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C∗–ALGEBRAS GENERATED BY THREE PROJECTIONS

SHANWEN HU AND YIFENG XUE

(Communicated by B. Magajna)

Abstract. In this short note, we prove that for a C∗ –algebra A generated by n elements,
Mk( ˜A ) is generated by k mutually unitarily equivalent and almost mutually orthogonal pro-
jections for any k � δ (n) = min

{
k ∈ N |(k−1)(k−2) � 2n

}
. Then combining this result with

recent works of Nagisa, Thiel and Winter on the generators of C∗ –algebras, we show that for
a C∗ –algebra A generated by finite number of elements, there is d � 3 such that Md(Ã) is
generated by three mutually unitarily equivalent and almost mutually orthogonal projections.
Furthermore, for certain separable purely infinite simple unital C∗ –algebras and AF –algebras,
we give some conditions that make them be generated by three mutually unitarily equivalent and
almost mutually orthogonal projections.

1. Introduction

Let H be a separable complex Hilbert space with dimH = ∞ . Let P and Q be
two (orthogonal) projections on H . Put M = PH and N = QH . Due to Halmos [5], P
and Q are in generic position if

M∩N = {0}, M∩N⊥ = {0}, M⊥ ∩N = {0}, M⊥ ∩N⊥ = {0}.
Then the unital C∗ –algebra generated by two projections P and Q , which are in generic
position, is ∗–isomorphic to { f ∈ M2(C(σ((P−Q)2))| f (0), f (1) are diagonal} (cf.
[18, Theorem 1.1]). Furthermore, by [13, Theorem 1.3], the the universal C∗–algebra
C∗(p,q) generated by two projections p and q is ∗–isomorphic to the C∗–algebra

{ f ∈ M2(C([0,1])) | f (0), f (1) are diagonal}
which is of Type I. But in the general case of the C∗ –algebra generated by a finite set of
orthogonal projections (at least three projections), the situation becomes unpredictable.
For example, Davis showed in [4] that there exist three projections P1 , P2 and P3

on H such that the von Neumann algebra W ∗(P1,P2,P3) generated by P1 , P2 and P3

coincides with B(H) of all bounded linear operators acting on H . Furthermore, Sunder
proved in [16] that for each n � 3, there exist n projections P1, · · · ,Pn on H such
that the von Neumann algebra W ∗(P1, · · · ,Pn) generated by P1, · · · ,Pn is B(H) and
W ∗(M ) � B(H) , whenever M � {P1, · · · ,Pn} , where W ∗(M ) is the von Neumann
algebra generated by all elements in M .
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Therefore investigating the C∗–algebra generated by n (n � 3) projections is an
interesting topic. Shulman studied the universal C∗–algebras generated by n projec-
tions p1, · · · , pn subject to the relation p1 + · · ·+ pn = λ1, λ ∈ R in [15]. She gave
some conditions to make these C∗ –algebras type I, nuclear or exact and proved that
among these C∗–algebras, there is a continuum of mutually non–isomorphic ones.
Meanwhile, Vasilevski considered the problem in [18] that given finite set of (orthogo-
nal) projections P, Q1, · · · ,Qn on H with the conditions

QjQk = δ j,kQk, j,k = 1, · · · ,n, Q1 + · · ·+Qn = I, (1)

PH∩(QkH)⊥ = {0}, QkH ∩ (PH)⊥ = {0}, k = 1, · · · ,n. (2)

Then what is the C∗–algebra C∗(Q,P1, · · · ,Pn) generated Q,P1, · · · ,Pn ? One of inter-
esting results concerning this problem is Corollary 4.5 of [18], which can be described
as follows.

Let A be a finitely generated C∗–algebra with identity in B(H) and let n0 be
a minimal number of self–adjoint elements generating A . Then for each n > n0 ,
there exist projections P, Q1, · · · ,Qn on H satisfying (1) and (2) such that Mn(A ) is
∗–isomorphic to C∗(P,Q1, · · · ,Qn) .

Inspired by above works, we study the problem: find least number of projections in
the matrix algebra of a given finitely generated C∗–algebra such that these projections
generates this C∗–algebra in this short note. The main results of the paper are the
following:

Let A = C∗(a1, · · · ,an) be the C∗ –algebra generated by elements a1, · · · ,an . Let
˜A denote the C∗–algebra obtained by adding the unit 1 to A (if A is non–unital)

and let Mk( ˜A ) denote the algebra of all n×n matrices with entries in ˜A . Then
(1) for any k � δ (n) = min

{
k ∈ N |(k− 1)(k− 2) � 2n

}
, Mk( ˜A ) is generated

by k mutually unitarily equivalent and almost mutually orthogonal projections (see
Theorem 2.3).

(2) for every l � {√n−1} and k � 3, Mkl( ˜A ) is generated by k mutually unitar-
ily equivalent and almost mutually orthogonal projections (see Proposition 3.4), where
{x} stands for the least natural number that is greater than or equal to the positive
number x .

2. The main result

In this section, we will give our main result (1) mentioned in §1. Firstly, we have

LEMMA 2.1. Let A be a C∗–algebra with unit 1 and Bi j ∈ A , for any 1 � i <
j � k . Suppose that η = max{‖Bi j‖|1 � i < j � k} < 1

2(k−1) , then

T =

⎡
⎢⎢⎣

1 B12 · · · B1k

B∗
12 1 · · · B2k

· · · · · · · · · · · ·
B∗

1k B∗
2k · · · 1

⎤
⎥⎥⎦
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is invertible and positive, and

‖T −1k‖ � (k−1)η , ‖T−1/2−1k‖ � 2(k−1)η ,

where 1k is the unit of Mk(A ) .

Proof. By the definition of the norm of Mk( ˜A ) , ‖A‖ = ‖[π(Ai j)]k×k‖ , for A =
[Ai j]k×k ∈ Mk( ˜A ) , where π is any faithful representation of ˜A on a Hilbert space K
(see [10]), we may assume that ˜A ⊂ B(K) and the identity operator on K is the unit of

˜A . So T ∈ B(Kk) , where Kk = K⊕·· ·⊕K︸ ︷︷ ︸
k

.

For any λ < 1− (k−1)η , set

A =

⎡
⎢⎢⎢⎣

1−λ −‖B12‖ · · · −‖B1k‖
−‖B12‖ 1−λ · · · −‖B2k‖

...
−‖B1k‖ −‖B2k‖ · · · 1−λ

⎤
⎥⎥⎥⎦ .

Since for any i , ∑
i
= j

‖Bi j‖ < 1− λ , it follows from Levy–Dedplanques Theorem in

Matrix Analysis (see [7]) that A is positive and invertible. So the quadratic form

f (x1,x2, · · · ,xk) =
k

∑
i=1

x2
i −2 ∑

1�i< j�k

‖Bi j‖xix j

is positive definite and consequently, there exits δ > 0 such that for any (x1, · · · ,xk) ∈
Rn , f (x1, · · · ,xk) � δ

( k
∑
i=1

x2
i

)
.

Now for any ξ = (ξ1, · · · ,ξn) ∈ Kk , we have

〈(T −λ1k)ξ ,ξ 〉 =
k

∑
i=1

‖ξi‖2 + ∑
1�i< j�k

(
〈Bi jξi,ξ j〉+ 〈B∗

i jξ j,ξi〉
)

�
k

∑
i=1

‖ξi‖2−2 ∑
1�i< j�k

‖Bi j‖‖ξi‖‖ξ j‖

= f (‖ξ1‖, · · · ,‖ξk‖) � δ (
k

∑
i=1

‖ξi‖2)

by above argument. Thus, T −λ1k is invertible. Similarly, for any λ > 1+(k−1)η ,
T −λ1k is also invertible.

Let σ(T ) denote the spectrum of T . Then we have

σ(T ) ⊂ [1− (k−1)η ,1+(k−1)η ]⊂ (0,2),
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This indicates that T is positive and invertible. Finally, by the Spectrum Mapping
Theorem, σ(1k −T ) ⊂ [−(k−1)η ,(k−1)η ] and

σ(1k −T−1/2) ⊂ [1− (1− (k−1)η)−1/2,1− (1+(k−1)η)−1/2]
⊂ [−2(k−1)η ,2(k−1)η ].

So ‖T −1k‖ � (k−1)η and ‖T−1/2−1k‖ � 2(k−1)η .

DEFINITION 2.2. We say that a unital C∗–algebra E is generated by n (n � 2)
mutually unitarily equivalent and almost mutually orthogonal projections if for any
given ε > 0, there exist projections p1, · · · , pn in E satisfying following conditions:

(1) p1 + · · ·+ pn is invertible in E ,

(2) C∗(p1, · · · , pn) = E and

(3) for any i 
= j , pi is unitarily equivalent to p j in E and ‖pip j‖ < ε .

Now we present one of our main results as follows.

THEOREM 2.3. Suppose that the C∗ –algebra A is generated n elements a1, · · · ,
an . Then for each k � δ (n) = min

{
k ∈ N |(k−1)(k−2) � 2n

}
, Mk( ˜A ) is generated

by k mutually unitarily equivalent and almost mutually orthogonal projections.

Proof. We assume that A is non–unital. If A is unital, ˜A = A . Without loss
generality, we may assume that ‖ai‖ = 1, i = 1, · · · ,n . Furthermore, we can assume

n = (k−1)(k−2)
2 . Otherwise, for any n < i � (k−1)(k−2)

2 , put ai = 1, where 1 is the unit
of ˜A .

Rewrite {a1, · · · ,an} = {Bi j : 1 � i < j � k−2} (for δ (n) � 3) and define

Tε =

⎡
⎢⎢⎢⎢⎣

1 εB12 · · · εB1,k−1 ε1
εB∗

12 1 · · · εB2,k−1 ε1
· · · · · · · · · · · · · · ·

εB∗
1,k−1 εB∗

2,k−1 · · · 1 ε1
ε1 ε1 · · · ε1 1

⎤
⎥⎥⎥⎥⎦ , ∀ε ∈ (0,1/8(k−1)).

Using the canonical matrix units {ei j} for Mk(C) , we have

Tε =
k

∑
i=1

(
1⊗ eii)+

k−1

∑
i=1

(ε1⊗ ei,k + ε1⊗ ek,i
)
+ ∑

1�i< j�k−1

(
εBi j ⊗ ei j + εB∗

i j ⊗ e ji
)
.

By Lemma 2.1, Tε is positive and invertible with ‖1k−Tε‖ � (k−1)ε and ‖1k −
T−1/2

ε ‖ � 2(k−1)ε .

Define pi(ε) = T 1/2
ε (1⊗ eii)T

1/2
ε , i = 1, · · · ,k . It is easy to verify that pi(ε)

is a projection and C∗(p1(ε), · · · , pk(ε)) ⊂ Mk( ˜A ) . In the following, we will show
Mk( ˜A ) ⊂C∗(p1(ε), · · · , pk(ε)) .
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For all 1 � i � k , pi(ε)∈C∗(p1(ε), · · · , pk(ε)) implies Tε =
k
∑
i=1

pi(ε) is contained

in C∗(p1(ε), · · · , pk(ε)) . Then T−1/2
ε ∈ C∗(p1(ε), · · · , pk(ε)) by Gelfand’s Theorem

(cf. [19, Theorem 1.5.10]), which implies that for any 1 � i � k ,

1⊗ eii = T−1/2
ε pi(ε)T−1/2

ε ∈C∗(p1(ε), · · · , pk(ε)).

It follows that for any 1 � i < j � k−1,

Bi j ⊗ ei j = (1⊗ eii)Tε (1⊗ e j j) ∈C∗(p1(ε), · · · , pk(ε))

and for any 1 � i � k−1,

1⊗ eik = (1⊗ eii)Tε (1⊗ ekk) ∈C∗(p1(ε), · · · , pk(ε)).

So 1⊗ eki = (1⊗ eik)∗ ∈C∗(p1(ε), · · · , pk(ε)) and hence, for any 1 � i < j � k−1,

1⊗ ei j = (1⊗ eii)(1⊗ eik)(1⊗ ek j) ∈C∗(p1(ε), · · · , pk(ε))

and 1⊗ e ji = (1⊗ ei j)∗ ∈ C∗(p1(ε), · · · , pk(ε)). Consequently, for any 1 � i < j � k
and 1 � m � k ,

Bi j ⊗ emm = (1⊗ emi)(Bi j ⊗ ei j)(1⊗ e jm) ∈C∗(p1(ε), · · · , pk(ε)).

Since for i = 1, · · · ,k , ˜A ⊗ eii is a C∗–algebra, we get for 1 � i � k , ˜A ⊗ eii ⊂
C∗(p1(ε), · · · , pk(ε)) and for 1 � i, j � k ,

˜A ⊗ ei j = ( ˜A ⊗ eii)(1⊗ ei j) ⊂C∗(p1(ε), · · · , pk(ε)).

At last, we obtain that Mk( ˜A ) ⊂C∗(p1(ε), · · · , pk(ε)) .
Put Ii = 1⊗ eii = T−1/2

ε pi(ε)T−1/2
ε , i = 1, · · · ,k . Then {I1, · · · , Ik} is a family of

mutually equivalent and mutually orthogonal projections in C∗(p1(ε), · · · , pk(ε)) . Now
for 1 � i, j � k , i 
= j ,

‖p j(ε)− I j‖ � ‖(1k −T−1/2
ε )p j(ε)‖+‖p j(ε)T−1/2

ε (1k −T−1/2
ε )‖ < 8(k−1)ε < 1

‖pi(ε)p j(ε)‖ � ‖pi(ε)(p j(ε)− I j)‖+‖(pi(ε)− Ii)I j‖ < 16(k−1)ε.

So p j(ε) is unitarily equivalent to I j by Lemma 6.5.9 of [19], then to pi(ε) and
p1(ε), · · · , pk(ε) are almost mutually orthogonal in C∗(p1(ε), · · · , pk(ε)) . �

EXAMPLE 2.4. (1) Since C is generated by {1} , it follows from Theorem 2.3
that for any k � 3, Mk(C) is generated by k mutually unitarily equivalent and almost
mutually orthogonal projections.

(2) Let B be a separable unital C∗–algebra and K be the C∗–algebra of compact
operators on the separable complex Hilbert space H . Then B⊗K is generated by a

single element (cf. [12, Theorem 8]). So M3(B̃⊗K ) is generated by 3 mutually
unitarily equivalent and almost mutually orthogonal projections.
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REMARK 2.5. Suppose that the C∗ –algebra E with the unit 1E is generated by k
mutually unitarily equivalent and almost mutually orthogonal projections. Then by Def-

inition 2.2, there are projections p1, · · · , pk such that
k
∑
i=1

pi is invertible in E , p1, · · · , pk

are mutually unitarily equivalent in E and ‖pip j‖ < 1/2(k− 1) . Then by Corollary
3.8 of [6] and its proof, there exist mutually orthogonal projections p′1, · · · , p′k in E

such that ‖pi − p′i‖ < 1 and
k
∑
i=1

p′i = 1E . Consequently, pi is unitarily equivalent to

p′i in E by [19, Lemma 6.5.9 (2)] and so that p′i is unitarily equivalent to p′j in E ,
i, j = 1, · · · ,k .

Now we use the K –Theory of E to describe above situations. The notations and
properties of K –Theory of C∗–algebras can be found in references [10] and [19]. Let
[pi] (resp. [p′i]) be the class of pi (resp. [p′i]) in K0(E ) , i = 1, · · · ,k . Then we have

[1E ] = [
k
∑
i=1

p′i] =
k
∑
i=1

[p′i] = k[p1] .

3. Some applications

Let A be a C∗–algebra and let M be a subset of Asa . We call M a generator of A
if A is equal to the C∗–algebra C∗(M) generated by elements in M . If M is finite, then
we call A finitely generated and we define the number of generators gen(A) by the
minimum cardinality of M which generates A . We denote gen(A ) = ∞ unless A is
finitely generated (cf. [11]). We call a C∗–algebra A singly generated if gen(A ) � 2.
Indeed, if A = C∗({x,y}) for x,y ∈ Asa , then C∗(x+ iy) = A .

LEMMA 3.1. [11, Theorem 3] Let A be a unital C∗–algebra with gen(A ) �
n2 +1 (n ∈ N) . Then we have gen(Mn(A )) � 2.

Similar to the definition of gen(A ) , we have following definition:

DEFINITION 3.2. Let A be a finitely generated unital C∗–algebra. We define the
number Pgen(A ) to be least integer k � 2 such that A is generated by k mutually
unitarily equivalent and almost mutually orthogonal projections.

If no such k exists, we set Pgen(A ) = ∞ .

REMARK 3.3. (1) There is a finitely generated unital C∗–algebra A such that
Pgen(A ) = 2. For example, take A = M2(C) and projections

p1 =
[
1 0
0 0

]
, p2 =

[
ε

√
ε(1− ε)√

ε(1− ε) 1− ε

]
, ∀ε ∈ (0,1).

Clearly, p1 and p2 are unitarily equivalent, p1 + p2 is invertible and ‖p1p2‖ � ε1/2 .
Moreover, it is easy to check that C∗(p1, p2) = A . Thus, Pgen(A ) = 2.

(2) If the unital C∗–algebra A is infinite–dimensional and simple, then Pgen(A )�
3. In fact, if A is generated by two mutually unitarily equivalent and almost mutually
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orthogonal projections p1 and p2 , then there is a ∗–homomorphism π : C∗(p,q)→A
such that π(p) = p1 and π(q) = p2 . Thus, A = π(C∗(p,q)) and hence A is of Type
I . But it is impossible since A is infinite–dimensional and simple.

Now we present main result (2) mentioned in the end of §1.

PROPOSITION 3.4. Assume that the unital C∗–algebra A is generated by n self–
adjoint elements. Then for any l � {√n−1} and k � 3 , Pgen(Mkl(A )) � k .

Proof. Since l �
√

n−1 and l2 + 1 � n � gen(A ) , it follow from Lemma 3.1
that Ml(A ) is singly generated. In this case, δ (1) = 3. So for any k � 3, Mkl(A ) =
Mk(Ml(A )) is generated by k mutually unitarily equivalent and almost mutually or-
thogonal projections Theorem 2.3. �

Since simple AF C∗–algebra and the irrational rotation algebra are all singly gen-
erated by [11], we have by Proposition 3.4:

COROLLARY 3.5. If A is a simple unital AF C∗–algebra or an irrational rota-
tion algebra, then Pgen(M3(A )) � 3 .

COROLLARY 3.6. Let X be a compact metric space with dimX � m. If X can be
embedded into Cm , then Pgen(M3k(C(X))) � 3 , where k = {√2m−1} . In general,
Pgen(M3s(C(X))) � 3 , where s = {√2m} .

Proof. By [11, Proposition 2],

gen(C(X)) = min{m ∈ N | there is an embedding of X into Rm}.
Therefore, if X can be embedded into Cm , then gen(C(X))� 2m and in general, X can
be embedded into R2m+1 by [1, Theorem III.4.2]. In this case, gen(C(X)) � 2m+1.

So the assertions follow from Proposition 3.4. �
Recall that a projection p in a C∗–algebra A is infinite if there is a projection q

in A with q < p such that p and q are equivalent (denoted by p ∼ q ) in the sense of
Murray–von Neumann. A is called to be purely infinite if the closure of aA a contains
an infinite projection for every non–zero positive element a in A (cf. [3]).

PROPOSITION 3.7. Let A be a separable purely infinite simple C∗–algebra with
the unit 1A . Suppose the class [1A ] in K0(A ) has torsion. Let m be the order of
[1A ] . Then 3 � Pgen(A ) � min{k ∈ N|k � 3,(k,m) = 1} .

In particular, when m has the form m = 3n− 1 or m = 3n− 2 for some n ∈ N ,
Pgen(A ) = 3 .

Proof. According to Remark 3.3 (2), Pgen(A ) � 3.
Since (k,m) = 1, s, t ∈ Z such that ks−mt = 1 (cf. [8]). Let c = s+ml and d =

t + kl . Then kc−md = 1, ∀ l ∈ N . So we can choose c, d ∈ N such that kc−md = 1.
Set r = kc .
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Since r ≡ 1 mod m , it follows from [20, Lemma 1] that there exist isometries
s1, · · · ,sr in A such that

s∗i s j = 0, i 
= j, i, j = 1, · · · ,r and
r

∑
i=1

sis
∗
i = 1A . (1)

Define a linear map φ : A →Mk(A ) by φ(a) = [s∗i as j]r×r . It is easy to check that φ is
a ∗–homomorphism and injective by using (1). Now let A = [ai j]r×r ∈Mr(A ) and put

a =
r
∑

i, j=1
siai js∗j ∈A . Then φ(a) = A in terms of (1). Therefore, φ is a ∗–isomorphism

and A is ∗–isomorphic to Mr(A ) .
Now by Theorem 2.3 of [17], gen(A ) � 2. Thus, by Proposition 3.4, for above

k � δ (1) = 3, c � 1, Mkc(A ) is generated by k mutually unitarily equivalent and
almost mutually orthogonal projections and consequently, Pgen(A ) � k .

When m has the form m = 3n−1 or m = 3n−2 for some n ∈ N , (3,m) = 1. In
this case, Pgen(A ) = 3 by above argument. �

EXAMPLE 3.8. Let On (2 � n � +∞) be the Cuntz algebra. On is a separable

purely infinite simple unital C∗–algebra with K0(On) ∼=
{

Z/(n−1)Z, 2 � n < +∞
Z, n = +∞

and the generator [1On ] (cf. [3]). Then we have

(1) Pgen(O∞) = +∞ by Remark 2.5.

(2) Pgen(On) = 3 if n = 3m or n = 3m−1 for some m ∈ N by Proposition 3.7.

(3) Pgen(On) = min{k ∈ N|k � 3, (k,n− 1) = 1} . In fact, Proposition 3.7 shows
that Pgen(On) � min{k∈N|k � 3, (k,n−1)= 1} . Now, Pgen(On) = m implies
that there is a projection e ∈ On such that m[e] = 1 in K0(On) by Remark 2.5.
So there exists s ∈ N such that [e] = s[1On ] . Then ms−1 ≡ 0 mod (n−1) and
hence (m,n−1) = 1.

For example: Pgen(O4) = 4, Pgen(O13) = 5, Pgen(O211) = 11, etc..

According to [2], a unital separable C∗ –algebra A with the unit 1A is approxi-
mately divisible if, for every x1, · · · ,xn ∈ A and any ε > 0, there is a finite–dimensional
C∗–subalgebra B with unit 1A of A such that B has no Abelian central projections
and ‖xiy− yxi‖ < ε‖y‖ , ∀1 � i � n and y ∈ B .

PROPOSITION 3.9. Suppose that two separable and unital C∗–algebras A and
B satisfies following conditions:

(1) A or B is nuclear ;

(2) there is an integer k � 3 and a unital C∗ –algebra C such that B ∼= Mk(C );

(3) A ⊗B is approximately divisible.

Then Pgen(A ⊗B) � k . Furthermore, if k ≡ 0 mod 3 , then Pgen(A ⊗B) � 3 .
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Proof. If B is nuclear, applying [10, Proposition 2.3.8] to Mk(C ) , we get that
C is also nuclear since C is a hereditary C∗–subalgebra of Mk(C ) .

Now from A ⊗B ∼= Mk(A ⊗C ) , we get that A ⊗C is approximately divisible
by [2, Corollary 2.9]. Since every unital separable approximately divisible C∗–algebra
is singly generated by [9, Theorem 3.1], we obtain that A ⊗B is generated by k
mutually unitarily equivalent and almost mutually orthogonal projections, by applying
Proposition 3.4 to A ⊗C .

If k = 3t for some t ∈ N , then Pgen(M3t(A ⊗C )) � 3 by Proposition 3.4. Thus,
Pgen(A ⊗B) � 3 for A ⊗B ∼= Mk(A ⊗C ) . �

Which type of C∗–algebras satisfy Condition (2) and (3) of Proposition 3.9? For
AF –algebras, we have the following:

PROPOSITION 3.10. Let A =
∞⋃

n=1
An be a AF –algebra with unit 1A , where An

is a finite–dimensional C∗–algebra with the unit 1A such that Am ⊂ An , ∀m � n,
m, n = 1,2, · · · . Assume that A satisfies following conditions:

(1) no quotient of A has an abelian projection, especially, A is infinite dimensional
simple ;

(2) there is an integer n � 3 and an element a in K0(A ) such that na = [1A ] in
K0(A ) .

If there is k � 3 such that n ≡ 0 mod k , then A is generated by k mutually unitarily
equivalent and almost mutually orthogonal projections.

Proof. By [10, Proposition 3.4.5], a ∈ K0(A )+ (the positive cone of K0(A )). So
we can find a projection p in Ms(Am) for some s, m ∈ N such that [p] = a in K0(A ) .
Consequently, there are projections p1, · · · , ps in Am such that p is unitarily equivalent
to diag(p1, · · · , ps) in Ms(Am) . This indicates that

[diag(p1, · · · , p1︸ ︷︷ ︸
n

, · · · , ps, · · · , ps︸ ︷︷ ︸
n

)] = [1A ] in K0(A ). (2)

Since Mt(A ) has the cancellation property of projections for all t ∈ N , we have

diag(p1, · · · , p1︸ ︷︷ ︸
n

, · · · , ps, · · · , ps︸ ︷︷ ︸
n

) ∼ diag(1A ,0, · · · ,0︸ ︷︷ ︸
ns−1

) in Mns(A ) (3)

by (2). Applying [10, Lemma 3.4.2] to (3), we can find mutually orthogonal projections
q1, · · · ,qns in A such that q(i−1)s+1, · · · ,qis are all unitarily equivalent to pi , 1 � i � n
in A .

Put ri =
s
∑
j=1

q(i−1)s+ j ∈ A , i = 1, · · · ,n . Then rir j = 0, ri ∼ r j and [ri] = [p] in

K0(A ) , i 
= j , i, j = 1, · · · ,n . So from [r1 + · · ·+ rs] = [1A ] in K0(A ) , we obtain
s
∑
i=1

ri = 1A .
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Let vi be partial isometries in A such that v1 = r1 and r1 = v∗i vi , ri = viv∗i ,
rivi = vir1 when 2 � i � n . Define a linear mapping ψ : A → Mn(r1A r1) by ψ(a) =

[v∗i av j]n×n . In terms of v∗i v j = 0, i 
= j , i, j = 1, · · · ,n and
n
∑
i=1

viv∗i = 1A , it is easy to

check that ψ is a ∗–isomorphism, that is, A satisfies Condition (2) of Proposition 3.9.
By [2, Proposition 4.1], Condition (1) implies that A is approximately divisible.

So the assertion follows from Proposition 3.9. �

EXAMPLE 3.11. Let B be a UHF –algebra. It is in one–one correspondencewith

a generalized integer, formal products q =
∞
∏
j=1

p
nj
j for some {n j}∞

j=1 ⊂ Z+ ∪{+∞} ,

where {p1, p2, · · ·} is the set of all positive prime numbers listed in increasing order.
According to [14, 7.4], K0(B) is isomorphic to

{
x
y |x∈ Z,y∈ N,q≡ 0 mod y

}
= Z(q)

with [1B] in correspondence with 1, where q ≡ 0 mod y means that y =
∞
∏
j=1

p
mj
j for

some mj ∈ Z+ with mj � n j , j = 1, · · · ,∞ and mj > 0 for only finitely many j .
Put k = min{n ∈ N|n � 3,q ≡ 0 mod n} . Clearly, there is a ∈ K0(B) such that

ka = [1A ] . Thus there is a unital C∗–algebra C such that B ∼= Mk(C ) (see the proof of
Proposition 3.10). Since B and A ⊗B are all approximately divisible for any unital
separable C∗–algebra A by [2], it follows from Proposition 3.9 that B and A ⊗B
are all generated by k mutually unitarily equivalent and almost mutually orthogonal
projections, i.e., Pgen(B) � k and Pgen(A ⊗B) � k .

Moreover, we have Pgen(B) = min{n∈N|n � 3,q≡ 0 mod n} . In fact, since B
is simple and infinite–dimensional, it follows from Remark 3.3 that Pgen(B) � 3. Let
m = Pgen(B) . Then there is a projection e in B such that m[e] = [1B] . Thus, there
are x, y ∈ Z+ with q ≡ 0 mod y such that m x

y = 1 and consequently, q ≡ 0 mod m .
So Pgen(B) � min{n ∈ N|n � 3,q ≡ 0 mod n} .

For example, if B is a UHF algebra of Type 2∞ or 3∞ , respectively, then Pgen(B)
= 4 or Pgen(B) = 3.

Finally, similar to Davis’ result in [4] and Sunder’ work in [16], We have

PROPOSITION 3.12. Let H be a separable infinite dimensional Hilbert space.
Then for any k � 3 there are k mutually unitarily equivalent and almost mutually
orthogonal projections P1, · · · ,Pk such that

K ⊂C∗(P1, · · · ,Pk) ⊂W ∗(P1, · · · ,Pk) = B(H).

Proof. Take H = l2 and let S be the unilateral shift on H . It’s well–known that
K ⊂ C∗(S) ⊂ W ∗(S) = B(H) (cf. [10]). Then there are k mutually unitarily equiv-
alent and almost mutually orthogonal projections Q1, · · · ,Qk in Mk(C∗(S)) such that
C∗(Q1, · · · ,Qk) = Mk(C∗(S)) by Theorem 2.3.
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Choose isometry operators S1, · · · ,Sk on H such that S∗i S j = 0, i 
= j , i, j =

1, · · · ,k and
k
∑
i=1

SiS∗i = I . Define a unitary operator W : H →
k⊕

i=1
H by Wx = (S∗1x, · · · ,S∗kx) ,

∀x∈H . Then W ∗(Mk(K ))W = K and W ∗(Mk(B(H)))W = B(H) . Put Pi =W ∗QiW ,
i = 1, · · · ,k . Then P1, · · · ,Pk are mutually unitarily equivalent and almost mutually or-
thogonal and W ∗(Mk(C∗(S)))W = C∗(P1, · · · ,Pk) . So from

Mk(K ) ⊂C∗(Q1, · · · ,Qk) ⊂W ∗(Q1, · · · ,Qk) = Mk(B(H)),

we obtain the assertion. �
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