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BOUNDARY DATA MAPS AND KREIN’S RESOLVENT FORMULA

FOR STURM––LIOUVILLE OPERATORS ON A FINITE INTERVAL

STEPHEN CLARK, FRITZ GESZTESY, ROGER NICHOLS AND MAXIM ZINCHENKO

(Communicated by L. Rodman)

Abstract. We continue the study of boundary data maps, that is, generalizations of spectral pa-
rameter dependent Dirichlet-to-Neumann maps for (three-coefficient) Sturm–Liouville operators
on the finite interval (a,b) , to more general boundary conditions, began in [8] and [17]. While
these earlier studies of boundary data maps focused on the case of general separated boundary
conditions at a and b , the present work develops a unified treatment for all possible self-adjoint
boundary conditions (i.e., separated as well as non-separated ones).

In the course of this paper we describe the connections with Krein’s resolvent formula
for self-adjoint extensions of the underlying minimal Sturm–Liouville operator (parametrized in
terms of boundary conditions), with some emphasis on the Krein extension, develop the basic
trace formulas for resolvent differences of self-adjoint extensions, especially, in terms of the as-
sociated spectral shift functions, and describe the connections between various parametrizations
of all self-adjoint extensions, including the precise relation to von Neumann’s basic parametriza-
tion in terms of unitary maps between deficiency subspaces.

1. Introduction

The principal theme developed in this paper concerns a detailed treatment of gen-
eralizations of the spectral parameter dependent Dirichlet-to-Neumann map for (three-
coefficient) Sturm–Liouville operators on the finite interval (a,b) to that for all self-
adjoint boundary conditions. While the earlier treatments of boundary data maps in [8]
and [17] focused on the special case of separated boundary conditions at a and b , this
paper now treats the case of all self-adjoint boundary conditions in a unified matter. Ap-
plications of the formalism discussed in this paper include the precise connections with
Krein’s resolvent formula for self-adjoint extensions of the underlying minimal Sturm–
Liouville operator (parametrized in terms of boundary conditions); in particular, we
will describe in detail the connections with Krein’s extension of the minimal operator.
We also offer a systematic treatment of the basic trace formulas for resolvent differ-
ences of self-adjoint extensions, including the connection with the associated spectral
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shift functions. Moreover, we describe the interrelations between various parametriza-
tions of all self-adjoint extensions of the minimal Sturm–Liouville operator, including
the precise connection with von Neumann’s basic parametrization.

We turn to a brief description of the content of this paper: Section 2 recalls a
variety of convenient parametrizations of all self-adjoint extensions associated with a
regular, symmetric, second-order differential expression. This section is of an introduc-
tory character and serves as background material for the bulk of this paper. Section 3
is devoted to a comprehensive discussion of all self-adjoint extensions of the minimal
Sturm–Liouville operator in terms of Krein’s formula for resolvent differences, given
the Sturm–Liouville operator with Dirichlet boundary conditions at a and b as a conve-
nient reference operator. In particular, we carefully delineate the cases of separated and
non-separated self-adjoint boundary conditions. We conclude this section with a de-
tailed description of the Krein extension of the minimal Sturm–Liouville operator (this
result appears to be new in the general case presented in Example 3.3). Boundary data
maps for general self-adjoint extensions of the minimal operator are the principal topic
in Section 4. Special emphasis is put on a unified treatment of all self-adjoint extensions
(i.e., separated and non-separated ones). In particular, the resolvent difference between
any pair of self-adjoint extensions of the minimal Sturm–Liouville operator is charac-
terized in terms of the general boundary data map and associated boundary trace maps.
Again, the precise connection with Krein’s resolvent formula is established. Trace for-
mulas for resolvent differences and associated spectral shift functions and symmetrized
perturbation determinants are the focus of Section 5. In particular, it is shown that in
the general non-degenerate case, the determinant of the boundary data map coincides
with the symmetrized perturbation determinant up to a spectral parameter independent
constant (the latter depends on the boundary conditions involved). In Section 6 we
provide the precise connection with von Neumann’s parametrization and the boundary
data map ΛA,B

A′,B′(·) , the principal object studied in this paper. A very brief outlook on
the applicability of boundary data maps to inverse spectral problems is provided in our
last Section 7. (A detailed discussion of this circle of ideas is beyond the scope of this
paper and hence will appear elsewhere.)

To achieve a certain degree of self-containment, we also offer Appendix A which
recalls the basics of Krein’s resolvent formula for any pair of self-adjoint extensions of
a symmetric operator of finitely-many (equal) deficiency indices.

Finally, we briefly summarize some of the notation used in this paper: Let H be a
separable complex Hilbert space, (·, ·)H the scalar product in H (linear in the second
argument), and IH the identity operator in H . Next, if T is a linear operator mapping
(a subspace of) a Banach space into another, then dom(T ) and ker(T ) denote the do-
main and kernel (i.e., null space) of T . The closure of a closable operator S is denoted
by S . At times, and only for typographical reasons, we will also use Scl for the closure
of S . The spectrum, essential spectrum, discrete spectrum, and resolvent set of a closed
linear operator in H will be denoted by σ(·) , σess(·) , σd(·) , and ρ(·) , respectively.
The Banach space of bounded linear operators on H is denoted by B(H ) , the anal-
ogous notation B(X1,X2) , will be used for bounded operators between two Banach
spaces X1 and X2 . Moreover, Y1 �Y2 denotes the (not necessarily orthogonal) direct
sum of the subspaces Y1 and Y2 of a Banach (or Hilbert) space Y .
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The Banach space of compact operators defined on H is denoted by B∞(H ) and
the �p -based trace ideals are denoted by Bp(H ) , p � 1. The Fredholm determinant
for trace class perturbations of the identity in H is denoted by detH (·) , the trace for
trace class operators in H will be denoted by trH (·) .

For brevity, the identity operator in L2((a,b);rdx) will be denoted by I(a,b) and
that in Cn by In , n ∈ N . For simplicity of notation, the subscript L2((a,b);rdx) will
typically be omitted in the scalar product (·, ·)L2((a,b);rdx) in the proofs of our results
in Sections 3–5. For an n× n matrix M ∈ Cn×n , its operator norm, ‖M‖B(Cn) , will
simply be abbreviated by ‖M‖ .

2. Basics on the classification and parametrization of all self-adjoint regular
Sturm–Liouville operators

In this section we recall several convenient parametrizations of all self-adjoint ex-
tensions associated with a regular, symmetric, second-order differential expression as
discussed in detail, for instance, in [50, Theorem 13.15] and [53, Theorem 10.4.3].
While the first part of this section is of an introductory character and serves as back-
ground material for the bulk of this paper, its second part provides a detailed discussion
of the extent to which these parametrizations uniquely characterize self-adjoint exten-
sions.

Throughout this paper we make the following set of assumptions:

HYPOTHESIS 2.1. Suppose p,q,r satisfy the following conditions:
(i) r > 0 a.e. on (a,b) , r ∈ L1((a,b);dx) .
(ii) p > 0 a.e. on (a,b) , 1/p ∈ L1((a,b);dx) .
(iii) q ∈ L1((a,b);dx) , q is real-valued a.e. on (a,b) .

Given Hypothesis 2.1, we take τ to be the Sturm–Liouville-type differential ex-
pression defined by

τ =
1

r(x)

[
− d

dx
p(x)

d
dx

+q(x)
]
, x ∈ (a,b), −∞ < a < b < ∞, (2.1)

and note that τ is regular on [a,b] . In addition, the following convenient notation for
the first quasi-derivative is introduced,

y[1](x) = p(x)y′(x) for a.e. x ∈ (a,b) , y ∈ AC([a,b]). (2.2)

Here AC([a,b]) denotes the set of absolutely continuous functions on [a,b] .
Given that τ is regular on [a,b] , the maximal operator Hmax in L2((a,b);rdx)

associated with τ is defined by

Hmax f = τ f , (2.3)

f ∈ dom(Hmax) =
{
g ∈ L2((a,b);rdx)

∣∣g,g[1] ∈ AC([a,b]); τg ∈ L2((a,b);rdx)
}
,



4 S. CLARK, F. GESZTESY, R. NICHOLS AND M. ZINCHENKO

while the minimal operator Hmin in L2((a,b);rdx) associated with τ is given by

Hmin f = τ f ,

f ∈ dom(Hmin) =
{
g ∈ L2((a,b);rdx)

∣∣g,g[1] ∈ AC([a,b]); (2.4)

g(a) = g[1](a) = g(b) = g[1](b) = 0; τg ∈ L2((a,b);rdx)
}
.

We recall that an operator H̃ in L2((a,b);rdx) is an extension of Hmin , and de-
noted so by writing Hmin ⊆ H̃ , when dom(Hmin) ⊆ dom(H̃) , and H̃ f = Hmin f for all
f ∈ dom(Hmin) . H̃ is symmetric when its adjoint operator H̃∗ is an extension of H̃ ,
that is, H̃ ⊆ H̃∗ , and said to be self-adjoint when H̃ = H̃∗ . We note that the operator
Hmin is symmetric and that

H∗
min = Hmax, H∗

max = Hmin, (2.5)

(cf. Weidmann [49, Theorem 13.8]). If H̃ is a symmetric extension of Hmin , then, by
taking adjoints, one has

Hmin ⊆ H̃ ⊆ Hmax, (2.6)

so that any symmetric extension of Hmin is actually a restriction of Hmax . Thus, in
order to completely specify a symmetric (in particular, self-adjoint) extension of Hmin ,
it suffices to specify its domain of definition.

We now summarize material found, for instance, in [50, Ch. 13] and [53, Sects.
10.3, 10.4] in which self-adjoint extensions of the minimal operator Hmin are charac-
terized.

THEOREM 2.2. (See, e.g., [50], Theorem 13.14; [53], Theorem 10.4.2) Assume
Hypothesis 2.1 and suppose that H̃ is an extension of the minimal operator Hmin de-
fined in (2.4). Then the following hold:
(i) H̃ is a self-adjoint extension of Hmin if and only if there exist 2×2 matrices A and
B with complex-valued entries satisfying

rank(A B) = 2, AJA∗ = BJB∗, J =
(

0 −1
1 0

)
, (2.7)

with H̃ f = τ f , and where

dom(H̃) =
{

g ∈ dom(Hmax)
∣∣∣∣A( g(a)

g[1](a)

)
= B

(
g(b)

g[1](b)

)}
. (2.8)

Henceforth, the self-adjoint extension H̃ corresponding to the matrices A and B will
be denoted by HA,B .
(ii) For z ∈ ρ(HA,B) , the resolvent HA,B is of the form

(
(HA,B − zI(a,b))

−1 f
)
(x) =

∫ b

a
r(x′)dx′GA,B(z,x,x′) f (x′),

f ∈ L2((a,b);rdx),
(2.9)
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where the Green’s function GA,B(z,x,x′) is of the form given by

GA,B(z,x,x′) =

{
∑2

j,k=1 m+
j,k(x)u j(z,x)uk(z,x′), x′ � x,

∑2
j,k=1 m−

j,k(x)u j(z,x)uk(z,x′), x′ > x.
(2.10)

Here {u1,u2} represents a fundamental set of solutions for (τ − z)u = 0 and m±
j,k ,

1 � j,k � 2 , are appropriate constants. In particular,

(HA,B − zI(a,b))
−1 ∈ B

(
L2((a,b);rdx)

)
, z ∈ ρ(HA,B). (2.11)

(iii) HA,B has purely discrete spectrum with eigenvalues of multiplicity at most 2 .
Moreover, if σ(HA,B) = {λA,B, j} j∈N , then

∑
j∈N

λA,B, j �=0

|λA,B, j|−2 < ∞. (2.12)

The characterization of self-adjoint extensions of Hmin in terms of pairs of matri-
ces (A,B) ∈ C2×2×C2×2 satisfying (2.7) is not unique in the sense that different pairs
may lead to the same self-adjoint extension (i.e., it is possible that HA,B = HA′,B′ with
(A,B) �= (A′,B′)) as the following simple example illustrates.

EXAMPLE 2.3. Let A,B ∈ C2×2 satisfy (2.7). If C ∈ C2×2 is nonsingular, then
the pair (A′,B′) with A′ = CA and B′ = CB satisfies (2.7) and one readily verifies
dom(HA,B) = dom(HA′,B′) so that HA,B = HA′,B′ . One can actually show HA,B = HA′,B′
if and only if A′ = CA and B′ = CB for a nonsingular matrix C ∈ C2×2 , see Corollary
2.8 below.

Thus, Theorem 2.2 (i) establishes the existence of a surjective mapping from the
set of all pairs (A,B) ∈ C2×2×C2×2 which satisfy (2.7) to the set of self-adjoint exten-
sions of Hmin ,

(A,B) �→ HA,B, where A,B ∈ C
2×2 satisfy (2.7). (2.13)

Example 2.3 shows that the mapping (2.13) is not injective.
To obtain unique representations for the self-adjoint extensions of Hmin described

in Theorem 2.2, we first take note of some additional consequences for matrix pairs
(A,B) ∈ C2×2×C2×2 satisfying the conditions given in (2.7).

LEMMA 2.4. Let A and B be 2×2 matrices with complex-valued entries which
satisfy the conditions given in (2.7). Then the following hold:
(i) rank(A) = rank(B) �= 0 .
(ii) Col(A) ∩ Col(B) = {0} if and only if rank(A) = rank(B) = 1 , where Col(A)

represents the span of the columns of a matrix A.
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Proof. With A and B representing 2× 2 matrices with complex-valued entries
that satisfy (2.7), we note that |det(A)|2 = |det(B)|2 ; which, together with rank(A B) =
2, implies that rank(A) = rank(B) . Let

ρ = rank(A) = rank(B), (2.14)

and observe that while a priori ρ ∈ {0,1,2} , in fact, ρ �= 0; for otherwise one concludes
that rank(A B) = 0, in violation of the rank condition imposed in (2.7).

If ρ = 1 and Col(A)∩Col(B) contains a nonzero vector, then Col(A) = Col(B) ,
and rank(A B) = 1, thus violating the rank condition given in (2.7). If ρ = 2, then
Col(A)∩Col(B) = C2 . Thus, Col(A)∩Col(B) = {0} if and only if ρ = 1 when A and
B satisfy the conditions provided in (2.7). �

The next result provides unique characterizations for all self-adjoint extensions of
Hmin and hence can be viewed as a refinement of Theorem 2.2.

THEOREM 2.5. (See, e.g., [50], Theorem 13.15; [53], Theorem 10.4.3) Assume
Hypothesis 2.1. Let Hmin be the minimal operator associated with τ and defined in
(2.4) and HA,B a self-adjoint extension of the minimal operator as characterized in
Theorem 2.2; then, the following hold:
(i) HA′,B′ is a self-adjoint extension of Hmin where rank(A′) = rank(B′) = 1 if and only
if HA′,B′ = HA,B , where

A =
(

cos(θa) sin(θa)
0 0

)
, B =

(
0 0

−cos(θb) sin(θb)

)
, (2.15)

for a unique pair θa,θb ∈ [0,π), where

dom(HA,B) = {g ∈ dom(Hmax) |g(a)cos(θa)+g[1](a)sin(θa) = 0,

g(b)cos(θb)−g[1](b)sin(θb) = 0}.
(2.16)

(ii) HA′,B′ is a self-adjoint extension of Hmin with rank(A′) = rank(B′) = 2 if and only
if HA′,B′ = HA,B , where

A = eiφ R, B = I2, (2.17)

for a unique φ ∈ [0,2π) , and unique R ∈ SL2(R) , and where

dom(HA,B) =
{

g ∈ dom(Hmax)
∣∣∣∣( g(b)

g[1](b)

)
= eiφ R

(
g(a)

g[1](a)

)}
. (2.18)

Proof. First, with A and B defined either by (2.15) or by (2.17), one notes that A
and B satisfy the properties in (2.7). Hence, by Theorem 2.2, HA,B is a self-adjoint ex-
tension of the minimal operator Hmin . Clearly, when (2.15) holds, rank(A) = rank(B) =
1, and when (2.17) holds, rank(A) = rank(B) = 2.

With A,B ∈ C2×2 satisfying (2.7), HA,B as characterized in Theorem 2.2 rep-
resents a self-adjoint extension of the minimal operator Hmin . By Lemma 2.4, ρ =
rank(A) = rank(B) �= 0.
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When ρ = 1, the row vectors of A and B are linearly dependent, and

A =
(

cα1 cα2

dα1 dα2

)
, B =

(
c′β1 c′β2

d′β1 d′β2

)
, (2.19)

with (c,d) �= (0,0) , (c′,d′) �= (0,0) , (α1,α2) �= (0,0) , (β1,β2) �= (0,0) . We note that
Col(A)∩Col(B) = {0} , which is equivalent to ρ = 1, implies that

Aξ = Bη only when Aξ = 0 = Bη , (2.20)

and hence that AJA∗ = 0 = BJB∗ . As a consequence, Im(α1α2) = Im(β1β 2) = 0; by
which it follows that the C2 -vectors (α1,α2) and (β1,β2) are complex multiples of
R2 -vectors; thus, without loss of generality, we may assume in (2.19) that

α1 = cos(θa), α2 = sin(θa), β1 = −cos(θb), β2 = sin(θb), (2.21)

with θa,θb ∈ [0,π) . A second consequence of (2.20) is that the domain of HA,B , pro-
vided in (2.8), is then given by

dom(HA,B) =
{

g ∈ dom(Hmax)
∣∣∣∣A( g(a)

g[1](a)

)
= 0 = B

(
g(b)

g[1](b)

)}
, (2.22)

and consequently, by (2.16).
With A and B defined in (2.15), and θa and θb defined in (2.8), HA,B is a self-

adjoint extension with rank(A) = rank(B) = 1 as noted at the beginning of the proof.
Then, as a consequence of the principle provided in (2.20) applied to A and B , we see
that dom(HA,B) = dom(HA′,B′) and hence that HA′,B′ = HA,B .

Uniqueness of the representation given in (2.16) follows by noting that if (2.16)
holds for the distinct pairs (θa,θb),(θ ′

a,θ ′
b)∈ [0,π)× [0,π) , then sin(θa−θ ′

a)= sin(θb−
θ ′

b) = 0.
When ρ = 2, then A and B are invertible and hence the boundary condition

present in the definition of the domain of HA,B in (2.8) can be rewritten as(
g(b)

g[1](b)

)
= Bb,a

(
g(a)

g[1](a)

)
, Bb,a = B−1A. (2.23)

With Bb,a = B−1A , one notes that Bb,aJB∗
b,a = J ; hence, that |det(Bb,a)| = 1, and as

a consequence that det(Bb,a) = eiψ . In addition, Bb,a = −J(B∗
b,a)

−1J = eiψBb,a and

hence that Bb,a = eiψ/2R , where R is a 2×2 matrix with real-valued entries for which
det(R) = 1, that is, R ∈ SL2(R) . Thus, the boundary condition in (2.23) can now be
rewritten as (

g(b)
g[1](b)

)
= eiφ R

(
g(a)

g[1](a)

)
, φ ∈ [0,2π), R ∈ SL2(R). (2.24)

Uniqueness of the representation given in (2.18) follows by noting that if (2.18)
holds for the distinct pairs (φ ,R),(φ ′,R′) ∈ [0,2π)×SL2(R) , then ei(φ ′−φ)R′R−1 = I2
and hence that φ ′ = φ , R′ = R . �
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We now elaborate on two alternative characterizations for the self-adjoint exten-
sions of Hmin . These characterizations are summarized below in Theorems 2.7 and 2.9.
The characterization given in Theorem 2.7 is directly related to that found in Theorem
2.2 and proves central to the development of Sections 4 and 5. Like in Theorem 2.2,
the extensions in Theorem 2.7 are not uniquely characterized. By contrast, the char-
acterization given in Theorem 2.9 provides a unique association between elements of
the space of 2× 2 unitary matrices and the set of all self-adjoint extensions of Hmin .
Theorem 2.9 can be derived from the theory of Hermitian relations as developed by
Rofe-Beketov and Kholkin in Appendix A of [45]. In particular, Theorem 2.9 repre-
sents the scalar case of [45, Theorem A.7]. We begin with a characterization of the
self-adjoint extensions of Hmin in the language of boundary trace maps to be discussed
in detail in Section 4.

For a pair A,B ∈ C2×2 satisfying (2.7), one introduces the general boundary trace
map, γA,B , associated with the boundary {a,b} of (a,b) by

γA,B :

⎧⎪⎨⎪⎩
C1([a,b]) → C2,

u �→ A

(
u(a)

u[1](a)

)
−B

(
u(b)

u[1](b)

)
.

(2.25)

Comparing (2.25) with (2.8), the boundary trace formalism allows one to write

dom(HA,B) = {g ∈ dom(Hmax) |γA,Bg = 0}. (2.26)

Two special cases of (2.25) are to be distinguished, namely,

γDu =
(

u(a)
u(b)

)
, γNu =

(
u[1](a)
−u[1](b)

)
, (2.27)

that is,

γD = γAD,BD , AD =
(

1 0
0 0

)
, BD =

(
0 0
−1 0

)
, (2.28)

γN = γAN ,BN , AN =
(

0 1
0 0

)
, BN =

(
0 0
0 1

)
. (2.29)

The boundary trace maps γD and γN are canonical in the sense that any other boundary
trace map γA,B can be directly expressed in terms of γD and γN by

γA,B = DA,BγD +NA,BγN , (2.30)

where the 2×2 matrices DA,B and NA,B are given by

DA,B =
(

A1,1 −B1,1

A2,1 −B2,1

)
, NA,B =

(
A1,2 B1,2

A2,2 B2,2

)
. (2.31)

By the elementary Lemma 2.6 below, the conditions in (2.7) are equivalent to

rank(DA,B NA,B) = 2, DA,BN∗
A,B = NA,BD∗

A,B. (2.32)
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Therefore, one obtains an alternative characterization of all self-adjoint extensions of
Hmin in terms of pairs of 2×2 matrices satisfying the conditions in (2.32).

The following result is elementary, but we include it for future reference.

LEMMA 2.6. Let A and B denote 2× 2 matrices with complex-valued entries.
Then A and B satisfy (2.7) if and only if

XD =
(

A1,1 −B1,1

A2,1 −B2,1

)
, XN =

(
A1,2 B1,2

A2,2 B2,2

)
(2.33)

satisfy

rank(XD XN) = 2, XDX∗
N = XNX∗

D. (2.34)

Proof. The equivalence of the statements regarding the ranks in (2.7) and (2.34)
is clear. The equivalence of the matrix identities in (2.7) and (2.34) is an elementary
calculation. �

The alternative characterization of self-adjoint extensions in terms of matrices sat-
isfying (2.32) is summarized in the following theorem, and its connection to the char-
acterization of self-adjoint extensions given by Theorem 2.2 is made explicit.

THEOREM 2.7. Assume Hypothesis 2.1. Suppose that H is a symmetric extension
of the minimal operator Hmin defined in (2.4). Then the following hold:
(i) H is a self-adjoint extension of Hmin if and only if there exist 2× 2 matrices XD

and XN with complex-valued entries satisfying

rank(XD XN) = 2, XDX∗
N = XNX∗

D. (2.35)

with

H f = τ f , f ∈ dom(H) = {g ∈ dom(Hmax) |XDγDg+XNγNg = 0}. (2.36)

Henceforth, the self-adjoint extension H corresponding to the matrices XD and XN ,
and defined by (2.36), will be denoted by H̃XD,XN .
(ii) Given matrices A,B ∈ C2×2 satisfying (2.7), the corresponding self-adjoint exten-
sion HA,B satisfies

HA,B = H̃XD,XN , (2.37)

with
XD = DA,B, XN = NA,B, (2.38)

where DA,B and NA,B are defined by (2.31).
(iii) Given matrices XD,XN ∈C2×2 satisfying (2.34) and the corresponding self-adjoint
extension, H̃XD,XN , one has

H̃XD,XN = HA,B, (2.39)
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with

A =
(

XD,1,1 XN,1,1

XD,2,1 XN,2,1

)
, B =

(−XD,1,2 XN,1,2

−XD,2,2 XN,2,2

)
. (2.40)

(iv) H̃XD,XN = H̃X ′
D,X ′

N
if and only if X ′

D = CXD and X ′
N = CXN for some nonsingular

matrix C ∈ C2×2 .

Proof. We begin with item (i) . Suppose H is defined by (2.36) for a pair of
matrices XD,XN ∈C2×2 which satisfy (2.35). For A and B as defined in (2.40), Lemma
2.6 guarantees that (2.7) is satisfied. By construction (cf. (2.30) and (2.31)),

XDγDu+XNγNu = γA,Bu, u ∈ dom(Hmax). (2.41)

Thus, comparing (2.26) with the definition of dom(H) in (2.36), one concludes that
u∈ dom(Hmax) belongs to dom(H) if and only if it belongs to dom(HA,B) . As a result,
H = HA,B , and it follows that H is a self-adjoint extension of Hmin .

Conversely, suppose H is a self-adjoint extension of Hmin . According to Theorem
2.2, H = HA,B for a pair of matrices A,B ∈ C2×2 which satisfy (2.7). Choosing XD =
DA,B and XN = NA,B with DA,B and NA,B as defined in (2.31), Lemma 2.6 guarantees
that XD and XN satisfy the conditions in (2.35). Comparing (2.26) with (2.30), gives
(2.36). This completes the proof of item (i) .

Items (ii) and (iii) are now immediate consequences of the proof of item (i) .
Sufficiency in item (iv) is clear since

XDγDu+XNγNu = 0 ⇐⇒ CXDγDu+CXNγNu = 0, u ∈ dom(Hmax), (2.42)

for any nonsingular C ∈ C2×2 . In order to establish necessity, we now assume that
H̃XD,XN = H̃X ′

D,X ′
N

or, equivalently, that dom(H̃XD,XN ) = dom(H̃X ′
D,X ′

N
) . One observes

that the latter equality (of domains) means that for u ∈ dom(Hmax) ,

XDγDu+XNγNu = 0 ⇐⇒ X ′
DγDu+X ′

NγNu = 0. (2.43)

Viewing the two equations in (2.43) as two homogeneous linear systems (in the vari-
ables (u(a),u(b),u[1](a),−u[1](b))) with coefficient matrices (XD XN) and (X ′

D X ′
N) ,

the condition in (2.43) implies that these two systems are equivalent systems. There-
fore, there exists a nonsingular matrix C ∈ C2×2 relating the coefficient matrices ac-
cording to

(X ′
D X ′

N) = C(XD XN). (2.44)

Consequently, X ′
D =CXD and X ′

N =CXN , implying the necessity claim. This completes
the proof of item (iv) . �

COROLLARY 2.8. HA,B = HA′,B′ if and only if A′ = CA and B′ = CB for some
nonsingular matrix C ∈ C

2×2 .
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Proof. Sufficiency is clear (and has, in fact, already been mentioned in Example
2.3). In order to prove necessity, suppose HA,B = HA′,B′ . Then by Theorem 2.7 (ii) ,

H̃DA,B,NA,B = HA,B = HA′,B′ = H̃DA′ ,B′ ,NA′ ,B′ , (2.45)

where the matrices DA,B and NA,B are defined by (2.31) and DA′,B′ and NA′,B′ are
defined analogously. In light of (2.45) and Theorem 2.7 (iv) , there exists a nonsingular
matrix C ∈ C2×2 such that

DA′,B′ = CDA,B NA′,B′ = CNA,B. (2.46)

Explicitly computing the matrix products in (2.46) yields(
A′

1,1 −B′
1,1

A′
2,1 −B′

2,1

)
=

(
C1,1A1,1 +C1,2A2,1 −C1,1B1,1−C1,2B2,1

C2,1A1,1 +C2,2A2,1 −C2,1B1,1−C2,2B2,1

)
(

A′
1,2 B′

1,2
A′

2,2 B′
2,2

)
=

(
C1,1A1,2 +C1,2A2,2 C1,1B1,2 +C1,2B2,2

C2,1A1,2 +C2,2A2,2 C2,1B1,2 +C2,2B2,2

)
. (2.47)

By equating coefficients in (2.47), one concludes that A′ = CA and B′ = CB . �
The next result provides a unique characterization of self-adjoint Sturm–Liouville

extensions in terms of unitary 2×2 matrices:

THEOREM 2.9. Assume Hypothesis 2.1. Suppose that H is a symmetric extension
of the minimal operator Hmin defined in (2.4). Then the following hold:
(i) H is a self-adjoint extension of Hmin if and only if there exists a unitary U ∈ C2×2

with

H f = τ f , f ∈ dom(H) = {g ∈ dom(Hmax) | i(U − I2)γDg = (U + I2)γNg}. (2.48)

Henceforth, the self-adjoint extension H corresponding to the unitary 2×2 matrix U
and defined by (2.48) will be denoted by HU .
(ii) Given a unitary matrix U ∈ C2×2 , the corresponding self-adjoint extension HU

satisfies
HU = H̃XD,U ,XN,U , (2.49)

where XD,U ,XN,U ∈ C2×2 are defined by

XD,U =
i
2
(I2−U) XN,U =

1
2
(U + I2). (2.50)

The matrix U can be recovered from

U = (XD,U + iXN,U)−1(iXN,U −XD,U). (2.51)

(iii) Given matrices XD,XN ∈ C2×2 satisfying (2.35), the corresponding self-adjoint
extension H̃XD,XN satisfies

H̃XD,XN = HUXD,XN
, (2.52)
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where UXD,XN ∈ C2×2 is the unitary matrix

UXD,XN = (XD + iXN)−1(iXN −XD). (2.53)

(iv) HU = HU ′ for 2×2 unitary matrices U and U ′ if and only if U = U ′ . Thus, the
mapping U �→ HU , U ∈ C2×2 unitary, is a bijection.

Proof. We begin with item (i) . Suppose H is defined by (2.48) for a fixed unitary
matrix U ∈C2×2 and define the matrices XD,U and XN,U according to (2.50). We claim
that

XD := XD,U and XN := XN,U satisfy the conditions in (2.35). (2.54)

Assuming (2.54), a self-adjoint extension HXD,U ,XN,U of Hmin is defined by (2.36). Evi-
dently, u∈ dom(Hmax) belongs to dom(HXD,U ,XN,U ) if and only if it belongs to dom(H)
as defined by (2.48); hence, dom(H) = dom(HXD,U ,XN,U ) . As a result, H = HXD,U ,XN,U

is a self-adjoint extension of Hmin . We now proceed to verify the claim in (2.54). To
this end, one computes (applying unitarity of U ),

rank(XD,U XN,U) = rank[(XD,U XN,U )(XD,U XN,U)∗] = rank I2 = 2. (2.55)

Once more, unitarity of U yields

XD,UX∗
N,U =

i
4
(U∗ −U), (2.56)

and consequently,

XN,UX∗
D,U = (XD,UX∗

N,U )∗ =
(

i
4
(U∗ −U)

)∗
=

i
4
(U∗ −U) = XD,UX∗

N,U . (2.57)

Hence, (2.54) is established, completing the proof that H defined by (2.48) is a self-
adjoint extension of Hmin .

Conversely, supposing that H is a self-adjoint extension of Hmin , we will show
that H satisfies (2.48) for some unitary matrix U ∈C2×2 . Since H must be a restriction
of Hmax , (2.48) reduces to proving the existence of a unitary U ∈ C2×2 for which

dom(H) = {g ∈ dom(Hmax) | i(U − I2)γDg = (U + I2)γNg}. (2.58)

According to Theorem 2.7 (i) , H = H̃XD,XN for two matrices XD,XN ∈ C2×2 satisfying
(2.35), and hence dom(H) is characterized by

dom(H) = {g ∈ dom(Hmax) |XDγDg+XNγNg = 0}. (2.59)

Next, one observes that the matrix (XD + iXN) is nonsingular; in fact,

rank(XD + iXN) = rank[(XD + iXN)(XD + iXN)∗]
= rank(XDX∗

D +XNX∗
N) (2.60)

= rank[(XD XN)(XD XN)∗]
= rank(XD XN) = 2. (2.61)
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To get (2.60) and (2.61) one makes use of the fact that XD and XN satisfy the conditions
in (2.35). The matrix UXD,XN defined by (2.53) is unitary since

UXD,XNU∗
XD,XN

= (XD + iXN)−1(iXN −XD)(−iX∗
N −X∗

D)(X∗
D − iX∗

N)−1

= (XD + iXN)−1(XNX∗
N +XDX∗

D)(X∗
D − iX∗

N)−1 (2.62)

= (XD + iXN)−1(XD + iXN)(X∗
D − iX∗

N)(X∗
D − iX∗

N)−1

= I2,

using the identity XDX∗
N = XNX∗

D twice. Finally, (2.59) together with the following
chain of equivalences,

i(UXD,XN − I2)γDu = (UXD,XN + I2)γNu

⇐⇒UXD,XN (iγDu− γNu) = iγDu+ γNu

⇐⇒ (iXN −XD)(iγDu− γNu) = (XD + iXN)(iγDu+ γNu)
⇐⇒−XNγDu− iXNγNu− iXDγDu+XDγNu

= iXDγDu+XDγNu−XNγDu+ iXNγNu

⇐⇒ XDγDu+XNγNu = 0, u ∈ dom(Hmax), (2.63)

yields (2.58) with U =UXD,XN defined by (2.53). This completes the proof of item (i) .
Regarding item (ii) , (2.49) with (2.50) is an immediate consequences of the proof

of item (i) , while (2.51) is an elementary calculation using (2.50). Item (iii) is an
immediate consequence of the proof of item (i) .

Sufficiency in item (iv) is clear. To establish necessity, suppose HU = HU ′ for
some 2×2 unitary matrices U and U ′ . Then one has

H̃XD,U ,XN,U = HU = HU ′ = H̃XD,U ′ ,XN,U ′ , (2.64)

with XD,U and XN,U as defined in (2.50), and XD,U ′ and XN,U ′ defined analogously. By
Theorem 2.7 (iv) , (2.64) implies the existence of a nonsingular matrix C ∈ C2×2 such
that

XD,U ′ = CXD,U , XN,U ′ = CXN,U . (2.65)

Using (2.51) to recover U ′ along with the identities in (2.65), one has

U ′ = (XD,U ′ + iXN,U ′)−1(iXN,U ′ −XD,U ′)

= (CXD,U + iCXN,U)−1(iCXN,U −CXD,U)

= (XD,U + iXN,U)−1C−1C(iXN,U −XD,U)

= (XD,U + iXN,U)−1(iXN,U −XD,U)
= U. (2.66)

To get (2.66), one applies the reconstruction formula in (2.51) (this time for U ). �
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Equation (2.48) in Theorem 2.9 (i) should be viewed as a general description of
all self-adjoint extensions by means of abstract boundary conditions (see also [19, Ch.
3]).

Interest in the issue of parametrizing self-adjoint extensions was revived by Kos-
trykin and Schrader in the context of quantum graphs in [27], [28]. In addition to the
fundamental treatment of unique characterizations of all self-adjoint extensions in terms
of unitary matrices and boundary conditions of the type appearing in [45, Theorem
A.7], the corresponding extension to the more general case of Laplacians on quantum
graphs has also been studied in [6], [21]–[24], [37, Ch. 3], [38], and [42, Sect. 3]. The
characterization of self-adjoint extensions in terms of pairs of matrices XD,XN ∈ C2×2

satisfying (2.34) is given in [6] in the more general context of Laplacians on quantum
graphs.

We conclude this section with a remark on boundary triples.

REMARK 2.10. A straightforward computation shows that

(Hmax f ,g)L2((a,b);rdx)− ( f ,Hmaxg)L2((a,b);rdx) = (γN f ,γDg)
C2 − (γD f ,γNg)

C2 ,

f ,g ∈ dom(Hmax). (2.67)

Thus, {C2,γN ,γD} forms a boundary value triple for Hmax = H∗
min in the sense of

Kochubei [25]. For additional developments and various applications of boundary
triples (boundary value spaces) in this context we refer to [7], [9], [10], [11], [19, Chs.
3, 4], [20], and the literature cited therein.

3. Self-adjoint extensions in terms of Krein’s formula

The principal aim in this section is to relate resolvents of different self-adjoint
extensions of Hmin via Krein’s resolvent formula. For an abstract approach to the latter
we refer to Appendix A.

In accordance with Theorem 2.5, we now introduce the following two families of
self-adjoint extensions of the minimal operator Hmin : The operator Hθa,θb in L2((a,b);
rdx) ,

Hθa,θb f = τ f , θa,θb ∈ [0,π),

f ∈ dom(Hθa,θb) =
{
g ∈ L2((a,b);rdx)

∣∣g,g[1] ∈ AC([a,b]); (3.1)

cos(θa)g(a)+ sin(θa)g[1](a) = 0, cos(θb)g(b)− sin(θb)g[1](b) = 0;

τg ∈ L2((a,b);rdx)
}
,

and for each R = (Rj,k)1� j,k�2 ∈ SL2(R) and φ ∈ [0,2π) , the self-adjoint extension
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HR,φ in L2((a,b);rdx) of Hmin defined by

HR,φ f = τ f , R ∈ SL2(R), φ ∈ [0,2π),

f ∈ dom(HR,φ ) =
{

g ∈ L2((a,b);rdx)
∣∣∣∣g,g[1] ∈ AC([a,b]); (3.2)(

g(b)
g[1](b)

)
= eiφ R

(
g(a)

g[1](a)

)
; τg ∈ L2((a,b);rdx)

}
.

As discussed in detail in Section 2, Hθa,θb and HR,φ characterize all self-adjoint
extensions of Hmin .

The generalized Cayley transform of H0,0 (a convenient reference operator) is
defined by

Uz,z′ = (H0,0− z′I(a,b))(H0,0 − zI(a,b))
−1

= I(a,b) + (z− z′)(H0,0− zI(a,b))
−1, z,z′ ∈ ρ(H0,0),

(3.3)

and forms a bijection from ker(Hmax − z′I(a,b)) to ker(Hmax − zI(a,b)) (cf. (A.18), Ap-
pendix A). In particular,

dim(ker(Hmax− zI(a,b))) = 2, z ∈ ρ(H0,0). (3.4)

For each z ∈ ρ(H0,0) , a basis for ker(Hmax − zI(a,b)) , denoted {u j(z, ·)} j=1,2 , is fixed
by specifying

u1(z,a) = 0, u1(z,b) = 1,

u2(z,a) = 1, u2(z,b) = 0,
z ∈ ρ(H0,0). (3.5)

One verifies

Uz,z′u1(z′, ·) = u1(z, ·),
Uz,z′u2(z′, ·) = u2(z, ·),

j ∈ {1,2}, z,z′ ∈ ρ(H0,0). (3.6)

The identities (3.6) follow easily from the representation (3.3). In fact, since Uz,z′ maps
into ker(Hmax − zI(a,b)) ,

Uz,z′u1(z′, ·) = c1,1u1(z, ·)+ c1,2u2(z, ·),
Uz,z′u2(z′, ·) = c2,1u1(z, ·)+ c2,2u2(z, ·),

z,z′ ∈ ρ(H0,0), (3.7)

for certain scalars c1,1,c1,2,c2,1,c2,2 ∈ C . On the other hand, by (3.3),

Uz,z′u1(z′, ·) = u1(z′, ·)+ (z− z′)(H0,0 − zI(a,b))
−1u1(z′, ·) (3.8)

Uz,z′u2(z′, ·) = u2(z′, ·)+ (z− z′)(H0,0 − zI(a,b))
−1u2(z′, ·), (3.9)

z,z′ ∈ ρ(H0,0),

so that [
Uz,z′u1(z′, ·)

]
(a) = u1(z′,a),

[
Uz,z′u1(z′, ·)

]
(b) = u1(z′,b),[

Uz,z′u2(z′, ·)
]
(a) = u2(z′,a),

[
Uz,z′u2(z′, ·)

]
(b) = u2(z′,b).

(3.10)
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Evaluating (3.7) at a (resp., b ) and comparing to (3.10) yields c1,2 = 0 and c2,2 = 1
(resp., c1,1 = 1 and c2,1 = 0), implying (3.6). Moreover, due to reality of the coeffi-
cients p , q , and r , one also verifies that

u j(z, ·) = u j(z, ·), j = 1,2, z ∈ ρ(H0,0). (3.11)

Using a resolvent formula due to Krein (cf. (A.16), Appendix A), the next result
provides a characterization, in terms of the Dirichlet resolvent (H0,0 − zI(a,b))−1 , for
the resolvents of all self-adjoint extensions with separated boundary conditions of the
minimal operator Hmin .

THEOREM 3.1. Assume Hypothesis 2.1, let θa,θb ∈ [0,π) , and denote by u j(z, ·) ,
j = 1,2 , the basis for ker(Hmax− zI(a,b)) as defined in (3.5).
(i) If θa �= 0 and θb �= 0 , then the maximal common part (cf. Appendix A) of Hθa,θb

and H0,0 is Hmin . The matrix

Dθa,θb(z) =

(
cot(θb)−u[1]

1 (z,b) −u[1]
2 (z,b)

u[1]
1 (z,a) cot(θa)+u[1]

2 (z,a)

)
, z ∈ ρ(Hθa,θb)∩ρ(H0,0),

(3.12)

is invertible and

(Hθa,θb − zI(a,b))
−1 = (H0,0− zI(a,b))

−1 (3.13)

−
2

∑
j,k=1

Dθa,θb(z)
−1
j,k (uk(z, ·), ·)L2((a,b);rdx)u j(z, ·), z ∈ ρ(Hθa,θb)∩ρ(H0,0).

(ii) If θa �= 0 , then the maximal common part of Hθa,0 and H0,0 is the restriction,
H̃min , of Hmax with domain

dom
(
H̃min

)
= dom(Hmax)∩{g ∈ AC([a,b]) |g(b) = g(a) = g[1](a) = 0}. (3.14)

The quantity

dθa,0(z) = cot(θa)+u[1]
2 (z,a), z ∈ ρ(Hθa,0)∩ρ(H0,0), (3.15)

is nonzero and

(Hθa,0− zI(a,b))
−1 = (H0,0− zI(a,b))

−1

−dθa,0(z)
−1(u2(z, ·), ·)L2((a,b);rdx)u2(z, ·), z ∈ ρ(Hθa,0)∩ρ(H0,0).

(3.16)

(iii) If θb �= 0 , then the maximal common part of H0,θb and H0,0 is the restriction,
Ĥmin , of Hmax with domain

dom
(
Ĥmin

)
= dom(Hmax)∩{g ∈ AC([a,b]) |g(b) = g(a) = g[1](b) = 0}. (3.17)
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The quantity

d0,θb(z) = cot(θb)−u[1]
1 (z,b), z ∈ ρ(H0,θb)∩ρ(H0,0), (3.18)

is nonzero and

(H0,θb − zI(a,b))
−1 = (H0,0− zI(a,b))

−1

−d0,θb(z)
−1(u1(z, ·), ·)L2((a,b);rdx)u1(z, ·), z ∈ ρ(H0,θb)∩ρ(H0,0).

(3.19)

Proof. We begin with the proof of item (i) . The maximal common part of Hθa,θb

and H0,0 is Hmin since θa �= 0 and θb �= 0 imply

dom(Hθa,θb)∩dom(H0,0) = dom(Hmin). (3.20)

By way of contradiction, suppose det(Dθa,θb(z0)) = 0 for some z0 ∈ ρ(Hθa,θb)∩
ρ(H0,0) . Then

det

(
cos(θa)u2(z0,a)+ sin(θa)u

[1]
2 (z0,a) cos(θa)u1(z0,a)+ sin(θa)u

[1]
1 (z0,a)

cos(θb)u2(z0,b)− sin(θb)u
[1]
2 (z0,b) cos(θb)u1(z0,b)− sin(θb)u

[1]
1 (z0,b)

)
= sin(θa)sin(θb)det(Dθa,θb(z)) = 0. (3.21)

Thus, there exists a constant c ∈ C such that

cos(θa)[u1(z0,a)+ cu2(z0,a)]+ sin(θa)[u
[1]
1 (z0,a)+ cu[1]

2 (z0,a)] = 0, (3.22)

cos(θb)[u1(z0,b)+ cu2(z0,b)]− sin(θb)[u
[1]
1 (z0,b)+ cu[1]

2 (z0,b)] = 0. (3.23)

As a result, u1(z0, ·)+ cu2(z0, ·) ∈ dom(Hθa,θb) is an eigenfunction with corresponding
eigenvalue z0 , contradicting z0 ∈ ρ(Hθa,θb) .

In order to prove (3.13), it suffices to show

g f (z, ·) := (H0,0− zI(a,b))
−1 f (3.24)

−
2

∑
j,k=1

Dθa,θb(z)
−1
j,k (uk(z, ·), f )L2((a,b);rdx)u j(z, ·) ∈ dom(Hθa,θb),

f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,θb)∩ρ(H0,0).

One then verifies that

(Hθa,θb − zI(a,b))g f (z, ·) = (Hmax− zI(a,b))g f (z, ·) = f ,

f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,θb)∩ρ(H0,0),
(3.25)

since Hmax is an extension of Hθa,θb and H0,0 and {u j(z, ·)} j=1,2 ⊆ ker(Hmax − z) .
In order to show (3.24), one need only to show that g f (z, ·) satisfies the boundary
conditions in (3.1). One has

[(H0,0− zI(a,b))
−1 f ][1](a) = (u2(z, ·), f )L2((a,b);rdx),

[(H0,0− zI(a,b))
−1 f ][1](b) = −(u1(z, ·), f )L2((a,b);rdx),

z ∈ ρ(H0,0), (3.26)
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which can be seen using the integral kernel for the resolvent of H0,0 ,

[(H0,0− zI(a,b))
−1 f ](x) = W2,1(z)−1

[
u2(z,x)

∫ x

a
r(x′)dx′u1(z,x′) f (x′)

+u1(z,x)
∫ b

x
r(x′)dx′u2(z,x′) f (x′)

]
,

f ∈ L2((a,b);rdx), x ∈ [a,b], z ∈ ρ(H0,0), (3.27)

where W2,1(z) denotes the Wronskian of u2(z, ·) and u1(z, ·) . One recalls that the
Wronskian of f and g is defined for a.e. x ∈ (a,b) by

W ( f ,g)(x) = f (x)g[1](x)− f [1](x)g(x), f ,g ∈ AC([a,b]). (3.28)

A short computation using (3.5) yields

W2,1(z) = u[1]
1 (z,a) = −u[1]

2 (z,b), z ∈ ρ(H0,0). (3.29)

Differentiating (3.27) and then using (3.29) yields

[(H0,0− zI(a,b))
−1 f ][1](x) = −u[1]

2 (z,x)

u[1]
2 (z,b)

∫ x

a
dx′u1(z,x′) f (x′)

+
u[1]

1 (z,x)

u[1]
1 (z,a)

∫ b

x
dx′u2(z,x′) f (x′), (3.30)

f ∈ L2((a,b);rdx), x ∈ [a,b], z ∈ ρ(H0,0),

and relations (3.26) now follow by evaluating (3.30) separately at x = a and x = b ,
respectively.

Using (3.5) and (3.26), one obtains

g f (z,a) = det(Dθa,θb(z))
−1[(−cot(θb)+u[1]

1 (z,b))(u2(z, ·), f )L2((a,b);rdx)

+u[1]
1 (z,a)(u1(z, ·), f )L2((a,b);rdx)

]
, (3.31)

g f (z,b) = det(Dθa,θb(z))
−1[− (cot(θa)+u[1]

2 (z,a))(u1(z, ·), f )L2((a,b);rdx)

−u[1]
2 (z,b)(u2(z, ·), f )L2((a,b);rdx)

]
, (3.32)

g[1]
f (z,a) = (u2(z, ·), f )L2((a,b);rdx)

+det(Dθa,θb(z))
−1[(−cot(θa)−u[1]

2 (z,a))(u1(z, ·), f )L2((a,b);rdx)u
[1]
1 (z,a)

+ (−cot(θb)+u[1]
1 (z,b))(u2(z, ·), f )L2((a,b);rdx)u

[1]
2 (z,a)

−u[1]
2 (z,b)(u2(z, ·), f )u[1]

1 (z,a)+u[1]
1 (z,a)(u1(z, ·), f )L2((a,b);rdx)u

[1]
2 (z,a)

]
, (3.33)

g[1]
f (z,b) = −(u1(z, ·), f )L2((a,b);rdx) +det(Dθa,θb(z))

−1

× [
(−cot(θa)−u[1]

2 (z,a))(u1(z, ·), f )L2((a,b);rdx)u
[1]
1 (z,b)
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+(−cot(θb)+u[1]
1 (z,b))(u2(z, ·), f )L2((a,b);rdx)u

[1]
2 (z,b)

−u[1]
2 (z,b)(u2(z, ·), f )L2((a,b);rdx)u

[1]
1 (z,b)

+u[1]
1 (z,a)(u1(z, ·), f )L2((a,b);rdx)u

[1]
2 (z,b)

]
, (3.34)

f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,θb)∩ρ(H0,0),

and as a result, one verifies

0 = cos(θa)g f (z,a)+ sin(θa)g
[1]
f (z,a), (3.35)

0 = cos(θb)g f (z,b)− sin(θb)g
[1]
f (z,b), (3.36)

f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,θb)∩ρ(H0,0).

Proof of item (ii) . If θa �= 0 and θb = 0, then one verifies that

dom(Hθa,0)∩dom(H0,0) = dom(Hmax)∩{g ∈ AC([a,b]) |g(b) = g(a) = g[1](a) = 0}.
(3.37)

By definition, the maximal common part of Hθa,0 and H0,0 is the restriction of Hmax to
dom(Hθa,0)∩dom(H0,0) , that is, the maximal common part of Hθa,0 and H0,0 is H̃min

as defined in item (ii) .
By way of contradiction, suppose dθa,0(z0) = 0 for some z0 ∈ ρ(Hθa,0)∩ρ(H0,0) .

Then

0 = sin(θa)dθa,0(z0)

= cos(θa)+ sin(θa)u
[1]
2 (z0,a)

= cos(θa)u2(z0,a)+ sin(θa)u
[1]
2 (z0,a), (3.38)

together with the trivial identity

0 = cos(0)u2(z0,b)− sin(0)u[1]
2 (z0,b), (3.39)

shows that u2(z0, ·) is an eigenfunction of Hθa,0 with eigenvalue z0 , contradicting z0 ∈
ρ(Hθa,0) .

To verify (3.16), one only needs to show

g f (z, ·) ≡ (H0,0 − zI(a,b))
−1 f

−dθa,0(z)
−1(u2(z, ·), f )L2((a,b);rdx)u2(z, ·) ∈ dom(Hθa,0), (3.40)

f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,0)∩ρ(H0,0).

Repeating the computation in (3.25), the proof of (3.40) reduces to showing that g f (z, ·)
satisfies the boundary conditions for dom(Hθa,0) . One computes

g f (z,b) = 0, (3.41)

g f (z,a) = −dθa,0(z)
−1(u2(z, ·), f )L2((a,b);rdx), (3.42)
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g[1]
f (z,a) = (u2(z, ·), f )L2((a,b);rdx)

−dθa,0(z)
−1(u2(z, ·), f )L2((a,b);rdx)u

[1]
2 (z,a), (3.43)

f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,0)∩ρ(H0,0).

where the last equality makes use of (3.26). As a result,

0 = [−cos(θa)dθa,0(z)
−1 + sin(θa)− sin(θa)dθa,0(z)

−1u[1]
2 (z,a)]

× (u2(z, ·), f )L2((a,b);rdx)

= cos(θa)g f (z,a)+ sin(θa)g
[1]
f (z,a), f ∈ L2((a,b);rdx), z ∈ ρ(Hθa,0)∩ρ(H0,0),

(3.44)

and (3.40) follows.
Proof of item (iii) . As this is very similar to the proof of item (ii) , we only sketch

an outline. The statement regarding the maximal common part follows since, in the
case θa = 0 and θb �= 0,

dom(H0,θb)∩dom(H0,0)

= dom(Hmax)∩{g ∈ AC([a,b]) |g(b) = g(a) = g[1](b) = 0}. (3.45)

If d0,θb(z0) = 0, then u1(z0, ·) is an eigenfunction of H0,θb and z0 is the corre-
sponding eigenvalue, a contradiction. Verification of (3.19) reduces to showing

g f (z, ·) ≡ (H0,0 − zI(a,b))
−1 f

−d0,θb(z)
−1(u1(z, f ), ·)L2((a,b);rdx)u1(z, ·) ∈ dom(H0,θb), (3.46)

f ∈ L2((a,b);rdx), z ∈ ρ(H0,θb)∩ρ(H0,0),

which, in turn, reduces to verifying g f (z, ·) satisfies the boundary conditions for
dom(H0,θb) :

g f (z,a) = 0, (3.47)

cos(θb)g f (z,b)− sin(θb)g
[1]
f (z,b) = 0, (3.48)

f ∈ L2((a,b);rdx), z ∈ ρ(H0,θb)∩ρ(H0,0).

(3.47) and (3.48) are the results of straightforward calculations. �
The case of coupled boundary conditions is discussed next:

THEOREM 3.2. Assume Hypothesis 2.1, let R = (Rj,k)1� j,k�2 ∈ SL2(R) and φ ∈
[0,2π) , and denote by u j(z, ·) , j = 1,2 , the basis for ker(Hmax − zI(a,b)) as defined in
(3.5).
(i) If R1,2 �= 0 , then the maximal common part of HR,φ and H0,0 is Hmin . The matrix

QR,φ (z) =

⎛⎝ R2,2
R1,2

−u[1]
1 (z,b) −1

e−iφ R1,2
−u[1]

2 (z,b)
−1

eiφ R1,2
+u[1]

1 (z,a) R1,1
R1,2

+u[1]
2 (z,a)

⎞⎠ ,

z ∈ ρ(HR,φ )∩ρ(H0,0),

(3.49)
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is invertible and

(HR,φ − zI(a,b))
−1 = (H0,0− zI(a,b))

−1 (3.50)

−
2

∑
j,k=1

QR,φ (z)−1
j,k (uk(z, ·), ·)L2((a,b);rdx)u j(z, ·), z ∈ ρ(HR,φ )∩ρ(H0,0).

(ii) If R1,2 = 0 , then the maximal common part of HR,φ and H0,0 is the restriction of
Hmax to the domain

dom(Hmax)∩{g ∈ L2((a,b);rdx) |g(a) = g(b) = 0, g[1](b) = eiφ R2,2g
[1](a)}. (3.51)

In this case,

qR,φ (z) = R2,1R2,2 +R2
2,2u

[1]
2 (z,a)+ eiφR2,2u

[1]
1 (z,a)

− e−iφR2,2u
[1]
2 (z,b)−u[1]

1 (z,b), z ∈ ρ(HR,φ )∩ρ(H0,0), (3.52)

is nonzero and

(HR,φ − zI(a,b))
−1 = (H0,0 − zI(a,b))

−1 (3.53)

−qR,φ(z)−1(uR,φ (z, ·), ·)L2((a,b);rdx)uR,φ (z, ·), z ∈ ρ(HR,φ )∩ρ(H0,0),

where

uR,φ (z, ·) = e−iφ R2,2u2(z, ·)+u1(z, ·), z ∈ ρ(HR,φ )∩ρ(H0,0). (3.54)

Proof. We begin with the proof of item (i): Let R and φ satisfy the assumptions
of the theorem, and suppose that R1,2 �= 0. By inspecting boundary conditions, one
sees that dom(HR,φ )∩ dom(H0,0) ⊆ dom(Hmin) so that Hmin is the maximal common
part of HR,φ and H0,0 , that is, HR,φ and H0,0 are relatively prime with respect to Hmin

(in the terminology of Appendix A, cf. (A.4)).
We now show that QR,φ (z) is invertible for all z ∈ ρ(HR,φ )∩ρ(H0,0) . If QR,φ (z0)

is singular for some z0 ∈ ρ(HR,φ )∩ρ(H0,0) , then the columns of eiφ R1,2QR,φ (z0) are
linearly dependent. Therefore, there exists a constant α ∈ C such that

−eiφR2,2 + eiφR1,2u
[1]
1 (z0,b) = α

(
eiφ R1,2

e−iφ R1,2
+ eiφ R1,2u

[1]
2 (z0,b)

)
, (3.55)

1− eiφR1,2u
[1]
1 (z0,a) = α

(− eiφR1,1− eiφR1,2u
[1]
2 (z0,a)

)
. (3.56)

We rewrite (3.56) as

1 = −αeiφR1,1 +
(
u[1]

1 (z0,a)−αu[1]
2 (z0,a)

)
eiφ R1,2. (3.57)

Define the function
g(z0, ·) = u1(z0, ·)−αu2(z0, ·), (3.58)
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and observe that

g(z0,a) = u1(z0,a)−αu2(z0,a) = −α,

g(z0,b) = u1(z0,b)−αu2(z0,b) = 1.
(3.59)

As a result of (3.57) and (3.59),

g(z0,b) = eiφ R1,1g(z0,a)+ eiφR1,2g
[1](z0,a). (3.60)

Moreover, using (3.55),

g[1](z0,b) = u[1]
1 (z0,b)−αu[1]

2 (z0,b)

=
R2,2

R1,2
+

α
e−iφ R1,2

= −αeiφ R2,1 + eiφR2,2

(
1

eiφ R1,2
+ α

R1,1

R1,2

)
(3.61)

= eiφ R2,1g(z0,a)+ eiφR2,2g
[1](z0,a). (3.62)

To get (3.61), we have used det(R) = 1; (3.62) follows from (3.57). Now (3.60) and
(3.62) yield g(z0, ·) ∈ dom(HR,φ ) . Since τg(z0, ·) = z0g(z0, ·) , the function g(z0, ·) is
an eigenfunction of HR,φ corresponding to z0 , contradicting z0 ∈ ρ(HR,φ ) .

Now we verify (3.50). To this end, define

g f (z, ·) := (H0,0− zI(a,b))
−1 f −

2

∑
j,k=1

QR,φ (z)−1
j,k (uk(z, ·), f )L2((a,b);rdx)u j(z, ·),

f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0). (3.63)

If
g f (z, ·) ∈ dom(HR,φ ), f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0), (3.64)

then the representation (3.50) is valid. In fact, if (3.64) holds, one computes

(HR,φ − zI(a,b))g f (z, ·) = (Hmax− zI(a,b))g f (z, ·)
= (Hmax− zI(a,b))(H0,0− zI(a,b))

−1 f = f , (3.65)

f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0),

since Hmax is an extension of both HR,φ and H0,0 and

(Hmax− zI(a,b))u1(z, ·) = (Hmax − zI(a,b))u2(z, ·) = 0, z ∈ ρ(HR,φ )∩ρ(H0,0). (3.66)

Therefore, verification of (3.50) reduces to establishing (3.64). In turn, (3.64) reduces
to showing g f (z, ·) satisfies the boundary conditions in (3.2). To this end, using

[(H0,0− zI(a,b))
−1 f ](a) = [(H0,0− zI(a,b))

−1 f ](b) = 0, z ∈ ρ(H0,0), (3.67)
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one computes

g f (z,a) = det(QR,φ (z))−1
{[

− e−iφ

R1,2
+u[1]

1 (z,a)
](

u1(z, ·), f
)
L2((a,b);rdx)

+
[
− R2,2

R1,2
+u[1]

1 (z,b)
](

u2(z, ·), f
)
L2((a,b);rdx)

}
, (3.68)

g f (z,b) = det(QR,φ (z))−1
{[

− R1,1

R1,2
−u[1]

2 (z,a)
](

u1(z, ·), f
)
L2((a,b);rdx)

+
[
− eiφ

R1,2
−u[1]

2 (z,b)
](

u2(z, ·), f
)
L2((a,b);rdx)

}
, (3.69)

f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0).

With (3.26) one computes

g[1]
f (z,a) =

(
u2(z, ·), f

)
L2((a,b);rdx) +det(QR,φ (z))−1

×
{[

− R1,1

R1,2
−u[1]

2 (z,a)
](

u1(z, ·), f
)
L2((a,b);rdx)u

[1]
1 (z,a)

+
[
− eiφ

R1,2
−u[1]

2 (z,b)
](

u2(z, ·), f
)
L2((a,b);rdx)u

[1]
1 (z,a)

+
[
− 1

eiφ R1,2
+u[1]

1 (z,a)
](

u1(z, ·), f
)
L2((a,b);rdx)u

[1]
2 (z,a)

+
[
− R2,2

R1,2
+u[1]

1 (z,b)
](

u2(z, ·), f
)
L2((a,b);rdx)u

[1]
2 (z,a)

}
, (3.70)

g[1]
f (z,b) = −(

u1(z, ·), f
)
L2((a,b);rdx) +det(QR,φ (z))−1

×
{[

− R1,1

R1,2
−u[1]

2 (z,a)
](

u1(z, ·), f
)
L2((a,b);rdx)u

[1]
1 (z,b)

+
[
− eiφ

R1,2
−u[1]

2 (z,b)
](

u2(z, ·), f
)
L2((a,b);rdx)u

[1]
1 (z,b)

+
[
− 1

eiφ R1,2
+u[1]

1 (z,a)
](

u1(z, ·), f
)
L2((a,b);rdx)u

[1]
2 (z,b)

+
[
− R2,2

R1,2
+u[1]

1 (z,b)
](

u2(z, ·), f
)
L2((a,b);rdx)u

[1]
2 (z,b)

}
, (3.71)

f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0).

Using (3.68), (3.69), and (3.70) one infers, after accounting for some immediate can-
cellations, that

det(QR,φ (z))
(
eiφ R1,1g f (z,a)+ eiφR1,2g

[1]
f (z,a)−g f (z,b)

)
=

(
u2(z, ·), f

)
L2((a,b);rdx)

{
− eiφ R1,1R2,2

R1,2
+ eiφR1,1u

[1]
1 (z,b)
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+ eiφR1,2 det(QR,φ (z))

− e2iφu[1]
1 (z,a)− eiφR1,2u

[1]
2 (z,b)u[1]

1 (z,a)− eiφR2,2u
[1]
2 (z,a)

+ eiφR1,2u
[1]
1 (z,b)u[1]

2 (z,a)+
eiφ

R1,2
+u[1]

2 (z,b)
}

, (3.72)

f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0).

Using the expression for det(QR,φ (z)) dictated by (3.49), one concludes that the quan-
tity in the brackets on the right-hand side of (3.72) is zero. Moreover, since det(QR,φ (z))
�= 0 for z ∈ ρ(HR,φ )∩ρ(H0,0) , it follows that the function g f (z, ·) satisfies the first
boundary condition in (3.2) (involving g(b)). A similar calculation shows that

det(QR,φ (z))
(
eiφ R2,1g f (z,a)+ eiφR2,2g

[1]
f (z,a)−g[1]

f (z,b)
)

= 0,

f ∈ L2((a,b);rdx), z ∈ ρ(Hm,φ )∩ρ(H0,0),
(3.73)

and, therefore, that g f (z, ·) satisfies the second boundary condition in (3.2) (involving
g[1](b)). Hence, the containment (3.64) is proven.

Proof of item (ii) . If R1,2 = 0, one infers that

dom(HR,φ )∩dom(H0,0) =
{
g ∈ L2((a,b);rdx)

∣∣g,g[1] ∈ AC([a,b]);

0 = g(a) = g(b), g[1](b) = eiφ R2,2g
[1](a); τg ∈ L2((a,b);rdx)

}
.

(3.74)

Thus, the maximal common part of HR,φ and H0,0 is the restriction, H̃R,φ , of Hmax

with domain dom
(
H̃R,φ

)
= dom(HR,φ )∩dom(H0,0) . Moreover, one computes

dom
((

H̃R,φ
)∗) =

{
g ∈ L2((a,b);rdx)

∣∣g,g[1] ∈ AC([a,b]);

g(a) = e−iφ R2,2g(b); τg ∈ L2((a,b);rdx)
}
.

(3.75)

Next we show that qR,φ (z) �= 0 if z ∈ ρ(HR,φ )∩ρ(H0,0) . If qR,φ (z0) = 0, then z0

is an eigenvalue of HR,φ and

uR,φ (z0, ·) = e−iφ R2,2u2(z0, ·)+u1(z0, ·). (3.76)

is a corresponding eigenfunction. The latter reduces to showing uR,φ (z0, ·) belongs to
dom(HR,φ ) , that is, uR,φ (z0, ·) satisfies the boundary conditions in (3.2) (with R1,2 = 0).
Observe that

uR,φ (z0,a) = e−iφ R2,2u2(z0,a)+u1(z0,a) = e−iφ R2,2, (3.77)

uR,φ (z0,b) = e−iφ R2,2u2(z0,b)+u1(z0,b) = 1, (3.78)

and as a result,

uR,φ (z0,b)− eiφR1,1uR,φ (z0,a) = 1−R1,1R2,2 = 1−det(R) = 0, (3.79)
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that is, uR,φ (z0, ·) satisfies the first boundary condition in (3.2) (involving g(b)). More-
over,

eiφ R2,1uR,φ (z0,a)+ eiφR2,2u
[1]
R,φ (z0,a)−u[1]

R,φ(z0,b) = qR,φ (z0) = 0 (3.80)

implies that uR,φ (z0, ·) satisfies the second boundary condition in (3.2) (involving
g[1](b)). Thus,

uR,φ (z0, ·) ∈ dom(HR,φ ). (3.81)

Since τuR,φ (z0, ·) = zuR,φ (z0, ·) , it follows that z0 ∈ σ(HR,φ ) . Therefore, qR,φ (z) �= 0
if z ∈ ρ(HR,φ )∩ρ(H0,0) .

Using the argument in (3.65), verification of (3.53) reduces to showing that

g f (z, ·) := (H0,0− zI(a,b))
−1 f −qR,φ(z)−1(uR,φ (z, ·), f )uR,φ (z, ·) ∈ dom(HR,φ ),

f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0), (3.82)

which, in turn, reduces to proving that g f (z, ·) satisfies the boundary conditions

g f (z,b) = eiφ R1,1g f (z,a), (3.83)

g[1]
f (z,b) = eiφ R2,1g f (z,a)+ eiφR2,2g

[1]
f (z,a). (3.84)

To show that g f (z, ·) satisfies the first boundary condition (3.83), one can use (3.5),
R1,1R2,2 = det(R) = 1, and (3.67) to calculate

g f (z,b)− eiφR1,1g f (z,a)

= −qR,φ(z)−1(uR,φ (z, ·), f )L2((a,b);rdx)

+ eiφR1,1qR,φ (z)−1(uR,φ (z, ·), f )L2((a,b);rdx)e
−iφ R2,2 = 0, (3.85)

z ∈ ρ(HR,φ )∩ρ(H0,0).

In view of (3.26),

g[1]
f (z,a) = (u2(z, ·), f )L2((a,b);rdx)

−qR,φ(z)−1(uR,φ (z, ·), f )uR,φ (z,a)L2((a,b);rdx), (3.86)

g[1]
f (z,b) = −(u1(z, ·), f )L2((a,b);rdx)

−qR,φ(z)−1(uR,φ (z, ·), f )u[1]
R,φ (z,b)L2((a,b);rdx). (3.87)

Employing (3.54), (3.86), and (3.87), one computes for the difference

g[1]
f (z,b)− eiφR2,1g f (z,a)− eiφR2,2g

[1]
f (z,a)

in terms of (u1(z, ·), f )L2((a,b);rdx) and (u2(z, ·), f )L2((a,b);rdx) ,

g[1]
f (z,b)− eiφR2,1g f (z,a)− eiφR2,2g

[1]
f (z,a)

= (u1(z, ·), f )L2((a,b);rdx)
{
qR,φ (z)−1[R2,1R2,2 +R2

2,2u
[1]
2 (z,a)+ eiφR2,2u

[1]
1 (z,a)
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− e−iφR2,2u
[1]
2 (z,b)−u[1]

1 (z,b)]−1
}

+ eiφR2,2(u2(z, ·), f )L2((a,b);rdx)
{
qR,φ (z)−1[R2,1R2,2 +R2

2,2u
[1]
2 (z,a)

+ eiφR2,2u
[1]
1 (z,a)− e−iφR2,2u

[1]
2 (z,b)−u[1]

1 (z,b)]−1
}

= (u1(z, ·), f )L2((a,b);rdx)
[
qR,φ (z)−1qR,φ (z)−1

]
+ eiφR2,2(u2(z, ·), f )L2((a,b);rdx)

[
qR,φ (z)−1qR,φ (z)−1

]
= 0, f ∈ L2((a,b);rdx), z ∈ ρ(HR,φ )∩ρ(H0,0). � (3.88)

Denoting by Gθa,θb(z, ·, ·) and GR,φ (z, ·, ·) the Green’s functions (i.e., integral ker-
nels of the resolvents) of Hθa,θb and HR,φ , respectively, the Kein-type resolvent for-
mulas (3.13), (3.16), (3.19), and (3.50), (3.53), together with the normalization (3.5),
imply (for z ∈ C\R)

Gθa,θb(z,a,a) = −Dθa,θb(z)
−1
2,2, Gθa,θb(z,b,b) = −Dθa,θb(z)

−1
1,1,

Gθa,θb(z,a,b) = −Dθa,θb(z)
−1
2,1 = −Dθa,θb(z)

−1
1,2 = Gθa,θb(z,b,a), (3.89)

θa �= 0, θb �= 0,

Gθa,0(z,a,a) = −dθa,0(z)
−1,

Gθa,0(z,b,b) = Gθa,0(z,a,b) = Gθa,0(z,b,a) = 0, θa �= 0, (3.90)

G0,θb(z,b,b) = −d0,θb(z)
−1,

G0,θb(z,a,a) = G0,θb(z,a,b) = G0,θb(z,b,a) = 0, θb �= 0, (3.91)

and

GR,φ (z,a,a) = −QR,φ (z)−1
2,2, GR,φ (z,b,b) = −QR,φ (z)−1

1,1,

GR,φ (z,a,b) = −QR,φ (z)−1
2,1 = −QR,φ (z)−1

1,2 = GR,φ (z,b,a), (3.92)

R1,2 �= 0,

GR,φ (z,a,a) = −qR,φ (z)−1R2
2,2, GR,φ (z,b,b) = −qR,φ (z)−1,

GR,φ (z,a,b) = −qR,φ (z)−1R2,2 = GR,φ (z,b,a), R1,2 = 0. (3.93)

As an example of a self-adjoint extension of Hmin with non-separated boundary
conditions, we now consider in detail the case of the Krein–von Neumann extension
[33], [34], [47]. For background information on this topic we refer to [4], [5] and the
extensive list of references therein.

EXAMPLE 3.3. Suppose Hmin , defined by (2.4), is strictly positive in the sense
that there exists an ε > 0 for which

( f ,Hmin f ) � ε‖ f‖2, f ∈ dom(Hmin). (3.94)

Since the deficiency indices of Hmin are (2,2) , the assumption (3.94) implies that

dim(ker(H∗
min)) = 2. (3.95)
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As a basis for ker(H∗
min) , we choose {u1(0, ·),u2(0, ·)} , where u1(0, ·) and u2(0, ·) are

real-valued and satisfy (3.5) (with z = 0).
The Krein–von Neumann extension of Hmin in L2((a,b);rdx) , which we denote

by HK , is defined as the restriction of H∗
min with domain

dom(HK) = dom(Hmin)�ker(H∗
min). (3.96)

Since HK is a self-adjoint extension of Hmin , functions in dom(HK) must satisfy certain
boundary conditions; we now provide a characterization of these boundary conditions.
Let u ∈ dom(HK) ; by (3.96) there exist f ∈ dom(Hmin) and η ∈ ker(H∗

min) with

u(x) = f (x)+ η(x), x ∈ [a,b]. (3.97)

Since f ∈ dom(Hmin) ,

f (a) = f [1](a) = f (b) = f [1](b) = 0, (3.98)

and as a result,
u(a) = η(a), u(b) = η(b). (3.99)

Since η ∈ ker(H∗
min) , we write (cf. (3.5))

η(x) = c1u1(0,x)+ c2u2(0,x), x ∈ [a,b], (3.100)

for appropriate scalars c1,c2 ∈ C . By separately evaluating (3.100) at x = a and x = b ,
one infers from (3.5) that

η(a) = c2, η(b) = c1. (3.101)

Comparing (3.101) and (3.99) allows one to write (3.100) as

η(x) = u(b)u1(0,x)+u(a)u2(0,x), x ∈ [a,b]. (3.102)

Finally, (3.97) and (3.102) imply

u(x) = f (x)+u(b)u1(0,x)+u(a)u2(0,x), x ∈ [a,b], (3.103)

and as a result,

u[1](x) = f [1](x)+u(b)u[1]
1 (0,x)+u(a)u[1]

2 (0,x), x ∈ [a,b]. (3.104)

Evaluating (3.104) separately at x = a and x = b , and using (3.98) yields the following
boundary conditions for u :

u[1](a) = u(b)u[1]
1 (0,a)+u(a)u[1]

2 (0,a), u[1](b) = u(b)u[1]
1 (0,b)+u(a)u[1]

2 (0,b).
(3.105)

Since u[1]
1 (0,a) �= 0 (one recalls that u1(0,a) = 0), relations (3.105) can be recast as(

u(b)
u[1](b)

)
= RK

(
u(a)

u[1](a)

)
, (3.106)
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where

RK =
1

u[1]
1 (0,a)

(
−u[1]

2 (0,a) 1

u[1]
1 (0,a)u[1]

2 (0,b)−u[1]
1 (0,b)u[1]

2 (0,a) u[1]
1 (0,b)

)
. (3.107)

Then RK ∈ SL2(R) since (3.107) and (3.29) imply

det(RK) = −u[1]
2 (0,b)

u[1]
1 (0,a)

= 1. (3.108)

Thus, we have shown HK ⊂ HRK ,0 , where HRK ,0 is defined by (3.2) with R = RK and
φ = 0. Since both HK and HRK ,0 are self-adjoint, we conclude HK = HRK ,0 ; that is,
HRK ,0 is the Krein–von Neumann extension of Hmin .

Applying the result of Theorem 3.2, one has

(HK − zI(a,b))
−1 = (H0,0− zI(a,b))

−1 (3.109)

−
2

∑
j,k=1

QRK ,0(z)−1
j,k (uk(z, ·), ·)L2((a,b);rdx)u j(z, ·), z ∈ ρ(HK)∩ρ(H0,0),

where

QRK ,0(z) =

(
u[1]

1 (0,b)−u[1]
1 (z,b) −u[1]

1 (0,a)−u[1]
2 (z,b)

−u[1]
1 (0,a)+u[1]

1 (z,a) −u[1]
2 (0,a)+u[1]

2 (z,a)

)
,

z ∈ ρ(HK)∩ρ(H0,0).

(3.110)

In the special case q ≡ 0, and using the corresponding notation H(0)
K (and simi-

larly, τ(0) , u(0)
1 (0, ·) , u(0)

2 (0, ·)), the above analysis is particularly transparent. In this

case, a basis for ker(H∗
min) is provided by {u(0)

1 (0, ·),u(0)
2 (0, ·)} , where

u(0)
1 (0,x) =

[∫ b

a
ds p(s)−1

]−1 ∫ x

a
dt p(t)−1,

u(0)
2 (0,x) = 1−

[∫ b

a
ds p(s)−1

]−1 ∫ x

a
dt p(t)−1, x ∈ [a,b],

(3.111)

as one verifies that

H∗
minu

(0)
j (0, ·) = Hmaxu

(0)
j (0, ·) = τ(0)u(0)

j (0, ·) = 0, j = 1,2. (3.112)

The boundary conditions for H(0)
K then read(

u(b)
u[1](b)

)
= R(0)

K

(
u(a)

u[1](a)

)
, u ∈ dom

(
H(0)

K

)
, (3.113)

where

R(0)
K =

(
1
∫ b
a dt p(t)−1

0 1

)
. (3.114)
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Explicitly,

u[1](b) = u[1](a) =
[∫ b

a
dt p(t)−1

]−1

[u(b)−u(a)], u ∈ dom
(
H(0)

K

)
. (3.115)

We note that (3.115) has been derived in [2] and [14, Sect. 2.3] (see also [15, Sect.
3.3]) in the special case where p = r ≡ 1. While it appears that our characterization
(3.106), (3.107) of the Krein–von Neumann boundary condition for general Sturm–
Liouville operators on a finite interval is new, the special case q ≡ 0 was recently
discussed in [13].

4. General boundary data maps and their basic properties

This section is devoted to general boundary data maps associated with self-adjoint
extensions of the operator Hmin defined in (2.4). A special case of the boundary data
maps corresponding to separated boundary conditions was recently introduced in [8]
and further discussed in [17]. At the end of this section we show how the general
boundary data map appears naturally in Krein’s resolvent formula for a difference of
resolvents of any two self-adjoint extensions of Hmin .

We recall the general boundary trace map, γA,B , introduced in (2.25) associated
with the boundary {a,b} of (a,b) and the 2× 2 (parameter) matrices A,B satisfying
(2.7), the special cases of the Dirichlet trace γD , and the Neumann trace γN (in con-
nection with the outward pointing unit normal vector at ∂ (a,b) = {a,b} ) defined in
(2.27), the matrices AD , BD , AN , and BN in (2.28) and (2.29), and the relations in
(2.30)–(2.32).

It follows from Theorems 2.2 and 2.5 that

HA,B f = τ f , f ∈ dom(HA,B) = {g ∈ dom(Hmax) |γA,B g = 0}, (4.1)

defines a self-adjoint extension of Hmin whenever A,B ∈ C2×2 satisfy (2.7). In partic-
ular, we note that

γA,B(HA,B − zI(a,b))
−1 = 0, z ∈ ρ(HA,B). (4.2)

REMARK 4.1. Given (4.1), the Dirichlet extension of Hmin will be defined by
HAD,BD and denoted by HD while the Neumann extension of Hmin will be defined by
HAN ,BN and denoted by HN . Note that HD and HN are associated with γD and γN ,
respectively and, relative to the notation used in Theorem 3.1, that H0,0 = HD while
Hπ/2,π/2 = HN .

Given the general boundary trace map γA,B , we now introduce a complimentary
trace map γ⊥A,B by

γ⊥A,B = D⊥
A,BγD +N⊥

A,BγN , (4.3)
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where the 2×2 matrices D⊥
A,B , N⊥

A,B are given by

D⊥
A,B = −[DA,BD∗

A,B +NA,BN∗
A,B]−1NA,B,

N⊥
A,B = [DA,BD∗

A,B +NA,BN∗
A,B]−1DA,B,

(4.4)

and where the 2×2 self-adjoint matrix

DA,BD∗
A,B +NA,BN∗

A,B = (DA,B NA,B)(DA,B NA,B)∗ (4.5)

in (4.4) is invertible given the rank condition in (2.32). It follows from (2.32) and (4.4)
that

rank(D⊥
A,B N⊥

A,B) = 2, D⊥
A,B(N⊥

A,B)∗ = N⊥
A,B(D⊥

A,B)∗, (4.6)

and hence that γ⊥A,B is also a boundary trace map for which γ⊥A,B = γA⊥
A,B,B⊥

A,B
, where

A⊥
A,B =

(
D⊥

A,B,1,1 N⊥
A,B,1,1

D⊥
A,B,2,1 N⊥

A,B,2,1

)
, B⊥

A,B =
(−D⊥

A,B,1,2 N⊥
A,B,1,2

−D⊥
A,B,2,2 N⊥

A,B,2,2

)
. (4.7)

In particular, one notes that

γ⊥D = γN , γ⊥N = −γD, (γ⊥A,B)⊥ = −γA,B. (4.8)

One reason for introducing the complimentary boundary trace map γ⊥A,B is to ob-
tain a convenient way of connecting two arbitrary boundary trace maps, γA′,B′ and γA,B .
This is done by generalizing the identity in (2.30) to obtain

γA′,B′ = TA′,B′,A,B γA,B +SA′,B′,A,B γ⊥A,B, (4.9)

where

TA′,B′,A,B = DA′,B′(N⊥
A,B)∗ −NA′,B′(D⊥

A,B)∗,

SA′,B′,A,B = NA′,B′D∗
A,B −DA′,B′N∗

A,B.
(4.10)

The above formulas (4.9) and (4.10) easily follow from (2.30), (2.32), (4.3), and (4.4).
Moreover, we note that it follows from (2.32), (4.4), (4.6), and (4.10) that

rank(TA′,B′,A,B SA′,B′,A,B) = 2, TA′,B′,A,BS∗A′,B′,A,B = SA′,B′,A,BT ∗
A′,B′,A,B. (4.11)

Conversely, every pair of 2×2 matrices TA′,B′,A,B,SA′,B′,A,B satisfying (4.11) defines a
general boundary trace map γA′,B′ via (4.9) with DA′,B′ ,NA′,B′ satisfying (2.32).

For future use we record the following two special cases of (4.9),

γD = (N⊥
A,B)∗γA,B−N∗

A,Bγ⊥A,B, γN = −(D⊥
A,B)∗γA,B +D∗

A,Bγ⊥A,B. (4.12)

Moreover, interchanging the role of A,B and A′,B′ in (4.9), yields

γA,B = TA,B,A′,B′γA′,B′ +SA,B,A′,B′γ⊥A′,B′ , (4.13)
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with

TA,B,A′,B′ = DA,B(N⊥
A′,B′)∗ −NA,B(D⊥

A′,B′)∗,

SA,B,A′,B′ = NA,BD∗
A′,B′ −DA,BN∗

A′,B′ .
(4.14)

Comparing (4.10) with (4.14) one observes that SA,B,A′,B′ = −S∗A′,B′,A,B and hence

γA,B = TA,B,A′,B′γA′,B′ −S∗A′,B′,A,Bγ⊥A′,B′ . (4.15)

Finally, we note that the conditions of the type (2.32) and (4.11) imply the fol-
lowing useful property for the matrices involved: If a pair TA′,B′,A,B,SA′,B′,A,B satisfies
(4.11) then the pair TA′,B′,A,B,SA′,B′,A,B,δ with

SA′,B′,A,B,δ = SA′,B′,A,B + δ TA′,B′,A,B, δ ∈ R, (4.16)

also satisfies (4.11) and, in addition, the matrix SA′,B′,A,B,δ is necessarily invertible for
all sufficiently small δ �= 0. The conditions in (2.32) yield a similar result for the pair
of matrices DA,B,NA,B .

Next, we recall the following elementary, yet fundamental, fact.

LEMMA 4.2. Assume Hypothesis 2.1, choose matrices A,B ∈ C2×2 such that
rank(A B) = 2 , and suppose that z ∈ ρ(HA,B) . Then the boundary value problem

−(
u[1])′ +qu = zru, u,u[1] ∈ AC([a,b]), (4.17)

γA,Bu =
(

c1

c2

)
∈ C

2, (4.18)

has a unique solution u(z, ·) = uA,B(z, · ;c1,c2) for each c1,c2 ∈ C . In addition, for
each x ∈ [a,b] and c1,c2 ∈ C , uA,B(·,x;c1,c2) is analytic on ρ(HA,B) .

Proof. This is well-known, but for the sake of completeness, we briefly recall the
argument. Let u j(z, ·) , j = 1,2, be a basis for the solutions of (4.17) and let

u(z, ·) = d1u1(z, ·)+d2u2(z, ·), d1,d2 ∈ C, (4.19)

be the general solution of (4.17). Then

γA,B(u(z, ·)) = M

(
d1

d2

)
, (4.20)

where M ∈ C2×2 and the entries are given by(
M1,1

M2,1

)
= γA,B(u1(z, ·)),

(
M1,2

M2,2

)
= γA,B(u2(z, ·)). (4.21)

Thus, by (4.19), (4.20), the boundary value problem (4.17), (4.18) is equivalent to

M

(
d1

d2

)
=

(
c1

c2

)
. (4.22)
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Given (c1 c2)� ∈ C2 , (4.22) has a unique solution (d1 d2)� ∈ C2 if and only if
det(M) �= 0. Thus, it suffices to show that det(M) �= 0. Assume to the contrary that
det(M) = 0. Then there is a nonzero vector (d1 d2)� ∈ C2 such that

M

(
d1

d2

)
=

(
0
0

)
, (4.23)

which, by (4.19), is equivalent to the existence of a nontrivial solution u(z, ·) of the
boundary value problem (4.17), (4.18) with homogeneous boundary conditions (i.e.,
with c0 = c1 = 0). Equivalently, u(z, ·) satisfies

HA,Bu(z, ·) = zu(z, ·), u(z, ·) ∈ dom(HA,B), (4.24)

which in turn is equivalent to z ∈ σ(HA,B) , a contradiction.
The z-independence of the initial condition (4.18) yields that for fixed x ∈ [a,b] ,

c1,c2 ∈ C , uA,B(·,x;c1,c2) is analytic on ρ(HA,B) . �
Given A,B,A′,B′ ∈ C2×2 with A,B and A′,B′ satisfying (2.7) and assuming z ∈

ρ(HA,B) , we introduce in association with the boundary value problem (4.17), (4.18),

the general boundary data map, ΛA′,B′
A,B (z) : C2 → C2 , by

ΛA′,B′
A,B (z)

(
c1

c2

)
= ΛA′,B′

A,B (z)γA,B(uA,B(z, · ;c1,c2))

= γA′,B′(uA,B(z, · ;c1,c2)),
(4.25)

where uA,B(z, · ;c1,c2) is the solution of the boundary value problem in (4.17), (4.18).

As defined, ΛA′,B′
A,B (z) is a linear transformation and thus representable as an ele-

ment of C2×2 . A basis-independent description for the boundary data map defined in
(4.25) is provided in the next result.

THEOREM 4.3. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ satisfy
(2.7), and let z ∈ ρ(HA,B) . In addition, denote by y j(z, ·) , j = 1,2 , a basis for the
solutions of (4.17). Then,

ΛA′,B′
A,B (z) =

(
γA′,B′(y1(z, ·)) γA′,B′(y2(z, ·))

)(
γA,B(y1(z, ·)) γA,B(y2(z, ·))

)−1
. (4.26)

Moreover, ΛA′,B′
A,B (z) is invariant with respect to change of basis for the solutions of

(4.17).

Proof. Letting y(z, ·) = d1y1(z, ·)+d2y2(z, ·) , d1,d2 ∈ C , be an arbitrary solution
of (4.17), one observes that

ΛA′,B′
A,B (z)γA,B(y(z, ·)) = ΛA′,B′

A,B (z)
(
γA,B(y1(z, ·)) γA,B(y2(z, ·))

)(d1

d2

)
=

(
γA′,B′(y1(z, ·)) γA′,B′(y2(z, ·))

)(d1

d2

)
(4.27)
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for every
(
d1 d2

)� ∈ C2 .
Equation (4.26) then follows by the invertibility of

(
γA,B(y1(z, ·)) γA,B(y2(z, ·))

)
noted in Lemma 4.2.

Let ŷ j(z, ·) , j = 1,2, denote a second basis for the solutions of (4.17). Then, there
is a nonsingular matrix K ∈ C

2×2 such that
(
y1 y2

)
=

(
ŷ1 ŷ2

)
K . Next, by (2.27) and

(2.30), one notes that(
γA,B(y1) γA,B(y2)

)
= DA,B

(
γD(y1) γD(y2)

)
+NA,B

(
γN(y1) γN(y2)

)
=

[
DA,B

(
ŷ1(z,a) ŷ2(z,a)
ŷ1(z,b) ŷ2(z,b)

)
+NA,B

(
ŷ[1]
1 (z,a) ŷ[1]

2 (z,a)
−ŷ[1]

1 (z,b) −ŷ[1]
2 (z,b)

)]
K

=
(
γA,B(ŷ1) γA,B(ŷ2)

)
K. (4.28)

The invariance of ΛA′,B′
A,B (z) with respect to change of basis for the solutions of (4.17)

now follows from (4.26) and (4.28). �

REMARK 4.4. In what follows, we let

ΛD
A,B = ΛAD,BD

A,B , ΛN
A,B = ΛAN ,BN

A,B , ΛN
D = ΛAN ,BN

AD,BD
(4.29)

where AD , BD were defined in (2.28), and AN , BN in (2.29). Similarly, we define
ΛA,B

D , ΛA,B
N , and ΛD

N . In other words, ΛA,B
D (resp., ΛA,B

N ) will denote the boundary data
maps that map the Dirichlet (resp., Neumann) boundary data into a general (A,B)-
boundary data set. In particular, the Dirichlet-to-Neumann boundary data map, ΛN

D ,
and the Neumann-to-Dirichlet boundary data map, ΛD

N , are special cases of such maps.

The following result collects fundamental algebraic properties for general bound-
ary data maps.

LEMMA 4.5. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ satisfy (2.7).
Then,

ΛA′,B′
A,B (z) = DA′,B′ΛD

A,B(z)+NA′,B′ΛN
A,B(z), z ∈ ρ(HA,B), (4.30)

ΛA,B
A,B(z) = I2, z ∈ ρ(HA,B), (4.31)

ΛA′′,B′′
A′,B′ (z)ΛA′,B′

A,B (z) = ΛA′′,B′′
A,B (z), z ∈ ρ(HA,B)∩ρ(HA′,B′), (4.32)

ΛA′,B′
A,B (z) =

[
ΛA,B

A′,B′(z)
]−1

, z ∈ ρ(HA,B)∩ρ(HA′,B′). (4.33)

ΛA′,B′
A,B (z) =

[
DA′,B′ +NA′,B′ΛN

D(z)
][

DA,B +NA,BΛN
D(z)

]−1
, (4.34)

z ∈ ρ(HA,B)∩ρ(HD).

In particular, ΛA′,B′
A,B (z) is invertible for z ∈ ρ(HA,B)∩ ρ(HA′,B′) and for every fixed

z∈ ρ(HA,B)∩ρ(HA′,B′) , ΛA′,B′
A,B (z) depends continuously on A′,B′ and A,B. In addition,

for fixed A′,B′ and A,B, ΛA′,B′
A,B (·) is analytic on ρ(HA,B) .
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Proof. Given the definition of the general boundary data map in (4.25) and the
description of the boundary trace map given in (2.30), equation (4.30) follows from the
observation that

ΛA′,B′
A,B (z)γA,B(u(z, ·)) = DA′,B′γD(u(z, ·))+NA′,B′γN(u(z, ·))

= (DA′,B′ΛD
A,B(z)+NA′,B′ΛN

A,B(z))γA,B(u(z, ·)).
(4.35)

The group properties for ΛA′,B′
A,B (z) given in equations (4.31)–(4.33) follow from Theo-

rem 4.3, (cf. (4.26)). The linear fractional transformation given in (4.34) follows im-

mediately from (4.30)–(4.33) and ΛA′,B′
A,B = ΛA′,B′

AD,BD
ΛAD,BD

A,B .
By (2.27)–(2.31) the boundary trace map γA′,B′ depends continuously on the pa-

rameter matrices A′,B′ , thus it follows from (4.25) that the boundary data map ΛA′,B′
A,B (z)

depends continuously on A′,B′ as well. By (4.33) ΛA′,B′
A,B (z) also depends continuously

on the parameter matrices A,B for every fixed z ∈ ρ(HA,B)∩ρ(HA′,B′) . Finally, analyt-

icity of ΛA′,B′
A,B (·) on ρ(HA,B) is clear from Lemma 4.2 and (4.25). �

The linear fractional transformation given in (4.34) also implies the existence of

a linear fractional transformation between general boundary data maps ΛA′,B′
A,B (·) and

ΛA′′′,B′′′
A′′,B′′ (·) . (Of course, existence of such linear fractional transformations, even in the

context of infinite deficiency indices, is clear from the general approach to Krein-type
resolvent formulas in [16].)

More precisely, let R =
[
Rj,k

]
1� j,k�2 ∈ C4×4 , with Rj,k ∈ C2×2 , 1 � j,k � 2, and

L∈C2×2 , chosen such that ker(R1,1 +R1,2L) = {0} ; that is, (R1,1 +R1,2L) is invertible
in C2 . Define for such R (cf., e.g., [35]),

MR(L) = (R2,1 +R2,2L)(R1,1 +R1,2L)−1, (4.36)

and observe that

MI4(L) = L, (4.37)

MRS(L) = MR(MS(L)), (4.38)

MR−1(MR(L)) = L = MR(MR−1(L)), R invertible, (4.39)

MR(L) = MRS−1(MS(L)), S ∈ C
4×4 invertible, (4.40)

whenever the right-hand sides (and hence the left-hand sides) in (4.37)–(4.40) exist.
Thus, with the choices

R(A,B,A′,B′) =
(

DA,B NA,B

DA′,B′ NA′,B′

)
,

S(A′′,B′′,A′′′,B′′′) =
(

DA′′,B′′ NA′′,B′′
DA′′′,B′′′ NA′′′,B′′′

)
,

(4.41)

one infers that

ΛA′,B′
A,B (z) = MR(A,B,A′,B′)S(A′′,B′′,A′′′,B′′′)−1

(
ΛA′′′,B′′′

A′′,B′′ (z)
)
. (4.42)
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Unfortunately, the computation of S(A′′,B′′,A′′′,B′′′)−1 appears to be too elaborate to
pursue explicit formulas for (4.42). (The special case of separated boundary conditions,
however, is sufficiently simple, and in this case S(A′′,B′′,A′′′,B′′′)−1 was explicitly
computed in [8]).

We now turn our attention to a derivation of a representation for the general bound-

ary data map ΛA′,B′
A,B (z) in terms of the resolvent (HA,B − zI(a,b))−1 and the boundary

trace map γA′,B′ (cf. Theorem 4.8).
Assuming z ∈ ρ(HD) , let u j(z, ·) , j = 1,2, denote the solutions of (4.17) satis-

fying (3.5). Then the system {u1(z, ·),u2(z, ·)} is a basis for solutions of (4.17). The

solution uD(z, · ;c2,c1) of (4.17) with the boundary data γD(uD(z, · ;c2,c1)) =
(
c2 c1

)�
is given by

uD(z, · ;c2,c1) = c1u1(z, ·)+ c2u2(z, ·). (4.43)

Using the basis {u1(z, ·),u2(z, ·)} one can represent the boundary data maps, ΛA,B
D , as

2×2 complex matrices. First, the special case of the Dirichlet-to-Neumann boundary
data map is given by

ΛN
D(z)

(
c2

c1

)
= γN(c1u1(z, ·)+ c2u2(z, ·))

=

(
u[1]

2 (z,a) u[1]
1 (z,a)

−u[1]
2 (z,b) −u[1]

1 (z,b)

)(
c2

c1

)
, z ∈ ρ(HD).

(4.44)

Then, by (2.30), the boundary data map ΛA,B
D (z) is given by

ΛA,B
D (z)

(
c2

c1

)
= γA,B(c1u1(z, ·)+ c2u2(z, ·))

= DA,BγD(c1u1(z, ·)+ c2u2(z, ·))+NA,BγN(c1u1(z, ·)+ c2u2(z, ·))

=
(
DA,B +NA,BΛN

D(z)
)(

c2

c1

)
, z ∈ ρ(HD). (4.45)

One can also represent ΛA,B
D (z) in terms of the resolvent (HD − zI(a,b))−1 and the

boundary trace γA,B . One recalls that

(
(HD − zI(a,b))

−1g
)
(x) =

∫ b

a
dx′GD(z,x,x′)g(x′),

g ∈ L2((a,b);rdx), z ∈ ρ(HD), x ∈ (a,b),
(4.46)

where the Green’s function GD(z,x,x′) is given by (cf. (3.5))

GD(z,x,x′) =
1

W (u2(z, ·),u1(z, ·))

{
u2(z,x)u1(z,x′), 0 � x′ � x,

u1(z,x)u2(z,x′), 0 � x � x′,

z ∈ ρ(HD), x,x′ ∈ (a,b).

(4.47)
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Here W (u2(z, ·),u1(z, ·)) is the Wronskian of u2(z, ·) and u1(z, ·) ,

W (u2(z, ·),u1(z, ·)) = u2(z,a)u[1]
1 (z,a)−u[1]

2 (z,a)u1(z,a)

= u[1]
1 (z,a) = −u[1]

2 (z,b),
(4.48)

and I(a,b) denotes the identity operator in L2((a,b);rdx) .
Now it follows from (2.27) and (4.46)–(4.48) that

γN(HD − zI(a,b))
−1g =

1
W (u2(z, ·),u1(z, ·))

(
u[1]

1 (z,a)
∫ b
a dx′ u2(z,x′)g(x′)

−u[1]
2 (z,b)

∫ b
a dx′ u1(z,x′)g(x′)

)

=

((
u2(z, ·),g

)
L2((a,b);rdx)(

u1(z, ·),g
)
L2((a,b);rdx)

)
, g ∈ L2((a,b);rdx). (4.49)

Thus, changing z to z and noting that u j(z , ·) = u j(z, ·) , j = 1,2, (cf. (3.11)) one
obtains from (4.49),

[
γN(HD − zI(a,b))

−1]∗(c2

c1

)
= c1u1(z, ·)+ c2u2(z, ·), (4.50)

and hence, by (4.45),

ΛA,B
D (z) = γA,B

[
γN(HD − zI(a,b))

−1]∗, z ∈ ρ(HD). (4.51)

In addition, we note that, by (4.2), γD(HD − zI(a,b))−1 = 0, and hence (2.30) implies

γA,B(HD − zI(a,b))
−1 = NA,BγN(HD − zI(a,b))

−1, z ∈ ρ(HD). (4.52)

Thus, combining (4.51) with (4.52) yields

ΛA,B
D (z)N∗

A,B = γA,B
[
γA,B(HD − zI(a,b))

−1]∗, z ∈ ρ(HD). (4.53)

We will obtain analogous formulas for the general boundary data map ΛA′,B′
A,B after two

short preparatory lemmas.

LEMMA 4.6. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ satisfy (2.7),
and let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1). In addition, let
SA′,B′,A,B ∈ C2×2 be as in (4.9), (4.10), and suppose that z ∈ ρ(HA,B) . Then

ran
(
γA′,B′(HA,B − zI(a,b))

−1) = ran
(
SA′,B′,A,B

)
, (4.54)

ran
(
γA,B(HA′,B′ − zI(a,b))

−1) = ran
(
S∗A′,B′,A,B

)
. (4.55)

In particular,

ran
(
γ⊥A,B(HA,B − zI(a,b))

−1) = C
2. (4.56)
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Proof. First, one notes that it suffices to establish (4.56) since (4.54) and (4.55)
follow from (4.9), (4.15), and (4.56).

Let φ ,ψ ∈ dom(Hmax) , then using integration by parts, (2.30), and (4.12), one
computes(

(Hmax− zI(a,b))φ ,ψ
)
L2((a,b);rdx)−

(
φ ,(Hmax − zI(a,b))ψ

)
L2((a,b);rdx)

= −
∫ b

a
dx

(
φ [1]

)′(x)ψ(x)+
∫ b

a
dxφ(x)

(
ψ [1])′(x)

= −φ [1](b)ψ(b)+ φ [1](a)ψ(a)+ φ(b)ψ [1](b)−φ(a)ψ [1](a)

=
(
γNφ ,γDψ

)
C2 −

(
γDφ ,γNψ

)
C2

=
(
γ⊥A,Bφ ,γA,Bψ

)
C2 −

(
γA,Bφ ,γ⊥A,Bψ

)
C2 .

(4.57)

Next, pick an arbitrary v =
(
v1 v2

)� ∈ C2 and using Lemma 4.2 let {φ1,φ2} be
the basis of solutions of τφ = zφ with

γA,Bφ1 =
(
1 0

)�
, γA,Bφ2 =

(
0 1

)�
. (4.58)

Since, by construction, the functions φ1 and φ2 are linearly independent, the matrix

M =
(
(φ j,φk)L2((a,b);rdx)

)
j,k=1,2 (4.59)

is invertible. To establish (4.56), we will show that the function

ψ(·) =
(
(HA,B − zI(a,b))

−1φ1(·),(HA,B − zI(a,b))
−1φ2(·)

)
M−1v, (4.60)

satisfies γ⊥A,Bψ = v . Indeed, since by construction (Hmax− z I(a,b))φ j = 0, j = 1,2, and
by (4.2), γA,Bψ = 0, it follows from (4.57) that(

φ j,(Hmax − zI(a,b))ψ
)
L2((a,b);rdx) =

(
γA,Bφ j,γ⊥A,Bψ

)
C2 , j = 1,2. (4.61)

Substituting (4.58)–(4.60) into (4.61) then yields,

v j =
(
(φ j,φ1)L2((a,b);rdx),(φ j,φ2)L2((a,b);rdx)

)
M−1v = (γ⊥A,Bψ) j, j = 1,2. (4.62)

�

LEMMA 4.7. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ satisfy (2.7),
and let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1). In addition, let
SA′,B′,A,B ∈ C2×2 be as in (4.9), (4.10), and suppose that z ∈ ρ(HA,B)∩ρ(HA′,B′) . Then

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1

+
[
γ⊥A,B(HA,B − zI(a,b))

−1]∗[γA,B(HA′,B′ − zI(a,b))
−1]. (4.63)
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In addition, depending on the rank(SA′,B′,A,B) , one of the following three alternatives
holds: If rank(SA′,B′,A,B) = 2 , that is, if the matrix SA′,B′,A,B is invertible, then

(HA′,B′ − zI(a,b))
−1 = (HA,B− zI(a,b))

−1 (4.64)

+
[
γA′,B′(HA,B − zI(a,b))

−1]∗[S−1
A′,B′,A,B

]∗[γA,B(HA′,B′ − zI(a,b))
−1].

If SA′,B′,A,B is not invertible, then either rank(SA′,B′,A,B) = 1 and

(HA′,B′ − zI(a,b))
−1 = (HA,B− zI(a,b))

−1

+
[
γA′,B′(HA,B − z I(a,b))

−1]∗‖SA′,B′,A,B‖−2SA′,B′,A,B (4.65)

× [
γA,B(HA′,B′ − zI(a,b))

−1],
or rank(SA′,B′,A,B) = 0 ( i.e., SA′,B′,A,B = 0 ) and then

(HA′,B′ − zI(a,b))
−1 = (HA,B− zI(a,b))

−1. (4.66)

Proof. To get started, we pick f ,g ∈ L2((a,b);rdx) and introduce

φ = (HA,B − z I(a,b))
−1 f ∈ dom(HA,B),

ψ = (HA′,B′ − zI(a,b))
−1g ∈ dom(HA′,B′).

(4.67)

Then using (4.57) and the fact that by (4.2), γA,Bφ = 0, one computes(
f ,(HA′,B′ − zI(a,b))

−1g
)
L2((a,b);rdx)−

(
f ,(HA,B − zI(a,b))

−1g
)
L2((a,b);rdx)

=
(
(HA,B − zI(a,b))φ ,ψ

)
L2((a,b);rdx)−

(
φ ,(HA′,B′ − zI(a,b))ψ

)
L2((a,b);rdx)

=
(
γ⊥A,Bφ ,γA,Bψ

)
C2

=
(
γ⊥A,B(HA,B − zI(a,b))

−1 f ,γA,B(HA′,B′ − zI(a,b))
−1g

)
C2

=
(
f ,
[
γ⊥A,B(HA,B − zI(a,b))

−1]∗[γA,B(HA′,B′ − zI(a,b))
−1]g)

)
L2((a,b);rdx).

(4.68)

Since f and g are arbitrary elements of L2((a,b);rdx) , (4.63) follows from (4.68).
Next, we note that by (4.2) and (4.9),

γA′,B′(HA,B − zI(a,b))
−1 = SA′,B′,A,B γ⊥A,B(HA,B − zI(a,b))

−1, z ∈ ρ(HA,B). (4.69)

Thus, if SA′,B′,A,B is invertible, then (4.64) follows immediately from (4.63) and (4.69).
Alternatively, if SA′,B′,A,B is not invertible, then by (4.55), (4.63) is equivalent to

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1 (4.70)

+
[
γ⊥A,B(HA,B− zI(a,b))

−1]∗Pran(S∗
A′ ,B′ ,A,B

)
[
γA,B(HA′,B′ − zI(a,b))

−1],
where Pran(S∗

A′ ,B′ ,A,B
) is the orthogonal projection in C

2 onto the range of S∗A′,B′,A,B .
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Finally, if SA′,B′,A,B = 0 then S∗A′,B′,A,B = 0 as well, and (4.66) follows from (4.70).
If SA′,B′,A,B is not invertible and nonzero then

‖SA′,B′,A,B‖−2S∗A′,B′,A,BSA′,B′,A,B = Pran(S∗
A′ ,B′ ,A,B

). (4.71)

Applying ‖SA′,B′,A,B‖−2S∗A′,B′,A,B to both sides of (4.69) one obtains

‖SA′,B′,A,B‖−2S∗A′,B′,A,BγA′,B′(HA,B − zI(a,b))
−1

= ‖SA′,B′,A,B‖−2S∗A′,B′,A,BSA′,B′,A,Bγ⊥A,B(HA,B− zI(a,b))
−1

= Pran(S∗
A′,B′ ,A,B

)γ⊥A,B(HA,B− zI(a,b))
−1. (4.72)

Taking adjoints on both sides of (4.72), replacing z by z , and substituting into (4.70)
then yields (4.65). �

Next, we derive a representation of the general boundary data map ΛA′,B′
A,B (z) in

terms of the resolvent (HA,B − zI(a,b))−1 and the boundary trace map γA′,B′ .

THEOREM 4.8. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ satisfy
(2.7), let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1), and let SA′,B′,A,B ∈
C2×2 be as in (4.9), (4.10). Then

ΛA′,B′
A,B (z)S∗A′,B′,A,B = γA′,B′

[
γA′,B′(HA,B − zI(a,b))

−1]∗, z ∈ ρ(HA,B). (4.73)

Proof. Applying the boundary trace γA,B on both sides of (4.63) and using (4.2),
one obtains

γA,B(HA′,B′ − zI(a,b))
−1

= γA,B
[
γ⊥A,B(HA,B − zI(a,b))

−1]∗[γA,B(HA′,B′ − zI(a,b))
−1]. (4.74)

Taking A′,B′ in (4.74) to be such that γA,B = γ⊥A′,B′ and recalling (4.56) yields

γA,B
[
γ⊥A,B(HA,B − zI(a,b))

−1]∗ = I2. (4.75)

Then for every c =
(
c1 c2

)� ∈ C2 the function,

uA,B(z, · ;c1,c2) =
[
γ⊥A,B(HA,B− zI(a,b))

−1]∗(c1

c2

)
, (4.76)

solves the boundary value problem (4.17), (4.18). Indeed,

γA,BuA,B(z, · ;c1,c2) =
(

c1

c2

)
, (4.77)
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by (4.75), and (Hmax− zI(a,b))uA,B(z, · ;c1,c2) = 0 since(
(Hmax− zI(a,b))uA,B(z, · ;c1,c2), f

)
L2((a,b);rdx)

=
(
uA,B(z, · ;c1,c2),(Hmin − zI(a,b)) f

)
L2((a,b);rdx)

=
(
c,γ⊥A,B(HA,B− zI(a,b))

−1(Hmin− zI(a,b)) f
)

C2

=
(
c,γ⊥A,B f

)
C2 = 0, f ∈ dom(Hmin), (4.78)

and dom(Hmin) is dense in L2((a,b);rdx) . Thus, according to the definition of ΛA′,B′
A,B

in (4.25), one obtains

ΛA′,B′
A,B = γA′,B′

[
γ⊥A,B(HA,B − zI(a,b))

−1]∗, z ∈ ρ(HA,B). (4.79)

In addition, we note that (4.2) and (4.9) imply

γA′,B′(HA,B − zI(a,b))
−1 = SA′,B′,A,B γ⊥A,B(HA,B − zI(a,b))

−1, z ∈ ρ(HA,B), (4.80)

and hence, combining (4.79) with (4.80) yields (4.73). �

One can use the representation (4.73) to prove that ΛA′,B′
A,B (·)S∗A′,B′,A,B is a 2× 2

matrix-valued Nevanlinna–Herglotz function (cf. the proof of Theorem 4.6 in [8]). In
this paper we will pursue an alternative route based on Krein’s resolvent formula in
Corollary 4.12.

Next, we explore reflection symmetry of the expressions in (4.73). Applying γA′,B′
to both sides of (4.63) and using (4.79) and the fact that γA′,B′(HA′,B′ − zI(a,b))−1 = 0,
by (4.2), one obtains

γA′,B′(HA,B − zI(a,b))
−1 = −ΛA′,B′

A,B (z)
[
γA,B(HA′,B′ − zI(a,b))

−1]. (4.81)

Using the identities (4.2), (4.9), (4.13), and (4.15) in (4.81) then yields

SA′,B′,A,Bγ⊥A,B(HA,B − zI(a,b))
−1

= ΛA′,B′
A,B (z)S∗A′,B′,A,B

[
γ⊥A′,B′(HA′,B′ − zI(a,b))

−1]. (4.82)

Changing z to z , taking adjoints, applying γA′,B′ to both sides of (4.82), and utilizing
(4.75) and (4.79) then implies,

ΛA′,B′
A,B (z)S∗A′,B′,A,B = SA′,B′,A,BΛA′,B′

A,B (z)∗

=
(

ΛA′,B′
A,B (z)S∗A′,B′,A,B

)∗
, z ∈ ρ(HA,B). (4.83)

The principal result of this section, Krein’s resolvent formula for the difference of
resolvents of HA′,B′ and HA,B , then reads as follows:

THEOREM 4.9. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ satisfy
(2.7), and let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1). In addition,
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let SA′,B′,A,B ∈ C2×2 be as in (4.9), (4.10), and suppose that z ∈ ρ(HA,B)∩ρ(HA′,B′) .
Then

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1 (4.84)

− [
γ⊥A,B(HA,B − zI(a,b))

−1]∗ΛA′,B′
A,B (z)−1SA′,B′,A,B

[
γ⊥A,B(HA,B − zI(a,b))

−1].
In addition, if SA′,B′,A,B is invertible ( i.e., rank(SA′,B′,A,B) = 2 ) , then

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1

− [
γA′,B′(HA,B − zI(a,b))

−1]∗[ΛA′,B′
A,B (z)S∗A′,B′,A,B

]−1
(4.85)

× [
γA′,B′(HA,B − zI(a,b))

−1].
If SA′,B′,A,B is not invertible and nonzero ( i.e., rank(SA′,B′,A,B) = 1 ) , then

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1

− [
γA′,B′(HA,B − zI(a,b))

−1]∗[λ A′,B′
A,B (z)

]−1[γA′,B′(HA,B − zI(a,b))
−1], (4.86)

where

λ A′,B′
A,B (z) = Pran(SA′,B′ ,A,B)Λ

A′,B′
A,B (z)S∗A′,B′,A,BPran(SA′ ,B′ ,A,B)

∣∣
ran(SA′ ,B′ ,A,B). (4.87)

Proof. First, using (4.80) and the fact that ΛA′,B′
A,B (z) is invertible, one rewrites

(4.81) as

γA,B(HA′,B′ − zI(a,b))
−1 = −ΛA′,B′

A,B (z)−1[γA′,B′(HA,B − zI(a,b))
−1]

= −ΛA′,B′
A,B (z)−1SA′,B′,A,B

[
γ⊥A,B(HA,B − zI(a,b))

−1]. (4.88)

Then inserting (4.88) into (4.63) yields (4.84).
Next, if SA′,B′,A,B is invertible then combining (4.80) and (4.73) with (4.84) implies

(4.85). In the case SA′,B′,A,B is not invertible and nonzero, it follows from (4.55) and
(4.81) that

− γA′,B′(HA,B − zI(a,b))
−1 (4.89)

= ΛA′,B′
A,B (z)S∗A′,B′,A,B‖SA′,B′,A,B‖−2SA′,B′,A,B

[
γA,B(HA′,B′ − zI(a,b))

−1].
Since ran(γA′,B′(HA,B−zI(a,b))−1) = ran(SA′,B′,A,B) by (4.54), it follows from (4.89) that

‖SA′,B′,A,B‖−2SA′,B′,A,B
[
γA,B(HA′,B′ − zI(a,b))

−1]
= −[

λ A′,B′
A,B (z)

]−1[γA′,B′(HA,B − zI(a,b))
−1]. (4.90)

Inserting (4.90) into (4.65) yields (4.86). �
It is instructive to compare the resolvent formulas obtained via the boundary data

map approach in Theorem 4.9 with the resolvent formulas in Krein’s abstract approach
discussed in Appendix A, and more concretely, in Theorems 3.1 and 3.2. For this
purpose we now restate the resolvent formulas (4.84) and (4.86) using an explicit basis
of ker(Hmax − zI(a,b)) .
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COROLLARY 4.10. Assume that A,B,A′,B′ ∈C2×2 , where A,B and A′,B′ satisfy
(2.7), and let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1). In addition,
let SA′,B′,A,B ∈ C2×2 be as in (4.9), (4.10), and suppose that z ∈ ρ(HA,B)∩ρ(HA′,B′) .
(i) If SA′,B′,A,B is invertible ( i.e., rank(SA′,B′,A,B) = 2 ) , then

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1

−
2

∑
k,n=1

[
PA′,B′,A,B(z)

]−1
k,n(uA,B,n(z, ·), ·)L2((a,b);rdx)uA,B,k(z, ·),

(4.91)

where the 2×2 matrix PA′,B′,A,B(·) is given by

PA′,B′,A,B(z) = S−1
A′,B′,A,BΛA′,B′

A,B (z) (4.92)

and {uA,B,1(z, ·),uA,B,2(z, ·)} is the basis of ker(Hmax − zI(a,b)) satisfying the boundary
conditions

γA,BuA,B,1(z, ·) =
(

1
0

)
, γA,BuA,B,2(z, ·) =

(
0
1

)
. (4.93)

(ii) If SA′,B′,A,B is not invertible and nonzero ( i.e., rank(SA′,B′,A,B) = 1 ) , then

(HA′,B′ − zI(a,b))
−1 = (HA,B − zI(a,b))

−1

− pA′,B′,A,B(z)−1(uA′,B′,A,B,0(z, ·), ·)L2((a,b);rdx)uA′,B′,A,B,0(z, ·),
(4.94)

where the scalar pA′,B′,A,B(·) is given by

pA′,B′,A,B(z) = Pran(SA′ ,B′ ,A,B)Λ
A′,B′
A,B (z)S∗A′,B′,A,BPran(SA′ ,B′ ,A,B)

∣∣
ran(SA′ ,B′ ,A,B) (4.95)

and the element uA′,B′,A,B,0(z, ·) ∈ ker(Hmax − zI(a,b)) is given by

uA′,B′,A,B,0(z, ·) =
[
γA′,B′(HA,B − zI(a,b))

−1]∗∣∣
ran(SA′ ,B′ ,A,B). (4.96)

Proof. It follows from (4.76)–(4.78) that the maps[
γ⊥A,B(HA,B− zI(a,b))

−1]∗ : C
2 → ker(Hmax − zI(a,b)),[

γ⊥A,B(HA,B− zI(a,b))
−1] : ker(Hmax− zI(a,b)) → C

2,
(4.97)

are given by

[
γ⊥A,B(HA,B − zI(a,b))

−1]∗(c1

c2

)
= c1uA,B,1(z, ·)+ c2uA,B,2(z, ·), c1,c2 ∈ C,

[
γ⊥A,B(HA,B − zI(a,b))

−1] f =

((
uA,B,1(z , ·), f

)
L2((a,b);rdx)(

uA,B,2(z , ·), f
)
L2((a,b);rdx)

)
, f ∈ L2((a,b);rdx).

(4.98)
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Thus, if SA′,B′,A,B is invertible, (4.91) and (4.92) follow from (4.84) and (4.98).
If SA′,B′,A,B is not invertible and nonzero it follows from (4.54), (4.80), and (4.97)

that
[
γA′,B′(HA,B − zI(a,b))−1

]
is surjective, mapping ker(Hmax − zI(a,b)) onto the one-

dimensional subspace ran(SA′,B′,A,B) ⊂ C2 . Hence
[
γA′,B′(HA,B − zI(a,b))−1

]∗
maps

ran(SA′,B′,A,B) onto a one dimensional subspace of ker(Hmax − zI(a,b)) spanned by the
function uA′,B′,A,B,0(z, ·) . Thus,[

γ⊥A′,B′(HA,B − zI(a,b))
−1]∗ : ran(SA′,B′,A,B) → span(uA′,B′,A,B,0(z, ·)),[

γ⊥A′,B′(HA,B − zI(a,b))
−1] : span(uA′,B′,A,B,0(z , ·)) → ran(SA′,B′,A,B),

(4.99)

and hence (4.94)–(4.96) follow from (4.86) and (4.87). �
The above result shows that, depending on the rank of SA′,B′,A,B , the abstract

Krein’s formula (A.16) is equivalent either to (4.91) (and hence to (4.84)) or to (4.94)
(and hence to (4.86)). Moreover, straightforward computations show that in the spe-
cial case of HA,B = HD , Corollary 4.10 reduces to Theorem 3.1 if HA′,B′ corresponds
to separated boundary conditions (2.15) and to Theorem 3.2 if HA′,B′ corresponds to
non-separated boundary conditions (2.17). Explicitly, one obtains the following result.

COROLLARY 4.11. Assume that HA,B = HD ( i.e., A = AD and B = BD given by
(2.28)) and A′,B′ ∈ C

2×2 satisfy (2.7). Suppose that z ∈ ρ(HD)∩ρ(HA′,B′) , and let
{u1(z, ·),u2(z, ·)} be the basis of ker(Hmax − zI(a,b)) dictated by (3.5).

(i) If A′ =
(

cos(θa) sin(θa)
0 0

)
, B′ =

(
0 0

−cos(θb) sin(θb)

)
, θa,θb ∈ (0,π) , then

(4.91) holds with PA′,B′,A,B(z)=
(

0 1
1 0

)
Dθa,θb(z)

(
0 1
1 0

)
, where Dθa,θb(z) is given

by (3.12).

(ii) If A′ =
(

cos(θa) sin(θa)
0 0

)
, B′ =

(
0 0

−cos(θb) sin(θb)

)
, θa ∈ (0,π) , θb = 0 ,

then (4.94) holds with pA′,B′,A,B(z) = sin2(θa)dθa,0(z) , where dθa,0(z) is given by
(3.15) and uA′,B′,A,B,0(z, ·) = sin(θa)u2(z, ·) .

(iii) If A′ =
(

cos(θa) sin(θa)
0 0

)
, B′ =

(
0 0

−cos(θb) sin(θb)

)
, θa = 0 , θb ∈ (0,π) ,

then (4.94) holds with pA′,B′,A,B(z) = sin2(θb)d0,θb(z) , where d0,θb(z) is given by
(3.18) and uA′,B′,A,B,0(z, ·) = sin(θb)u1(z, ·) .

(iv) If A′ = eiφ R, B′ = I2 , R∈SL2(R) , R1,2 �= 0 , then (4.91) holds with PA′,B′,A,B(z) =(
0 1
1 0

)
QR,φ (z)

(
0 1
1 0

)
, where QR,φ (z) is given by (3.49).

(v) If A′ = eiφR, B′ = I2 , R∈SL2(R) , R1,2 = 0 , then (4.94) holds with pA′,B′,A,B(z)=
qR,φ (z) , where the scalar qR,φ (z) is given by (3.52), and for uA′,B′,A,B,0(z, ·) =
uR,φ (z, ·) , with uR,φ (z, ·) given by (3.54).



44 S. CLARK, F. GESZTESY, R. NICHOLS AND M. ZINCHENKO

At this point we are ready to demonstrate the Nevanlinna–Herglotz property of

ΛA′,B′
A,B (·)S∗A′,B′,A,B . We denote C+ = {z ∈ C | Im(z) > 0} .

COROLLARY 4.12. Assume that A,B,A′,B′ ∈ C2×2 , where A,B and A′,B′ sat-
isfy (2.7), and let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1). In
addition, let SA′,B′,A,B ∈ C

2×2 be as in (4.9), (4.10). If SA′,B′,A,B is invertible, then

ΛA′,B′
A,B (·)S∗A′,B′,A,B is a 2×2 matrix-valued Nevanlinna–Herglotz function satisfying

Im
(

ΛA′,B′
A,B (·)S∗A′,B′,A,B

)
> 0, z ∈ C+. (4.100)

Proof. Analyticity of ΛA′,B′
A,B (·)S∗A′,B′,A,B on z ∈ ρ(HA,B) follows from that of

ΛA′,B′
A,B (·) described in Lemma 4.5. Equation (4.92) then proves that

SA′,B′,A,BP(z)S∗A′,B′,A,B = ΛA′,B′
A,B (z)S∗A′,B′,A,B, z ∈ ρ(HA,B). (4.101)

By Theorem A.1 (iii) , P(·) and hence SA′,B′,A,BP(·)S∗A′,B′,A,B is a 2× 2 matrix-valued
Nevanlinna–Herglotz function satisfying (4.100) as a consequence of (A.37). �

5. Trace formulas, symmetrized perturbation determinants, and spectral shift
functions

In this section we present the connection between the general boundary data maps,
symmetrized perturbation determinants, trace formulas, and spectral shift functions for
general self-adjoint extensions of Hmin , described in Theorems 2.2 and 2.5.

Assuming as before Hypothesis 2.1 and (2.7), we start by recalling the sesquilinear
form, denoted by QA,B , associated with the general self-adjoint extension HA,B of Hmin .
If the matrix NA,B , defined as in (2.30)–(2.31), is invertible (i.e., rank(NA,B) = 2) then

QA,B( f ,g) =
∫ b

a
dx

[
p(x) f ′(x)g′(x)+q(x) f (x)g(x)

]− (
γD f ,N−1

A,BDA,BγDg
)

C2 ,

f ,g ∈ dom(QA,B) =
{
h ∈ L2((a,b);rdx) |h ∈ AC([a,b]); (5.1)

(p/r)1/2h′ ∈ L2((a,b);rdx)
}
.

If NA,B is not invertible then either NA,B is nonzero (i.e., rank(NA,B) = 1) and

QA,B( f ,g) =
∫ b

a
dx

[
p(x) f ′(x)g′(x)+q(x) f (x)g(x)

]− (
γD f ,N∗

A,BDA,BγDg
)

C2

‖NA,B‖2 ,

f ,g ∈ dom(QA,B) =
{
h ∈ L2((a,b);rdx) |h ∈ AC([a,b]); (5.2)

γDh ∈ ran(N∗
A,B); (p/r)1/2h′ ∈ L2((a,b);rdx)

}
,

or NA,B = 0 (i.e., rank(NA,B) = 0) and

QA,B( f ,g) =
∫ b

a
dx

[
p(x) f ′(x)g′(x)+q(x) f (x)g(x)

]
,
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f ,g ∈ dom(QA,B) =
{
h ∈ L2((a,b);rdx) |h ∈ AC([a,b]); γDh = 0; (5.3)

(p/r)1/2h′ ∈ L2((a,b);rdx)
}
.

To see the connection between QA,B and the self-adjoint extension HA,B it suffices
to perform an integration by parts. For instance, in the case of (5.2), one obtains for all
f ∈ dom(QA,B) and g ∈ dom(HA,B) ,

QA,B( f ,g) =
(
f ,Hmaxg

)
L2((a,b);rdx)−

(
γD f ,γNg

)
C2 −

(
γD f ,N∗

A,BDA,BγDg
)

C2

‖NA,B‖2

=
(
f ,HA,Bg

)
L2((a,b);rdx)−

(
γD f ,‖NA,B‖2γNg+N∗

A,BDA,BγDg
)

C2

‖NA,B‖2 . (5.4)

Since γD f ∈ ran(N∗
A,B) one has γD f = ‖NA,B‖−2N∗

A,BNA,BγD f and hence(
γD f ,‖NA,B‖2γNg

)
C2 =

(
γD f ,N∗

A,BNA,BγNg
)

C2 . (5.5)

Combining (5.4) and (5.5) yields,

QA,B( f ,g) =
(
f ,HA,Bg

)
L2((a,b);rdx)−

(
γD f ,N∗

A,B(NA,BγNg+DA,BγDg)
)

C2

‖NA,B‖2

=
(
f ,HA,Bg

)
L2((a,b);rdx), (5.6)

since g ∈ dom(HA,B) , and by (2.30) and (4.1), γA,Bg = DA,BγDg+NA,BγNg = 0.
The 2nd representation theorem for densely defined, semibounded, closed quadratic

forms (cf. [26, Sect. 6.2.6]) then yields that

dom
(
(HA,B − zI(a,b))

1/2) = dom
(|HA,B|1/2) = dom(QA,B), z ∈ C\[eA,B,∞), (5.7)

where we abbreviated
eA,B = inf(σ(HA,B)). (5.8)

Here (HA,B − zI(a,b))1/2 is defined with the help of the spectral theorem and a
choice of a branch cut along [eA,B,∞) . Employing the fact that by (5.1)–(5.3),

dom
(
(HA′,B′ − zI(a,b))

1/2) = dom
(|HA′,B′ |1/2)

=
{
h ∈ L2((a,b);rdx) |h ∈ AC([a,b]); (p/r)1/2h′ ∈ L2((a,b);rdx)

}
, (5.9)

z ∈ C\[eA′,B′ ,∞), det(NA′,B′) �= 0,

dom
(
(HA,B − zI(a,b))

1/2) = dom
(|HA,B|1/2)

⊆ {
h ∈ L2((a,b);rdx) |h ∈ AC([a,b]); (p/r)1/2h′ ∈ L2((a,b);rdx)

}
, (5.10)

z ∈ C\[eA,B,∞),

then shows that

(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2

=
[
(HA′,B′ − zI(a,b))

1/2(HA,B − zI(a,b))
−1/2]
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× [
(HA′,B′ − zI(a,b))

1/2(HA,B− zI(a,b))
−1/2]∗

∈ B
(
L2((a,b);rdx)

)
, z ∈ C\[e0,∞), det(NA′,B′) �= 0, (5.11)

where we introduced the abbreviation

e0 = inf
(
σ(HA,B)∪σ(HA′,B′)

)
= min(eA,B,eA′,B′). (5.12)

Then applying Theorem 4.9 one concludes that actually,

(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2− I(a,b)

=
{
(HA′,B′ − zI(a,b))

1/2[(HA,B − zI(a,b))
−1 − (HA′,B′ − zI(a,b))

−1]
× (HA′,B′ − zI(a,b))

1/2}cl

= (HA′,B′ − zI(a,b))
1/2[γ⊥A,B(HA,B − zI(a,b))

−1]∗ΛA′,B′
A,B (z)−1SA′,B′,A,B

× [
γ⊥A,B(HA,B − zI(a,b))

−1](HA′,B′ − zI(a,b))
1/2, (5.13)

z ∈ C\[e0,∞), det(NA′,B′) �= 0.

is a finite-rank (and hence a trace class) operator on L2((a,b);rdx) . Thus, the Fredholm
determinant, more precisely, the symmetrized perturbation determinant,

detL2((a,b);rdx)

(
(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2

)
,

z ∈ C\[e0,∞), det(NA′,B′) �= 0, (5.14)

is well-defined (cf. [18, Ch. IV] and [46, Ch. 3] for basics on Fredholm determinants).
Next, we show that the symmetrized (Fredholm) perturbation determinant (5.14)

associated with the pair (HA′,B′ ,HA,B) can essentially be reduced to the 2×2 determi-

nant of the general boundary data map ΛA′,B′
A,B (z) :

THEOREM 5.1. Assume that A,B ∈ C2×2 , where A′,B′ ∈ C2×2 satisfy (2.7), and
let the self-adjoint extensions HA,B,HA′,B′ be defined as in (4.1). In addition, let
NA,B,NA′,B′ ∈ C2×2 be as in (2.30), (2.31), and suppose that det(NA′,B′) �= 0 . Then,

detL2((a,b);rdx)

(
(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2

)
=

detC2(NA,B)
detC2(NA′,B′)

detC2

(
ΛA′,B′

A,B (z)
)
, z ∈ C\[e0,∞).

(5.15)

Proof. We start by introducing simplifying abbreviations,

KA,B(z) =
[
γ⊥A,B(HA,B − zI(a,b))

−1]∗, (5.16)

LA′,B′,A,B(z) = (HA′,B′ − zI(a,b))
1/2KA,B(z). (5.17)
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Then substitution of (5.13) into (5.15) and employing the cyclicity property of the de-
terminant yields

detL2((a,b);rdx)

(
(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2

)
= detL2((a,b);rdx)

(
I(a,b) +LA′,B′,A,B(z)ΛA′,B′

A,B (z)−1SA′,B′,A,BLA′,B′,A,B(z)∗
)

= detC2

(
I2 +LA′,B′,A,B(z)∗LA′,B′,A,B(z)ΛA′,B′

A,B (z)−1SA′,B′,A,B

)
. (5.18)

One notes that LA′,B′,A,B(z) maps C
2 into L2((a,b);rdx) and hence the product

LA′,B′,A,B(z)∗LA′,B′,A,B(z) is a linear map on C2 .
Next, we turn to the computation of the 2× 2 matrix representation for the map

LA′,B′,A,B(z)∗LA′,B′,A,B(z) using (5.1)–(5.3),(
v1,LA′,B′,A,B(z)∗LA′,B′,A,B(z)v2

)
C2

=
(
LA′,B′,A,B(z)v1,LA′,B′,A,B(z)v2

)
L2((a,b);rdx)

= QA′,B′(KA,B(z)v1,KA,B(z)v2)

= −(
γDKA,B(z)v1,N

−1
A′,B′DA′,B′γDKA,B(z)v2

)
C2

− (
γDKA,B(z)v1,γNKA,B(z)v2

)
C2

= −(
v1, [γDKA,B(z)]∗N−1

A′,B′γA′,B′KA,B(z)v2
)

C2 . (5.19)

Since, by (4.79) and (5.16), γDKA,B(z) = ΛD
A,B(z) and γA′,B′KA,B(z) = ΛA′,B′

A,B (z) , it fol-
lows from (5.19) that

LA′,B′,A,B(z)∗LA′,B′,A,B(z) = −ΛD
A,B(z)∗N−1

A′,B′ΛA′,B′
A,B (z), (5.20)

and hence

I2 +LA′,B′,A,B(z)∗LA′,B′,A,B(z)ΛA′,B′
A,B (z)−1SA′,B′,A,B

= I2−ΛD
A,B(z)∗N−1

A′,B′SA′,B′,A,B (5.21)

=
[
I2− (N−1

A′,B′SA′,B′,A,B)∗ΛD
A,B(z)

]∗
. (5.22)

It follows from (2.32) and (4.10) that

N−1
A′,B′SA′,B′,A,B = D∗

A,B −N−1
A′,B′DA′,B′N∗

A′,B′

= D∗
A,B −D∗

A′,B′
(
N−1

A′,B′
)∗

N∗
A,B, (5.23)

and hence, by (4.30) and (4.31),

I2−
(
N−1

A′,B′SA′,B′,A,B
)∗ΛD

A,B(z)

= ΛA,B
A,B−DA,BΛD

A,B(z)+NA,BN−1
A′,B′DA′,B′ΛD

A,B(z)

= NA,BN−1
A′,B′ [NA′,B′ΛN

A,B(z)+DA′,B′ΛD
A,B(z)]

= NA,BN−1
A′,B′ΛA′,B′

A,B (z).
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Substituting (5.22) and (5.24) into (5.18) then yields

detL2((a,b);rdx)

(
(HA′,B′ − zI(a,b))1/2(HA,B− zI(a,b))−1(HA′,B′ − zI(a,b))1/2

)
= detC2

([
NA,BN−1

A′,B′ΛA′,B′
A,B (z)

]∗)
. (5.24)

Changing z to z and taking complex conjugation on both sides then implies (5.15). �

REMARK 5.2. It was crucial in Theorem 5.1 to use the symmetrized (Fredholm)
perturbation determinant,

detL2((a,b);rdx)

(
(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2

)
, (5.25)

as in all nontrivial circumstances the “standard” perturbation determinant,

detL2((a,b);rdx)
(
(HA′,B′ − zI(a,b))(HA,B − zI(a,b))

−1), (5.26)

does not exist since (HA,B − zI(a,b))−1 will not map L2((a,b);rdx) into the set
dom(HA′,B′) (it maps into dom(HA,B)). On the other hand, the quadratic form domains
depicted in (5.1)–(5.3) guarantee that

(HA′,B′ − zI(a,b))1/2(HA,B − zI(a,b))−1(HA′,B′ − zI(a,b))1/2 ∈ B
(
L2((a,b);rdx)

)
, (5.27)

and a detailed analysis reveals (cf. [17, Sect. 4]) that the latter is, in fact, at most a
rank-two perturbation of the identity I(a,b) in L2((a,b);rdx) . For a discussion of sym-
metrized perturbation determinants in an abstract setting, including the case of non-
self-adjoint operators, we refer to the detailed treatment in [17].

Next, we derive the trace formula for the resolvent difference of HA,B and HA′,B′
in terms of the spectral shift function ξ ( · ;HA′,B′ ,HA,B) and establish the connection

between ΛA′,B′
A,B (·) and ξ ( · ;HA′,B′ ,HA,B) .

To prepare the ground for the basic trace formula we now state the following fact:

LEMMA 5.3. Assume that A,B ∈ C2×2 , where A′,B′ ∈ C2×2 satisfy (2.7), and let

the self-adjoint extensions HA,B and HA′,B′ be defined as in (4.1). Then, with ΛA′,B′
A,B

given by (4.79),

d
dz

ΛA′,B′
A,B (z) = γA′,B′(HA,B − zI(a,b))

−1[γ⊥A,B(HA,B − zI(a,b))
−1]∗, z ∈ ρ(HA,B). (5.28)

Proof. Employing the resolvent equation for HA,B , one verifies that

d
dz

γA′,B′
[
γ⊥A,B(HA,B − zI(a,b))

−1]∗ = γA′,B′
[
γ⊥A,B(HA,B − zI(a,b))

−2]∗
= γA′,B′(HA,B − zI(a,b))

−1[γ⊥A,B(HA,B − zI(a,b))
−1]∗. (5.29)

Together with (4.79) this proves (5.28). �
Combining Theorems 4.9 and 5.1 with Lemma 5.3 then yields the following result:
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THEOREM 5.4. Assume that A,B ∈ C2×2 , where A′,B′ ∈ C2×2 satisfy (2.7), and
let the self-adjoint extensions HA,B and HA′,B′ be defined as in (4.1). Then,

trL2((a,b);rdx)
(
(HA′,B′ − zI(a,b))

−1− (HA,B− zI(a,b))
−1)

= − tr
C2

([
ΛA′,B′

A,B (z)
]−1 d

dz

[
ΛA′,B′

A,B (z)
])

= − d
dz

ln
(
detC2

(
ΛA′,B′

A,B (z)
))

, z ∈ C\[e0,∞). (5.30)

If, in addition, both NA,B and NA′,B′ , defined as in (2.31), are invertible, then

trL2((a,b);rdx)
(
(HA′,B′ − zI(a,b))

−1 − (HA,B− zI(a,b))
−1)

= − d
dz

ln
(
detL2((a,b);rdx)

({
(HA′,B′ − zI(a,b))

1/2(HA,B − zI(a,b))
−1 (5.31)

× (HA′,B′ − zI(a,b))
1/2}cl

))
, z ∈ C\[e0,∞).

Proof. The second equality in (5.30) is obvious. The first equality in (5.30) follows
upon rewriting (4.84), with the help of (4.2) and (4.9), as

(HA′,B′ − zI(a,b))
−1− (HA,B− zI(a,b))

−1

= −[
γ⊥A,B(HA,B − zI(a,b))

−1]∗ΛA′,B′
A,B (z)−1[γA′,B′(HA,B − zI(a,b))

−1]. (5.32)

taking the trace, using cyclicity of the trace, and applying (5.28). Then (5.31) follows
from (5.15) and (5.30). �

In particular, in the non-degenerate case, where NA,B and NA′,B′ are invertible,

the determinant of ΛA′,B′
A,B (·) coincides with the symmetrized perturbation determinant

under the logarithm in (5.31) up to a spectral parameter independent constant (the latter
depends on the boundary conditions involved).

Next, we note that the rank-two behavior of the difference of resolvents of HA′,B′
and HA,B permits one to define the spectral shift function ξ ( · ;HA′,B′ ,HA,B) associated
with the pair of self-adjoint operators (HA′,B′ ,HA,B) in a standard manner. Moreover,
using the typical normalization in the context of self-adjoint operators bounded from
below,

ξ ( · ;HA′,B′ ,HA,B) = 0, λ < e0 = inf
(
σ(HA,B)∪σ(HA′,B′)

)
, (5.33)

Krein’s trace formula (see, e.g., [51, Ch. 8], [52]) reads

trL2((a,b);rdx)
(
(HA′,B′ − zI(a,b))

−1− (HA,B− zI(a,b))
−1)

= −
∫

[e0,∞)

ξ (λ ;HA′,B′ ,HA,B)dλ
(λ − z)2 , z ∈ ρ(HA,B)∩ρ(HA′,B′),

(5.34)

where ξ (· ;HA′,B′ ,HA,B) satisfies

ξ (· ;HA′,B′ ,HA,B) ∈ L1(
R;(λ 2 +1)−1dλ

)
. (5.35)
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Since the spectra of HA,B and HA′,B′ are purely discrete, ξ ( · ;HA′,B′ ,HA,B) is an integer-
valued piecewise constant function on R with jumps precisely at the eigenvalues of
HA,B and HA′,B′ . In particular, ξ ( · ;HA′,B′ ,HA,B) represents the difference of the eigen-
value counting functions of HA′,B′ and HA,B .

Moreover, ξ (· ;HA′,B′ ,HA,B) permits a representation in terms of nontangential

boundary values to the real axis of det
(
ΛA′,B′

A,B (·)) (resp., of the symmetrized pertur-
bation determinant (5.11)), to be described next.

THEOREM 5.5. Assume that A,B ∈ C2×2 , where A′,B′ ∈ C2×2 satisfy (2.7), and
let the self-adjoint extensions HA,B and HA′,B′ be defined as in (4.1). Then,

ξ (λ ;HA′,B′ ,HA,B) = π−1 lim
ε↓0

Im
(
ln
(

ηA′,B′,A,B detC2

(
ΛA′,B′

A,B (λ + iε)
)))

for a.e. λ ∈ R,
(5.36)

where ηA′,B′,A,B = eiθA′ ,B′ ,A,B for some θA′,B′,A,B ∈ [0,2π) .

Proof. We recall the definition of e0 = inf
(
σ(HA,B)∪σ(HA′,B′)

)
in (5.33).

Combining (5.30) and (5.34) one obtains

d
dz

ln
(

ηA′,B′,A,B det
C2

(
ΛA′,B′

A,B (z)
))

=
∫

[e0,∞)

ξ (λ ;HA′,B′ ,HA,B)dλ
(λ − z)2 ,

z ∈ ρ(HA,B)∩ρ(HA′,B′),
(5.37)

where ηA′,B′,A,B is some z-independent constant.
Assuming temporarily that SA′,B′,A,B is invertible, we note that by (4.83),

detC2

(
ΛA′,B′

A,B (z)
)
detC2

(
S∗A′,B′,A,B) ∈ R, z ∈ R\σ(HA,B), (5.38)

and since

detC2

(
ΛA′,B′

A,B (z)
)
�= 0, z < e0, (5.39)

it follows that there is a unique ηA′,B′,A,B = eiθA′ ,B′ ,A,B , θA′,B′,A,B ∈ [0,2π) such that

ηA′,B′,A,B detC2

(
ΛA′,B′

A,B (z)
)

> 0, z < e0. (5.40)

In the case SA′,B′,A,B is not invertible, one considers a slightly perturbed boundary trace
γA′,B′;δ = γA′,B′ +δ TA′,B′,A,B γ⊥A,B . Then the corresponding perturbed boundary data map

converges to the unperturbed one ΛA′,B′;δ
A,B (z) → ΛA′,B′

A,B (z) as δ → 0 and

detC2

(
ΛA′,B′;δ

A,B (z)
)
detC2(S∗A′,B′,A,B + δ T ∗

A′,B′,A,B) ∈ R, z ∈ R\σ(HA,B), δ ∈ R.

(5.41)
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As discussed around (4.16), det
C2(S∗A′,B′,A,B + δ T ∗

A′,B′,A,B) �= 0 for all sufficiently small
δ �= 0, hence utilizing the identity

det
C2(S∗A′,B′,A,B + δ T ∗

A′,B′,A,B) = δ det
C2(S∗A′,B′,A,B,1 T ∗

A′,B′,A,B,2)

+ δ detC2(T ∗
A′,B′,A,B,1 S∗A′,B′,A,B,2)+ δ 2detC2(T ∗

A′,B′,A,B),
(5.42)

where the notation Zj is used to denote the j -th column of a matrix Z , substituting

(5.42) into (5.41), dividing by δ , taking δ → 0, and invoking the continuity of ΛA′,B′
A,B

with respect to the parameter matrices A′,B′ yields either

detC2

(
ΛA′,B′

A,B (z)
)[

detC2(S∗A′,B′,A,B,1 T ∗
A′,B′,A,B,2)

+det
C2(T ∗

A′,B′,A,B,1 S∗A′,B′,A,B,2)
] ∈ R\{0}, z < e0,

(5.43)

or

detC2

(
ΛA′,B′

A,B (z)
)
detC2(T ∗

A′,B′,A,B) ∈ R\{0}, z < e0. (5.44)

Thus, (5.40) holds in the case of a noninvertible matrix SA′,B′,A,B as well.
Next, integrating (5.37) with respect to the z-variable along the real axis from z0

to z , assuming z < z0 < e0 , one obtains

ln
(

ηA′,B′,A,B detC2

(
ΛA′,B′

A,B (z)
))

− ln
(

ηA′,B′,A,B detC2

(
ΛA′,B′

A,B (z0)
))

=
∫ z

z0
dζ

∫
[e0,∞)

ξ (λ ;HA′,B′ ,HA,B)dλ
(λ − ζ )2

=
∫ z

z0
dζ

∫
[e0,∞)

[ξ+(λ ;HA′,B′ ,HA,B)− ξ−(λ ;HA′,B′ ,HA,B)]dλ
(λ − ζ )2

=
∫

[e0,∞)
[ξ+(λ ;HA′,B′ ,HA,B)− ξ−(λ ;HA′,B′ ,HA,B)]dλ

∫ z

z0

dζ
(λ − ζ )2

=
∫

[e0,∞)
ξ (λ ;HA′,B′ ,HA,B)dλ

(
1

λ − z
− 1

λ − z0

)
, z < z0 < e0. (5.45)

Here we split ξ into its positive and negative parts, ξ± = [|ξ | ± ξ ]/2, and applied
the Fubini–Tonelli theorem to interchange the integrations with respect to λ and ζ .
Moreover, we chose the branch of ln(·) such that ln(x) ∈ R for x > 0, compatible with
the normalization of ξ ( · ;HA′,B′ ,HA,B) in (5.33).

An analytic continuation of the first and last line of (5.45) with respect to z then
yields

ln
(

ηA′,B′,A,B det
C2

(
ΛA′,B′

A,B (z)
))

− ln
(

ηA′,B′,A,B det
C2

(
ΛA′,B′

A,B (z0)
))

=
∫

[e0,∞)
ξ (λ ;HA′,B′ ,HA,B)dλ

(
1

λ − z
− 1

λ − z0

)
, z ∈ C\[e0,∞). (5.46)
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Since by (5.40),

ln
(

ηA′,B′,A,B detC2

(
ΛA′,B′

A,B (z0)
))

∈ R, z0 < e0, (5.47)

the Stieltjes inversion formula separately applied to the absolutely continuous measures
ξ±(λ ;HA′,B′ ,HA,B)dλ (cf., e.g., [3, p. 328], [48, App. B]), then yields (5.36). �

6. Connecting von Neumann’s parametrization of all self-adjoint extensions of
Hmin and the boundary data map ΛA,B

A′,B′(·)

In this section, we turn to the precise connection between the canonical von Neu-
mann parametrization of all self-adjoint extensions of Hmin in terms of unitary opera-
tors mapping between the associated deficiency subspaces and the boundary data map
ΛA,B

A′,B′(·) .
According to von Neumann’s theory [47], the self-adjoint extensions of a densely

defined closed symmetric operator T0 : dom(T0) → H , dom(T0) = H , with equal
deficiency indices n± are in one-to-one correspondence with the set of linear isometric
isomorphisms (i.e., unitary maps) from N+ to N− , where

N± = ker(T ∗
0 ∓ iIH ), n± = dim(N±). (6.1)

We summarize some of the basic facts of the theory in the following theorem.

THEOREM 6.1. Let T0 : dom(T0) →H , dom(T0) = H , denote a symmetric op-
erator with equal deficiency indices n+ = n− and N± as defined in (6.1). Then the
following items (i)–(iii) hold.
(i) The domain of T ∗

0 is given by

dom(T ∗
0 ) = dom(T0)�N+ �N−, (6.2)

where � indicates the direct (but not necessarily orthogonal ) sum of subspaces.
(ii) For a linear isometric isomorphism U : N+ → N− , define the linear operator
TU : dom(TU ) → H by

TU = T ∗
0 |dom(TU ), dom(TU ) = dom(T0)� (IH +U )N+. (6.3)

The mapping U �→ TU is a bijection from the set of linear isometric isomorphisms
U : N+ → N− and the set of self-adjoint extensions of T0 .
(iii) If T is a self-adjoint extension of T0 and

CT = (T + iIH )(T − iIH )−1 (6.4)

denotes the unitary Cayley transform of T , then T = TU with

U = −C−1
T |N+ . (6.5)
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Items (i) and (ii) in Theorem 6.1 are standard results in the theory of self-adjoint
extensions of symmetric operators and may be found, for example, in [1, §80], [12, Chs.
XII, XIII], [41, §14.4 & §14.8], [44, Sect. X.1], and [48, §8.2]. Item (iii) in Theorem
6.1 is taken from [16].

Our next result establishes a connection between von Neumann’s isometric iso-
morphism U in TU , the boundary trace of bases in ker(Hmax∓ iI(a,b)) , and the bound-

ary data map ΛA,B
A′,B′(·) . To the best of our knowledge, this appears to be new.

THEOREM 6.2. Suppose that B± = {u±,v±} denote ordered bases for

N± = ker(Hmax∓ iI(a,b)). (6.6)

For A,B ∈ C2×2 satisfying (2.7), assume that UA,B : N+ → N− denotes the unique
linear isometric isomorphism with

dom(HA,B) = dom(Hmin)� (I(a,b) +UA,B)N+, (6.7)

guaranteed to exist by Theorem 6.1 (ii) . Suppose that
[
UA,B

]
denotes the matrix rep-

resentation of UA,B with respect to the bases B± . Then[
UA,B

]
= −(

γA,B(u−) γA,B(v−)
)−1 (γA,B(u+) γA,B(v+)

)
, (6.8)

where the boundary trace map γA,B is given by (2.25).
In particular, if A′,B′ ∈ C2×2 is another pair for which (2.7) holds and the bases

B± = {u±,v±} consist of functions satisfying the boundary conditions

γA′,B′(u±) =
(

1
0

)
, γA′,B′(v±) =

(
0
1

)
, (6.9)

then (6.8) becomes [
UA,B

]
= −ΛA,B

A′,B′(−i)−1ΛA,B
A′,B′(i), (6.10)

where the boundary data map ΛA,B
A′,B′(·) is given by (4.25).

Proof. Suppose
[
ŨA,B

] ∈ C2×2 denotes the right-hand side of (6.8) and define

ŨA,B to be the linear map from N+ to N− with the matrix representation
[
ŨA,B

]
in

the bases B± . That is, for f ∈ N+ let c1,c2 ∈ C be such that

f =
(
u+ v+

)(c1

c2

)
, (6.11)

then

ŨA,B f =
(
u− v−

) [
ŨA,B

](c1

c2

)
. (6.12)
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It follows from (6.8), (6.11), (6.12), and the linearity of γA,B that

γA,B( f + ŨA,B f )

=
(
γA,B(u+) γA,B(v+)

)(c1

c2

)
+
(
γA,B(u−) γA,B(v−)

)[
ŨA,B

](c1

c2

)
=

(
γA,B(u+) γA,B(v+)

)(c1

c2

)
− (

γA,B(u+) γA,B(v+)
)(c1

c2

)
= 0.

(6.13)

Thus, by (2.26), f + ŨA,B f ∈ dom(HA,B) for every f ∈ N+ . By Theorem 6.1 (ii) , also
f +UA,B f ∈ dom(HA,B) for all f ∈ N+ . Hence,

(UA,B − ŨA,B) f = ( f +UA,B f )− ( f + ŨA,B f ) ∈ dom(HA,B). (6.14)

Since both UA,B and ŨA,B map into N− it follows that

(UA,B − ŨA,B) f ∈ N− ∩dom(HA,B) = {0}, f ∈ N+, (6.15)

that is, UA,B = ŨA,B . �

Our final result in this section provides an explicit matrix representation of von
Neumann’s isometric isomorphism U in TU in terms of a particular basis of solutions
in ker(Hmax∓ iI(a,b)) .

THEOREM 6.3. Suppose that B± = {u1(±i, ·),u2(±i, ·)} denote the ordered bases
for

N± = ker(Hmax∓ iI(a,b)), (6.16)

with u j(±i, ·) , j = 1,2 , given by (3.5). For θa,θb ∈ [0,π) , assume that Uθa,θb : N+ →
N− denotes the unique linear isometric isomorphism with

dom(Hθa,θb) = dom(Hmin)� (I(a,b) +Uθa,θb)N+, (6.17)

guaranteed to exist by Theorem 6.1 (ii) . For R∈ SL2(R) , φ ∈ [0,2π) , let UR,φ denote
the unique linear isometric isomorphism with

dom(HR,φ ) = dom(Hmin)� (I(a,b) +UR,φ )N+, (6.18)

guaranteed to exist by Theorem 6.1 (ii) . Let
[
Uθa,θb

]
and

[
UR,φ

]
denote the matrix

representations Uθa,θb and UR,φ with respect to the bases B± . Then the following
items (i)–(vi) hold.
(i) If θa �= 0 and θb �= 0 , then[

Uθa,θb

]
= −Dθa,θb(−i)−1Dθa,θb(i), (6.19)
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where Dθa,θb(·) is given by (3.12).
(ii) If θa �= 0 and θb = 0 , then

[
Uθa,0

]
=

( −1 0

−dθa,0(−i)−1
[
u[1]

2 (−i,b)+u[1]
1 (i,a)

]
−dθa,0(−i)−1dθa,0(i)

)
, (6.20)

where dθa,0(·) is given by (3.15).
(iii) If θa = 0 and θb �= 0 , then

[
U0,θb

]
=

(
−d0,θb(−i)−1d0,θb(i) d0,θb(−i)−1

[
u[1]

2 (i,b)+u[1]
1 (−i,a)

]
0 −1

)
, (6.21)

where d0,θb(·) is given by (3.18).
(iv) If θa = θb = 0 , then [

U0,0
]
= −I2. (6.22)

(v) If R1,2 �= 0 , then [
UR,φ

]
= −QR,φ (−i)−1QR,φ (i), (6.23)

where QR,φ (·) is given by (3.49).
(vi) If R1,2 = 0 , then

[
UR,φ

]
= qR,φ (−i)−1

(
c̃1,1(R,φ) c̃2,1(R,φ)
c̃1,2(R,φ) c̃2,2(R,φ)

)
− I2, (6.24)

where qR,φ (·) is given by (3.52) and

c̃1,1(R,φ) = u[1]
1 (i,b)−u[1]

1 (−i,b)− eiφR2,2

[
u[1]

2 (−i,b)+u[1]
1 (i,a)

]
, (6.25)

c̃1,2(R,φ) = R2,2

{
e−iφ

[
u[1]

1 (i,b)−u[1]
1 (−i,b)

]
−R2,2

[
u[1]

2 (−i,b)+u[1]
1 (i,a)

]}
,

(6.26)

c̃2,2(R,φ) = R2,2

{
R2,2

[
u[1]

2 (−i,a)−u[1]
2 (i,a)

]
+ e−iφ

[
u[1]

2 (i,b)+u[1]
1 (−i,a)

]}
,

(6.27)

c̃2,1(R,φ) = eiφ R2,2

[
u[1]

2 (−i,a)−u[1]
2 (i,a)

]
+u[1]

2 (i,b)+u[1]
1 (−i,a). (6.28)

Proof. We begin with a few general observations in order to set the stage for the
proofs of items (i)–(iv) . Since Uθa,θb , θa,θb ∈ [0,π) , maps N+ onto N− and B−
is a basis for N− ,

Uθa,θbu�(i, ·) = c�,1(θa,θb)u1(−i, ·)+ c�,2(θa,θb)u2(−i, ·), � = 1,2, (6.29)

for suitable scalars {c�,k(θa,θb)}1��,k�2 . Then by definition, the matrix representation
of Uθa,θb with respect to the bases B± is given by

[
Uθa,θb

]
=

(
c1,1(θa,θb) c2,1(θa,θb)
c1,2(θa,θb) c2,2(θa,θb)

)
. (6.30)
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By Theorem 6.1 (iii) ,

Uθa,θb = −(Hθa,θb − iI(a,b))(Hθa,θb + iI(a,b))
−1|N+ , (6.31)

and as a result,

Uθa,θbu�(i, ·) = −(Hθa,θb − iI(a,b))(Hθa,θb + iI(a,b))
−1u�(i, ·)

= −(Hθa,θb +(i−2i)I(a,b))(Hθa,θb + iI(a,b))
−1u�(i, ·)

= 2i(Hθa,θb + iI(a,b))
−1u�(i, ·)−u�(i, ·), � = 1,2. (6.32)

Proof of item (i) . Applying Krein’s formula (3.13) with z =−i to the resolvent in
(6.32), relation (6.29) can be recast as

c�,1(θa,θb)u1(−i, ·)+ c�,2(θa,θb)u2(−i, ·) = 2i(H0,0 + iI(a,b))
−1u�(i, ·)−u�(i, ·)

−2i
2

∑
j,k=1

Dθa,θb(−i)−1
j,k (uk(i, ·),u�(i, ·))L2((a,b);rdx)u j(−i, ·), � = 1,2, (6.33)

where Dθa,θb(−i) is defined by (3.12). Taking � = 1 in (6.33), evaluating separately at
x = a and x = b , and using (3.5) along with[

(H0,0 − iI(a,b))
−1u1(i, ·)

]
(a) =

[
(H0,0− iI(a,b))

−1u1(i, ·)
]
(b) = 0, (6.34)

yields

c1,1(θa,θb) = −2i
2

∑
k=1

Dθa,θb(−i)−1
1,k(uk(i, ·),u1(i, ·))L2((a,b);rdx)−1, (6.35)

c1,2(θa,θb) = −2i
2

∑
k=1

Dθa,θb(−i)−1
2,k(uk(i, ·),u1(i, ·))L2((a,b);rdx). (6.36)

On the other hand, taking � = 2 in (6.33), evaluating separately at x = a and x = b ,
and using (3.5) along with[

(H0,0 − iI(a,b))
−1u2(i, ·)

]
(a) =

[
(H0,0− iI(a,b))

−1u2(i, ·)
]
(b) = 0, (6.37)

one concludes that

c2,1(θa,θb) = −2i
2

∑
k=1

Dθa,θb(−i)−1
1,k(uk(i, ·),u2(i, ·))L2((a,b);rdx), (6.38)

c2,2(θa,θb) = −2i
2

∑
k=1

Dθa,θb(−i)−1
2,k(uk(i, ·),u2(i, ·))L2((a,b);rdx)−1. (6.39)

Comparing (6.30) with (6.35), (6.36), (6.38), and (6.39), one infers[
Uθa,θb

]
= −2iDθa,θb(−i)−1[(u j(i, ·),uk(i, ·))L2((a,b);rdx)

]
1� j,k�2− I2, (6.40)
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where
[
(u j(i, ·),uk(i, ·))L2((a,b);rdx)

]
1� j,k�2 is the Gram matrix corresponding to the ba-

sis B+ . Taking (A.32) in the case at hand (i.e., with P(·) =−Dθa,θb(·)−1 ) with z =−i
and z′ = i , one obtains[

(u j(i, ·),uk(i, ·))L2((a,b);rdx)
]
1� j,k�2 = (−2i)−1[Dθa,θb(−i)−Dθa,θb(i)

]
. (6.41)

Using (6.41) in (6.40), one arrives at (6.19).
Proof of item (ii) . Applying Krein’s formula (3.16) with z = −i to the resolvent

in (6.32), relation (6.29) (with θb = 0) can be recast as

c�,1(θa,0)u1(−i, ·)+ c�,2(θa,0)u2(−i, ·) = 2i(H0,0 + i)−1u�(i, ·)−u�(i, ·)
−2idθa,0(−i)−1(u2(i, ·),u1(i, ·))L2((a,b);rdx)u2(−i, ·), � = 1,2, (6.42)

where dθa,0(−i) is defined by (3.15). Taking � = 1 in (6.42), evaluating separately at
x = a and x = b , using (3.5) and (6.34), yields

c1,1(θa,0) = −1, (6.43)

c1,2(θa,0) = −2idθa,0(−i)−1(u2(i, ·),u1(i, ·))L2((a,b);rdx). (6.44)

Similarly, taking � = 2 in (6.42), evaluating separately at x = a and x = b , using (3.5)
and (6.37), implies

c2,1(θa,0) = 0, (6.45)

c2,2(θa,0) = −2idθa,0(−i)−1(u2(i, ·),u2(i, ·))L2((a,b);rdx)−1. (6.46)

The inner products in (6.44) and (6.46) can be calculated explicitly. In fact, all entries
of the Gram matrix

[
(u j(i, ·),uk(i, ·))L2((a,b);rdx)

]
1� j,k�2 can be explicitly computed. To

this end, one observes that

d
dx

W
(
u j(−i, ·),uk(i, ·)

)
(x) (6.47)

= u j(−i,x)
d
dx

u[1]
k (i,x)−uk(i,x)

d
dx

u[1]
j (−i,x) for a.e. x ∈ (a,b), 1 � j,k � 2.

On the other hand, by the very definition of u j(±i, ·) , j = 1,2, one has

d
dx

u[1]
j (±i,x) = (q(x)∓ ir(x))u j(±i,x) for a.e. x ∈ (a,b), j = 1,2. (6.48)

Taking (6.47) together with (6.48), and accounting for cancellations, one concludes that

r(x)u j(−i,x)uk(i,x) = − 1
2i

d
dx

W
(
u j(−i, ·),uk(i, ·)

)
(x)

for a.e. x ∈ (a,b), 1 � j,k � 2.
(6.49)

With (6.49) in hand, the inner product of u j(i, ·) with uk(i, ·) can be explicitly com-
puted:

(u j(i, ·),uk(i, ·))L2((a,b);rdx) =
∫ b

a
r(x)dxu j(−i,x)uk(i,x)
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= − 1
2i

∫ b

a
dx

d
dx

W
(
u j(−i, ·),uk(i, ·)

)
(x)

= − 1
2i

W
(
u j(−i, ·),uk(i, ·)

)
(x)

∣∣b
a, 1 � j,k � 2. (6.50)

Finally, (6.50) and (3.5) yield

(u1(i, ·),u1(i, ·))L2((a,b);rdx) = − 1
2i

(
u[1]

1 (i,b)−u[1]
1 (−i,b)

)
, (6.51)

(u2(i, ·),u2(i, ·))L2((a,b);rdx) = − 1
2i

(
u[1]

2 (−i,a)−u[1]
2 (i,a)

)
, (6.52)

(u1(i, ·),u2(i, ·))L2((a,b);rdx) = − 1
2i

(
u[1]

2 (i,b)+u[1]
1 (−i,a)

)
, (6.53)

(u2(i, ·),u1(i, ·))L2((a,b);rdx) =
1
2i

(
u[1]

2 (−i,b)+u[1]
1 (i,a)

)
. (6.54)

Combining (3.15) with (6.52) in (6.46) implies

c2,2(θa,0) = −dθa,0(−i)−1dθa,0(i), (6.55)

and taking (3.15) with (6.54) in (6.44) yields

c1,2(θa,0) = −dθa,0(−i)−1
(
u[1]

2 (−i,b)+u[1]
1 (i,a)

)
. (6.56)

Finally, (6.20) follows from (6.43), (6.45), (6.55), and (6.56).
Proof of item (iii) . Applying Krein’s formula (3.19) with z = −i to the resolvent

in (6.32), relation (6.29) (with θa = 0) can be recast as

c�,1(0,θb)u1(−i, ·)+ c�,2(0,θb)u2(−i, ·) = 2i(H0,0 + i)−1u�(i, ·)−u�(i, ·)
−2id0,θb(−i)−1(u1(i, ·),u1(i, ·))L2((a,b);rdx)u1(−i, ·), � = 1,2, (6.57)

where d0,θb(−i) is defined by (3.18). Taking � = 1 and evaluating (6.57) separately at
x = a and x = b implies

c1,1(0,θb) = −2id0,θb(−i)−1(u1(i, ·),u1(i, ·))L2((a,b);rdx)−1, (6.58)

c1,2(0,θb) = 0, (6.59)

and taking � = 2, evaluating (6.57) separately at x = a and x = b yields

c2,1(0,θb) = −2id0,θb(−i)−1(u1(i, ·),u2(i, ·))L2((a,b);rdx), (6.60)

c2,2(0,θb) = −1. (6.61)

Recalling (3.18) and (6.51) in (6.58) implies

c1,1(0,θb) = −d0,θb(−i)−1d0,θb(i), (6.62)
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and recalling (6.53) in (6.60) yields

c2,1(0,θb) = d0,θb(−i)−1
(
u[1]

2 (i,b)+u[1]
1 (−i,a)

)
. (6.63)

Therefore, (6.59), (6.61), (6.62), and (6.63) imply (6.21).
Proof of item (iv) . In this case, θa = θb = 0, so that (6.32) may be recast as

c�,1(0,0)u1(−i, ·)+ c�,2(0,0)u2(−i, ·)
= 2i(H0,0 + iI(a,b))

−1u�(i, ·)−u�(i, ·), � = 1,2, (6.64)

and (6.22) follows immediately by taking � = 1,2 in (6.64) and separately evaluating
at x = a and x = b , using (3.5).

To set the stage for proving items (v) and (vi) , we write the analogs of (6.29)–
(6.32) in the non-separated case. Since B− is a basis for N− and UR,φ maps N+ into
N− , we write

UR,φ u�(i, ·) = c�,1(R,φ)u1(−i, ·)+ c�,2(R,φ)u2(−i, ·), � = 1,2, (6.65)

for suitable scalars {c�,k(R,φ)}1��,k�2 , so that the matrix representation for UR,φ with
respect to the bases B± is given by

[
UR,φ

]
=

(
c1,1(R,φ) c2,1(R,φ)
c1,2(R,φ) c2,2(R,φ)

)
. (6.66)

By Theorem 6.1 (iii) , one has

UR,φ = −(HR,φ − i)(HR,φ + i)−1|N+ , (6.67)

and as a result,

UR,φ u�(i, ·) = 2i(HR,φ + i)−1u�(i, ·)−u�(i, ·), � = 1,2. (6.68)

Proof of item (v) . Applying Krein’s formula (3.50) in (6.68), one obtains

c�,1(R,φ)u1(−i, ·)+ c�,2(R,φ)u2(−i, ·) = 2i(H0,0 + i)−1u�(i, ·)−u�(i, ·)

−2i
2

∑
j,k=1

QR,φ (−i)−1
j,k (uk(i, ·),u�(i, ·))L2((a,b);rdx)u j(−i, ·), � = 1,2, (6.69)

where QR,φ (−i) is defined by (3.49). At this point, repeating the argument used in the
proof of item (i) , systematically replacing Uθa,θb by UR,φ , c j,k(θa,θb) , 1 � j,k � 2,
by c j,k(R,φ) , 1 � j,k � 2, and Dθa,θb(z) , z = ±i , by QR,φ (z) , z = ±i , one arrives at
(6.23).

Proof of item (vi) . Applying Krein’s formula (3.53) in (6.68), one obtains

c�,1(R,φ)u1(−i, ·)+ c�,2(R,φ)u2(−i, ·) = 2i(H0,0 + i)−1u�(i, ·)−u�(i, ·)
−2iqR,φ(−i)−1(uR,φ (i, ·),u�(i, ·))L2((a,b);rdx)uR,φ (−i, ·), � = 1,2, (6.70)
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where qR,φ (−i) is defined by (3.52). By (3.5) and the very definition of the function
uR,φ (−i, ·) (cf. (3.54)), one has

uR,φ (−i,a) = e−iφ R2,2, uR,φ (−i,b) = 1. (6.71)

Taking � = 1 in (6.70) and evaluating separately at x = a and x = b using (3.5) and
(6.71) yields

c1,1(R,φ) = −2iqR,φ(−i)−1(uR,φ (i, ·),u1(i, ·))L2((a,b);rdx)−1, (6.72)

c1,2(R,φ) = −2ie−iφR2,2qR,φ (−i)−1(uR,φ (i, ·),u1(i, ·))L2((a,b);rdx). (6.73)

Taking � = 2 in (6.70) and evaluating separately at x = a and x = b using (3.5) and
(6.71) implies

c2,2(R,φ) = −2ie−iφR2,2qR,φ (−i)−1(uR,φ (i, ·),u2(i, ·))L2((a,b);rdx)−1, (6.74)

c2,1(R,φ) = −2iqR,φ (−i)−1(uR,φ (i, ·),u2(i, ·))L2((a,b);rdx). (6.75)

One observes that the inner products in (6.72)–(6.75) can be computed explicitly in

terms of u[1]
j (±i,a) , u[1]

j (±i,b) , j = 1,2, the angle φ , and R2,2 using (3.54) together
with sesquilinearity of the inner product (·, ·)L2((a,b);rdx) and (6.51)–(6.54). For exam-
ple,

2i(uR,φ (i, ·),u1(i, ·))L2((a,b);rdx)

= eiφ R2,2

[
u[1]

2 (−i,b)+u[1]
1 (i,a)

]
−
[
u[1]

1 (i,b)−u[1]
1 (−i,b)

]
.

(6.76)

A similar expression holds for the inner product of uR,φ (i, ·) with u2(i, ·) . Equations
(6.25)–(6.28) follow as a result of inserting these expressions for the inner products in
(6.72)–(6.75). �

7. A brief outlook on inverse spectral problems

We present a very brief outlook on inverse spectral problems to be developed in a
forthcoming paper. Here we only describe a special case that indicates the potential for
results in this direction.

In this section we make the assumption that

p(·) = r(·) = 1 a.e. on (a,b) . (7.1)

Consider the special case

Λθa,θb(z) = Λ(θa+ π
2 )mod(2π),(θb+ π

2 )mod(2π)
θa,θb

(z), θa,θb ∈ [0,π), z ∈ C\σ(Hθa,θb),
(7.2)

a generalization of the Dirichlet-to-Neumann map

ΛD,N(z) = Λ
π
2 , π

2
0,0 (z) ≡ Λ0,0(z), z ∈ C\σ(H0,0). (7.3)
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Introduce the Weyl–Titchmarsh m-functions with respect to the reference point the
left/right endpoint a , respectively, b , denoted by m+,θa(z,θb) , respectively, m−,θb(z,θa) .
Then m+,θa(·,θb) and −m−,θb(·,θa) are Nevanlinna–Herglotz functions and asymptot-
ically one verifies the relations,

m+,θa(z,θb) −→
z→i∞

cot(θa)+o(1), θa ∈ (0,π), (7.4)

m+,0(z,θb) −→
z→i∞

iz1/2 +o
(
z1/2), (7.5)

m−,θb(z,θa) −→
z→i∞

−cot(θb)+o(1), θb ∈ (0,π), (7.6)

m−,0(z,θa) −→
z→i∞

−iz1/2 +o
(
z1/2). (7.7)

THEOREM 7.1. Assume Hypothesis 2.1 with p = r = 1 and let θa,θb ∈ [0,π) .
Then each diagonal entry of Λθa,θb(z) ( i.e., Λθa,θb(z)1,1 or Λθa,θb(z)2,2 ) uniquely de-
termines Hθa,θb , that is, it uniquely determines q(·) a.e. on (a,b) , and also θa and
θb .

Proof. It suffices to note the identity

Λθa,θb(z) =

(
m+,θa(z,θb) Λθa,θb(z)1,2

Λθa,θb(z)2,1 −m−,θb(z,θa)

)
(7.8)

(where Λθa,θb(z)1,2 = Λθa,θb(z)2,1 ), and then apply Marchenko’s fundamental 1952
uniqueness result [39] formulated in terms of m-functions. �

One notes that this is in stark contrast to the usual 2× 2 matrix-valued Weyl–
Titchmarsh M -matrix. Theorem 7.1 has instant consequences for Borg–Levinson-type
uniqueness results (such as, two spectra uniquely determine Hθa,θb , etc.).

It is natural to conjecture that the role m+,θa(·,θb) (resp., m−,θb(·,θa)) plays for
uniqueness results in the case of separated boundary conditions in connection with

Hθa,θb , in general, is played by the boundary data map ΛA′(A,B),B′(A,B)
A,B (·) (for a very

particular choice of A′,B′ as a function of A,B) in the case of general boundary condi-
tions in connection with HA,B . This will be studied in detail in forthcoming work.

A. Krein-type resolvent formulas

In this appendix we provide a brief survey of Krein resolvent formulas [29], [30],
[31], [32], [40] for the convenience of the reader, closely following the discussion in [1,
Sect. 84] (with additional input taken from [16]).

First, we introduce some terminology. Suppose A is a densely defined symmetric
operator in the Hilbert space H with finite deficiency indices (m,m) . Let A1 and A2

denote two self-adjoint extensions of A :

A ⊆ A1, A ⊆ A2. (A.1)



62 S. CLARK, F. GESZTESY, R. NICHOLS AND M. ZINCHENKO

Any operator C that satisfies
C ⊆ A1, C ⊆ A2, (A.2)

is called a common part of the operators A1 and A2 . The operator C′ defined by

C′ f = A1 f , f ∈ dom(C′) = { f ∈ dom(A1)∩dom(A2) |A1 f = A2 f} (A.3)

is called the maximal common part of A1 and A2 since it satisfies (A.2) and is an
extension of any common part of A1 and A2 . C′ is densely defined since dom(A) ⊆
dom(C′) and is either an extension of A or coincides with A . In the latter case, the
extensions A1 and A2 are called relatively prime. Obviously, the two extensions A1

and A2 are relatively prime if and only if

dom(A1)∩dom(A2) = dom(A). (A.4)

We are interested in a formula that relates the resolvents of two different self-
adjoint extensions of the symmetric operator A . Thus, let A1 be a fixed self-adjoint ex-
tension of A (i.e., A1 plays the role of a reference operator) and let A2 be another self-
adjoint extension of A , and suppose that A1 and A2 are relatively prime with respect
to their maximal common part A0 which has deficiency indices (r,r) with 0 � r � m .

Since A1 and A2 are extensions of A0 ,

[(A1− zIH )−1− (A2− zIH )−1](A0 − zIH )g = g−g = 0,

g ∈ dom(A0), z ∈ ρ(A1)∩ρ(A2).
(A.5)

On the other hand,(
[(A1 − zIH )−1 − (A2− zIH )−1] f ,h

)
H

=
(
f , [(A1 − zIH )−1− (A2− zIH )−1]h

)
H

= ( f ,0)H = 0, h ∈ ran(A0 − zIH ), z ∈ ρ(A1)∩ρ(A2), (A.6)

which makes use of the fact that A1 and A2 are extensions of A0 . In summary,

[(A1− zIH )−1− (A2− zIH )−1] f

{
= 0, f ∈ ran(A0− zIH ),
∈ ker(A∗

0− zIH ), f ∈ ker(A∗
0 − zIH ),

z ∈ ρ(A1)∩ρ(A2). (A.7)

If one chooses r linearly independent vectors (one recalls that A0 has deficiency indices
(r,r))

g1(z),g2(z), . . . ,gr(z) ∈ ker(A∗
0− zIH ), z ∈ ρ(A1)∩ρ(A2), (A.8)

then it follows from (A.7) that

[(A1− zIH )−1− (A2− zIH )−1] f =
r

∑
k=1

ck( f ;z)gk(z), f ∈ H , z ∈ ρ(A1)∩ρ(A2),

(A.9)
for suitable scalars ck( f ;z) , k = 1, . . . ,r . By (A.9), each ck(·;z) is a linear functional.
Linearity follows from (A.9); boundedness follows from boundedness of the resolvent
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difference in (A.9) and an application of [36, Lemma 2.4–1]. Thus, for each z∈ ρ(A1)∩
ρ(A2) , there are vectors {hk(z)}r

k=1 such that

ck( f ;z) = (hk(z), f )H , f ∈ H , z ∈ ρ(A1)∩ρ(A2), k = 1, . . . ,r. (A.10)

Moreover,

(hk(z), f )H = 0, f ∈ ran(A0 − zIH ), z ∈ ρ(A1)∩ρ(A2), k = 1, . . . ,r, (A.11)

in light of (A.7), (A.9), and the fact that {gk(z)}r
k=1 are linearly independent. By

(A.11),
{hk(z)}r

k=1 ⊆ ker(A∗
0− zIH ), z ∈ ρ(A1)∩ρ(A2), (A.12)

so that each hk(z) may be represented as

h j(z) = −
r

∑
k=1

p j,k(z)gk(z), z ∈ ρ(A1)∩ρ(A2), j = 1, . . . ,r. (A.13)

Then (A.9) becomes

[(A1 − zIH )−1 − (A2− zIH )−1] f = −
r

∑
j,k=1

pk, j(z)(g j(z), f )H gk(z),

f ∈ H , z ∈ ρ(A1)∩ρ(A2).

(A.14)

The r×r matrix P(z) =
(
p j,k(z)

)
1� j,k�r turns out to be nonsingular for all z∈ ρ(A1)∩

ρ(A2) . Indeed, if P(z0) were singular for some z0 ∈ ρ(A1)∩ρ(A2) , then by (A.13),
the vectors {hk(z0)}r

k=1 are linearly dependent, implying the existence of a nonzero
vector h ∈ ker(A∗

0 − z0IH ) such that (h,hk(z0)) = 0 for k = 1, . . . ,r . By (A.10) and
(A.9),

[(A1− z0IH )−1− (A2− z0IH )−1]h = 0, (A.15)

contradicting the assumption that A1 and A2 are relatively prime with respect to A0 .
One can rewrite (A.14) as the operator equation

(A2 − zIH )−1 = (A1− zIH )−1−
r

∑
j,k=1

pk, j(z)(g j(z), ·)H gk(z), z ∈ ρ(A1)∩ρ(A2).

(A.16)
The choice of basis vectors (A.8) for ker(A∗

0−zIH ) for each z ∈ ρ(A1)∩ρ(A2) is
completely arbitrary. We now show how basis vectors for ker(A∗

0− zIH ) , z ∈ ρ(A1)∩
ρ(A2) , can be specified in a canonical manner by choosing a basis for ker(A∗

0 − z0IH )
for a single fixed z0 ∈ ρ(A1)∩ρ(A2) .

Let z0 ∈ ρ(A1)∩ρ(A2) be fixed. The operator

Uz,z0 = (A1− z0IH )(A1− zIH )−1 = IH +(z− z0)(A1 − zIH )−1, z ∈ ρ(A1)∩ρ(A2),
(A.17)
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defines an injection from H to H . In the case z = z0 , the operator Uz0,z0 is the
unitary Cayley transform of A1 , and it maps ker(A∗

0 − z0IH ) into ker(A∗
0 − z0IH ) .

More generally, Uz,z0 satisfies

Uz,z0

(
ker(A∗

0 − z0IH )
)

= ker(A∗
0 − zIH ), z ∈ ρ(A1)∩ρ(A2). (A.18)

In fact, if g1(z0), . . . ,gr(z0) is a basis for ker(A∗
0− z0IH ) , then

A∗
0Uz,z0gk(z0) = A∗

0

(
IH +(z− z0)(A1− zIH )−1)gk(z0)

= z0gk(z0)+ (z− z0)A1(A1− zIH )−1gk(z0)

= z0gk(z0)+ (z− z0)
(
IH + z(A1− zIH )−1)gk(z0)

= z
(
IH +(z− z0)(A1 − zIH )−1)gk(z0)

= zUz,z0gk(z0), z ∈ ρ(A1), k = 1, . . . ,r. (A.19)

Since Uz,z0 is one-to-one, the vectors {Uz,z0gk(z0)}r
k=1 ⊂ ker(A∗

0 − zIH ) are linearly
independent. Thus, if we define

gk(z) = Uz,z0gk(z0) = gk(z0)+ (z− z0)(A1 − zIH )−1gk(z0),
z ∈ ρ(A1), k = 1, . . . ,r,

(A.20)

then {gk(z)}r
k=1 is a basis for ker(A∗

0−zIH ) and (A.20) represents a systematic (canon-
ical) way of choosing the bases in (A.8), having first fixed a single basis {gk(z0)}r

k=1
for ker(A∗

0 − z0IH ) . Moreover, each gk(z) is an analytic function of z ∈ ρ(A1) , and
the first resolvent equation for A1 yields

gk(z′) =Uz′,zgk(z) = gk(z)+ (z′ − z)(A1− z′IH )−1gk(z), z,z′ ∈ ρ(A1). (A.21)

For z∈ρ(A1)∩ρ(A2) , (A.20) fixes bases {gk(z)}r
k=1 and {gk(z)}r

k=1 for ker(A∗
0−

zIH ) and ker(A∗
0 − zIH ) , respectively. There is a corresponding matrix P(z) so that

(A.16) holds. The matrix P(z) is completely determined by P(z0) . To see this, let
z ∈ ρ(A1)∩ρ(A2) be fixed. By (A.16),

(A2− zIH )−1 = (A1 − zIH )−1 −
r

∑
j,k=1

pk, j(z)(g j(z), ·)H gk(z), (A.22)

(A2 − z0IH )−1 = (A1 − z0IH )−1 −
r

∑
j,k=1

pk, j(z0)(g j(z0), ·)H gk(z0). (A.23)

Substituting both of (A.22) and (A.23) into the (first) resolvent equation for A2 ,

(A2− zIH )−1 = (A2 − z0IH )−1 +(z− z0)(A2− zIH )−1(A2− z0IH )−1, (A.24)

and using the first resolvent equation for A1 yields

r

∑
j,k=1

pk, j(z)(g j(z, ·)H gk(z) =
r

∑
j,k=1

pk, j(z0)(g j(z0), ·)H gk(z0)

+ (z− z0)
r

∑
j,k=1

pk, j(z0)(g j(z0), ·)H (A1 − zIH )−1gk(z0)
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+(z− z0)
r

∑
j,k=1

pk, j(z)(g j(z),(A1 − z0IH )−1·)H gk(z)

− (z− z0)
r

∑
j,k,�,m=1

pk, j(z)(g j(z),gm(z0))H pm,�(z0)(g�(z0), ·)H gk(z). (A.25)

Using (A.20), the sum of the second and third summand on the right-hand side of (A.25)
can be rewritten as

−
r

∑
j,k=1

pk, j(z0)(g j(z0), ·)H [gk(z0)−gk(z)]−
r

∑
j,k=1

pk, j(z)([g j(z0)−g j(z)], ·)H gk(z).

(A.26)
Substitution of (A.26) into (A.25) in place of the second and third term on the right-
hand side then yields a linear combination of {gk(z)}r

k=1 :

r

∑
j,k=1

pk, j(z0)(g j(z0), ·)H gk(z)−
r

∑
j,k=1

pk, j(z)(g j(z0), ·)H gk(z)

+ (z− z0)
r

∑
j,k,�,m=1

pk, j(z)(g j(z),gm(z0))H pm,�(z0)(g�(z0), ·)H gk(z) = 0. (A.27)

Since {gk(z)}r
k=1 are linearly independent, it follows that

r

∑
j=1

pk, j(z0)(g j(z0), ·)H −
r

∑
j=1

pk, j(z)(g j(z0), ·)H

+(z− z0)
r

∑
�,m,n=1

pk,�(z)(g�(z),gm(z0))H pm,n(z0)(gn(z0), ·)H = 0, (A.28)

and therefore,

pk, j(z0)− pk, j(z)+ (z− z0)
r

∑
�,m=1

pk,�(z)(g�(z),gm(z0))H pm, j(z0) = 0, (A.29)

since {gk(z0)}r
k=1 are linearly independent. As a matrix equation, (A.29) reads

P(z)−P(z0)− (z− z0)P(z)
(
(g j(z),gk(z0))H

)
1� j,k�rP(z0) = 0. (A.30)

Multiplying (A.30) on the left (resp., right) by P(z)−1 (resp., P(z0)−1 ) yields

P(z)−1 = P(z0)−1− (z− z0)
(
(g j(z),gk(z0))H

)
1� j,k�r. (A.31)

More generally, one can show that

−P(z)−1 = −P(z′)−1 +(z− z′)
(
(g j(z),gk(z′))H

)
1� j,k�r, z,z′ ∈ ρ(A1)∩ρ(A2).

(A.32)
In summary, one has the following result:
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THEOREM A.1. Suppose that A is a densely defined, symmetric operator in H
with finite deficiency indices (m,m) . Let A1 and A2 denote two self-adjoint extensions
of A, relatively prime with respect to their maximal common part A0 . For a fixed
z0 ∈ ρ(A1)∩ρ(A2) , let

{gk(z0)}r
k=1 (A.33)

be a fixed basis for ker(A∗
0 − z0IH ) ( 0 � r � m ) , and define

Uz,z0 = (A1− z0IH )(A1− zIH )−1, z ∈ ρ(A1). (A.34)

Then the following hold:
(i) {gk(z)}r

k=1 defined by

gk(z) = Uz,z0gk(z0) = gk(z0)+ (z− z0)(A1 − zIH )−1gk(z0),
z ∈ ρ(A1), k = 1, . . . ,r,

(A.35)

forms a basis for ker(A∗
0 − zIH ) .

(ii) {gk(z)}r
k=1 and {gk(z′)}r

k=1 for z,z′ ∈ ρ(A1) are related by (A.21).
(iii) For each z ∈ ρ(A1)∩ ρ(A2) , there is a unique, nonsingular, r× r Nevanlinna–
Herglotz matrix P(·) =

(
p j,k(·)

)
1� j,k�r , depending on the choice of basis (A.33), such

that

(A2 − zIH )−1 = (A1− zIH )−1−
r

∑
j,k=1

p j,k(z)(gk(z), ·)H g j(z). (A.36)

In particular, P(·) is analytic on the open complex half-plane, C+ , and

Im
(−P(z)−1) = Im(z)

(
(g j(z),gk(z))H

)
1� j,k�r > 0, z ∈ C+. (A.37)

(iv) P(z) and P(z′) for z,z′ ∈ ρ(A1)∩ρ(A2) are related by (A.32).
(v) If {ĝk(z0)}r

k=1 is any other basis for ker(A∗
0 − z0IH ) and P̂(z) =

(
p̂ j,k(z)

)
1� j,k�r

is the corresponding unique, r× r matrix-valued function such that

(A2 − zIH )−1 = (A1− zIH )−1−
r

∑
j,k=1

p̂ j,k(z)(ĝk(z), ·)H ĝ j(z), z ∈ ρ(A1)∩ρ(A2),

(A.38)
then

P̂(z) =
(
T−1)�P(z)

(
(T−1)�

)∗
, (A.39)

where T is the r × r transition matrix corresponding to the change of basis from
{gk(z0)}r

k=1 to {ĝk(z0)}r
k=1 .

Proof. Choosing z′ = z , z∈C+ , in (A.32) immediately proves the equality part in
(A.37). Since in general,

(
(g j,gk)H

)
1� j,k�N represents the positive definite Gramian

(cf., e.g., [43, p. 109, 297]) of the system of linearly independent elements g j ∈ H ,
1 � j � N , for arbitrary N ∈ N , this yields the positive definiteness part in (A.37).
In particular, −P(·)−1 , and hence P(·) , possesses the Nevanlinna–Herglotz property
claimed in item (iii) .
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To prove the uniqueness part of item (iii) , suppose that in addition to the repre-
sentation (A.38), one has the representation

(A2 − zIH )−1 = (A1− zIH )−1−
r

∑
j,k=1

p̃ j,k(z)(gk(z), ·)H g j(z). (A.40)

Then it follows that

r

∑
j,k=1

(
p̃ j,k(z)− p j,k(z)

)
(gk(z), f )H g j(z) = 0, f ∈ H , (A.41)

and since the vectors {g j(z)}r
j=1 are linearly independent,

r

∑
k=1

(
p̃ j,k(z)− p j,k(z)

)
(gk(z), f )H = 0, f ∈ H , j = 1, . . . ,r. (A.42)

Therefore,
r

∑
k=1

(
p̃ j,k(z)− p j,k(z)

)
gk(z) = 0, j = 1, . . . ,r, (A.43)

and linear independence of {g j(z)}r
j=1 yields

p̃ j,k(z)− p j,k(z) = 0, j,k = 1, . . . ,r. (A.44)

Next we prove the uniqueness claim in item (v) : Suppose that, in addition to
{gk(z0)}r

k=1 , {ĝk(z0)}r
k=1 is also a basis for ker(A∗

0− z0IH ) . Then

(A2− zIH )−1 = (A1 − zIH )−1 −
r

∑
j,k=1

p j,k(z)(gk(z), ·)H g j(z), (A.45)

(A2− zIH )−1 = (A1 − zIH )−1 −
r

∑
j,k=1

p̂ j,k(z)(ĝk(z), ·)H ĝ j(z), (A.46)

z ∈ ρ(A1)∩ρ(A2),

with

gk(z) = Uz,z0gk(z0), ĝk(z) = Uz,z0 ĝk(z0), k = 1, . . . ,r; z ∈ ρ(A1). (A.47)

Let T ∈Cr×r denote the nonsingular transition matrix corresponding to the change
of basis from {gk(z0)}r

k=1 to {ĝk(z0)}r
k=1 so that

ĝk(z0) =
r

∑
j=1

Tk, jg j(z0), gk(z0) =
r

∑
j=1

(T−1)k, j ĝ j(z0), k = 1, . . . ,r. (A.48)

From (A.47)–(A.48) one obtains the relations

ĝk(z) =
r

∑
j=1

Tk, jg j(z), gk(z) =
r

∑
j=1

(T−1)k, j ĝ j(z), k = 1, . . . ,r; z ∈ ρ(A1). (A.49)
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One observes that by (A.49),

r

∑
j,k=1

p j,k(gk(z), ·)H gk(z) =
r

∑
j,k=1

p j,k(z)
( r

∑
�=1

(T−1)k,�ĝ�(z), ·
)

H

r

∑
m=1

(T−1) j,mĝ(z)

=
r

∑
j,k=1

r

∑
�=1

r

∑
m=1

p j,k(z)(T−1)k,�(T−1) j,m(ĝ�(z), ·)H ĝm(z), z ∈ ρ(A1)∩ρ(A2).

(A.50)

Using(
((T−1)�)∗

)
j,k = (T−1) j,k and

(
(T−1)�

)
j,k = (T−1)k, j, 1 � j,k � r, (A.51)

one has (
(T−1)�P(z)((T−1)�)∗

)
m,�

=
r

∑
j,k=1

(
(T−1)�

)
m, j p j,k(z)

(
((T−1)�)∗

)
k,�

=
r

∑
j,k=1

(T−1) j,mp j,k(z)(T−1)k,�, z ∈ ρ(A1)∩ρ(A2). (A.52)

By (A.50) and (A.52),

r

∑
j,k=1

p j,k(z)(gk(z), ·)H gk(z) =
r

∑
m,�=1

(
(T−1)�P(z)((T−1)�)∗

)
m,�

(ĝ�(z), ·)H ĝm(z),

z ∈ ρ(A1)∩ρ(A2). (A.53)

Therefore, we have the following two representations:

(A2 − zIH )−1 = (A1− zIH )−1−
r

∑
j,k=1

p̂ j,k(z)(ĝk(z), ·)H ĝ j(z), (A.54)

(A2 − zIH )−1 = (A1− zIH )−1−
r

∑
j,k=1

(
(T−1)�P(z)((T−1)�)∗

)
j,k(ĝk(z), ·)H ĝ j(z),

z ∈ ρ(A1)∩ρ(A2), (A.55)

and hence,
P̂(z) = (T−1)�P(z)((T−1)�)∗, z ∈ ρ(A1)∩ρ(A2). (A.56)

�
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