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GENERATORS WITH A CLOSURE RELATION

FELIX L. SCHWENNINGER AND HANS ZWART

Abstract. Assume that a block operator of the form
(

A1
A2 0

)

, acting on the Banach space

X1 × X2 , generates a contraction C0 -semigroup. We show that the operator AS defined by

ASx = A1

( x
SA2x

)

with the natural domain generates a contraction semigroup on X1 . Here, S

is a boundedly invertible operator for which ε I−S−1 is dissipative for some ε > 0 . With this

result the existence and uniqueness of solutions of the heat equation can be derived from the

wave equation.

1. Introduction

The question whether an (unbounded) operator is the generator a C0 -semigroup

appears naturally for abstract differential equations in the discussion of well-posedness.

In this paper we relate the well-posedness of two abstract differential equations.

Starting with an abstract Cauchy problem (ACP) on the space X1 ×X2 ,

(

ẋ1

ẋ2

)

= Aext

(

x1

x2

)

, x(0) = x0, (ACP-1)

for an operator Aext of the form

Aext =

(

A1

A2 0

)

,
A1 : D(A1) ⊂ X1 ×X2 → X1,
A2 : D(A2) ⊂ X1 → X2,

(1.1)

we set ASx1 = A1

( x1
SA2x1

)

where S is a bounded operator, and define the ACP

ẋ = ASx, x(0) = x0 ∈ X1. (ACP-2)

The question is whether (ACP-2) is well-posed when (ACP-1) is assumed to be well-

posed.

The idea comes from port-based modeling, see e.g. [5, 8]. There, Aext defines a

structure relating the variables ( f1, f2)
T and (e1,e2)

T , by f = Aexte . Now, adding the

closure relation e2 = S f2 , where S maps from X2 to X2 , yields the structure AS , as

depicted in Figure 1. There, the operator S is seen as adding dissipation.

The form (1.1) appears in the context of port-Hamiltonian systems, see [3, 8], but

is applicable in wider settings, see [9]. Motivated by this, we will study well-posedness
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Figure 1: Interconnection structure

in terms of operators generating contraction semigroups. Hence, we want to know

whether the operator AS will generate a contraction C0 -semigroup if this holds for the

initial system of Aext . The case of X1 and X2 being Hilbert spaces has already been

solved and can be found in [3, 8, 9]. Our aim is to generalize the result, including the

conditions on S , to arbitrary Banach spaces.

A natural application is given by the heat equation for the space L1 . We conclude

existence and uniqueness of its solutions from the undamped wave equation. Motivated

by the example we give further results concerning the analyticity of the semigroup

generated by AS .

1.1. Semi-inner-products

In this section we collect some facts we are going to need.

The following notion was introduced by Lumer in 1961, see [6]. From now on, X

will be a Banach space.

DEFINITION 1. For a Banach space X , a mapping [·, ·] : X ×X → C is called

semi-inner-product, SIP, if for all x,y,z ∈ X and λ ∈ C

• [x + λ z,y] = [x,y]+ λ [z,y]

• [x,x] = ‖x‖2

• |[x,y]|2 6 [x,x][y,y]

(linearity in first component),

(positive definiteness),

(Cauchy-Schwarz inequality).

LEMMA 1. The following assertions hold

i. Every Banach space X has a SIP, i.e. X is a SIP space.

ii. For SIP spaces (X , [·, ·]X) , (Y, [·, ·]Y ) , the mapping defined by

[

(

x1

y1

)

,

(

x2

y2

)

]

X×Y
:= [x1,x2]X +[y1,y2]Y (1.2)

is a SIP for X ×Y equipped with the Euclidean norm
∥

∥

∥

∥

(

x

y

)∥

∥

∥

∥

X×Y

=
√

‖x‖2 +‖y‖2, x ∈ X ,y ∈ Y. (1.3)
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Proof. i. relies on the Hahn-Banach theorem, see [6]. For ii. one simply checks

the definition of a SIP. �

As an example, let us consider Lp spaces, see [1, page 90].

EXAMPLE 1. For the space Lp[0,1] , p > 1,

[ f ,g] =

∫ 1

0
f (s)g̃(s) ds, f ,g ∈ Lp[0,1],

where

g̃(s) :=

{

g(s)|g(s)|p−2‖g‖2−p
Lp , g(s) 6= 0

0 otherwise
,

defines a SIP.

DEFINITION 2. Let X be a Banach space. An operator A : D(A) ⊂ X → X is

called dissipative, if there exists a SIP, such that

ℜ[Ax,x] 6 0 ∀x ∈ D(A). (1.4)

In the literature the notion of dissipativity for general Banach spaces is often in-

troduced in a different way (see e.g. [1]). We remark that this definition is equivalent.

For instance, (1.4) implies that for all λ > 0, x ∈ X ,

λ‖x‖2 = λ ℜ[x,x] = ℜ[(λ I−A)x,x]+ ℜ[Ax,x] 6 ‖(λ I−A)x‖ · ‖x‖,
where we used (1.4) and Cauchy-Schwarz in the last inequality. The converse employs

the Banach-Alaoglu Theorem and can be found in Proposition II.3.23 in [1]. There,

(1.4) is formulated as

∀x ∈ D(A) ∃ j(x) ∈ J (x) :=
{

x′ ∈ X ′ : 〈x,x′〉 = ‖x′‖2 = ‖x‖2
}

such that

ℜ〈Ax, j(x)〉 6 0,

(where X ′ denotes the dual of X , 〈·, ·〉 the duality brackets). J (x) is called the

duality set of x . Note that any selection j : X → X ′ : x 7→ j(x) ∈ J (x) defines a SIP

[·, ·] = 〈·, j(·)〉 and, vice versa, every SIP [·, ·] yields a selection j(x) = [·,x] ∈ J (x)
for all x ∈ X .

The following theorem is a standard result in semigroup theory and can be found

in [1, Section II.3.b] or [7, Theorem 3.1] (in the latter dissipativity is defined via SIPs).

THEOREM 1.1. (Lumer-Phillips) For the linear operator A on the Banach space

X the following assertions are equivalent

i. A generates a contraction C0 -semigroup,

ii. A is densely defined, dissipative and there exists some λ > 0 such that

ran(λ I−A) = X . (1.5)

In this case A is dissipative w.r.t. any SIP on X , and (1.5) holds for every λ > 0 . If X

is reflexive, D(A) is automatically dense from the other assumptions in ii.
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2. Main result

THEOREM 2.1. Let A1 : D(A1) ⊂ X1 ×X2 → X1 and A2 : D(A2) ⊂ X1 → X2 be

operators such that

Aext :=

(

A1

A2 0

)

,

D(Aext) = {(x1,x2) ∈ X1 ×X2 : x1 ∈ D(A2)∧ (x1,x2) ∈ D(A1)}
generates a contraction C0 -semigroup on X1 ×X2 equipped with the Euclidean norm,

see (1.3). Let S ∈ B(X2) be a boundedly invertible satisfying

ℜ[x,Sx]2 > m2‖x‖2
2 ∀x ∈ X2, (2.1)

for some m2 > 0 and some SIP [·, .·]2 on X2 . Then

ASx = A1

(

x

SA2x

)

,

defined on D(AS) = {x ∈ X1 : (x,SA2x) ∈ D(Aext)} generates a contraction semigroup

on X1 provided that D(AS) is dense or that X1 is reflexive.

Proof. By the Lumer-Phillips Theorem, the proof consists of two steps. First we

show that AS is dissipative. Let [·, ·]1 be a SIP on X1 . Then, let [·, ·]X1×X2
be the SIP

defined in (1.2) with respect to [·, ·]1 and [·, ·]2 . For x ∈ D(AS) we get

[ASx,x]1 =

[

A1

(

x

SA2x

)

,x

]

1

=

[

A1

(

x

SA2x

)

,x

]

1

+
[

A2x,SA2x
]

2
−
[

A2x,SA2x
]

2

=

[

Aext

(

x

SA2x

)

,

(

x

SA2x

)]

X1×X2

−
[

A2x,SA2x
]

2
(2.2)

The second term is less or equal zero by the assumption (2.1). By Theorem 1.1, Aext is

dissipative w.r.t. any SIP on X1 ×X2 . Together this yields

ℜ[ASx,x]1 6 0.

Hence, AS is dissipative.

To show the range condition (1.5), let λ ∈ R and consider

P =





0 0

0 λ I−S−1



 ∈ B(X1 ×X2).

Aext +P is a bounded perturbation of a generator, hence, it also generates a semigroup,

see [1, Theorem III.1.3]. By (2.1) we have for x = (x1,x2)
T ∈ X1 ×X2 that

ℜ[Px,x]X1×X2
= ℜ[(λ I−S−1)x2,x2]2 6

(

λ − m2

‖S‖2

)

‖x2‖2.
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Thus, P is dissipative if λ ∈ (0,m2/‖S‖2] , and then, Aext + P generates a contraction

semigroup by the Lumer-Phillips Theorem. Particularly, the range of λ I−Aext − P

equals X1 ×X2 . Hence, for any pair (g,0) ∈ X1 ×X2 there exists (x1,x2) ∈ X1 ×X2

such that

(λ I−Aext −P)

(

x1

x2

)

=

(

g

0

)

. (2.3)

By the structure of Aext , the second component reads

λ x2 −A2x1 + S−1x2 −λ x2 = 0,

which implies x2 = SA2x1 . Inserting in the first component of (2.3) gives

λ x1 −A1

(

x1

SA2x1

)

= g,

which is (λ I−AS)x1 = g . Thus, ran(λ I−AS) = X1 .

By assumption that either D(AS) is dense or X1 is reflexive we conclude from

Theorem 1.1 (Lumer-Phillips) that AS generates a contraction semigroup. �

REMARK 1.

1. Because of the boundedness of S−1 , condition (2.1) holds for all SIPs on X2 if it

holds for some SIP, see [7, Remark 2].

2. Note that since S is boundedly invertible, (2.1) is equivalent to

∃m̃ > 0 ∀x ∈ X2 : ℜ[S−1x,x]2 6 m̃‖x‖2 ⇔ ℜ[(m̃ I−S−1 I)x,x]2 6 0,

which means that m̃ I−S−1 is dissipative.

3. For a boundedly invertible operator B ∈ B(X) on a Banach space X , B dissipa-

tive does not necessarily imply that B−1 is dissipative. In fact, by Lumer-Phillips

this is equivalent to ask whether B−1 generates a contraction C0 -semigroup, if

B does. The answer is negative in general, even in finite dimensions, see e.g. [2,

Section 2]. However, on Hilbert spaces, the dissipativity of B−1 always follows

from the one of B by the symmetry of the inner product.

4. For X2 being a Hilbert space the assumptions on S are equivalent to

S ∈ B(X2) and S + S∗ > ε I > 0.

We finish this part by showing that the converse of Theorem 2.1 does not hold

in the sense that Aext does not necessarily generate a contraction C0 -semigroup if AS

does. Looking at the proof, there is no reason to believe that the arguments in both

parts (disspativity, range condition) could be reversed. For instance, let S = I and AS

be dissipative. Then, one gets that

ℜ

[

Aext

(

x

SA2x

)

,

(

x

SA2x

)]

X1×X2

6 ‖x‖2
X1

∀x ∈ D(AS)
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by reading the eq. (2.2) in reversed order. However, this won’t give that Aext is dissi-

pative (and since Aext should generate a semigroup, this should hold w.r.t. any SIP) in

general. In fact, consider the matrix case

Aext =

(

0 0

1 0

)

∈ R
2×2 ⇒ AS = AI = 0,

with the Euclidean norm on R2 . Clearly,

[

Aext

(

x1

x2

)

,

(

x1

x2

)]

=

[(

0

x1

)

,

(

x1

x2

)]

= x1x2.

Therefore, Aext can not be dissipative, whereas [ASx,x] = 0.

2.1. From wave to heat equation

We start with the undamped wave equation ∂ 2w
∂ t2 (ξ ,t) = ∂ 2w

∂ξ 2 (ξ ,t) on [0,1] . The

boundary conditions are chosen to be

{

(K1 −1) ∂w
∂ t

(1,t) = (K1 + 1) ∂w
∂ξ

(1,t),

(1−K2)
∂w
∂ t

(0,t) = (K2 + 1) ∂w
∂ξ

(0,t),
∀t > 0,with |K1|, |K2| 6 1. (2.4)

This can be written as the following ACP on Lp[0,1]×Lp[0,1] , p > 1,

(

ẋ1

ẋ2

)

=

(

0 ∂
∂ξ

∂
∂ξ

0

)

(

x1

x2

)

:= Aextx, x(0) = x0 (2.5)

with

D(Aext) =

{(

f1

f2

)

∈ (Lp[0,1])2 : f1, f2 abs. continuous and (2.6)

∂ f1

∂ξ
,

∂ f2

∂ξ
∈ Lp[0,1],(Q f )1(1) = K1(Q f )2(1),(Q f )2(0) = K2(Q f )1(0)

}

,

where Q = 1√
2

(

1 1
−1 1

)

. In the framework of Theorem 2.1 the operators A1 and A2 read

D(A1) =

{(

f1

f2

)

∈ (Lp[0,1])2 : f1, f2 abs. continuous and
∂ f2

∂ξ
∈ Lp[0,1],

(Q f )1(1) = K1(Q f )2(1),(Q f )2(0) = K2(Q f )1(0)

}

, A1

(

f1

f2

)

=
∂

∂ξ
f2,

D(A2) =

{

f ∈ Lp[0,1] : f abs. cont.,
∂ f

∂ξ
∈ Lp[0,1]

}

, A2 f =
∂

∂ξ
f .

By diagonalizing, D = QAextQ
−1 , it is easy to show that Aext generates a contrac-

tion C0 -semigroup (in the Euclidean norm). Furthermore, let ξ 7→ λ (ξ ) be positive
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and continuously differentiable on [0,1] and denote by S the induced multiplication

operator. Then,

AS f = A1

(

f

SA2 f

)

=
(

0
∂

∂ξ

)

(

f

λ (ξ ) ∂ f

∂ξ

)

=
∂

∂ξ

(

λ (ξ )
∂ f

∂ξ

)

, (2.7)

D(AS) =
{

f ∈ Lp[0,1] : ( f ,SA2 f )T ∈ D(Aext)
}

By the assumptions on λ (ξ ) , it follows easily that

D(AS) =

{

f ∈ Lp[0,1] : f ,
∂ f

∂ξ
abs. continuous and

∂ f

∂ξ
,

∂ 2 f

∂ξ 2
∈ Lp[0,1],

(K1 + 1) f (1) = (K1 −1)λ (1)
∂ f

∂ξ
(1),(K2 + 1) f (0) = (1−K2)λ (0)

∂ f

∂ξ
(0)

}

which is dense in Lp[0,1] . The operator AS corresponds to the heat equation

∂u

∂ t
(ξ ,t) =

∂

∂ξ

(

λ (ξ )
∂u

∂ξ
(ξ ,t)

)

, (2.8)

with the Robin boundary conditions

{

(K2 + 1)u(0,t) = (1−K2)λ (0) ∂u
∂ξ

(0,t),

(K1 + 1)u(1,t) = (K1 −1)λ (1) ∂u
∂ξ

(1,t),
∀t > 0. (2.9)

Hence, λ (ξ ) can represent the heat conduction coefficient. It remains to show that the

assumptions on S are fulfilled. Clearly, S is a bounded operator which is boundedly

invertible since there exist λmin,λmax such that 0 < λmin < λ (ξ ) < λmax for ξ ∈ [0,1] .
To show (2.1) we use the SIP from Example 1,

[ f ,S f ] =

∫ 1

0
λ (s)p−1| f (s)|p‖S f‖2−p

Lp ds >
1

λmax
‖S f‖2

Lp >
λ 2

min

λmax
‖ f‖2

Lp . (2.10)

Thus, by Theorem 2.1, we conclude that AS generates a contraction semigroup.

2.2. Further results

Motivated by the example in Subsection 2.1, one might ask when AS is even gen-

erating an analytic semigroup. Without further assumptions on the operator Aext this

does not seem to work in general. However, the following theorem gives an answer.

THEOREM 2.2. Assume that Aext from Theorem 2.1 has the form

Aext =

(

0 A12

A21 0

)

, (2.11)

D(Aext ) = {(x1,x2) ∈ X1 ×X2 : x1 ∈ D(A21),x2 ∈ D(A12)}
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and that A :=
(

I 0
0 S

)

Aext generates a C0 -group, where S ∈ B(X2) . Then,

AS = A12SA21,

with D(AS) = {x ∈ X1 : x ∈ D(A21),SA21x ∈ D(A12)} generates an analytic semigroup

of angle π
2

.

Proof. It is a fact that if A generates a C0 -group, it follows that A 2 generates

an analytic C0 -semigroup of angle π
2

, see [1, Corollary II.4.9]. Therefore, the result

follows by considering the upper left entry of

A 2 =

(

0 A12

SA21 0

)(

0 A12

SA21 0

)

=

(

A12SA21 0

0 A21SA12

)

,

where

D(A 2) = {(x1,x2) ∈ D(A21)×D(A12) : SA21x1 ∈ D(A12),SA12x2 ∈ D(A21} . �

REMARK 2. Given that Aext generates a C0 -group, the assumption in Theorem

2.2, that A generates a C0 -group, can be checked by means of (multiplicative) pertur-

bation results for generators, see e.g. [4].

In the following we note that the group generation is not surprising in the view of

the assumptions in Theorem 2.1

THEOREM 2.3. (Lemma 5.1 in [9]) Let Aext , given in the form (2.11), generate a

C0 -semigroup T (t) with constants M,ω such that ‖T (t)‖ 6 Metω for all t > 0 . Then,

Aext can be extended to a C0 -group which satisfies ‖T (t)‖ 6 Me|t|ω . In particular, if

Aext generates a contraction semigroup, then Aext generates a group of isometries.

With the results of this subsection we are able to continue the discussion of the

example of the wave and heat equation in Section 2.1. To conclude the analyticity of

the semigroup generated by AS , (2.7), it remains to check that A =
(

I 0
0 S

)

Aext gen-

erates a C0 -group. By Proposition 2.3, it even suffices to show that A generates a

C0 -semigroup. In fact, by diagonalizing and using the specific assumptions on S (the

multiplication operator induced by λ ), this is not hard to deduce (see also [5, Chapters

12 and 13]).

2.3. Remarks and outlook

One might question the use of SIPs instead of employing the more common dissi-

pativity definition only relying on the norm. The reason is that the condition on S and

the proof happens to be natural in the view of the Hilbert space result.

Discussing more general S (and at the same time restricting the form of Aext ) as

S = i I , like it is done in [9, Section 4] for Hilbert spaces, might be possible as well as

adaptions to nonlinear S .
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