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ON A CLASS OF BOUNDARY CONTROL PROBLEMS

RAINER PICARD, SASCHA TROSTORFF AND MARCUS WAURICK

Abstract. We discuss a class of linear control problems in a Hilbert space setting, which covers
diverse systems such as hyperbolic and parabolic equations with boundary control and boundary
observation even including memory terms. We introduce abstract boundary data spaces in which
the control and observation equations can be formulated without strong geometric constraints on
the underlying domain. The results are applied to a boundary control problem for the equations
of visco-elasticity.

1. Introduction

Linear control systems are typically given by a differential equation (∂0 denotes
the derivative with respect to time), linking the state x and the control u

∂0x(t) = Ax(t)+Bu(t), t ∈ R>0,

usually completed by an initial condition x(0+) = x0, and an algebraic equation linking
state, control and the observation y

y(t) = Cx(t)+Du(t) t ∈ R>0,

where A,B,C and D are matrices of appropriate sizes. Following general practice this
system may be recorded by the 2×2-block-matrix1(

A− ∂0 B
C D

)
. (1)

Rewriting these equations as one system acting on the whole real line R instead of the
positive half-line R>0 we end up with an differential-algebraic system of the form

∂0

(
1 0
0 0

)(
x
y

)
+
(

0 0
−C 1

)(
x
y

)
+
(−A 0

0 0

)(
x
y

)
= δ ⊗

(
x0

0

)
+
(

B
D

)
u, (2)

where the initial condition for the state variable x transforms into an additional Dirac-
δ -source term on the right hand side. Systems of this form have been studied in the
finite- and infinite-dimensional case in various works. In the infinite-dimensional case
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the operators B,C and D , acting on some suitable Banach- or Hilbert-spaces, are usu-
ally assumed to be bounded, while the operator A is the generator of a C0 -semigroup.
In this case the solution theory is rather straightforward. However, in case of bound-
ary control and observation it turns out that the operators B and C are in general un-
bounded and hence, a more sophisticated theory is needed. The classical approach
is to consider so-called admissible operators B and C as it was done for instance in
[14, 15, 2, 3, 7, 8, 21, 22, 24, 4]. We focus on a class of linear control problems, where
the operators B and C are unbounded, but in our approach the admissibility for these
operators has not to be verified.

The solution theory provided in this article is based on the theory of evolutionary
equations as they were considered in [9]. As it was shown in [13, 12], linear control
systems (including the case of unbounded operators B and C ) are just a subclass of
evolutionary equations. In this note we will generalize the solution theory presented in
[13] to a broader class of so-called (linear) material laws. This generalization allows
us to study control problems including delay terms. As in [13] we introduce abstract
boundary data spaces, which enable us to formulate boundary control and observation
equations without strong smoothness assumptions on the boundary of the underlying
domain. Indeed, it will suffice to guarantee a Poincare-type estimate for the involved
differential operators.

Section 2 recalls some preliminaries on evolutionary equations, linear material
laws and extrapolation spaces (so-called Sobolev chains) and we refer to [9, 11, 6] for
the proofs and a deeper study of the related topics.

In Section 3 we introduce the notion of linear control systems, which will be a
special case of the broader class of abstract evolutionary equations. In contrast to [13]
we will generalize the class of possible control problems to the case of arbitrary material
laws (while in [13] just the so-called (P)-degenerate case, cf. [9], was treated). We
provide a well-posedness result for this class, which is in essence just an application of
[9, Solution theory], and show the causality of the solution operator.

Boundary control problems are introduced in Section 4 and we show that they fit
into the abstract class of linear control problems introduced previously. In order to for-
mulate boundary control and observation equations, without imposing strong smooth-
ness constraints on the domain, we introduce abstract traces and recall the notion of
abstract boundary data spaces. Finally, we apply our findings to a boundary control
problem for the equations of visco-elasticity.

2. Preliminaries

In this section we recall the notion of evolutionary equations. Following [6] we
begin to introduce the time derivative ∂0 as a boundedly invertible operator on an ex-
ponentially weighted L2 -space.

DEFINITION 2.1. For ν ∈ R>0 we denote by Hν,0(R) the space of all square-
integrable functions2 with respect to the exponentially weighted Lebesgue-measure

2Throughout we identify the equivalence classes induced by the equality almost everywhere with their
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exp(−2νt) dt , endowed with the inner product given by

〈 f |g〉ν,0 :=
∫
R

f (t)∗g(t)exp(−2νt) dt ( f ,g ∈ Hν,0(R)).

We define the operator ∂0,ν on Hν,0(R) as the closure of the derivative

∂0,ν |C∞
c (R) : C∞

c (R) ⊆ Hν,0(R) → Hν,0(R)

φ 	→ φ ′.

This operator is normal with Re∂0,ν = ν and hence, 0 ∈ ρ(∂0,ν) with ‖∂−1
0,ν‖ � 1

ν . If
the choice of ν is clear from the context we will omit the additional index ν.

We can extend the operator ∂0 to the space of H -valued functions Hν,0(R;H) ,
where H is a Hilbert space, in a canonical way.

REMARK 2.2.

(a) For u ∈ Hν,0(R) the function ∂−1
0 u is given by

(
∂−1

0 u
)
(x) =

x∫
−∞

u(t)dt (x ∈ R a.e.).

This especially yields the causality3 of ∂−1
0 .

(b) Let F : L2(R) → L2(R) denote the Fourier-transform and define for ν > 0 the
operator e−νm : Hν,0(R) → L2(R) by (e−νm f ) (x) = e−νx f (x) for almost every
x∈R, which is obviously unitary. Then we define the Fourier-Laplace-transform
Lν := Fe−νm : Hν,0(R) → L2(R) , which gives the following spectral represen-
tation of the derivative ∂0,ν :

∂0,ν = L ∗
ν (im+ ν)Lν ,

where m denotes the “multiplication-by-the-argument” operator on L2(R) with
maximal domain.

With the spectral representation of ∂0 we can define so-called linear material laws
(cf. [9]).

DEFINITION 2.3. Let r > 0, H an arbitrary Hilbert space and M : BC(r,r) →
L(H) be bounded and analytic. Then we define the operator M

( 1
im+ν

)
on L2(R) for

ν > 1
2r by (

M

(
1

im+ ν

)
f

)
(x) = M

(
1

ix+ ν

)
f (x) (x ∈ R a.e.)

representatives.
3A mapping F : Hν,0(R;H) → Hν,0(R;H) , where H is an arbitrary Hilbert space, is called causal, if for

each a ∈ R it holds χ(−∞,a](m)Fχ(−∞,a](m) = χ(−∞,a](m)F, where by χ(−∞,a](m) we denote the operator on
Hν,0(R;H) mapping a function f to the truncated function t 	→ χ(−∞,a](t) f (t).
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and the linear material law M(∂−1
0 ) ∈ L(Hν,0(R;H)) for ν > 1

2r by

M
(
∂−1

0

)
:= L ∗

ν M

(
1

im+ ν

)
Lν .

REMARK 2.4. Due to the analyticity of M we obtain by a Paley-Wiener result
that the operator M(∂−1

0 ) is causal.

Note that any densely defined closed linear operator A defined in a Hilbert space
H gives rise to densely defined closed linear operator in Hν,0(R;H) defined as the
canonical extension of the operator acting as (A f )(t) := A f (t) for all t ∈ R and simple
functions f taking values in the domain of A . Henceforth, we will identify A with its
extension without further notice.

THEOREM 2.5. (Solution theory for evolutionary equations [9, Solution theory])
Let H be a Hilbert space and A : D(A) ⊆ H → H be skew-selfadjoint. Furthermore
let r > 0 and M : BC(r,r) → L(H) be analytic, bounded and assume that there exists
c > 0 such that for all z ∈ BC(r,r)

Rez−1M(z) � c. (3)

Then there exists ν0 > 0 such that for all ν � ν0 the evolutionary equation(
∂0M(∂−1

0 )+A
)

u = f , (4)

admits for every f ∈ Hν,0(R;H) a unique solution u ∈ Hν,0(R;H), which depends

continuously on f . More precisely, 0 ∈ ρ
(

∂0M(∂−1
0 )+A

)
and the solution operator(

∂0M(∂−1
0 )+A

)−1
is causal.

Next we introduce the concept of Sobolev-chains. For the proofs and further de-
tails we refer to [11, Chapter 2].

DEFINITION 2.6. Let H be a Hilbert space and C : D(C) ⊆ H → H be a densely
defined, closed linear operator with 0 ∈ ρ(C). For k ∈ Z we define Hk(C) as the com-
pletion of the domain D(Ck) with respect to the norm |Ck · |H . Then (Hk(C))k∈Z

is a se-
quence of Hilbert spaces with Hk(C) ↪→Hk−1(C) for k ∈ Z. The sequence (Hk(C))k∈Z

is called the Sobolev-chainof C . For each k∈Z the operator C : H|k|+1(C)⊆Hk+1(C)→
Hk(C) possesses a unitary extension to Hk+1(C) , which will be again denoted by C .
Furthermore Hk(C)∗ can be identified with H−k(C∗) for each k ∈ Z via a unitary op-
erator.

REMARK 2.7.

(a) Let H0,H1 be two Hilbert spaces over the same field and A : D(A) ⊆ H0 → H1

be densely defined, closed and linear. For each k ∈ Z the operator

A : H|k|+1(|A|+ i)⊆ Hk+1(|A|+ i)→ Hk(|A∗|+ i)

has a unique continuous extension to Hk+1(|A|+ i).
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(b) Let (Hk(C))k∈Z
be a Sobolev-chain associated with some operator C and

A : H1(C) → H be linear and bounded, where H denotes an arbitrary Hilbert-
space. Then the operator A� : H →H−1(C∗) is defined as the dual operator of A ,
where we identify the dual of H with H and H1(C)∗ is identified with H−1(C∗).

3. Abstract linear control systems

In this section we introduce the shape of linear control systems and show that
they fit into the class of evolutionary equations introduced in the previous section. We
consider a densely defined closed linear operator F : D(F) ⊆ H0 → H1 for two Hilbert
spaces H0 and H1 . Furthermore let U and Y be Hilbert spaces, which will serve as
control and observation space, respectively.

DEFINITION 3.1. Let M1,i2 ∈ L(Y ;Hi) and M1,2i ∈ L(Hi;Y ) for i ∈ {0,1} and
M1,22 ∈ L(Y ;Y ) . Let

M(z) :=

⎛⎝ K(z)
(

0
0

)
(
0 0
)

0

⎞⎠+ z

⎛⎝ 0

(
M1,02

M1,12

)
(
M1,20 M1,21

)
M1,22

⎞⎠ (z ∈ BC(r,r)), (5)

where K : BC(r,r) → L(H0 ⊕H1) is a linear material law. An abstract linear control
system CM,F,B is an evolutionary equation of the form⎛⎝∂0M(∂−1

0 )+

⎛⎝ 0 −F∗ 0
F 0 0
0 0 0

⎞⎠⎞⎠⎛⎝ x
ξ
y

⎞⎠= f +Bu. (6)

Here f ∈Hν,0(R;H0⊕H1⊕Y ) is an arbitrary source term, u∈Hν,0(R;U) is the control
and B ∈ L(Hν,0(R;U);Hν,0(R;(H0 ⊕H1 ⊕Y ))) is the control operator. We call an
abstract linear control system well-posed, if the operator

∂0M(∂−1
0 )+

⎛⎝ 0 −F∗ 0
F 0 0
0 0 0

⎞⎠⊆ Hν,0(R;H0 ⊕H1⊕Y )⊕Hν,0(R;H0⊕H1⊕Y)

possesses a densely defined bounded inverse for sufficiently large ν. The continuation
to the space Hν,0(R;H0⊕H1⊕Y) of the inverse is called solution operator.

REMARK 3.2. In the literature, the concept of well-posedness for linear control
systems of the form (1) is commonly based on expressing (A− ∂0)

−1 by convolution
with the fundamental solution, i.e. via semigroup theory. Indeed, it was shown by
Salamon ([14, 15]) that a well-posed linear system in the sense of [22, 23] can be repre-
sented in the form (1), where A is the generator of a C0 -semigroup and B and C are ad-
missible (possibly unbounded) control and observation operators. In our approach, we
reformulate the problem into a system of the form (6), where the unbounded coefficient

operators will be incorporated into the operator matrix

(
Ã 0
0 0

)
with Ã =

(
0 −F∗
F 0

)
,
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which is indeed a skew-selfadjoint operator (we have assumed skew-selfadjointness as
a matter of simplification throughout although the solution theory can be extended to
include the case of accretive operators in time and space, see [16, 18]). In the simplest

case, where M
(
∂−1

0

)
=
(

M0,00 0
0 0

)
+ ∂−1

0 M1 , this reformulation suggests, by modi-

fying the state space appropriately, to consider a control system with a different block
partition (

Ã− ∂0M0,00 B̃
C̃ D̃

)
,

where now B̃,C̃ and D̃ are bounded again. However, as a trade-off M0,00 – far from
being the identity, as in (1) – is now allowed to be non-invertible, i.e. the state equation
is itself a differential-algebraic system. Indeed, due to the generality of the material law
operator M(∂−1

0 ) , systems of the form (6) cover a broad class of differential-algebraic
equations, such as parabolic, hyperbolic and (quasi-static) elliptic state equations, even
those of changing type, as well as equations with operators non-local in time or space,
such as fractional derivatives (see [10, 19]) or convolution operators (see [17]), where
semigroup techniques are not appropriate.

In contrast to the classical concept of well-posedness, where as a consequence of
the regularizing effect of the semi-group one obtains continuous solutions, our well-
posedness concept hinges on square-integrability in time with respect to an exponen-
tially weighted Lebesgue-measure. Thus, in our setting, if semigroups can be utilized
at all, their use is related rather to the regularity of solutions of a well-posed system
than to the well-posedness of the system itself (see [12]).

It is clear that an abstract linear control system CM,F,B is of the form (4) given

in Theorem 2.5 with A =

⎛⎝ 0 −F∗ 0
F 0 0
0 0 0

⎞⎠ . Hence, the solution theory for evolutionary

equations is applicable. It is obvious that if M satisfies the condition (3), then so does
K and the operator ReM1,22 is strictly positive definite. However, the latter is not a
sufficient condition for the positive definiteness of Rez−1M(z). We define the operator
J ∈ L(Y ;H0⊕H1) by

J :=
1
2

(
M1,02 +M∗

1,20
M1,12 +M∗

1,21

)
.

THEOREM 3.3. Let CM,F,B be an abstract linear control system. Assume that
Rez−1K(z) � c0 > 0 and ReM1,22 � c1 > 0 . Assume that there is δ > 0 such that
c0−δ‖J‖> 0 and c1− 1

δ ‖J‖> 0. Then CM,F,B is well-posed and the solution operator
is causal.

Proof. Since,

Re

⎛⎝ 0

(
M1,02

M1,12

)
(
M1,20 M1,21

)
M1,22

⎞⎠=
(

0 J
J∗ ReM1,22

)
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we get for w := (x,ξ ,y) ∈ H0⊕H1⊕Y

Re〈z−1M(z)w|w〉 = Re

〈
z−1K(z)

(
x
ξ

)∣∣∣∣( x
ξ

)〉
+ 〈ReM1,22y|y〉+2Re

〈
Jy

∣∣∣∣( x
ξ

)〉
� c0

∣∣∣∣( x
ξ

)∣∣∣∣2 + c1|y|2−2‖J‖
∣∣∣∣( x

ξ

)∣∣∣∣ |y|
� (c0− δ‖J‖)

∣∣∣∣( x
ξ

)∣∣∣∣2 +
(

c1− 1
δ
‖J‖
)
|y|2.

The assertion then follows by Theorem 2.5. �

4. Boundary control systems

This section is devoted to the study of boundary control systems. At first we show
how boundary control and observation equations can be handled within the framework
presented in the previous sections. This will mainly be done by a particular choice for
the unbounded operator F. As it was pointed out in [13, Subsection 5.1], the resulting
class of control systems can be interpreted as a generalization of a subclass of port-
Hamiltonian systems (cf. [5]) to the higher dimensional case. Moreover, we recall the
notion of so-called boundary data spaces, introduced in [13, Subsection 5.2], as well
as abstract traces, which enable us to treat boundary values as suitable distributions
belonging to some extrapolation space.

First let us fix some notation. For Hilbert spaces H0, . . . ,Hn we define for i ∈
{0, . . . ,n} the operator

πHi : H0⊕ . . .⊕Hn → Hi

as the orthogonal projection on Hi. Note that then π∗
Hi

is the canonical embedding from
Hi to H0⊕ . . .⊕Hn.

We begin this section with an illustrative example.

EXAMPLE 4.1. Let Ω ⊆Rn be an arbitrary domain and define the operators ˚grad
and ˚div as the closures of

grad |C∞
c (Ω) : C∞

c (Ω) ⊆ L2(Ω) → L2(Ω)n

φ 	→ (∂iφ)i∈{1,...,n}

and

div |C∞
c (Ω)n : C∞

c (Ω)n ⊆ L2(Ω)n → L2(Ω)

(φi)i∈{1,...,n} 	→
n

∑
i=1

∂iφi,

respectively. These operators are formally skew-adjoint, i.e., ˚grad ⊆−
(

˚div
)∗

=: grad

and ˚div ⊆ −
(

˚grad
)∗

=: div . Then, using the extrapolation spaces of the operators
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|div |+ i and |grad |+ i we define the Dirichlet-trace and the Neumann-trace by

γgrad : H1(|grad |+ i) → H−1(|div |+ i)

u 	→
(
grad− ˚grad

)
u

and

γdiv : H1(|div |+ i)→ H−1(|grad |+ i)

ζ 	→
(
div− ˚div

)
ζ ,

respectively. Note that in the case of a smooth boundary, the distributions γgradu and
γdivζ for u ∈ H1(|grad |+ i) and ζ ∈ H1(|div |+ i) are supported on ∂Ω. More pre-
cisely with the help of the divergence theorem,

〈γgradu|ζ 〉 =
∫

∂Ω

u∗ζ ·n dS = 〈u|γdivζ 〉,

where n denotes the unit outward normal and S the surface measure on ∂Ω . Note that
γgradu = 0 if and only if u ∈ D( ˚grad) and γdivζ = 0 if and only if ζ ∈ D( ˚div).

In the rest of this subsection we generalize the concepts illustrated in the example
above. For that purpose let H0 and H1 be two complex Hilbert spaces, G̊ ⊆ H0 ⊕H1

and D̊⊆H1⊕H0 two densely defined closed linear operators, which are formally skew-

adjoint. We define G := −(D̊)∗ and D := −
(
G̊
)∗

.

DEFINITION 4.2. (Abstract traces) We define the abstract traces γG and γD by

γG : H1(|G|+ i) → H−1(|D|+ i)

v 	→
(
G− G̊

)
v

and

γD : H1(|D|+ i) → H−1(|G|+ i)

w 	→ (
D− D̊

)
w.

Furthermore we define the abstract trace spaces as the image spaces of the respective
trace operators, i.e.

TR(G) := γG[H1(|G|+ i)],
TR(D) := γD[H1(|D|+ i)].

Clearly the kernels of γG and γD are given by H1(|G̊|+ i) and H1(|D̊|+ i) respec-
tively. This leads to the following definition.
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DEFINITION 4.3. (Boundary data spaces) We define the boundary data spaces as

BD(G) := H1(|G̊|+ i)⊥H1(|G|+i)

and
BD(D) := H1(|D̊|+ i)⊥H1(|D|+i) .

LEMMA 4.4. The boundary data spaces are given by BD(G) = N(1−DG) and
BD(D) = N(1−GD).

Proof. See [13, Lemma 5.1]. �

THEOREM 4.5. The operators

γG|BD(G) : BD(G) → TR(G)

and
γD|BD(D) : BD(D) → TR(D)

are unitary.

Proof. Let u ∈ BD(G). Then we get for each v ∈ H1(|D|+ i) that

|〈γGu|v〉| = |〈Gu|v〉+ 〈u|Dv〉|
= |〈Gu|v〉+ 〈DGu|Dv〉|
= |〈Gu|v〉H1(|D|+i)|
� |Gu|H1(|D|+i)|v|H1(|D|+i)

and hence,

|γGu|H−1(|D|+i) � |Gu|H1(|D|+i) =
√
|Gu|2 + |DGu|2 =

√
|Gu|2 + |u|2 = |u|H1(|G|+i).

On the other hand we have

〈γGu|Gu〉 = 〈Gu|Gu〉+ 〈u|DGu〉= 〈Gu|Gu〉+ 〈u|u〉= |u|2H1(|G|+i),

which gives |u|H1(|G|+i) � |γGu|H−1(|D|+i). That γG|BD(G) is onto, follows by the defi-
nition of BD(G) and TR(G). The assertion for γD|BD(D) follows by interchanging the
roles of D and G . �

Since G[BD(G)]⊆BD(D) and D[BD(D)]⊆BD(G) we may consider the follow-
ing restrictions of G and D

•
D : BD (D) → BD(G)

φ 	→ Dφ
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and

•
G : BD (G) → BD(D)

φ 	→ Gφ .

The operators
•
D and

•
G enjoy the following unexpected property.

THEOREM 4.6. We have that( •
G

)∗
=

•
D =

( •
G

)−1

.

In particular,
•
G and

•
D are unitary.

Proof. See [13, Theorem 5.2.]. �

REMARK 4.7. The operator γD|BD(D)
•
G
(
γG|BD(G)

)−1 : TR(G) → TR(D) is uni-
tary and can be interpreted as an abstract version of the Dirichlet-to-Neumann operator.

After these preparations we show, how systems with boundary control and bound-
ary observation can be treated within the framework of Section 3. For doing so, let
C ∈ L(H1(|G|+ i);V ) for some Hilbert space V and assume that F is given by

F :=
(−G

C

)
: H1(|G|+ i)⊆ H0(|G|+ i)→ H0(|D̊|+ i)⊕V. (7)

As in the definition of an abstract linear control system CM,F,B the adjoint of F comes
into play. We compute it explicitly in the next theorem for the case, when G is assumed
to be boundedly invertible. In applications this requirement can be guaranteed by as-
suming certain geometric properties of the underlying domain (e.g. segment property,
Lipschitz boundary and so on).

THEOREM 4.8. Let F be given as above and let G be boundedly invertible. Then

F∗ : D(F∗) ⊆ H0(|D̊|+ i)⊕V → H0(|G|+ i)

(ζ ,w) 	→ D̊ζ +C�w,

where C� is the dual operator of C with respect to the Gelfand-triplet H1(|G|+ i) ⊆
H0(|G|+ i)⊆ H−1(|G|+ i) and

D(F∗) = {(ζ ,w) ∈ H0(|D̊|+ i)⊕V |D̊ζ +C�w ∈ H0(|G|+ i)}.

Proof. See [13, Theorem 5.4.]. �
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REMARK 4.9. Let CM,F,B be an abstract linear control system, where F is given
by (7). We assume that G is boundedly invertible. Note that, as a consequence, D̊
is boundedly invertible as well. An element (x,(ζ ,w)) ∈ H0(|G|)⊕ (H0(|D̊|)⊕V

)
be-

longs to the domain of

(
0 −F∗
F 0

)
if and only if x∈H1(|G|) and D̊ζ +C�w∈H0(|D̊|).

The latter is equivalent to

γD(ζ +(D̊)−1C�w) = 0. (8)

Recall from (5) that M is of the form

M(z) =

⎛⎝ K(z)
(

0
0

)
(
0 0
)

0

⎞⎠+ z

⎛⎝ 0

(
M1,02

M1,12

)
(
M1,20 M1,21

)
M1,22

⎞⎠
for suitable operators M1,i j and K : BC(r,r) → L(H0(|G|)⊕H0(|D̊|)⊕V ). Note that
due to the block structure of F∗ , this operator has indeed four lines and columns. With
(x,ξ ) = (x,(ζ ,w)) , the third and fourth line of the equation given by CM,F,B read as

∂0πVK(∂−1
0 )

(
π∗

H0(|G|)x+ π∗
H0(|D̊|)ζ

)
+∂0πVK(∂−1

0 )π∗
Vw+πVM1,12y+Cx = πV f +πVBu

and

M1,20x+M1,21π∗
H0(|D̊|)ζ +M1,21π∗

Vw+M1,22y = πY f + πYBu,

respectively. We may rewrite this as(
∂0πVK(∂−1

0 )π∗
V πVM1,12

M1,21π∗
V M1,22

)(
w
y

)
=

(
πV f + πVBu− ∂0πVK(∂−1

0 )(π∗
H0(|G|)x+ π∗

H0(|D̊|)ζ )−Cx

πY f + πYBu−M1,20x−M1,21π∗
H0(|D̊|)ζ

)
(9)

or equivalently as(
∂0πVK(∂−1

0 )π∗
V −πVB

M1,21π∗
V −πYB

)(
w
u

)
=

(
πV f −πVM1,12y− ∂0πVK(∂−1

0 )(π∗
H0(|G|)x+ π∗

H0(|D̊|)ζ )−Cx

πY f −M1,22y−M1,20x−M1,21π∗
H0(|D̊|)ζ

)
(10)

If the material law M satisfies the solvability condition (3), then the operator on the left
hand side of (9) is boundedly invertible and thus, we can express w in terms of x,ζ , f
and u. Plugging this representation into (8) we obtain the boundary control equation.
Analogously, by assuming that the operator on the left hand side of Equation (10) is
boundedly invertible, we can express w in terms of x,ζ , f and y and hence, Equation
(8) yields the boundary observation equation.
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5. A boundary control problem in visco-elasticity

In this section we apply our results to a boundary control problem for the equations
of visco-elasticity. For this purpose we introduce the required differential operators.
Throughout let Ω ⊆ Rn be an open subset of Rn , n ∈ N , n � 1.

DEFINITION 5.1. We denote by L2(Ω)n×n the Hilbert space of n× n -matrices
with entries in L2(Ω) endowed with the inner product

〈Φ|Ψ〉L2(Ω)n×n :=
∫
Ω

trace(Φ(x)∗Ψ(x)) dx
(
Φ,Ψ ∈ L2(Ω)n×n) .

Moreover let Hsym(Ω) ⊆ L2(Ω)n×n denote the closed subspace of symmetric n× n
matrices. We define the operator ˚Grad as the closure of

Grad |C∞
c (Ω)n : C∞

c (Ω)n ⊆ L2(Ω)n → Hsym(Ω)

(φi)i∈{1,...,n} 	→
(

1
2

(∂ jφi + ∂iφ j)
)

i, j∈{1,...,n}

and D̊iv as the closure of

Div |C∞
c,sym(Ω)n×n : C∞

c,sym(Ω)n×n ⊆ Hsym(Ω) → L2(Ω)n

(Φi j)i, j∈{1,...,n} 	→
(

n

∑
j=1

∂ jΦi j

)
i∈{1,...,n}

,

where we denote by C∞
c,sym(Ω)n×n the space of symmetric n×n -matrices with entries

in C∞
c (Ω).
Furthermore we extend the meaning of ˚grad by defining it as the closure of

grad |C∞
c (Ω)n : C∞

c (Ω)n ⊆ L2(Ω)n → L2(Ω)n×n

(ψi)i∈{1,...,n} 	→ (∂ jψi)i, j∈{1,...,n}

and similarly ˚div as the closure of

div |C∞
c (Ω)n×n : C∞

c (Ω)n×n ⊆ L2(Ω)n×n → L2(Ω)n

(Ψi j)i, j∈{1,...,n} 	→
(

n

∑
j=1

∂ jΨi j

)
i∈{1,...,n}

leaving it to the context to determine if the scalar or the matrix version of these opera-
tions are meant.

An easy computation shows that ˚Grad and D̊iv are formally skew-adjoint, like-
wise the extended operations ˚grad and ˚div are formally skew-adjoint. Following the
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notation introduced in Section 4 we define Grad :=−(D̊iv)∗ , Div :=−( ˚Grad)∗, grad :=
−( ˚div)∗ and div := −( ˚grad)∗. The equations of visco-elasticity are given by

∂ 2
0 ρx(t)−DivT (t) = f (t), (11)

T (t) = MGradx(t)−
t∫

−∞

g(t− s)Gradx(s) ds. (12)

Here x ∈ Hν,0(R;L2(Ω)n) and T ∈ Hν,0
(
R;Hsym(Ω)

)
are the unknowns, denoting the

displacement field and the stress tensor, respectively. The density function ρ ∈ L∞(Ω)
is assumed to be real-valued and uniformly strictly positive, i.e. ρ � c1 > 0. The
tensor M ∈ L

(
Hsym(Ω)

)
, linking the stress and the strain tensor, is assumed to be

selfadjoint and satisfies M � c2 > 0. The function g : R�0 → C is assumed to be
absolutely continuous4, i.e. g(t) =

∫ t
0 h(s) ds+g0 for some h ∈ L1(R�0) and g0 ∈ C .

An easy computation shows that the convolution operator g∗ : Hν,0(R;Hsym(Ω)) →
Hν,0(R;Hsym(Ω)) is continuous for each ν > 0 with

‖g ∗ ‖L(Hν,0(R;Hsym(Ω)) � 1
ν

(
|h|L1(R�0) + |g0|

)
.

Thus, for ν > 0 large enough, the operator (1−M−1g∗) is invertible, and hence we
may write (12) as

(M−g∗)−1T = (1−M−1g∗)−1M−1T = Gradx. (13)

The boundary control and observation equations are given by

TN = ∂0x+
√

2u, TN =
√

2y− ∂0x, (14)

on ∂Ω , where we denote by N the outer unit normal vector field.

REMARK 5.2. Since we have to compare Neumann-type traces and Dirichlet-type
traces we have to determine a suitable control and observation space. For doing so,
let us assume for the moment that ∂Ω is smooth. We consider the space L2(∂Ω)n.
We assume that the outer unit normal vector field N can be extended to Ω such that
N ∈ L∞(Ω;R)n and divN ∈ L∞(Ω). For f ,g ∈ BD(grad) we formally compute using
the divergence theorem5∫

∂Ω

f ·g dS

=
∫

∂Ω

( f ·g)(N ·N) dS

4The equations can also be studied in a more general setting, for instance g can attain values in
L(Hsym(Ω)) (cf. [17]).

5Note that due to the assumptions on the vector field N , the matrix-valued function ( fiNk)i,k∈{1,...,n} lies
in D(div) for each f ∈ D(grad).
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=
1
2

∫
∂Ω

(
(Nk fi) k,ig

∗) ·N dS+
1
2

∫
∂Ω

(
(Nkg

∗
i )k,i f

)
·N dS

=
1
2

∫
Ω

div
(
(Nk f ∗i ) k,ig

)
+

1
2

∫
Ω

div
(
(Nkgi)k,i f ∗

)
=

1
2

(〈
div( fiNk)i,k

∣∣∣g〉
L2(Ω)n

+
〈
( fiNk) i,k

∣∣gradg
〉
L2(Ω)n×n

)
+

1
2

(〈
f
∣∣∣div(giNk)i,k

〉
L2(Ω)n

+
〈
grad f

∣∣∣(giNk)i,k

〉
L2(Ω)n×n

)
=

1
2

(〈
πBD(div) ( fiNk)i,k

∣∣∣ •
grad g

〉
BD(div)

+
〈 •

grad f
∣∣∣πBD(div) (giNk)i,k

〉
BD(div)

)
.

This leads to the following choice for the control space U.

DEFINITION 5.3. Let N ∈ L∞(Ω;R)n be such that divN ∈ L∞(Ω) . We define the
bounded linear operator ν : BD(grad) → BD(div) by ν f := πBD(div) ( fiNk)i,k∈{1,...,n} .

We assume that the operator
•

div ν + ν∗ •
grad is positive, i.e. for every f ∈ BD(grad)\

{0} we have 〈( •
div ν + ν∗ •

grad

)
f

∣∣∣∣ f〉
BD(grad)

> 0.

We define the Hilbert space U as the completion of BD(grad) with respect to the inner
product

〈·|·〉U : BD(grad)×BD(grad) → C

( f ,g) 	→ 1
2

(〈
ν f

∣∣∣∣ •
grad g

〉
BD(div)

+
〈 •

grad f

∣∣∣∣νg

〉
BD(div)

)
.

We denote the embedding BD(grad) ↪→U by ι.

In the following we require that Korn’s inequality holds, i.e.,

H1(|Grad |+ i)
κ
↪→ H1(|grad |+ i)

(for sufficient criteria see [1] and the references therein). We consider the bounded
operator j : BD(Grad) →U given by j = ι ◦πBD(grad) ◦κ ◦π∗

BD(Grad) and compute

〈 j f |g〉U = 〈πBD(grad)κπ∗
BD(Grad) f |g〉U

=
1
2

(〈
νπBD(grad)κπ∗

BD(Grad) f

∣∣∣∣ •
grad g

〉
BD(div)

+
〈 •

grad πBD(grad)κπ∗
BD(Grad) f

∣∣∣∣νg

〉
BD(div)

)
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=
1
2

(〈
f

∣∣∣∣πBD(Grad)κ∗π∗
BD(grad)ν

∗ •
grad g

〉
BD(Grad)

+
〈

f

∣∣∣∣πBD(Grad)κ∗π∗
BD(grad)

•
div νg

〉
BD(Grad)

)

=
〈

f

∣∣∣∣12πBD(Grad)κ∗π∗
BD(grad)

(
ν∗ •

grad +
•

div ν
)

g

〉
BD(Grad)

for each f ∈ BD(Grad), g ∈ BD(grad). This gives

j∗ =
1
2

πBD(Grad)κ∗π∗
BD(grad)

(
ν∗ •

grad +
•

div ν
)

and, consequently,

γDivπ∗
BD(Div)

•
Grad j∗g (15)

=
1
2

γDivπ∗
BD(Div)

•
Grad πBD(Grad)κ∗π∗

BD(grad)

(
ν∗ •

grad +
•

div ν
)

g.

REMARK 5.4. We give a possible interpretation of the latter equality. For this
purpose we compute formally using the divergence theorem∫

∂Ω

(Grad j∗g)N · f dS

= 〈γDivπ∗
BD(Div)

•
Grad j∗g|π∗

BD(Grad) f 〉

=
1
2
〈γDivπ∗

BD(Div)

•
Grad πBD(Grad)κ∗π∗

BD(grad)ν
∗ •
grad g|π∗

BD(Grad) f 〉

+
1
2
〈γDivπ∗

BD(Div)

•
Grad πBD(Grad)κ∗π∗

BD(grad)

•
div νg|π∗

BD(Grad) f 〉

=
1
2
〈πBD(Grad)κ∗π∗

BD(grad)ν
∗ •
grad g| f 〉

+
1
2
〈

•
Grad πBD(Grad)κ∗π∗

BD(grad)ν
∗ •
grad g|

•
Grad f 〉

+
1
2
〈πBD(Grad)κ∗π∗

BD(grad)

•
div νg| f 〉

+
1
2
〈

•
Grad πBD(Grad)κ∗π∗

BD(grad)

•
div νg|

•
Grad f 〉

=
1
2
〈πBD(Grad)κ∗π∗

BD(grad)ν
∗ •
grad g| f 〉BD(Grad)

+
1
2
〈πBD(Grad)κ∗π∗

BD(grad)

•
div νg| f 〉BD(Grad)

=
1
2
〈

•
grad g|νπBD(grad)κπ∗

BD(Grad) f 〉BD(div)



200 R. PICARD, S. TROSTORFF AND M. WAURICK

+
1
2
〈νg|

•
grad πBD(grad)κπ∗

BD(Grad) f 〉BD(div)

= 〈g|πBD(grad)κπ∗
BD(Grad) f 〉U

=
∫

∂Ω

g ·πBD(grad)κπ∗
BD(Grad) f dS

=
∫

∂Ω

g ·πBD(grad)κπ∗
BD(Grad) f dS+

∫
∂Ω

g · (1−πBD(grad))κπ∗
BD(Grad) f dS

=
∫

∂Ω

g ·κπ∗
BD(Grad) f dS

=
∫

∂Ω

g · f dS

for each f ∈ BD(Grad),g ∈ BD(grad). Hence, equality (15) can be seen as a general-
ization of

(Grad j∗g)N = g on ∂Ω (16)

to the case of non-smooth boundaries.

We now want to transform the equations (11), (13) and (14) into a system of the
form treated in the previous subsections. In the terminology of Subsection 4 the oper-
ator Grad should play the role of G and Div the role of D. Since we have assumed
in Theorem 4.8 that G is boundedly invertible, we require that Grad[L2(Ω)n] is closed
in Hsym(Ω) .6 Then the projection theorem yields the following orthogonal decomposi-
tions7

L2(Ω)n = [{0}]Grad⊕
◦

Div [Hsym(Ω)],

Hsym(Ω) = [{0}]
◦

Div ⊕Grad[L2(Ω)n].

We define the following orthogonal projections πDiv : L2(Ω)n →
◦

Div [Hsym(Ω)] and
πGrad : Hsym(Ω)→Grad[L2(Ω)n]. Note that due to the closed graph theorem the opera-

tor G̃rad := πGrad Gradπ∗
Div is boundedly invertible and so is

(
G̃rad

)∗
=−πDiv

◦
Div π∗

Grad .

Furthermore let us denote by ιGrad the canonical embedding

H1

(∣∣∣G̃rad
∣∣∣+ i

)
↪→ H1 (|Grad|+ i) .

We consider the following evolutionary problem

6The closedness of the range Grad[L2(Ω)n] holds, for instance if H1(|Grad |+ i) is compactly embedded
in L2(Ω)n and we refer to [20] for sufficient conditions on Ω yielding this compact embedding. Note that
this compact embedding yields then a Poincare-type estimate, which in turn yields the closedness of the
range. Thus, the minimal assumption is the validity of a Poincare-type estimate.

7Note that the closedness of the range of Grad also yields the closedness of range of
◦

Div . Since we do
not want to give the details of the proof here, we use the closure bar for convenience.
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⎛⎜⎜⎝
πDivρπ∗

Div

(
0 0
)

0(
0
0

) (
πGrad(M−g∗)−1π∗

Grad 0
0 ∂−1

0

) (
0
0

)
0

(
0 0
)

0

⎞⎟⎟⎠

+

⎛⎜⎜⎝
0

(
0 0
)

0(
0
0

) (
0 0
0 0

) (
0
0

)
0

(
0
√

2
)

1

⎞⎟⎟⎠+

⎛⎜⎜⎜⎝
0

(
−
(
G̃rad

)∗ −C�
)

0(
−G̃rad

C

) (
0 0
0 0

) (
0
0

)
0

(
0 0
)

0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎛⎜⎜⎝

v(
T
w

)
y

⎞⎟⎟⎠

=

⎛⎜⎜⎝
f(
0
0

)
0

⎞⎟⎟⎠+

⎛⎜⎜⎝
0(
0

−√
2

)
−1

⎞⎟⎟⎠u, (17)

where C : H1

(∣∣∣G̃rad
∣∣∣+ i

)
→U is given by Cx := jπBD(Grad)ιGradx. The material law

K is given by

K(z) =

⎛⎝πDivρπ∗
Div 0 0

0 πGrad
(
M−√

2π ĝ(−iz−1)
)−1 π∗

Grad 0
0 0 z

⎞⎠
and satisfies the solvability condition (3). Indeed, using the representation z−1 = it +ν
for some ν > 1

2r , t ∈ R if z ∈ BC(r,r) we estimate

Rez−1πDivρπ∗
Div � νc1

and

Rez−1πGrad

(
M−

√
2π ĝ(−iz−1)

)−1
π∗

Grad

= Rez−1πGrad

(
∞

∑
k=0

(2π)
k
2 M−kĝ(−iz−1)k

)
M−1π∗

Grad

= νπGradM
−1π∗

Grad

+ReπGradz
−1
(√

2πM−1ĝ(−iz−1)
)( ∞

∑
k=0

(2π)
k
2 M−kĝ(−iz−1)k

)
M−1π∗

Grad

= νπGradM
−1π∗

Grad

+ReπGradM
−1
(√

2π ĥ(−iz−1)+g0

)( ∞

∑
k=0

(2π)
k
2 M−kĝ(−iz−1)k

)
M−1π∗

Grad

� νc2 −
‖M−1‖2

(
|h|L1(R�0) + |g0|

)
1−ν−1‖M−1‖

(
|h|L1(R�0) + |g0|

) ,
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where we have used that ĝ(−iz−1) = zĥ(−iz−1) + z√
2π g0. Summarizing this gives

Rez−1K(z) � 1. The operator J is given by J =

⎛⎜⎝ 0(
0
1√
2

)⎞⎟⎠ and thus, ‖J‖ = 1√
2
.

Since ReM1,22 = 1, Theorem 3.3 applies and thus, the control system given by (17)

is well-posed. Next, we compute C� . For that purpose let x ∈ H1

(∣∣∣G̃rad
∣∣∣+ i

)
and

w ∈U. Then

〈C�w|x〉 = 〈w|Cx〉U
= 〈w| jπBD(Grad)ιGradx〉U
= 〈π∗

BD(Grad) j∗w|ιGradx〉H1(|Grad |+i)

= 〈π∗
BD(Grad) j∗w|ιGradx〉+ 〈Gradπ∗

BD(Grad) j∗w|Grad ιGradx〉

= 〈π∗
BD(Grad) j∗w|x〉+

〈
πGradπ∗

BD(Div)

•
Grad j∗w

∣∣∣G̃radx

〉
= 〈π∗

BD(Grad) j∗w|x〉+
〈(

G̃rad
)∗

πGradπ∗
BD(Div)

•
Grad j∗w

∣∣∣∣x〉

Summarizing, we get that C� = π∗
BD(Grad) j∗+

(
G̃rad

)∗
πGradπ∗

BD(Div)

•
Grad j∗. Accord-

ing to the definition of the domain of
(
−
(
G̃rad

)∗ −C�
)

the implicit boundary con-

dition for the system reads as(
G̃rad

)∗
T +C�w ∈ H0

(∣∣∣G̃rad
∣∣∣+ i

)
.

Hence,

T +
((

G̃rad
)∗)−1

C�w ∈ H1

(∣∣∣(G̃rad
)∗∣∣∣+ i

)
⊆ H1

(∣∣∣D̊iv
∣∣∣+ i

)
⊆ H1 (|Div|+ i) .

From

πGradπ∗
BD(Div)

•
Grad j∗w = πGrad Gradπ∗

BD(Grad) j∗w ∈ H1(|Div |+ i)

it thus follows that T ∈ H1 (|Div |+ i) and

γDivT = γDiv

(
−
((

G̃rad
)∗)−1

C�w
)

= γDiv

(
−
((

G̃rad
)∗)−1

πGradπ∗
BD(Grad) j∗w−πGradπ∗

BD(Div)

•
Grad j∗w

)
= −γDivπGradπ∗

BD(Div)

•
Grad j∗w

= −γDivπ∗
BD(Div)

•
Grad j∗w,
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where we used that γDiv vanishes on the domain of
◦

Div, which is a superset of the

domain of
(
G̃rad

)∗
. Using (9) we get(

1 0√
2 1

)(
w
y

)
=
(−√

2u−Cv
−u

)
and hence

w = −
√

2u−Cv = −
√

2u− jπBD(Grad)ιGradv.

Analogously one obtains, using (10), that(
1

√
2√

2 1

)(
w
u

)
=
(−Cv

−y

)
and thus,

w = Cv−
√

2y = jπBD(Grad)ιGradv−
√

2y.

Following the reasoning of Remark 5.4, we may interpret the resulting boundary control
and observation equations as

TN = v−u = ∂0x+
√

2u,

TN =
√

2y− v =
√

2y− ∂0x

on ∂Ω.
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