C^{*}-ALGEBRAS GENERATED BY THREE PROJECTIONS

Shanwen Hu and Yifeng Xue

(Communicated by B. Magajna)

Abstract

In this short note, we prove that for a C^{*}-algebra \mathscr{A} generated by n elements, $\mathrm{M}_{k}(\tilde{\mathscr{A}})$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections for any $k \geqslant \delta(n)=\min \{k \in \mathbb{N} \mid(k-1)(k-2) \geqslant 2 n\}$. Then combining this result with recent works of Nagisa, Thiel and Winter on the generators of C^{*}-algebras, we show that for a C^{*}-algebra \mathscr{A} generated by finite number of elements, there is $d \geqslant 3$ such that $\mathrm{M}_{d}(\tilde{A})$ is generated by three mutually unitarily equivalent and almost mutually orthogonal projections. Furthermore, for certain separable purely infinite simple unital C^{*}-algebras and $A F$-algebras, we give some conditions that make them be generated by three mutually unitarily equivalent and almost mutually orthogonal projections.

1. Introduction

Let H be a separable complex Hilbert space with $\operatorname{dim} H=\infty$. Let P and Q be two (orthogonal) projections on H. Put $M=P H$ and $N=Q H$. Due to Halmos [5], P and Q are in generic position if

$$
M \cap N=\{0\}, M \cap N^{\perp}=\{0\}, M^{\perp} \cap N=\{0\}, M^{\perp} \cap N^{\perp}=\{0\}
$$

Then the unital C^{*}-algebra generated by two projections P and Q, which are in generic position, is $*$-isomorphic to $\left\{f \in \mathrm{M}_{2}\left(C\left(\sigma\left((P-Q)^{2}\right)\right) \mid f(0), f(1)\right.\right.$ are diagonal $\}$ (cf. [18, Theorem 1.1]). Furthermore, by [13, Theorem 1.3], the the universal C^{*}-algebra $C^{*}(p, q)$ generated by two projections p and q is $*$-isomorphic to the C^{*}-algebra

$$
\left\{f \in M_{2}(C([0,1])) \mid f(0), f(1) \text { are diagonal }\right\}
$$

which is of Type I. But in the general case of the C^{*}-algebra generated by a finite set of orthogonal projections (at least three projections), the situation becomes unpredictable. For example, Davis showed in [4] that there exist three projections P_{1}, P_{2} and P_{3} on H such that the von Neumann algebra $W^{*}\left(P_{1}, P_{2}, P_{3}\right)$ generated by P_{1}, P_{2} and P_{3} coincides with $B(H)$ of all bounded linear operators acting on H. Furthermore, Sunder proved in [16] that for each $n \geqslant 3$, there exist n projections P_{1}, \cdots, P_{n} on H such that the von Neumann algebra $W^{*}\left(P_{1}, \cdots, P_{n}\right)$ generated by P_{1}, \cdots, P_{n} is $B(H)$ and $W^{*}(\mathscr{M}) \varsubsetneqq B(H)$, whenever $\mathscr{M} \varsubsetneqq\left\{P_{1}, \cdots, P_{n}\right\}$, where $W^{*}(\mathscr{M})$ is the von Neumann algebra generated by all elements in \mathscr{M}.

[^0]Therefore investigating the C^{*}-algebra generated by $n(n \geqslant 3)$ projections is an interesting topic. Shulman studied the universal C^{*}-algebras generated by n projections p_{1}, \cdots, p_{n} subject to the relation $p_{1}+\cdots+p_{n}=\lambda 1, \lambda \in \mathbb{R}$ in [15]. She gave some conditions to make these C^{*}-algebras type I, nuclear or exact and proved that among these C^{*}-algebras, there is a continuum of mutually non-isomorphic ones. Meanwhile, Vasilevski considered the problem in [18] that given finite set of (orthogonal) projections P, Q_{1}, \cdots, Q_{n} on H with the conditions

$$
\begin{gather*}
Q_{j} Q_{k}=\delta_{j, k} Q_{k}, \quad j, k=1, \cdots, n, \quad Q_{1}+\cdots+Q_{n}=I, \tag{1}\\
P H \cap\left(Q_{k} H\right)^{\perp}=\{0\}, \quad Q_{k} H \cap(P H)^{\perp}=\{0\}, \quad k=1, \cdots, n . \tag{2}
\end{gather*}
$$

Then what is the C^{*}-algebra $C^{*}\left(Q, P_{1}, \cdots, P_{n}\right)$ generated Q, P_{1}, \cdots, P_{n} ? One of interesting results concerning this problem is Corollary 4.5 of [18], which can be described as follows.

Let \mathscr{A} be a finitely generated $C *$-algebra with identity in $B(H)$ and let n_{0} be a minimal number of self-adjoint elements generating \mathscr{A}. Then for each $n>n_{0}$, there exist projections P, Q_{1}, \cdots, Q_{n} on H satisfying (1) and (2) such that $M_{n}(\mathscr{A})$ is *-isomorphic to $C^{*}\left(P, Q_{1}, \cdots, Q_{n}\right)$.

Inspired by above works, we study the problem: find least number of projections in the matrix algebra of a given finitely generated C^{*}-algebra such that these projections generates this C^{*}-algebra in this short note. The main results of the paper are the following:

Let $\mathscr{A}=C^{*}\left(a_{1}, \cdots, a_{n}\right)$ be the C^{*}-algebra generated by elements a_{1}, \cdots, a_{n}. Let $\tilde{\mathscr{A}}$ denote the C^{*}-algebra obtained by adding the unit 1 to \mathscr{A} (if \mathscr{A} is non-unital) and let $\mathrm{M}_{k}(\tilde{\mathscr{A}})$ denote the algebra of all $n \times n$ matrices with entries in $\tilde{\mathscr{A}}$. Then
(1) for any $k \geqslant \delta(n)=\min \{k \in \mathbb{N} \mid(k-1)(k-2) \geqslant 2 n\}, \mathrm{M}_{k}(\tilde{\mathscr{A}})$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections (see Theorem 2.3).
(2) for every $l \geqslant\{\sqrt{n-1}\}$ and $k \geqslant 3, \mathrm{M}_{k l}(\tilde{\mathscr{A}})$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections (see Proposition 3.4), where $\{x\}$ stands for the least natural number that is greater than or equal to the positive number x.

2. The main result

In this section, we will give our main result (1) mentioned in $\S 1$. Firstly, we have

Lemma 2.1. Let \mathscr{A} be a C^{*}-algebra with unit 1 and $B_{i j} \in \mathscr{A}$, for any $1 \leqslant i<$ $j \leqslant k$. Suppose that $\eta=\max \left\{\left\|B_{i j}\right\| \mid 1 \leqslant i<j \leqslant k\right\}<\frac{1}{2(k-1)}$, then

$$
T=\left[\begin{array}{cccc}
1 & B_{12} & \cdots & B_{1 k} \\
B_{12}^{*} & 1 & \cdots & B_{2 k} \\
\cdots & \cdots & \cdots & \cdots \\
B_{1 k}^{*} & B_{2 k}^{*} & \cdots & 1
\end{array}\right]
$$

is invertible and positive, and

$$
\left\|T-1_{k}\right\| \leqslant(k-1) \eta, \quad\left\|T^{-1 / 2}-1_{k}\right\| \leqslant 2(k-1) \eta
$$

where 1_{k} is the unit of $\mathrm{M}_{k}(\mathscr{A})$.

Proof. By the definition of the norm of $\mathrm{M}_{k}(\tilde{\mathscr{A}}),\|A\|=\left\|\left[\pi\left(A_{i j}\right)\right]_{k \times k}\right\|$, for $A=$ $\left[A_{i j}\right]_{k \times k} \in \mathrm{M}_{k}(\tilde{\mathscr{A}})$, where π is any faithful representation of $\tilde{\mathscr{A}}$ on a Hilbert space K (see [10]), we may assume that $\tilde{\mathscr{A}} \subset B(K)$ and the identity operator on K is the unit of $\tilde{\mathscr{A}}$. So $T \in B\left(K_{k}\right)$, where $K_{k}=\underbrace{K \oplus \cdots \oplus K}_{k}$.

For any $\lambda<1-(k-1) \eta$, set

$$
A=\left[\begin{array}{cccc}
1-\lambda & -\left\|B_{12}\right\| & \cdots & -\left\|B_{1 k}\right\| \\
-\left\|B_{12}\right\| & 1-\lambda & \cdots & -\left\|B_{2 k}\right\| \\
\vdots & & & \\
-\left\|B_{1 k}\right\| & -\left\|B_{2 k}\right\| & \cdots & 1-\lambda
\end{array}\right]
$$

Since for any $i, \sum_{i \neq j}\left\|B_{i j}\right\|<1-\lambda$, it follows from Levy-Dedplanques Theorem in Matrix Analysis (see [7]) that A is positive and invertible. So the quadratic form

$$
f\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum_{i=1}^{k} x_{i}^{2}-2 \sum_{1 \leqslant i<j \leqslant k}\left\|B_{i j}\right\| x_{i} x_{j}
$$

is positive definite and consequently, there exits $\delta>0$ such that for any $\left(x_{1}, \cdots, x_{k}\right) \in$ $\mathbb{R}^{n}, f\left(x_{1}, \cdots, x_{k}\right) \geqslant \delta\left(\sum_{i=1}^{k} x_{i}^{2}\right)$.

Now for any $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in K_{k}$, we have

$$
\begin{aligned}
\left\langle\left(T-\lambda 1_{k}\right) \xi, \xi\right\rangle & =\sum_{i=1}^{k}\left\|\xi_{i}\right\|^{2}+\sum_{1 \leqslant i<j \leqslant k}\left(\left\langle B_{i j} \xi_{i}, \xi_{j}\right\rangle+\left\langle B_{i j}^{*} \xi_{j}, \xi_{i}\right\rangle\right) \\
& \geqslant \sum_{i=1}^{k}\left\|\xi_{i}\right\|^{2}-2 \sum_{1 \leqslant i<j \leqslant k}\left\|B_{i j}\right\|\left\|\xi_{i}\right\|\left\|\xi_{j}\right\| \\
& =f\left(\left\|\xi_{1}\right\|, \cdots,\left\|\xi_{k}\right\|\right) \geqslant \delta\left(\sum_{i=1}^{k}\left\|\xi_{i}\right\|^{2}\right)
\end{aligned}
$$

by above argument. Thus, $T-\lambda 1_{k}$ is invertible. Similarly, for any $\lambda>1+(k-1) \eta$, $T-\lambda 1_{k}$ is also invertible.

Let $\sigma(T)$ denote the spectrum of T. Then we have

$$
\sigma(T) \subset[1-(k-1) \eta, 1+(k-1) \eta] \subset(0,2)
$$

This indicates that T is positive and invertible. Finally, by the Spectrum Mapping Theorem, $\sigma\left(1_{k}-T\right) \subset[-(k-1) \eta,(k-1) \eta]$ and

$$
\begin{aligned}
\sigma\left(1_{k}-T^{-1 / 2}\right) & \subset\left[1-(1-(k-1) \eta)^{-1 / 2}, 1-(1+(k-1) \eta)^{-1 / 2}\right] \\
& \subset[-2(k-1) \eta, 2(k-1) \eta]
\end{aligned}
$$

So $\left\|T-1_{k}\right\| \leqslant(k-1) \eta$ and $\left\|T^{-1 / 2}-1_{k}\right\| \leqslant 2(k-1) \eta$.
DEFINITION 2.2. We say that a unital C^{*}-algebra \mathscr{E} is generated by $n(n \geqslant 2)$ mutually unitarily equivalent and almost mutually orthogonal projections if for any given $\varepsilon>0$, there exist projections p_{1}, \cdots, p_{n} in \mathscr{E} satisfying following conditions:
(1) $p_{1}+\cdots+p_{n}$ is invertible in \mathscr{E},
(2) $C^{*}\left(p_{1}, \cdots, p_{n}\right)=\mathscr{E}$ and
(3) for any $i \neq j, p_{i}$ is unitarily equivalent to p_{j} in \mathscr{E} and $\left\|p_{i} p_{j}\right\|<\varepsilon$.

Now we present one of our main results as follows.
THEOREM 2.3. Suppose that the C^{*}-algebra \mathscr{A} is generated n elements a_{1}, \cdots, a_{n}. Then for each $k \geqslant \delta(n)=\min \{k \in \mathbb{N} \mid(k-1)(k-2) \geqslant 2 n\}, \mathrm{M}_{k}(\tilde{\mathscr{A}})$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections.

Proof. We assume that \mathscr{A} is non-unital. If \mathscr{A} is unital, $\tilde{\mathscr{A}}=\mathscr{A}$. Without loss generality, we may assume that $\left\|a_{i}\right\|=1, i=1, \cdots, n$. Furthermore, we can assume $n=\frac{(k-1)(k-2)}{2}$. Otherwise, for any $n<i \leqslant \frac{(k-1)(k-2)}{2}$, put $a_{i}=1$, where 1 is the unit of $\tilde{\mathscr{A}}$.

Rewrite $\left\{a_{1}, \cdots, a_{n}\right\}=\left\{B_{i j}: 1 \leqslant i<j \leqslant k-2\right\}$ (for $\delta(n) \geqslant 3$) and define

$$
T_{\varepsilon}=\left[\begin{array}{ccccc}
1 & \varepsilon B_{12} & \cdots & \varepsilon B_{1, k-1} & \varepsilon 1 \\
\varepsilon B_{12}^{*} & 1 & \cdots & \varepsilon B_{2, k-1} & \varepsilon 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\varepsilon B_{1, k-1}^{*} & \varepsilon B_{2, k-1}^{*} & \cdots & 1 & \varepsilon 1 \\
\varepsilon 1 & \varepsilon 1 & \cdots & \varepsilon 1 & 1
\end{array}\right], \quad \forall \varepsilon \in(0,1 / 8(k-1))
$$

Using the canonical matrix units $\left\{e_{i j}\right\}$ for $\mathrm{M}_{k}(\mathbb{C})$, we have

$$
T_{\varepsilon}=\sum_{i=1}^{k}\left(1 \otimes e_{i i}\right)+\sum_{i=1}^{k-1}\left(\varepsilon 1 \otimes e_{i, k}+\varepsilon 1 \otimes e_{k, i}\right)+\sum_{1 \leqslant i<j \leqslant k-1}\left(\varepsilon B_{i j} \otimes e_{i j}+\varepsilon B_{i j}^{*} \otimes e_{j i}\right) .
$$

By Lemma 2.1, T_{ε} is positive and invertible with $\left\|1_{k}-T_{\mathcal{\varepsilon}}\right\| \leqslant(k-1) \varepsilon$ and $\| 1_{k}-$ $T_{\varepsilon}^{-1 / 2} \| \leqslant 2(k-1) \varepsilon$.

Define $p_{i}(\varepsilon)=T_{\varepsilon}^{1 / 2}\left(1 \otimes e_{i i}\right) T_{\varepsilon}^{1 / 2}, i=1, \cdots, k$. It is easy to verify that $p_{i}(\varepsilon)$ is a projection and $C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right) \subset \mathrm{M}_{k}(\tilde{\mathscr{A}})$. In the following, we will show $\mathrm{M}_{k}(\tilde{\mathscr{A}}) \subset C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$.

For all $1 \leqslant i \leqslant k, p_{i}(\varepsilon) \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$ implies $T_{\varepsilon}=\sum_{i=1}^{k} p_{i}(\varepsilon)$ is contained in $C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$. Then $T_{\varepsilon}^{-1 / 2} \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$ by Gelfand's Theorem (cf. [19, Theorem 1.5.10]), which implies that for any $1 \leqslant i \leqslant k$,

$$
1 \otimes e_{i i}=T_{\varepsilon}^{-1 / 2} p_{i}(\varepsilon) T_{\varepsilon}^{-1 / 2} \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)
$$

It follows that for any $1 \leqslant i<j \leqslant k-1$,

$$
B_{i j} \otimes e_{i j}=\left(1 \otimes e_{i i}\right) T_{\varepsilon}\left(1 \otimes e_{j j}\right) \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)
$$

and for any $1 \leqslant i \leqslant k-1$,

$$
1 \otimes e_{i k}=\left(1 \otimes e_{i i}\right) T_{\varepsilon}\left(1 \otimes e_{k k}\right) \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)
$$

So $1 \otimes e_{k i}=\left(1 \otimes e_{i k}\right)^{*} \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$ and hence, for any $1 \leqslant i<j \leqslant k-1$,

$$
1 \otimes e_{i j}=\left(1 \otimes e_{i i}\right)\left(1 \otimes e_{i k}\right)\left(1 \otimes e_{k j}\right) \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)
$$

and $1 \otimes e_{j i}=\left(1 \otimes e_{i j}\right)^{*} \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$. Consequently, for any $1 \leqslant i<j \leqslant k$ and $1 \leqslant m \leqslant k$,

$$
B_{i j} \otimes e_{m m}=\left(1 \otimes e_{m i}\right)\left(B_{i j} \otimes e_{i j}\right)\left(1 \otimes e_{j m}\right) \in C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)
$$

Since for $i=1, \cdots, k, \tilde{\mathscr{A}} \otimes e_{i i}$ is a C^{*}-algebra, we get for $1 \leqslant i \leqslant k, \tilde{\mathscr{A}} \otimes e_{i i} \subset$ $C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$ and for $1 \leqslant i, j \leqslant k$,

$$
\tilde{\mathscr{A}} \otimes e_{i j}=\left(\tilde{\mathscr{A}} \otimes e_{i i}\right)\left(1 \otimes e_{i j}\right) \subset C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)
$$

At last, we obtain that $\mathrm{M}_{k}(\tilde{\mathscr{A}}) \subset C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$.
Put $I_{i}=1 \otimes e_{i i}=T_{\varepsilon}^{-1 / 2} p_{i}(\varepsilon) T_{\varepsilon}^{-1 / 2}, i=1, \cdots, k$. Then $\left\{I_{1}, \cdots, I_{k}\right\}$ is a family of mutually equivalent and mutually orthogonal projections in $C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$. Now for $1 \leqslant i, j \leqslant k, i \neq j$,

$$
\begin{aligned}
\left\|p_{j}(\varepsilon)-I_{j}\right\| & \leqslant\left\|\left(1_{k}-T_{\varepsilon}^{-1 / 2}\right) p_{j}(\varepsilon)\right\|+\left\|p_{j}(\varepsilon) T_{\varepsilon}^{-1 / 2}\left(1_{k}-T_{\varepsilon}^{-1 / 2}\right)\right\|<8(k-1) \varepsilon<1 \\
\left\|p_{i}(\varepsilon) p_{j}(\varepsilon)\right\| & \leqslant\left\|p_{i}(\varepsilon)\left(p_{j}(\varepsilon)-I_{j}\right)\right\|+\left\|\left(p_{i}(\varepsilon)-I_{i}\right) I_{j}\right\|<16(k-1) \varepsilon .
\end{aligned}
$$

So $p_{j}(\varepsilon)$ is unitarily equivalent to I_{j} by Lemma 6.5 .9 of [19], then to $p_{i}(\varepsilon)$ and $p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)$ are almost mutually orthogonal in $C^{*}\left(p_{1}(\varepsilon), \cdots, p_{k}(\varepsilon)\right)$.

Example 2.4. (1) Since \mathbb{C} is generated by $\{1\}$, it follows from Theorem 2.3 that for any $k \geqslant 3, \mathbf{M}_{k}(\mathbb{C})$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections.
(2) Let \mathscr{B} be a separable unital C^{*}-algebra and \mathscr{K} be the C^{*}-algebra of compact operators on the separable complex Hilbert space H. Then $\mathscr{B} \otimes \mathscr{K}$ is generated by a single element (cf. [12, Theorem 8]). So $\mathrm{M}_{3}(\widetilde{\mathscr{B} \otimes \mathscr{K}})$ is generated by 3 mutually unitarily equivalent and almost mutually orthogonal projections.

REMARK 2.5. Suppose that the C^{*}-algebra \mathscr{E} with the unit $1_{\mathscr{E}}$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections. Then by Definition 2.2, there are projections p_{1}, \cdots, p_{k} such that $\sum_{i=1}^{k} p_{i}$ is invertible in $\mathscr{E}, p_{1}, \cdots, p_{k}$ are mutually unitarily equivalent in \mathscr{E} and $\left\|p_{i} p_{j}\right\|<1 / 2(k-1)$. Then by Corollary 3.8 of [6] and its proof, there exist mutually orthogonal projections $p_{1}^{\prime}, \cdots, p_{k}^{\prime}$ in \mathscr{E} such that $\left\|p_{i}-p_{i}^{\prime}\right\|<1$ and $\sum_{i=1}^{k} p_{i}^{\prime}=1_{\mathscr{E}}$. Consequently, p_{i} is unitarily equivalent to p_{i}^{\prime} in \mathscr{E} by $\left[19\right.$, Lemma 6.5.9 (2)] and so that p_{i}^{\prime} is unitarily equivalent to p_{j}^{\prime} in \mathscr{E}, $i, j=1, \cdots, k$.

Now we use the K-Theory of \mathscr{E} to describe above situations. The notations and properties of K-Theory of C^{*}-algebras can be found in references [10] and [19]. Let $\left[p_{i}\right]$ (resp. $\left[p_{i}^{\prime}\right]$) be the class of p_{i} (resp. $\left.\left[p_{i}^{\prime}\right]\right)$ in $K_{0}(\mathscr{E}), i=1, \cdots, k$. Then we have $\left[1_{\mathscr{E}}\right]=\left[\sum_{i=1}^{k} p_{i}^{\prime}\right]=\sum_{i=1}^{k}\left[p_{i}^{\prime}\right]=k\left[p_{1}\right]$.

3. Some applications

Let \mathscr{A} be a C^{*}-algebra and let M be a subset of $\mathscr{A}_{s a}$. We call M a generator of \mathscr{A} if \mathscr{A} is equal to the C^{*}-algebra $C^{*}(M)$ generated by elements in M. If M is finite, then we call \mathscr{A} finitely generated and we define the number of generators $\operatorname{gen}(A)$ by the minimum cardinality of M which generates \mathscr{A}. We denote $\operatorname{gen}(\mathscr{A})=\infty$ unless \mathscr{A} is finitely generated (cf. [11]). We call a C^{*}-algebra \mathscr{A} singly generated if $\operatorname{gen}(\mathscr{A}) \leqslant 2$. Indeed, if $\mathscr{A}=C^{*}(\{x, y\})$ for $x, y \in \mathscr{A}_{s a}$, then $C^{*}(x+i y)=\mathscr{A}$.

Lemma 3.1. [11, Theorem 3] Let \mathscr{A} be a unital C^{*}-algebra with gen $(\mathscr{A}) \leqslant$ $n^{2}+1(n \in \mathbb{N})$. Then we have $\operatorname{gen}\left(\mathrm{M}_{n}(\mathscr{A})\right) \leqslant 2$.

Similar to the definition of $\operatorname{gen}(\mathscr{A})$, we have following definition:
Definition 3.2. Let \mathscr{A} be a finitely generated unital C^{*}-algebra. We define the number $\operatorname{Pgen}(\mathscr{A})$ to be least integer $k \geqslant 2$ such that \mathscr{A} is generated by k mutually unitarily equivalent and almost mutually orthogonal projections.

If no such k exists, we set $\operatorname{Pgen}(\mathscr{A})=\infty$.
REMARK 3.3. (1) There is a finitely generated unital C^{*}-algebra \mathscr{A} such that $\operatorname{Pgen}(\mathscr{A})=2$. For example, take $\mathscr{A}=\mathrm{M}_{2}(\mathbb{C})$ and projections

$$
p_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad p_{2}=\left[\begin{array}{cc}
\varepsilon & \sqrt{\varepsilon(1-\varepsilon)} \\
\sqrt{\varepsilon(1-\varepsilon)} & 1-\varepsilon
\end{array}\right], \forall \varepsilon \in(0,1)
$$

Clearly, p_{1} and p_{2} are unitarily equivalent, $p_{1}+p_{2}$ is invertible and $\left\|p_{1} p_{2}\right\| \leqslant \varepsilon^{1 / 2}$. Moreover, it is easy to check that $C^{*}\left(p_{1}, p_{2}\right)=\mathscr{A}$. Thus, $\operatorname{Pgen}(\mathscr{A})=2$.
(2) If the unital C^{*}-algebra \mathscr{A} is infinite-dimensional and simple, then $\operatorname{Pgen}(\mathscr{A}) \geqslant$ 3. In fact, if \mathscr{A} is generated by two mutually unitarily equivalent and almost mutually
orthogonal projections p_{1} and p_{2}, then there is a $*$-homomorphism $\pi: C^{*}(p, q) \rightarrow \mathscr{A}$ such that $\pi(p)=p_{1}$ and $\pi(q)=p_{2}$. Thus, $\mathscr{A}=\pi\left(C^{*}(p, q)\right)$ and hence \mathscr{A} is of Type I. But it is impossible since \mathscr{A} is infinite-dimensional and simple.

Now we present main result (2) mentioned in the end of $\S 1$.
Proposition 3.4. Assume that the unital C^{*}-algebra \mathscr{A} is generated by n selfadjoint elements. Then for any $l \geqslant\{\sqrt{n-1}\}$ and $k \geqslant 3, \operatorname{Pgen}\left(\mathrm{M}_{k l}(\mathscr{A})\right) \leqslant k$.

Proof. Since $l \geqslant \sqrt{n-1}$ and $l^{2}+1 \geqslant n \geqslant \operatorname{gen}(\mathscr{A})$, it follow from Lemma 3.1 that $\mathrm{M}_{l}(\mathscr{A})$ is singly generated. In this case, $\delta(1)=3$. So for any $k \geqslant 3, \mathrm{M}_{k l}(\mathscr{A})=$ $\mathrm{M}_{k}\left(\mathrm{M}_{l}(\mathscr{A})\right)$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections Theorem 2.3.

Since simple $A F C^{*}$-algebra and the irrational rotation algebra are all singly generated by [11], we have by Proposition 3.4:

Corollary 3.5. If \mathscr{A} is a simple unital $A F C^{*}$-algebra or an irrational rotation algebra, then $\operatorname{Pgen}\left(\mathrm{M}_{3}(\mathscr{A})\right) \leqslant 3$.

Corollary 3.6. Let X be a compact metric space with $\operatorname{dim} X \leqslant m$. If X can be embedded into \mathbb{C}^{m}, then $\operatorname{Pgen}\left(\mathrm{M}_{3 k}(C(X))\right) \leqslant 3$, where $k=\{\sqrt{2 m-1}\}$. In general, Pgen $\left(\mathrm{M}_{3 s}(C(X))\right) \leqslant 3$, where $s=\{\sqrt{2 m}\}$.

Proof. By [11, Proposition 2],

$$
\operatorname{gen}(C(X))=\min \left\{m \in \mathbb{N} \mid \text { there is an embedding of } X \text { into } \mathbb{R}^{m}\right\}
$$

Therefore, if X can be embedded into \mathbb{C}^{m}, then $\operatorname{gen}(C(X)) \leqslant 2 m$ and in general, X can be embedded into $\mathbb{R}^{2 m+1}$ by [1, Theorem III.4.2]. In this case, $\operatorname{gen}(C(X)) \leqslant 2 m+1$.

So the assertions follow from Proposition 3.4.
Recall that a projection p in a C^{*}-algebra \mathscr{A} is infinite if there is a projection q in \mathscr{A} with $q<p$ such that p and q are equivalent (denoted by $p \sim q$) in the sense of Murray-von Neumann. \mathscr{A} is called to be purely infinite if the closure of $a \mathscr{A} a$ contains an infinite projection for every non-zero positive element a in \mathscr{A} (cf. [3]).

Proposition 3.7. Let \mathscr{A} be a separable purely infinite simple C^{*}-algebra with the unit $1_{\mathscr{A}}$. Suppose the class $\left[1_{\mathscr{A}}\right]$ in $K_{0}(\mathscr{A})$ has torsion. Let m be the order of $\left[1_{\mathscr{A}}\right]$. Then $3 \leqslant \operatorname{Pgen}(\mathscr{A}) \leqslant \min \{k \in \mathbb{N} \mid k \geqslant 3,(k, m)=1\}$.

In particular, when m has the form $m=3 n-1$ or $m=3 n-2$ for some $n \in \mathbb{N}$, $\operatorname{Pgen}(\mathscr{A})=3$.

Proof. According to Remark 3.3 (2), $\operatorname{Pgen}(\mathscr{A}) \geqslant 3$.
Since $(k, m)=1, s, t \in \mathbb{Z}$ such that $k s-m t=1$ (cf. [8]). Let $c=s+m l$ and $d=$ $t+k l$. Then $k c-m d=1, \forall l \in \mathbb{N}$. So we can choose $c, d \in \mathbb{N}$ such that $k c-m d=1$. Set $r=k c$.

Since $r \equiv 1 \bmod m$, it follows from [20, Lemma 1] that there exist isometries s_{1}, \cdots, s_{r} in \mathscr{A} such that

$$
\begin{equation*}
s_{i}^{*} s_{j}=0, \quad i \neq j, \quad i, j=1, \cdots, r \text { and } \sum_{i=1}^{r} s_{i} s_{i}^{*}=1_{\mathscr{A}} \tag{1}
\end{equation*}
$$

Define a linear map $\phi: \mathscr{A} \rightarrow \mathrm{M}_{k}(\mathscr{A})$ by $\phi(a)=\left[s_{i}^{*} a s_{j}\right]_{r \times r}$. It is easy to check that ϕ is a $*$-homomorphism and injective by using (1). Now let $A=\left[a_{i j}\right]_{r \times r} \in \mathrm{M}_{r}(\mathscr{A})$ and put $a=\sum_{i, j=1}^{r} s_{i} a_{i j} s_{j}^{*} \in \mathscr{A}$. Then $\phi(a)=A$ in terms of (1). Therefore, ϕ is a $*$-isomorphism and \mathscr{A} is $*$-isomorphic to $\mathrm{M}_{r}(\mathscr{A})$.

Now by Theorem 2.3 of [17], $\operatorname{gen}(\mathscr{A}) \leqslant 2$. Thus, by Proposition 3.4, for above $k \geqslant \delta(1)=3, c \geqslant 1, \mathrm{M}_{k c}(\mathscr{A})$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections and consequently, $\operatorname{Pgen}(\mathscr{A}) \leqslant k$.

When m has the form $m=3 n-1$ or $m=3 n-2$ for some $n \in \mathbb{N},(3, m)=1$. In this case, $\operatorname{Pgen}(\mathscr{A})=3$ by above argument.

Example 3.8. Let $\mathscr{O}_{n}(2 \leqslant n \leqslant+\infty)$ be the Cuntz algebra. \mathscr{O}_{n} is a separable purely infinite simple unital C^{*}-algebra with $K_{0}\left(\mathscr{O}_{n}\right) \cong \begin{cases}\mathbb{Z} /(n-1) \mathbb{Z}, & 2 \leqslant n<+\infty \\ \mathbb{Z}, & n=+\infty\end{cases}$ and the generator $\left[1_{\mathscr{O}_{n}}\right]$ (cf. [3]). Then we have
(1) $\operatorname{Pgen}\left(\mathscr{O}_{\infty}\right)=+\infty$ by Remark 2.5 .
(2) $\operatorname{Pgen}\left(\mathscr{O}_{n}\right)=3$ if $n=3 m$ or $n=3 m-1$ for some $m \in \mathbb{N}$ by Proposition 3.7.
(3) Pgen $\left(\mathscr{O}_{n}\right)=\min \{k \in \mathbb{N} \mid k \geqslant 3,(k, n-1)=1\}$. In fact, Proposition 3.7 shows that $\operatorname{Pgen}\left(\mathscr{O}_{n}\right) \leqslant \min \{k \in \mathbb{N} \mid k \geqslant 3,(k, n-1)=1\}$. Now, Pgen $\left(\mathscr{O}_{n}\right)=m$ implies that there is a projection $e \in \mathscr{O}_{n}$ such that $m[e]=1$ in $K_{0}\left(\mathscr{O}_{n}\right)$ by Remark 2.5. So there exists $s \in \mathbb{N}$ such that $[e]=s\left[1_{\mathscr{O}_{n}}\right]$. Then $m s-1 \equiv 0 \bmod (n-1)$ and hence $(m, n-1)=1$.
For example: Pgen $\left(\mathscr{O}_{4}\right)=4, \operatorname{Pgen}\left(\mathscr{O}_{13}\right)=5, \operatorname{Pgen}\left(\mathscr{O}_{211}\right)=11$, etc..
According to [2], a unital separable C^{*}-algebra \mathscr{A} with the unit $1_{\mathscr{A}}$ is approximately divisible if, for every $x_{1}, \cdots, x_{n} \in A$ and any $\varepsilon>0$, there is a finite-dimensional C^{*}-subalgebra \mathscr{B} with unit $1_{\mathscr{A}}$ of \mathscr{A} such that \mathscr{B} has no Abelian central projections and $\left\|x_{i} y-y x_{i}\right\|<\varepsilon\|y\|, \forall 1 \leqslant i \leqslant n$ and $y \in \mathscr{B}$.

Proposition 3.9. Suppose that two separable and unital C^{*}-algebras \mathscr{A} and \mathscr{B} satisfies following conditions:
(1) \mathscr{A} or \mathscr{B} is nuclear;
(2) there is an integer $k \geqslant 3$ and a unital C^{*}-algebra \mathscr{C} such that $\mathscr{B} \cong \mathrm{M}_{k}(\mathscr{C})$;;
(3) $\mathscr{A} \otimes \mathscr{B}$ is approximately divisible.

Then $\operatorname{Pgen}(\mathscr{A} \otimes \mathscr{B}) \leqslant k$. Furthermore, if $k \equiv 0 \bmod 3$, then $\operatorname{Pgen}(\mathscr{A} \otimes \mathscr{B}) \leqslant 3$.

Proof. If \mathscr{B} is nuclear, applying [10, Proposition 2.3.8] to $\mathrm{M}_{k}(\mathscr{C})$, we get that \mathscr{C} is also nuclear since \mathscr{C} is a hereditary C^{*}-subalgebra of $\mathrm{M}_{k}(\mathscr{C})$.

Now from $\mathscr{A} \otimes \mathscr{B} \cong \mathrm{M}_{k}(\mathscr{A} \otimes \mathscr{C})$, we get that $\mathscr{A} \otimes \mathscr{C}$ is approximately divisible by [2, Corollary 2.9]. Since every unital separable approximately divisible C^{*}-algebra is singly generated by [9, Theorem 3.1], we obtain that $\mathscr{A} \otimes \mathscr{B}$ is generated by k mutually unitarily equivalent and almost mutually orthogonal projections, by applying Proposition 3.4 to $\mathscr{A} \otimes \mathscr{C}$.

If $k=3 t$ for some $t \in \mathbb{N}$, then $\operatorname{Pgen}\left(\mathrm{M}_{3 t}(\mathscr{A} \otimes \mathscr{C})\right) \leqslant 3$ by Proposition 3.4. Thus, $\operatorname{Pgen}(\mathscr{A} \otimes \mathscr{B}) \leqslant 3$ for $\mathscr{A} \otimes \mathscr{B} \cong \mathrm{M}_{k}(\mathscr{A} \otimes \mathscr{C})$.

Which type of C^{*}-algebras satisfy Condition (2) and (3) of Proposition 3.9? For $A F$-algebras, we have the following:

Proposition 3.10. Let $\mathscr{A}=\overline{\bigcup_{n=1}^{\infty} \mathscr{A}_{n}}$ be a $A F$-algebra with unit $1_{\mathscr{A}}$, where \mathscr{A}_{n} is a finite-dimensional C^{*}-algebra with the unit $1_{\mathscr{A}}$ such that $\mathscr{A}_{m} \subset \mathscr{A}_{n}, \forall m \leqslant n$, $m, n=1,2, \cdots$. Assume that \mathscr{A} satisfies following conditions:
(1) no quotient of \mathscr{A} has an abelian projection, especially, \mathscr{A} is infinite dimensional simple;
(2) there is an integer $n \geqslant 3$ and an element a in $K_{0}(\mathscr{A})$ such that $n a=\left[1_{\mathscr{A}}\right]$ in $K_{0}(\mathscr{A})$.

If there is $k \geqslant 3$ such that $n \equiv 0 \bmod k$, then \mathscr{A} is generated by k mutually unitarily equivalent and almost mutually orthogonal projections.

Proof. By [10, Proposition 3.4.5], $a \in K_{0}(\mathscr{A})_{+}$(the positive cone of $K_{0}(\mathscr{A})$). So we can find a projection p in $\mathrm{M}_{s}\left(\mathscr{A}_{m}\right)$ for some $s, m \in \mathbb{N}$ such that $[p]=a$ in $K_{0}(\mathscr{A})$. Consequently, there are projections p_{1}, \cdots, p_{s} in \mathscr{A}_{m} such that p is unitarily equivalent to $\operatorname{diag}\left(p_{1}, \cdots, p_{s}\right)$ in $\mathrm{M}_{s}\left(\mathscr{A}_{m}\right)$. This indicates that

$$
\begin{equation*}
[\operatorname{diag}(\underbrace{p_{1}, \cdots, p_{1}}_{n}, \cdots, \underbrace{p_{s}, \cdots, p_{s}}_{n})]=\left[1_{\mathscr{A}}\right] \quad \text { in } K_{0}(\mathscr{A}) \tag{2}
\end{equation*}
$$

Since $\mathrm{M}_{t}(\mathscr{A})$ has the cancellation property of projections for all $t \in \mathbb{N}$, we have

$$
\begin{equation*}
\operatorname{diag}(\underbrace{p_{1}, \cdots, p_{1}}_{n}, \cdots, \underbrace{p_{s}, \cdots, p_{s}}_{n}) \sim \operatorname{diag}(11_{\mathscr{A}}, \underbrace{0, \cdots, 0}_{n s-1}) \quad \text { in } \mathrm{M}_{n s}(\mathscr{A}) \tag{3}
\end{equation*}
$$

by (2). Applying [10, Lemma 3.4.2] to (3), we can find mutually orthogonal projections $q_{1}, \cdots, q_{n s}$ in \mathscr{A} such that $q_{(i-1) s+1}, \cdots, q_{i s}$ are all unitarily equivalent to $p_{i}, 1 \leqslant i \leqslant n$ in \mathscr{A}.

Put $r_{i}=\sum_{j=1}^{s} q_{(i-1) s+j} \in \mathscr{A}, i=1, \cdots, n$. Then $r_{i} r_{j}=0, r_{i} \sim r_{j}$ and $\left[r_{i}\right]=[p]$ in $K_{0}(\mathscr{A}), i \neq j, i, j=1, \cdots, n$. So from $\left[r_{1}+\cdots+r_{s}\right]=\left[1_{\mathscr{A}}\right]$ in $K_{0}(\mathscr{A})$, we obtain $\sum_{i=1}^{s} r_{i}=1_{\mathscr{A}}$.

Let v_{i} be partial isometries in \mathscr{A} such that $v_{1}=r_{1}$ and $r_{1}=v_{i}^{*} v_{i}, r_{i}=v_{i} v_{i}^{*}$, $r_{i} v_{i}=v_{i} r_{1}$ when $2 \leqslant i \leqslant n$. Define a linear mapping $\psi: \mathscr{A} \rightarrow \mathrm{M}_{n}\left(r_{1} \mathscr{A} r_{1}\right)$ by $\psi(a)=$ $\left[v_{i}^{*} a v_{j}\right]_{n \times n}$. In terms of $v_{i}^{*} v_{j}=0, i \neq j, i, j=1, \cdots, n$ and $\sum_{i=1}^{n} v_{i} v_{i}^{*}=1_{\mathscr{A}}$, it is easy to check that ψ is a $*$-isomorphism, that is, \mathscr{A} satisfies Condition (2) of Proposition 3.9.

By [2, Proposition 4.1], Condition (1) implies that \mathscr{A} is approximately divisible. So the assertion follows from Proposition 3.9.

EXAMPLE 3.11. Let \mathscr{B} be a $U H F$-algebra. It is in one-one correspondence with a generalized integer, formal products $q=\prod_{j=1}^{\infty} p_{j}^{n_{j}}$ for some $\left\{n_{j}\right\}_{j=1}^{\infty} \subset \mathbb{Z}_{+} \cup\{+\infty\}$, where $\left\{p_{1}, p_{2}, \cdots\right\}$ is the set of all positive prime numbers listed in increasing order. According to $[14,7.4], K_{0}(\mathscr{B})$ is isomorphic to $\left\{\left.\frac{x}{y} \right\rvert\, x \in \mathbb{Z}, y \in \mathbb{N}, q \equiv 0 \bmod y\right\}=\mathbb{Z}_{(q)}$ with $\left[1_{\mathscr{B}}\right]$ in correspondence with 1 , where $q \equiv 0 \bmod y$ means that $y=\prod_{j=1}^{\infty} p_{j}^{m_{j}}$ for some $m_{j} \in \mathbb{Z}_{+}$with $m_{j} \leqslant n_{j}, j=1, \cdots, \infty$ and $m_{j}>0$ for only finitely many j.

Put $k=\min \{n \in \mathbb{N} \mid n \geqslant 3, q \equiv 0 \bmod n\}$. Clearly, there is $a \in K_{0}(\mathscr{B})$ such that $k a=\left[1_{\mathscr{A}}\right]$. Thus there is a unital C^{*}-algebra \mathscr{C} such that $\mathscr{B} \cong \mathrm{M}_{k}(\mathscr{C})$ (see the proof of Proposition 3.10). Since \mathscr{B} and $\mathscr{A} \otimes \mathscr{B}$ are all approximately divisible for any unital separable C^{*}-algebra \mathscr{A} by [2], it follows from Proposition 3.9 that \mathscr{B} and $\mathscr{A} \otimes \mathscr{B}$ are all generated by k mutually unitarily equivalent and almost mutually orthogonal projections, i.e., $\operatorname{Pgen}(\mathscr{B}) \leqslant k$ and $\operatorname{Pgen}(\mathscr{A} \otimes \mathscr{B}) \leqslant k$.

Moreover, we have $\operatorname{Pgen}(\mathscr{B})=\min \{n \in \mathbb{N} \mid n \geqslant 3, q \equiv 0 \bmod n\}$. In fact, since \mathscr{B} is simple and infinite-dimensional, it follows from Remark 3.3 that $\operatorname{Pgen}(\mathscr{B}) \geqslant 3$. Let $m=\operatorname{Pgen}(\mathscr{B})$. Then there is a projection e in \mathscr{B} such that $m[e]=\left[1_{\mathscr{B}}\right]$. Thus, there are $x, y \in \mathbb{Z}_{+}$with $q \equiv 0 \bmod y$ such that $m \frac{x}{y}=1$ and consequently, $q \equiv 0 \bmod m$. So $\operatorname{Pgen}(\mathscr{B}) \geqslant \min \{n \in \mathbb{N} \mid n \geqslant 3, q \equiv 0 \bmod n\}$.

For example, if \mathscr{B} is a $U H F$ algebra of Type 2^{∞} or 3^{∞}, respectively, then $\operatorname{Pgen}(\mathscr{B})$ $=4$ or $\operatorname{Pgen}(\mathscr{B})=3$.

Finally, similar to Davis' result in [4] and Sunder' work in [16], We have

Proposition 3.12. Let H be a separable infinite dimensional Hilbert space. Then for any $k \geqslant 3$ there are k mutually unitarily equivalent and almost mutually orthogonal projections P_{1}, \cdots, P_{k} such that

$$
\mathscr{K} \subset C^{*}\left(P_{1}, \cdots, P_{k}\right) \subset W^{*}\left(P_{1}, \cdots, P_{k}\right)=B(H) .
$$

Proof. Take $H=l^{2}$ and let S be the unilateral shift on H. It's well-known that $\mathscr{K} \subset C^{*}(S) \subset W^{*}(S)=B(H)$ (cf. [10]). Then there are k mutually unitarily equivalent and almost mutually orthogonal projections Q_{1}, \cdots, Q_{k} in $\mathrm{M}_{k}\left(C^{*}(S)\right)$ such that $C^{*}\left(Q_{1}, \cdots, Q_{k}\right)=\mathrm{M}_{k}\left(C^{*}(S)\right)$ by Theorem 2.3.

Choose isometry operators S_{1}, \cdots, S_{k} on H such that $S_{i}^{*} S_{j}=0, i \neq j, i, j=$ $1, \cdots, k$ and $\sum_{i=1}^{k} S_{i} S_{i}^{*}=I$. Define a unitary operator $W: H \rightarrow \bigoplus_{i=1}^{k} H$ by $W x=\left(S_{1}^{*} x, \cdots, S_{k}^{*} x\right)$, $\forall x \in H$. Then $W^{*}\left(\mathrm{M}_{k}(\mathscr{K})\right) W=\mathscr{K}$ and $W^{*}\left(\mathrm{M}_{k}(B(H))\right) W=\mathscr{B}(H)$. Put $P_{i}=W^{*} Q_{i} W$, $i=1, \cdots, k$. Then P_{1}, \cdots, P_{k} are mutually unitarily equivalent and almost mutually orthogonal and $W^{*}\left(\mathrm{M}_{k}\left(C^{*}(S)\right)\right) W=C^{*}\left(P_{1}, \cdots, P_{k}\right)$. So from

$$
\mathrm{M}_{k}(\mathscr{K}) \subset C^{*}\left(Q_{1}, \cdots, Q_{k}\right) \subset W^{*}\left(Q_{1}, \cdots, Q_{k}\right)=\mathrm{M}_{k}(B(H)),
$$

we obtain the assertion.

Acknowledgement. The authors thank to Professor Huaxin Lin and the referee for their helpful comments and suggestions.

REFERENCES

[1] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland Mathematical Library, vol 48, North-Holland Publishing Co., Amsterdam, 1993.
[2] B. Blackadar, A. Kumjian and M. Rordam, Approximately Central matrix Units and the structure of non-commutative tori, K-Theory, $\mathbf{6}$ (1992), 267-284.
[3] J. Cuntz, K-Theory for certain C C^{*}-algebras, Ann. of Math., 113 (1981), 181-197.
[4] C. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc., 6 (1955), 970-972.
[5] P. Halmos, Two subspace, Trans. Amer. Math. Soc., 144 (1969), 381-389.
[6] S. Hu AND Y. XUE, Completeness of n-tuple of projections in C^{*}-algebras, Preprint, arXiv:1210.4670v1.
[7] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1986.
[8] K. Ireland and M. Rosen, A classical Introduction to Modern Number Theory (2nd), (GTM 84), Springer-Verlag, New York, 1990.
[9] W. Li and J. SHEN, A note on approximately divisible C^{*}-algebras, Preprint, arXiv:0804.0465.
[10] H. Lin, An intruduction to the classification of amenable C^{*}-algebras, World Scintific, 2001.
[11] M. NAGISA, Single generation and rank of C^{*}-algebras, Kosaki, Hideki (ed.), Operator algebras and applications, Proceedings of the US-Japan seminar held at Kyushu University, Fukuoka, Japan, June 7-11, 1999. Tokyo: Mathematical Society of Japan, Advanced Studies in Pure Mathematics 38, 135-143, 2004.
[12] C. L. Olsen and W. R. Zame, Some C^{*}-algebras with a single generator, Trans. Amer. Math. Soc., 215 (1976), 205-217.
[13] I. Raeburn and A. M. Sinclair, The C^{*}-algebra generated by two projections, Math. Scand., $\mathbf{6 5}$ (1989), 278-290.
[14] M. Rødam, F. Larsen and N. Laustsen, An introduction to K-theory for C^{*}-algebras, London Math. Soc. Student, Text, vol 49, Cambridge University Press, Cambridge 2000.
[15] T. Shulman, On universal C^{*}-algebras generated by n projections with scalar sum, Proc. Amer. Math. Soc., 137 (2009), 115-122.
[16] V. S. Sunder, N Subspaces, Canad. J. Math., 40 (1988), 38-54.
[17] H. Thiel and W. Winter, The generator problem for \mathscr{Z}-stable C^{*}-algebras, Preprint, arXiv: 1201.3879v1.
[18] N. L. VASILEVSKI, C^{*}-algebras generated by orthogonal projections and their applications, Integr. Equ. Oper. Theory, 31 (1998), 113-132.
[19] Y. F. Xue, Stable perturbations of operators and related topics, World Scientific, 2012.
[20] Y. F. Xue, The connected stable rank of the purely infinite simple C^{*}-algebras, Proc. Amer. Math. Soc., 127 (1999), 3671-3676.

Shanwen Hu
e-mail: swhu@math.ecnu.edu.cn
Yifeng Xue
e-mail: yfxue@math.ecnu.edu.cn
Department of mathematics and
Research Center for Operator Algebras
East China Normal University
Shanghai 200241, P. R. China

[^0]: Mathematics subject classification (2010): 46L35, 47D25.
 Keywords and phrases: Orthogonal projection, finitely generated C^{*}-algebra, purely infinite simple unital C^{*}-algebra.

 Project supported by Natural Science Foundation of China (no. 10771069).

