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ESSENTIAL SPECTRA OF SOME MATRIX OPERATORS BY

MEANS OF MEASURES OF WEAK NONCOMPACTNESS

BOULBEBA ABDELMOUMEN

Abstract. In this paper, we give some results concerning stability in the Fredholm theory via
the concept of measures of weak noncompactness. These results are exploited to investigate the
essential spectra of some matrix operators on Banach spaces. This work contains some results
which extend some well known ones in the literature.

1. Introduction

This paper is devoted to study the essential spectra of a general class of operators
defined by a 2×2 block operator matrix acting in a product of Banach spaces X ×X

L0 =
(

A B
C D

)
,

where the operators occurring in the representation of L0 are unbounded. A acts on
the Banach space X and has the domain D(A) , D is defined on D(D) and acts on X .
The intertwining operators B, C are defined respectively on D(B), D(C) and act on
X . Below, we shall assume that D(A) ⊂ D(C) and D(B) ⊂ D(D) . Then the matrix
L0 defines a linear operator in X with domain D(A)×D(B) .

One of the problems in the study of such operators is that in general L0 is not
closed or even closable, even if its entries are closed. In [5], the authors give some
sufficient conditions under which L0 is closable and describe its closure which we
shall denote L .

The study of the essential spectra of operators defined by a 2× 2 block operator
matrix has been arround for many years. Among the works in this subject we can quote,
for example, [5, 14, 19]. The authors in [5] used the compactness condition for the
operator (λ − A)−1 to describe, under certain additional assumptions, the Fredholm
essential spectrum. Whereas in the paper of [19], Shkalikov has assumed that, for
some (and hence for all) ν ∈ ρ(A) , F(ν) :=C(ν −A)−1 and G(ν) := (λ −A)−1B are
compacts (see Theorem 2) and has proved that

σeF(L) = σeF(A)∪σeF(D−C(ν −A)−1B).

Similarly, the authors in [14] extend the obtained results in [5, 19] into a large class of
operators and investigate the essential spectra of the matrix operator L . In this paper,
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we prove some localization results on the essential spectra of the matrix operator L
with the help of the measures of weak-noncompactness.

The purpose of this work is to pursue the analysis started in [5, 14, 19]. First, we
establish some stability results on Fredholm theory (see Theorems 2 and 3). Second,
we study the essential spectra of a general class of operators defined by a 2× 2 block
operator matrix (see Corollaries 2 and 3).

2. Notations and Definitions

For X and Y be two infinite-dimensional Banach spaces, we denote by C (X ,Y )
(resp., L (X ,Y )) the set of all closed densely defined linear operators (resp., the space
of all bounded linear operators) acting from X into Y . The subspace of all com-
pact (resp., weakly compact) operators of L (X ,Y ) is designed by K (X ,Y ) (resp.,
W (X ,Y )). For T ∈ C (X ,Y ) we use the following notations: D(T ) is the domain,
N (T ) is the kernel and R(T ) is the range of T. The nullity, α(T ), of T is defined
as the dimension of N (T ) and the deficiency, β (T ), of T is defined as the codimen-
sion of R(T ) in Y. We use σ(T ) and ρ(T ) to denote the spectrum and the resolvent
set of T. Recall that an operator T ∈ C (X ,Y ) is upper semi-Fredholm if its range is
closed and its kernel is finite dimensional; it is lower semi-Fredholm if its range is fi-
nite codimension, hence closed; and it is Fredholm if it is upper semi-Fredholm and
lower semi-Fredholm. We denote by Φ+(X ,Y ) , Φ−(X ,Y ) and Φ(X ,Y ) the classes of
upper semi-Fredholm, lower semi-Fredholm and Fredholm operators, resp., If X = Y ,
the sets L (X ,X) , C (X ,X) , K (X ,X) , W (X ,Y ) , Φ+(X ,X) , Φ−(X ,X), Φ(X ,X),
are replaced, resp., L (X) , C (X) , K (X) , W (X) , Φ+(X) , Φ−(X), Φ(X). If T ∈
Φ+(X)∪Φ−(X), the number i(T ) := α(T )−β (T ) is called the index of T .

Recall that, for T ∈ C (X) , XT := D(T ) (the domain of T ) endowed with the
graph norm ‖.‖T (i.e., ‖x‖T = ‖x‖+ ‖Tx‖ ) is a Banach space and we have T ∈
L (XT ,X). We denote by T̂ the restriction of T to D(T ). Let J be a linear opera-
tor on X such that XT ⊂ D(J). We say that J is T -bounded if its restriction to XT , Ĵ
belongs to L (XT ,X).

Notice that if T ∈ C (X) and J a T -bounded, then we get the obvious relations

⎧⎨
⎩

α(T̂ ) = α(T ), β (T̂ ) = β (T ), R(T̂ ) = R(T ),
α(T̂ + Ĵ) = α(T + J),
β (T̂ + Ĵ) = β (T + J), R(T̂ + Ĵ) = R(T + J).

(1)

Hence, T ∈ Φ(X) (resp., Φ+(X)) if and only if T̂ ∈ Φ(XT ,X) (resp., Φ+(XT ,X)).

DEFINITION 1. Let X and Y be two Banach spaces.
1. Let T ∈ L (X ,Y ) .
(i) T is said to have a left Fredholm inverse (resp., left weak-Fredholm inverse)

if there exists Tl ∈ L (Y,X) and K ∈ K (X) (resp., Tw
l ∈ L (Y,X) and W ∈ W (X))

such that TlT = IX −K (resp., Tw
l T = IX −W ). The operator Tl (resp., Tw

l ) is called
left Fredholm inverse of T (resp., left weak-Fredholm inverse of T ).
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(ii) T is said to have a right Fredholm inverse (resp., right weak-Fredholm in-
verse) if there exists Tr ∈ L (Y,X) (resp., Tw

r ∈ L (Y,X)) such that IY −TTr ∈ K (Y )
(resp., IY −TTw

r ∈W (Y )). The operator Tr (resp., Tw
r ) is called right Fredholm inverse

of T (resp., right weak-Fredholm inverse of T ).
(iii) T is said to have a Fredholm inverse (resp., weak-Fredholm inverse) if there

exists a map which is both a left and a right Fredholm inverse of T (resp., a left and a
right weak-Fredholm inverse of T ).

2. Let T ∈ C (X). T is said to have a left Fredholm inverse (resp., right Fredholm
inverse, Fredholm inverse, left weak-Fredholm inverse, right weak-Fredholm inverse,
weak-Fredholm inverse) if T̂ has a left Fredholm inverse (resp., right Fredholm inverse,
Fredholm inverse, left weak-Fredholm inverse, right weak-Fredholm inverse, weak-
Fredholm inverse).

The sets of left, right, left weakly and right weak-Fredholm inverses are resp.,
defined by:

Φl(X) := {T ∈ C (X) T has a left Fredholm inverse},
Φr(X) := {T ∈ C (X) T has a right Fredholm inverse},
Φw

l (X) := {T ∈ C (X) T has a left weak-Fredholm inverse},
Φw

r (X) := {T ∈ C (X) T has a right weak-Fredholm inverse}.
The class of weak-Fredholm operators is Φw(X) := Φw

l (X)∩Φw
r (X) . It is easy to see

that Φl(X) ⊂ Φw
l (X) , Φr(X) ⊂ Φw

r (X) and Φr(X)∩Φl(X) = Φ(X) ⊂ Φw(X).
A complex number λ is in ΦlT , ΦrT , ΦT , Φw

lT , Φw
rT or Φw

T if λ − T is in
Φl(X), Φr(X) , Φ(X), Φw

l (X), Φw
r (X) or Φw(X), resp.,

There are many ways to define the essential spectrum of a closed densely defined
linear operator on a Banach space. In this paper, we are concerned, for T ∈C (X), with
the following essential spectra:

σeF(T ) = {λ ∈ C λ −T /∈ Φ(X)},
σeW (T ) = C\ρeW (T ),
σeB(T ) = C\ρeB(T ),

where ρeW (T ) := {λ ∈ C λ −T ∈ Φ(X) and i(λ −T ) = 0} and ρeB(T ) denotes the
set of those λ ∈ ρeW (T ) such that all scalars near λ are in ρ(T ) .

σle(T ) := {λ ∈ C λ −T /∈ Φl(X)},
σre(T ) := {λ ∈ C λ −T /∈ Φr(X)}.

σeF(.) is the Fredholm essential spectrum [20]. σeW (.) is the Wolf essential spectrum
[17]. σeB(.) is the Browder essential spectrum [16] and σle(.) (resp., σre(.)) is the left
(resp., right) essential spectrum [12].

Note that, in general, we have σle(T )∪σre(T ) = σeF(T ) ⊂ σeW (T ) ⊂ σeB(T ).
Recall that a Banach space X is said to have the Dunford-Pettis property (for short

DP property) if for each Banach space Y every weakly compact operator T X −→ Y
takes weakly compact sets in X into norm compact sets of Y . It is well known that any
L1 -space has the property DP [8]. Also if Ω is a compact Hausdorff space, C(Ω) has
the DP property. For more information we refer to the papers [7, 8, 9, 10].
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3. On the Fredholm theory associated with measures of weak noncompactness

The purpose of this section is to establish some results concerning stability in the
class of Fredholm operators. Among the works in this direction we can quote, for
example, [1, 2, 3, 4]. First, we adopt the following definitions:

DEFINITION 2. ([6]) Let X be a Banach space and let MX be the family of all
nonempty and bounded subsets of X . A function μ : MX −→ [0,+∞[ is said to be a
measure of weak noncompactness in X if, for all A,B ∈ MX , it satisfies the following
conditions:

(i) μ(A) = 0 if and only if A is relatively weakly compact.
(ii) A ⊂ B =⇒ μ(A) � μ(B).
(iii) μ(conv (A)) = μ(A), where conv(A) denotes the convex hull of A .
(vi) μ(A∪B) = max{μ(A),μ(B)}.
(v) μ(A+B) � μ(A)+ μ(B).
(vi) μ(λA) = |λ |μ(A), λ ∈ R.

DEFINITION 3. Let X and Y be two Banach spaces, BX be the closure of the unit
ball of X and let μ be a measure of weak noncompactness in Y . We define the function

Ψμ : L (X ,Y ) −→ [0,+∞[

T −→ Ψμ(T ) = μ(T (BX)).

(i) Ψμ is called a measure of weak noncompactness of operators associated to μ .

(ii) Ψμ is said to be algebraic semi-multiplicative if, for all S ∈ L (X) and D ∈
MX , we have

μ(S(D)) � Ψμ(S)μ(D).

REMARK 1. Notice that if Ψμ has the algebraic semi-multiplicative property,
then,

∀S,T ∈ L (X), Ψμ(ST ) � Ψμ(S)Ψμ(T ).

As an example of measure of weak noncompactness of operators we have Θω(T )=
ω(T (BX )), where ω is the measure of weak noncompactness of De Blasi defined by:

ω(A) = inf{t > 0 : ∃ C ∈ WX such that A ⊂C+ tBX}, ∀A ∈ MX .

The function Θω(.) possesses several useful properties. For example Θω(.) has the
algebraic semi-multiplicative property. For further facts concerning measures of weak
noncompactness and its properties we refer to [6].

Recall that an operator T ∈ L (X ,Y ) is said to be a Dunford-Pettis operator (for
short property DP operator) if T maps weakly compact sets into compact sets.

We will need the next Theorem, which was proved in [1]. We give a proof for the
convenience of the reader.
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THEOREM 1. [1, Theorem 2.1] Let X be a complex Banach space. Suppose that,
for T ∈ L (X),⎧⎪⎨

⎪⎩
(H1) μ(T (A)) � Ψμ(T )μ(A), for every A ∈ MX ,

(H2) lim
n→+∞

(
Ψμ(Tn)

) 1
n = 0,

(H3) there exists m ∈ N∗ such that Tm is DP operator.

Then
I−T ∈ Φ(X) and i(I−T ) = 0.

Proof. First we show that I −T ∈ Φ+(X) . By [15, Theorem 18, p. 161], it suf-
fice to prove that, for any K ∈ K (X), α(I − T −K) < ∞ . To do so, it suffice to
establish that the set A := N (I − T −K) ∩ BX is compact, where BX is the clo-

sure of the unit ball of X . Since lim
n→+∞

(
Ψμ(Tn)

) 1
n = 0, then there exists n0 � m

such that for all n � n0, Ψμ(Tn) < 1. On the other hand, for n � n0, I − Tn =
R(T )(I−T ), where R(T ) := I+T + ...+Tn−1. Consider x∈A, then R(T )(I−T )(x) =
R(T )K(x). Hence, x = Tn(x)+R(T )K(x). Obviously A⊂ Tn(A)+R(T )K(A). Apply-
ing μ(.) and taking account the hypothesis (H1), we infer that

μ(A) � μ(Tn(A)) � Ψμ(Tn)μ(A).

Since Ψμ(Tn) < 1, then μ(A) = 0 and therefore A is relatively weakly compact in-
cluding in Tn(A)+R(T )K(A). Obviously Tn0 is DP operator, then Tn0(A) is compact.
Hence, A is compact and therefore I−T ∈ Φ+(X) . Next, note that for t ∈ [0,1] , we
have (Ψμ(tT ))n0 < 1 and (tT )m is DP operator. Then, from the above, (I − tT ) ∈
Φ+(X) . Now, by the continuity of the index on Φ+(X) , we get i(I−T ) = i(I− tT ) =
i(I) = 0. Thus, I−T ∈ Φ(X) , which completes the proof. �

In what follows, consider μ a measure of weak noncompactness in X and Ψμ a
measure of weak noncompactness of operators associated to μ .

Now, we are ready to prove the following:

THEOREM 2. Let X be a Banach space which possess the DP property, T ∈C (X)
and let S be a T -bounded operator on X . Assume that, for Tw

r a right weak-Fredholm
inverse of T ,{

(i) μ(STw
r (A)) � Ψμ(STw

r )μ(A), ∀A ∈ MX ,

(ii) there exists m ∈ N∗ such that (ŜTw
r )m is DP in L (X) and Ψμ((ŜTw

r )m) < 1.

Then the following statements hold.
T +S∈ Φr(X) and i(T +S)= i(T ). If moreover T ∈Φ+(X), then T +S∈ Φ(X) .

Proof. (i) Keeping in mind Definition 1, there exists W ∈ W (X) such that (T̂ +
Ŝ)Tw

r = (IX + ŜTw
r )−W . Thus, Theorem 1 together with [13, Proposition 3.1] imply

that (T̂ + Ŝ)Tw
r ∈ Φ(X) and i((T̂ + Ŝ)Tw

r ) = 0. Hence, T̂ + Ŝ ∈ Φr(XT ,X). Moreover,
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i((T̂ + Ŝ)Tw
r ) = i(Tw

r )+ i(T̂ + Ŝ) = 0 and therefore i(T̂ + Ŝ) = −i(Tw
r ) = i(T̂ ). From

[13, Proposition 3.1], T̂ Tw
r ∈ Φ(X). Taking into account that T ∈ Φ+(X), and by

[18, Theorem 2.7 p. 171], we infer that Tw
r ∈ Φ(X ,XT ) . Moreover, the fact that (T̂ +

Ŝ)Tw
r ∈ Φ(X) , then, according to [18, Theorem 2.5 p. 169], T̂ + Ŝ ∈ Φ(XT ,X). Finally

the result follows from (1). �
In order to give a similar results to Theorem 2, consider μT a measure of weak

noncompactness in XT and ΨμT the measure of weak noncompactness of operators as-
sociated to μT . Now, arguing as in the proof of Theorem 2, we can prove the following:

THEOREM 3. Let X be a Banach space which possess the DP property, T ∈C (X)
and let S be a T -bounded operator on X . Suppose that, for Tw

l a left weak-Fredholm
inverse of T ,{

(i) μT (Tw
l Ŝ(A)) � ΨμT (Tw

l Ŝ)μT (A), ∀A ∈ MXT ,

(ii) there exists m ∈ N
∗ such that (Tw

l Ŝ)m is DP in L (XT ) and ΨμT (Tw
l Ŝ)m < 1.

Then the following statements hold.
T +S∈ Φl(X) and i(T +S)= i(T ). If moreover T ∈ Φ−(X), then T +S∈Φ(X).

Finally, we close this section with the following corollary which extends many
known perturbation results in the literature.

COROLLARY 1. Let X be a Banach space which possess the DP property, T ∈
C (X) and let S be a T -bounded operator on X .

(i) Suppose that, for Tw
r a right weak-Fredholm inverse of T , for some m ∈ N∗ ,

(ŜTw
r )m is weakly compact operator on X . Then

T +S∈ Φr(X) and i(T +S)= i(T ). If moreover T ∈Φ+(X), then T +S∈ Φ(X) .
(ii) Suppose that, for Tw

l a left weak-Fredholm inverse of T , (Tw
l Ŝ)m is weakly

compact operator on XT , for some m ∈ N∗ . Then T +S ∈ Φl(X) and i(T +S) = i(T ).
If moreover T ∈ Φ−(X), then T +S ∈ Φ(X) .

4. Essential spectra of some matrix operators

The purpose of this section, is to describe the essential spectra of a general class
operators defined by a 2×2 block operator matrix.

In the product space X ×X , we consider the matrix operators of the form

L0 =
(

A B
C D

)
,

where the operator A acts on X and has domain D(A) , D is defined on D(D) and acts
on X , and the intertwining operator B (resp., C ) is defined on the domain D(B) (resp.,
D(C)) and acts on X . In what follows, we will assume that the entries of this matrix
satisfy the following conditions introduced in [5]:

(H1) A is densely defined linear operator on X with nonempty resolvent set ρ(A).
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(H2) B and C are densely defined closable operators and D(A) ⊂ D(C) .
(H3) For some (and hence for all) ν ∈ ρ(A), G(ν) := (A−ν)−1B is bounded on

its domain D(B) .
(H4) D(B) ⊂ D(D) .
(H5) For some (and hence for all) ν ∈ ρ(A) , the operator D−C(A− ν)−1B is

closable. We will denote by S(ν) its closure.

REMARK 2. (i) The fact that D(A) ⊂ D(C) and from the closed graph theorem
we infer that, for each ν ∈ ρ(A), F(ν) :=C(A−ν)−1 is defined on X and is bounded.

(ii) If the conditions (H1)− (H5) are satisfied, then by [5, Theorem 1.1] the
operator L0 is closable. Moreover, for λ ∈ C and ν ∈ ρ(A), λ −L can be written as
follows:

λ −L =
(

I 0
F(ν) I

)(
Aλ 0
0 Sλ (ν)

)(
I G(ν)
0 I

)
− (λ −ν)M(ν)

:= UV (λ )W − (λ −ν)M(ν),

where Aλ = λ −A , Sλ (ν) = λ −S(ν) and M(ν) =
(

0 G(ν)
F(ν) F(ν)G(ν)

)
.

In the rest of this section, consider μ a measure of weak-noncompactness in X
and Ψμ a measure of weak-noncompactness of operators associated to μ . Suppose
that Ψμ is semi-multiplicative. Unless otherwise stated in all follows, we suppose that,
for some ν ∈ ρ(A) , F(ν) and G(ν) satisfy the condition:

(H) :

{
(i) F(ν) and G(ν) are DP operators,
(ii) max

(
Ψμ(G(ν)), Ψμ(F(ν))

)
< 1

2 .

For T ∈ C (X) and λ ∈ C, we will denote Tλ := λ −T.

THEOREM 4. Let X be a Banach space which possess the DP property and let
λ ∈ D(ν,1) .

(i) Suppose that there exists Aw
λ l a left weak-Fredholm inverse of Aλ l and Sw

λ l(ν)
a left weak-Fredholm inverse of Sλ (ν) satisfying:

Ψμ(Aw
λ lG(ν)) <

1
2

and Ψμ(Sw
λ l(ν)F(ν)) < 1.

Then
λ −L ∈ Φl(X ×X) and i(λ −L) = i(V (λ )).

(ii) Suppose that there exists Aw
λ r a right weak-Fredholm inverse of Aλ and

Sw
λ r(ν) a right weak-Fredholm inverse of Sλ (ν) satisfying:

Ψμ(G(ν)Sw
λ r) <

1
2
, Ψμ(F(ν)Aw

λ r) < 1 and Ψμ(Sw
λ r(ν)F(ν)) < 1.

Then
λ −L ∈ Φr(X ×X) and i(λ −L) = i(V (λ )).
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(iii) Suppose that the hypotheses of (i) and (ii) hold true. Then

λ −L ∈ Φ(X ×X)and i(λ −L) = i(V (λ )).

To prove Theorem 4, we shall need to the following lemma:

LEMMA 1. For all bounded operator T :=
(

T1 T2

T3 T4

)
on X ×X , we consider

ϕμ(T ) = max(Ψμ(T1)+ Ψμ(T2),Ψμ(T3)+ Ψμ(T4)).

Then ϕμ defines a measure of weak noncompactness on the space X ×X .

Proof. It is easy to verify that ϕμ is a semi-norm on X×X and satisfying ϕμ(T )=
0 if and only if, ∀i ∈ {1, ...,4}, Ti is weakly compact on X . Thus, ϕμ is vanishes on
the closed ideal W (X ×X) . �

Proof of Theorem 4.

(i) Let Tλ =UV(λ )W and Vw
λ l =

(
Aw

λ l W1

W2 Sw
λ l(ν)

)
such that W1 and W2 are weakly

compact operators. It is easy to see that Vw
λ l is a left weak-Fredholm inverse of V (λ ) .

Thus, Tw
λ l =W−1Vw

λ lU
−1 is a left weak-Fredholm inverse of Tλ . On the other hand, we

have:
Tw

λ lM(ν) =
(

W1F(ν)−G(ν)Sw
λ l(ν)F(ν) Aw

λ lG(ν)−G(ν)W2G(ν)
Sw

λ l(ν)F(ν) W2G(ν)

)
.

Now, since the measure of weak noncompactness Ψμ is semi-multiplicative, then

ϕμ(Tw
λ lM(ν)) � max[Ψμ(G(ν))Ψμ(Sw

λ lF(ν))+ Ψμ(Aw
λ lG(ν)),Ψμ(Sw

λ lF(ν))] < 1.

Hence, the fact that |λ − ν| < 1, we deduce ϕμ((λ − ν)Tw
λ lM(ν)) < 1. Moreover,

according to hypothesis (H)(i) , Tw
λ lM(ν) is DP operator. Finally, the results follow

from Theorem 3.

(ii) Let Vw
λ r =

(
Aw

λ r W ′
1

W ′
2 Sw

λ r(ν)

)
be such that W ′

1 and W ′
2 are weakly compact oper-

ators. In the same way one checks that Tw
λ r = W−1Vw

λ rU
−1 is a right weak-Fredholm

inverse of Tλ . On the other hand, we have

M(ν)T w
λ r =

(
G(ν)W ′

2 −G(ν)Sw
λ r(ν)F(ν) G(ν)Sw

λ r(ν)
F(ν)Aw

λ r −F(ν)W ′
1F(ν) F(ν)W ′

1

)
.

Thus,

ϕμ((λ −ν)M(ν)Tw
λ r) � max[Ψμ(G(ν))Ψμ(Sw

λ rF(ν))+ Ψμ(G(ν)Sw
λ r),Ψμ(F(ν)Aw

λ r)]
< 1.

Moreover, since F(ν) and G(ν) are DP operators, then M(ν)Twr
λ is also. Finally, the

results follow from Theorem 2.
(iii) Is a deduction from (i) and (ii) . �
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Without maintaining to the hypothesis (H) , if we suppose that Aw
λ lG(ν) and

Sw
λ l(ν)F(ν) are weakly compact operators then the results of Theorem 4 remaind valid.

So, if we translate Theorem 4 in terms of essential spectra we get

COROLLARY 2. Let X be a Banach space which possess the DP property.
(i) Suppose that, for each λ ∈Φw

lA∩Φw
lS(ν) , Aw

λ lG(ν) and Sw
λ l(ν)F(ν) are weakly

compact operators. Then

σle(L) ⊂ σle(A)∪σle(S(ν)).

(ii) Suppose that, for each λ ∈Φw
rA∩Φw

rS(ν) , G(ν)Sw
λ r , F(ν)Aw

λ r and Sw
λ r(ν)F(ν)

are weakly compact operators. Then

σre(L) ⊂ σre(A)∪σre(S(ν)).

(iii) Suppose that, for some λ ∈ Φw
A ∩Φw

S(ν) , Aw
λ lG(ν) , Aw

λ rG(ν) , Sw
λ l(ν)F(ν)

and Sw
λ r(ν)F(ν) are weakly compact operators. Then

σeF (L) ⊂ σeF(A)∪σeF(S(ν)) and σeW (L) ⊂ σeW (A)∪σeW (S(ν)).

Proof. The statements (i) and (ii) are direct consequence of Theorem 4(i)-(ii) .
(iii) It suffice to prove that if the hypotheses of statements (i)-(ii) hold true for

some λ ∈ Φw
A ∩Φw

S(ν) , then they also hold true for all α ∈ Φw
A ∩Φw

S(ν) . Suppose, for

example, that Aw
λ lG(ν) is weakly compact operator, for λ ∈ Φw

A ∩Φw
S(ν) . Then there

exists A′
λ and W1, W2 two weakly compact operators satisfying: A′

λ Aλ = I +W1 on
D(Aλ ) and Aλ A′

λ = I +W2 on X . Let α ∈ Φw
A ∩Φw

S(ν). There exists A′
α and W3, W4

two weakly compact operators satisfying: A′
αAα = I +W3 on D(Aα) and AαA′

α =
I +W4 on X . Hence, A′

λ AαA′
αG(ν) is weakly compact. Now, since A′

λ Aα ∈ Φw(X),
then A′

αG(ν) is weakly compact operator. �
In the rest of this paper, we will study the inverse inclusion given in Corollary 2.

For this, we consider Hλ (ν) := Sλ (ν)+CG(ν), ν ∈ ρ(A) .

THEOREM 5. Let X be a Banach space which possess the DP property and let
λ ∈ D(ν,1) .

(i) Suppose that there exists Aw
λ l (resp., Hw

λ l(ν)) a left weak-Fredholm inverse of
Aλ (resp., a left weak-Fredholm inverse of Hλ (ν)) satisfying:{ • Aw

λ l(ν −A)G(ν) and Hw
λ l(ν)C are weakly compact operators.

• Ψμ(Aw
λ lG(ν)) < 1.

Then
V (λ ) ∈ Φl(X) and i(λ −L) = i(V (λ )).

(ii) Suppose that there exists Aw
λ r (resp., Hw

λ r(ν)) a right weak-Fredholm inverse
of Aλ (resp., a right weak-Fredholm inverse of Hλ (ν)) satisfying:{ • (ν −A)G(ν)Hw

λ r(ν) and CAw
λ r are weakly compact operators.

• Ψμ(G(ν)Hw
λ r(ν)) < 1 and Ψμ(F(ν)Aw

λ r) < 1.
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Then
V (λ ) ∈ Φr(X) and i(λ −L) = i(V (λ )).

(iii) Suppose that the hypotheses of (i) and (ii) hold true. Then

V (λ ) ∈ Φ(X) and i(λ −L) = i(V (λ )).

Proof. Consider Lw
λ l =

(
Aw

λ l W1

W2 Hw
λ l(ν)

)
such that W1 and W2 are weakly compact

operators. Then Lw
λ l is a left weak-Fredholm inverse of Lλ . On the other hand, we have

Lw
λ lM(ν) =

(
W1F(ν) Aw

λ lG(ν)+W1F(ν)G(ν)
Hw

λ l(ν)F(ν) W2G(ν)+Hw
λ l(ν)F(ν)G(ν)

)
.

Since Hw
λ l(ν)C is weakly compact, then Hw

λ l(ν)F(ν) is also. The fact that |λ −μ |< 1
and according to Lemma 1, we deduce that ϕμ((λ −ν)Lw

λ lM(μ)) = Ψμ(Aw
λ lG(ν)) < 1.

Finally, the results follow from Theorem 3.

(ii) Let Lw
λ r =

(
Aw

λ r W ′
1

W ′
2 Hw

λ r(ν)

)
be such that W ′

1 and W ′
2 are weakly compact oper-

ators. It is easy to verify that Lw
λ r is a right weak-Fredholm inverse of Lλ . On the other

hand, we have

M(ν)Lw
λ r =

(
G(ν)W ′

2 G(ν)Hw
λ r(ν)

F(ν)Aw
λ r +F(ν)G(ν)W ′

2 F(ν)W ′
1 +F(ν)G(ν)Hw

λ r(ν)

)
.

According to the hypotheses we infer that

ϕμ(M(ν)Lw
λ r) � max[Ψμ(G(ν)Hw

λ r(ν)),Ψμ(F(ν)Aw
λ r)+Ψμ(F(ν))Ψμ(G(ν)Hw

λ r(ν))]
< 1.

Finally, the results follow from Theorem 2.
(iii) Is a deduction from (i) and (ii) . �

REMARK 3. Remark that if F(ν), G(ν) ∈ W (X), for some ν ∈ ρ(A), then for
all ν ∈ ρ(A), F(ν), G(ν) ∈ W (X). Indeed, let ν0 ∈ ρ(A) such that F(ν0) and G(ν0)
are weakly compacts. Then, for all ν ∈ ρ(A), we have: F(ν) = F(ν0)[I + (ν −
ν0)(ν0 −A)−1]−1 and G(ν) = [I + (ν − ν0)(ν0 −A)−1]−1(ν0 −A)−1B. This implies
that F(ν), G(ν) ∈ W (X).

Without maintaining to the hypothesis (H) , we can deduce the following:

COROLLARY 3. Let X be a Banach space which possess the DP property.
(i) Suppose that, for each λ ∈ Φw

lA ∩ Φw
lS(ν) ∩ Φw

lH(ν) , Sw
λ l(ν)C and G(ν) are

weakly compact operators. Then

σle(L) = σle(A)∪σle(S(ν)).
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(ii) Suppose that, for each λ ∈Φw
rA∩Φw

rS(ν)∩Φw
rH(ν) , G(ν)Hw

λ r(ν) and F(ν) are
weakly compact operators. Then

σre(L) = σre(A)∪σre(S(ν)).

(iii) Suppose that, for some (and hence for all) ν ∈ ρ(A) , F(ν) and G(ν) are
weakly compact operators. Then

σeF (L) = σeF(A)∪σeF(S(ν)) and σeW (L) = σeW (A)∪σeW (S(ν)).

If in addition, C\σeW (L) , C\σeW (A) and C\σeW (S(ν)) are connected, ρ(L) 
= /0 and
ρ(S(ν)) 
= /0 , then

σeB(L) = σeB(A)∪σeB(S(ν)).

Proof. (i) Remark that Aw
λ l(ν−A)G(ν) and Aw

λ lG(ν) are weakly compacts if and
only if G(ν) ∈ W (X) . Moreover, Sw

λ l(ν) is a left weak-Fredholm inverse of Hλ (ν).
Hence, the result follows from Corollary 2 and Theorem 5.

(ii) Remark that CAw
λ l = F(ν)(ν −A)Aw

λ l. Thus, CAw
λ r and F(ν)Aw

λ r are weakly
compacts if and only if F(ν) ∈ W (X) . Hence, the result follows from Corollary 2 and
Theorem 5.

(iii) The fact that Sw
λ l(ν)C = Sw

λ l(ν)F(ν)(ν − A) , then the results follow from
(i) and (ii) . To describe the Browder essential spectrum of L , we have σeW (L) ⊂
σ(L) . Thus, since α(λ − L) and β (λ − L) are constant on any component of ΦL

except possibly on a discrete set of points at which they have large values (see, for
example [18]), then σeB(L) ⊂ σeW (L) and therefore σeW (L) = σeB(L). Using the same
reasoning as before, we show that σeW (A) = σeB(A) and σeW (L) = σeB(S(ν)). �
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