{nn}\end{bmatrix}\right) = \begin{bmatrix}f_1(a_{11}) \ f_2(a_{11}) + a_{12} \ \cdots \ f_n(a_{11}) + a_{1n}\\ 0 \ a_{22} \ \cdots \ a_{2n}\\ \vdots \\ 0 \ 0 \ \cdots \ a_{nn}\end{bmatrix}.$$

It is easy to see that $\hat{\mathbf{f}}$ is a surjective additive rank-1 preserver on $\mathscr{T}_n(\mathbb{F})$. Also, define $\hat{\mathbf{f}}$ by

$$\check{\mathbf{f}}\left(\begin{bmatrix}a_{11} \ a_{12} \ \cdots \ a_{1n} \\ 0 \ a_{22} \ \cdots \ a_{2n} \\ \vdots \\ 0 \ 0 \ \cdots \ a_{n-1,n} \\ 0 \ 0 \ \cdots \ a_{nn}\end{bmatrix}\right) = \begin{bmatrix}a_{11} \ a_{12} \ \cdots \ f_n(a_{nn}) + a_{1n} \\ \vdots \\ 0 \ 0 \ \cdots \ f_2(a_{nn}) + a_{n-1,n} \\ 0 \ 0 \ \cdots \ f_1(a_{nn})\end{bmatrix}.$$

Again, $\mathbf{\check{f}}$ is a surjective additive rank-1 preserver. Now we are ready to state the first result. Note that ψ is the bijective linear map defined in (2.2).

THEOREM 4.1. Suppose $\varphi : \mathscr{S}_n(\mathbb{F}) \to \mathscr{S}_n(\mathbb{F})$ is additive, surjective, and rank-1 preserver, where $n \ge 4$. Then $\varphi = \psi^{-1} \phi \psi$, where the map $\phi : \mathscr{T}_{n-1}(\mathbb{F}) \to \mathscr{T}_{n-1}(\mathbb{F})$ can be expressed as a composition of some or all of the following maps:

- 1. Multiplication from left by an invertible matrix in $\mathscr{T}_{n-1}(\mathbb{F})$.
- 2. Multiplication from right by an invertible matrix in $\mathscr{T}_{n-1}(\mathbb{F})$.
- *3. The induced map* Θ *.*
- 4. The map \hat{f} .
- 5. The map \check{f} .
- 6. The map $A \mapsto A^+$.

Proof. The proof follows from properties of the map ψ and use of Theorem 5.5 of [1] for ϕ . \Box

The following corollary follows immediately.

COROLLARY 4.2. Let φ be as in Theorem 4.1. Then φ is injective and preserves any rank.

To state the next result, we need a terminology. A map L from a vector space V to vector space W is called *semilinear* if it is additive and there is an automorphism θ of \mathbb{F} such that $L(cv) = \theta(c)L(v)$, for all c in \mathbb{F} and v in V. Note that in Theorem 4.3 given below, π is the bijective linear map defined in (3.1).

THEOREM 4.3. Suppose $\varphi : \mathscr{S}_{m,k}(\mathbb{F}) \to \mathscr{S}_{m,k}(\mathbb{F})$ is additive, surjective, and rank-1 preserver, where $k \ge 2, m \ge 2$. Then $\varphi = \pi^{-1} \varphi \pi$, where the map $\varphi : \mathscr{T}_{m,k-1}(\mathbb{F}) \to \mathscr{T}_{m,k-1}(\mathbb{F})$ is semilinear and is expressible as a composition of some or all of the following maps:

1. Multiplication from the left by an invertible matrix in $\mathscr{T}_{m,k-1}(\mathbb{F})$.

2. Multiplication from the right by an invertible matrix in $\mathscr{T}_{m,k-1}(\mathbb{F})$.

- *3. The induced map* Θ *.*
- 4. The map $A \mapsto A^+$.

Proof. The proof follows from properties of π and Theorem 5.5 and Corollary 5.7 of [1]. \Box

REMARK 5. If $\mathbb{F} = \mathbb{R}$, then the map ϕ , and consequently φ , becomes linear.

REMARK 6. Using/adapting examples given in Section 6 of [1], it can be shown that: (a) Surjectivity condition in both theorems of this section is necessary; (b) Theorem 4.1 is not true for n = 3; and (c) In general the property " φ preserves rank-1 matrices in both directions", instead of surjectivity for φ , is not enough.

REMARK 7. For a field \mathbb{F} that does not have a proper isomorphic subfield, it follows from Theorem 7.2 of [1] that: Theorems 4.1 and 4.3 remain valid if the "surjectivity of φ " is replaced with " φ preserves rank-1 matrices in both directions". Moreover, in Theorem 4.1 it is enough to assume that the map f_1 is injective.

Acknowledgement.

The author would like to express his thanks to the referee for his very valuable comments and suggestions.

REFERENCES

- J. BELL, A. R. SOUROUR, Additive Rank-one Preserving Mappings on Matrix Algebras, Linear Algebra Appl. 312 (2000), 13–33.
- [2] G. H. CHAN, M. H. LIM, AND K. K. TAN, Linear Preservers on Matrices, Linear Algebra Appl. 93 (1987), 67–80.
- [3] W. L. CHOOI AND M. H. LIM, *Linear Preservers on Triangular Matrices*, Linear Algebra Appl. 269 (1998), 241–255.
- [4] G. FROBENIUS, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber, Deustch. Akad. Wiss. Berlin, 997–1015 (1897).
- [5] R. SINKHORN, *Linear Adjugate Preservers on the Complex Matrices*, Linear and Multilinear Algebra 12 (1982/1983), 215–222.

(Received March 21, 2012)

Ali A. Jafarian Mathematics Department University of New Haven 300 Boston Post Rd. West Haven, CT 06516-1999 USA e-mail: ajafarian@newhaven.edu

Operators and Matrices www.ele-math.com oam@ele-math.com