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A FUNCTIONAL ANALYTIC PERSPECTIVE

TO DELAY DIFFERENTIAL EQUATIONS

RAINER PICARD, SASCHA TROSTORFF AND MARCUS WAURICK

Abstract. We generalize the solution theory for a class of delay type differential equations de-
veloped in a previous paper, dealing with the Hilbert space case, to a Banach space setting. The
key idea is to consider differentiation as an operator with the whole real line as the underlying
domain as a means to incorporate pre-history data. We focus our attention on the issue of causal-
ity of the differential equations as a characterizing feature of evolutionary problems and discuss
various examples. The arguments mainly rely on a variant of the contraction mapping theorem
and a few well-known facts from functional analysis.

1. Introduction

In this note, we present a unified Banach space perspective to a class of ordinary
differential equations with memory and delay effects. This class is often summarized
under the umbrella term delay differential equations:

ẋ(t) = f (t,xt , ẋt) t ∈ I, I � R interval,

where ẋ denotes the (time-)derivative of x and xt denotes the history segment of x , cf.
e.g. [7, 11] see also Example 3.16 below. These equations have many applications in
engineering or sciences. We refer to [1, 6] and the references therein for an account of
various applications.

The class considered here covers ordinary differential equations, differential dif-
ference equations, integro-differential equations or even neutral differential equations.
Using some basic functional analysis, the main contribution of this note is that the
aforementioned equations can be treated in a unified manner. The core idea consists
in the treatment of the problem on the whole real axis as time-line. This enables us
to conveniently detour the introduction of certain (pre-)history spaces, cf. e.g. [7, 13].
Moreover, we do not need to introduce an extended state space as it can be done for
linear theory using semi-group methods, see e.g. [2]. Dealing with possibly non-linear
equations, we cannot use the rich theory of Fourier-multipliers for delay equations, see
e.g. [16, 17] for a possible account of this technique being applied to partial differential
delay equations.

Our perspective also shows that finite and infinite delay do not need different treat-
ment. However, our focus is on existence of solutions and continuous dependence on
the data rather than the continuity or differentiability or other qualitative properties of
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the solution itself. This yields an elementary solution theory at least for Lp -spaces.
Though parts of our results are covered by well-known theory, we have more freedom
in choosing right-hand sides. In particular, we can solve delay differential equations
with certain measures or functions with unbounded variation as right-hand sides, cf.
Subsection 4.2.

Our development of a solution theory for delay differential equations starts in Sec-
tion 2, where we state a variant of the contraction mapping theorem tailored for operator
equations in the abstract form

Cx = F(x),

for x residing in some Banach space X and F being Lipschitz-continuous in a suitable
sense and C : D(C) � X → X being a closed, densely defined, continuously invertible
linear operator. The remaining parts of this paper are essentially applications of the
results from Section 2. To this end, we have to establish the (time-)derivative as a con-
tinuously invertible operator. Thus, both the Sections 3 and 4 start with the definition of
the time-derivative as a continuously invertible operator in a Lp -space and in a space of
continuous functions. Having our main applications of delay differential equations in
mind, we introduce the (time-)derivative on functions defined on the whole real line as
time axis. If one wants to recover classical theory, e.g. initial value problems for ordi-
nary differential equations, one has to know that the solution of a differential equation
depends only on the past of the right-hand side. The latter is summarized by the notion
of causality, see [15] or Definition 3.9 below. Thus, in both the Section 3 and 4, we also
show causality of the respective solution operators. These sections are complemented
by the discussion of several examples.

It should be noted that many ideas rely on results and strategies used in refer-
ence [14], where a Hilbert space perspective is preferred. The idea of introducing the
time-derivative as a continuously invertible operator stems from references [19, 20, 21],
which in view of the L∞ -considerations in Section 4 shows its kinship to ideas devel-
oped back in 1952 by Morgenstern, [18].

2. The general solution theory – a variant of the contraction mapping theorem

Let X be a Banach space and let C : D(C) � X → X be a densely defined closed
linear operator with 0 ∈ ρ(C) . Then X1(C) := (D(C), |C·|X ) is a Banach space.
Moreover, define X−1(C) to be the completion (X ,

∣∣C−1·∣∣X)∼ of (X ,
∣∣C−1·∣∣X ) and

let X0(C) := X . If the operator C is clear from the context, we omit the reference to
the operator C in the notation of the associated spaces. We have

X1 ↪→ X0 ↪→ X−1

in the sense of continuous and dense embeddings. Furthermore, C : D(C) � X0 →X−1

is isometric and densely defined with dense range. Hence, C can be extended to an
isometric isomorphism. We identify C with its extension. The fundamental solution
theory is based on the following variant of the contraction mapping theorem.
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THEOREM 2.1. Let F : X0 →X−1 be a strict contraction and let |F|Lip(< 1) be
the smallest Lipschitz constant for F . Then the equation

Cx = F(x)

has a unique fixed point x ∈ X0 . If y ∈ X0 and n ∈ N then the following estimates
hold ∣∣C−1F(y)− x

∣∣� |F |Lip

1−|F|Lip
|y− x| ,

∣∣∣(C−1F
)n

(y)− x
∣∣∣� |F |Lip

1−|F|Lip

∣∣∣(C−1F
)n

(y)− (C−1F
)n−1

(y)
∣∣∣ ,

∣∣∣(C−1F
)n

(y)− x
∣∣∣� |F |nLip

1−|F|Lip
|y− x| .

Proof. The operator C−1 : X−1 → X0 is an isometric isomorphism. Hence,
C−1F(·) is a strict contraction in X0 . The contraction mapping theorem yields the
assertion. The estimates are well-known. �

COROLLARY 2.2. Let F : X1 → X0 be a strict contraction. Then

Cx = F(x)

has a unique fixed point x ∈ X1 .

Proof. The mapping CF(C−1·) satisfies the assumptions from Theorem 2.1. Hence,
there exists a unique fixed point x̃ ∈ X0 such that

Cx̃ = CF(C−1x̃).

Therefore x := C−1x̃ ∈ X1 satisfies

Cx = F(x).

Now, let u∈ X1 satisfy Cu = F(u) . Then Cu satisfies the equation C(Cu) =CF(u) =
CF(C−1(Cu)) and thus, Cu = x̃ , which gives u = x . �

THEOREM 2.3. Let F,G : X0 → X−1 be Lipschitz continuous and assume that
the respective Lipschitz semi-norms, i.e., the smallest Lipschitz constants, |F |Lip and
|G|Lip satisfy

|F |Lip + |G|Lip

2
< 1.

Let x,y ∈ X0 satisfy
Cx = F(x) and Cy = G(y).

Then

|x− y|X0
� 1

1− |F|Lip+|G|Lip
2

sup
u∈X0

|F(u)−G(u)|X−1
.
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Proof. By assumption, we have

x− y = C−1F(x)−C−1G(y)

=
1
2
C−1(F(x)−F(y))

+
1
2
C−1(G(x)−G(y))− 1

2
C−1(G(x)−F(x))+

1
2
C−1(F(y)−G(y)).

This yields the assertion. �

3. The reflexive case – delay differential equations in Lp -spaces

For the whole section, let p ∈ (1,∞) and denote by q the conjugate exponent such
that 1

p + 1
q = 1. Let X be a Banach space.

3.1. Definition of the time-derivative

Denoting by μν the weighted Lebesgue measure on R with Radon-Nikodym
derivative x �→ e−ν px for ν ∈ R , we define

W 0
p,ν(R;X) := Lp,ν(R;X) := Lp(μν ;X).

Note that the mapping e−νm : Lp,ν(R;X) → Lp(R;X), f �→ (x �→ e−νx f (x)) is isomet-
rically isomorphic1.

DEFINITION 3.1. We define

∂ν : C∞
c (R;X) � Lp,ν(R;X) → Lp,ν(R;X), f �→ f ′,

where
C∞

c (R;X) := {φ ;φ indefinitely differentiable, suppφ compact}.
The operator ∂ν is clearly closable and its closure coincides with the distributional

derivative. Henceforth, we will not distinguish notationally between ∂ν and its closure.
In order to apply the general solution theory to ∂ν in place of C , we need the following
theorem:

THEOREM 3.2. Assume ν > 0 . Then we have that the convolution operator
χ[0,∞)∗ : Lp,ν(R;X) → Lp,ν(R;X) is continuous with operator norm equal to 1

ν . More-

over, it holds
(
χ[0,∞)∗

)−1 = ∂ν .

1The m in the expression e−νm serves as reminder of multiplication. We will frequently use this notation.
For instance, let φ : R → R and ψ : R → E for some vector space E . Then we define φ(m)ψ to be the
mapping

φ(m)ψ : R → E,t �→ φ(t)ψ(t).
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Proof. Let φ ∈C∞
c (R;X) . Then we have, invoking Young’s inequality, that∣∣χ[0,∞) ∗φ

∣∣
p,ν =

∣∣e−νm (χ[0,∞) ∗φ
)∣∣

p,0

=
∣∣(e−νmχ[0,∞)

)∗ (e−νmφ
)∣∣

p,0

�
∫

R

∣∣e−νt χ[0,∞)(t)
∣∣dt ∣∣e−νmφ

∣∣
p,0

=
1
ν
|φ |p,ν .

Now, for n ∈ N and some x ∈ X with |x| = 1 define φn(t) := 1
n1/p eνmχ[0,n](t)x for all

t ∈ R . For n ∈ N let un := χ[0,∞) ∗φn . It is easy to that un(t) = 1
νn1/p

(
eν min{t,n} −1

)
x

for all t ∈ R and that |φn|p,ν = 1 for all n ∈ N . Moreover, an easy computation shows

that |un| → 1
ν as n → ∞ , for the details we refer to [22, Proposition 2.2].

The equality
(
χ[0,∞)∗

)−1 = ∂ν follows by differentiation of the convolution inte-
gral. �

REMARK 3.3. If ν < 0, then a similar result holds. The respective inverse, how-
ever, is now given by

(−χ(−∞,0]∗
)−1

.

Now, we are in the situation of our general solution theory with C = ∂ν .
For convenience, we describe the space X−1(∂ν ) in more detail. We let

W 1
p,ν(R;X) := X1(∂ν).

THEOREM 3.4. Assume that X is reflexive2. We have

(
W 1

q,−ν(R;X)
)′

=
(
Lp,ν(R;X ′);

∣∣∂−1
ν ·∣∣p,ν

)̃
,

in the sense of the dual pairing

Lp,ν(R;X ′)×Lq,−ν(R;X) � (φ ,ψ) �→
∫
R

〈φ(t),ψ(t)〉X ′ ,Xdt =: 〈φ ,ψ〉0,0.

Proof. Let φ ∈Lp,ν(R;X ′) be such that
∣∣∂−1

ν φ
∣∣
p,ν = 1. Then, for ψ ∈W 1

q,−ν(R;X)
with |∂−ν ψ |q,−ν = 1 we have

|〈φ ,ψ〉0,0| = |〈∂ν∂−1
ν φ ,ψ〉0,0|

= |− 〈∂−1
ν φ ,∂−ν ψ〉0,0|

= |〈e−νm∂−1
ν φ ,eνm∂−νψ〉0,0|

�
∣∣e−νm∂−1

ν φ
∣∣
p,0 |eνm∂−νψ |q,0 = 1.

2Note that, as a consequence, we have for any σ -finite measure space (Ω,μ) the property Lp(μ ;X)′ =
Lq(μ ;X ′) (cf. [8, p. 82: Corollary 4 and p. 98: Theorem 1]).
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This establishes the continuity of ι : Lp,ν(R;X ′) → W 1
q,−ν(R;X)′, f �→ f with norm

less than or equal to 1. Now, since Lq,0(R;X)′ = Lp,0(R;X ′) by the reflexivity of X ,
we find ψ̃ in the unit ball of Lq,0(R;X ′) such that 〈e−νm∂−1

ν φ , ψ̃〉0,0 = 1. Defining
ψ := −∂−1

−ν (eνm)−1ψ̃ , we get that |ψ |q,−ν,1 = 1. Thus, ι is isometric.

It remains to prove that Lp,ν(R;X ′) is dense in
(
W 1

q,−ν(R;X)
)′

. Let φ be a contin-

uous linear functional on
(
W 1

q,−ν(R;X)
)′

vanishing on Lp,ν(R;X ′) . By the reflexivity
of X , we deduce that φ ∈W 1

q,−ν(R;X) . Hence, φ = 0. �
For our general solution theory the following corollary will be useful.

COROLLARY 3.5. Let � ∈ {1,0,−1} and ν ∈ R \ {0} and assume X to be re-
flexive. Then, we have

W−�
q,−ν(R;X ′)′ = W �

p,ν(R;X).

Proof. The result is clear as a consequence of Theorem 3.4. �

3.2. Solution theory

We restate the basic solution theory in our particular situation. However, we shall
restrict ourselves to a particular form of right-hand sides. We will need the following
types of additional test function spaces:

C∞,+
c (R;X) := {φ ;φ indefinitely differentiable,

supsuppφ < ∞,∃n ∈ N : suppφ (n) compact}
and

C∞,+
c (R;X)′ := {u : C∞,+

c (R;X) → K; u linear}.
We note here that we do not assume any specific continuity property of the functionals
in C∞,+

c (R;X)′ . The particular continuity property will be assumed in the following
definition.

DEFINITION 3.6. (eventually (k, �)-contracting) Let k, � ∈ {1,0,−1} and let Y
be a reflexive Banach space. A mapping F : C∞

c (R;X) →C∞,+
c (R;Y ′)′ is called even-

tually (k, �)-Lipschitz continuous if the following assumptions are satisfied:

• there exists ν0 > 0 such that for all ν � ν0 we have F(0) ∈W−�
q,−ν(R;Y ′)′ ,

• there exists ν1 > 0 and C > 0 such that for all ν � ν1 , u,v ∈ C∞
c (R;X),φ ∈

C∞,+
c (R;Y ′) we have

|F(u)(φ)−F(v)(φ)| � C |φ |W−�
q,−ν(R;Y ′) |u− v|Wk

p,ν(R;X) .

For an eventually (k, �)-Lipschitz continuous mapping F , we denote by Fν its Lip-
schitz continuous extension from Wk

p,ν(R;X) to W �
p,ν(R;Y ) . Moreover, denote by

|Fν |Lip the infimum over all possible Lipschitz constants for Fν . We call F eventu-
ally (k, �)-contracting if limsupν→∞|Fν |Lip < 1.
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THEOREM 3.7. (Lp -solution theory) Let X be reflexive and let F : C∞
c (R;X) →

C∞,+
c (R;X ′)′ be (0,−1)-contracting. Then, for ν large enough, the equation

∂νu = Fν(u)

admits a unique solution u ∈ Lp,ν(R;X) .

Proof. This result is a special case of Theorem 2.1. �

REMARK 3.8. The analogous result also holds for (1,0)-contracting mappings.
Moreover, since the norm of ∂−1

ν as a mapping from Lp,ν into itself is bounded by
1
ν , we also get a solution theory for (0,0)- and (1,1)-Lipschitz mappings, cf. [14,
Corollary 3.4].

As causality is a characterizing feature of time-evolution, we are particularly in-
terested in establishing causality of the solution operator.

DEFINITION 3.9. (Causality) Let E,F be vector spaces. A mapping W : D(W ) �
ER → FR is called causal if for all x,y ∈ D(W ) and t ∈ R we have

χR<t (m)(x− y) = 0 ⇒ χR<t (m)(W (x)−W(y)) = 0.

Similar to [14, Definition 4.3], we have to define a notion of distributional integrals
or distributional convolutions.

DEFINITION 3.10. Let w ∈C∞,+
c (R;X)′ . Then we define

χ[0,∞) ∗w : C∞,+
c (R;X) → K,φ �→ w(χ(−∞,0] ∗φ).

REMARK 3.11. Assume that X is reflexive. For w ∈ W−1
p,ν (R;X) we have that

χ[0,∞) ∗w = ∂−1
ν w . Indeed, by Theorem 3.4, we have w ∈W 1

q,−ν(R;X ′)′ and thus, for

φ ∈C∞,+
c (R;X ′) , we get that

χ[0,∞)∗w(φ)= w(χ(−∞,0]∗φ)= w(−∂−1
−ν φ)= 〈w,−∂−1

−ν φ〉0,0 = 〈∂−1
ν w,φ〉0,0 = ∂−1

ν w(φ).

THEOREM 3.12. (Causality) Assume that X is reflexive. Let F : C∞
c (R;X) →

C∞,+
c (R;X ′)′ be (0,−1) contracting. Then ∂−1

ν F is causal.

Proof. The proof follows essentially along the lines of [14, Theorem 4.5]. Since
we are, however, dealing with a Banach space setting here, the arguments are more
delicate and thus worth recalling in detail. Let t ∈ R , ν1 such that |Fν |Lip < 1 for
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all ν � ν1 . Let φ ∈ C∞(R) be bounded. For ν � ν1 and w ∈ C∞
c (R;X) and ψ ∈

C∞,+
c (R;X ′) with supsuppψ � t we compute∣∣∂−1

ν1
Fν1(w)(ψ)− ∂−1

ν1
Fν1(φ(m)w)(ψ)

∣∣ = ∣∣χ[0,∞) ∗F(w)(ψ)− χ[0,∞) ∗F(φ(m)w)(ψ)
∣∣

=
∣∣∂−1

ν Fν(w)(ψ)− ∂−1
ν Fν(φ(m)w)(ψ)

∣∣
=
∣∣Fν(w)(−∂−1

−ν ψ)−Fν(φ(m)w)(−∂−1
−ν ψ)

∣∣
�
∣∣−∂−1

−ν ψ
∣∣
W 1

q,−ν (R;X ′) |w−φ(m)w|Lp,ν (R;X) .

= |ψ |Lq,−ν(R;X ′) |w−φ(m)w|Lp,ν (R;X)

� |ψ |Lq,0(R;X ′) e
νt |w−φ(m)w|Lp,ν(R;X) .

By continuity, we deduce that

∣∣∂−1
ν1

Fν1(w)(ψ)− ∂−1
ν1

Fν1(χR<t (m)w)(ψ)
∣∣ � |ψ |Lq,0(R;X ′) e

νt
(∫ ∞

t
|w(τ)|p e−pντdτ

) 1
p

= |ψ |Lq,0(R;X ′)

(∫ ∞

0
|w(τ + t)|p e−pντdτ

) 1
p

.

Hence, letting ν → ∞ , we get the assertion. �

THEOREM 3.13. (Independence of ν ) Assume that X is a reflexive Banach space.
Let F : C∞

c (R;X) → C∞,+
c (R;X ′)′ be (0,−1)-contracting. Let ν1 ∈ R>0 be such that

|Fν |Lip < 1 for all ν � ν1 . Let ν2 � ν1 . Then, if wν1 ,wν2 satisfy

∂ν1wν1 = Fν1(wν1) and ∂ν2wν2 = Fν2(wν2),

we have wν1 = wν2 .

Proof. The proof follows the ideas of the proof of [14, Theorem 4.6]: Let t ∈ R ,
ν ∈ R�ν1

. Denoting by wν the solution of

∂νwν = Fν(wν ) ∈W−1
p,ν (R;X),

we recall wν ∈ Lp,ν(R;X) . Moreover, we have due to Theorem 3.12

χR<t (m)wν = χR<t (m)∂−1
ν Fν (wν )

= χR<t (m)∂−1
ν Fν (χR<t (m)wν ) .

Then, as ∂−1
ν1

Fν1 coincides with ∂−1
ν2

Fν2 on C∞
c (R;X) and as an approximating se-

quence of C∞
c (R;X)-functions for χR<t (m0)wν2 can be chosen to converge in both

Lp,ν1(R;X) and Lp,ν2(R;X) , we arrive at

χR<t (m)∂−1
ν2

Fν2(χR<t (m)wν2) = χR<t (m)∂−1
ν1

Fν1(χR<t (m)wν2).



DELAY DIFFERENTIAL EQUATIONS 225

Hence,

|χR<t (m)(wν1 −wν2)|Lp,ν1(R;X)

=
∣∣χR<t (m)(∂−1

ν1
Fν1(χR<t (m)wν1)− ∂−1

ν1
Fν1(χR<t (m)wν2))

∣∣
Lp,ν1(R;X)

�
∣∣∂−1

ν1
Fν1(χR<t (m)wν1)− ∂−1

ν1
Fν1(χR<t (m)wν2)

∣∣
Lp,ν1 (R;X)

� |Fν1 |Lip |χR<t (m)(wν1 −wν2)|Lp,ν1 (R;X) .

Since |Fν1 |Lip < 1 the assertion follows. �

3.3. Examples

Before we illustrate the applicability of our abstract theorems, we introduce the
notion of having delay and of being amnesic for mappings from function spaces into
function spaces.

DEFINITION 3.14. Let E,F be vector spaces. A mapping W : D(W ) � ER → FR

is called amnesic if for all t ∈ R , x,y ∈ D(W ) we have

χR>t (m)(x− y) = 0 ⇒ χR>t (m)(W (x)−W(y)) = 0

W is said to have delay if W is not amnesic.

We shall give some examples of mappings having delay.

EXAMPLE 3.15. (Discrete delay) For θ ∈ R we define

τθ : Lp,ν(R;X) → Lp,ν(R;X),
f �→ (t �→ f (t + θ ))

It is easy to see, that τθ is not causal for θ > 0, whereas it is amnesic. For θ < 0, τθ
is causal and has delay. For convenience, we compute the operator norm of τθ . For
f ∈C∞

c (R;X) , we have

|τθ f |pp,ν =
∫

R

| f (t + θ )|pX e−pνtdt =
∫

R

| f (t + θ )|pX e−pν(t+θ)dt epνθ = | f |pp,ν epνθ .

Thus, ‖τθ‖ = eνθ .

EXAMPLE 3.16. (Continuous delay) The mapping

Θ : Lp,ν(R;X) → Lp,ν(R;Lp(R<0;X))
φ �→ φ(·) := (t �→ (θ �→ φ(t + θ )))
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clearly has delay. We compute its operator norm. For f ∈C∞
c (R;X) , we have

|Θ f |pp,ν =
∫

R

∫
R<0

| f (t + θ )|pX dθe−pνtdt

=
∫

R<0

∫
R

| f (t + θ )|pX e−pν(t+θ)dt epνθdθ

=
∫

R<0

| f |pp,ν epνθdθ

= | f |pp,ν
1
pν

.

Hence, ‖Θ‖ = 1
p√pν .

To incorporate initial value problems, it is convenient to have an adapted point
trace result.

THEOREM 3.17. (Sobolev embedding) For ν ∈ R\ {0} , define

Cν(R;X) :=
{

f : R → X ; f continuous,

| f |ν,∞ := sup{∣∣e−νt f (t)
∣∣
X ;t ∈ R} < ∞, e−νt f (t) → 0(t →±∞)

}
.

We endow Cν (R;X) with the norm |·|ν,∞ such that it becomes a Banach space. The
mapping

ι : C∞
c (R;X) � W 1

p,ν(R;X) →Cν (R;X), f �→ f

is continuous.

Proof. We shall only prove the case ν > 0. The case ν < 0 can be dealt with
similarly. Let f ∈C∞

c (R;X) and s,t ∈ R,s < t . Then

| f (t)− f (s)| �
∫ t

s
|∂ν f (ξ )|dξ

=
∫ t

s
|∂ν f (ξ )|e−νξ eνξ dξ

�
(∫ t

s
|∂ν f (ξ )|p e−pνξ dξ

) 1
p
(∫ t

s
eqνξ dξ

) 1
q

� | f |1,ν,p

(
1
qν
(
eqνt − eqνs)) 1

q

.

Letting s →−∞ in this inequality, we arrive at

e−νt | f (t)| � 1
q
√

qν
| f |1,ν,p ,

which gives the continuity result. �
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By the aforementioned theorem, ι has a unique continuous extension to the space
W 1

p,ν(R;X) . As the extension of ι is the extension of the identity mapping, we omit
ι in the following, and choose, without giving explicit reference to it, the continuous
representer of a W 1

p,ν(R;X)-function. (It is easy to see that the continuous extension is
one-to-one.)

Now, we have all the tools at hand to apply our general solution theory to a number
of example cases.

EXAMPLE 3.18. (Initial value problems, cf. [14, Theorem 5.4]) Let ν > 0, u0 ∈
X . Let F be (0,0)-Lipschitz and such that F(φ) = 0 for all φ ∈ C∞

c (R;X) with
suppφ � (−∞,0] . Then the equation3

∂νu = Fν(u)+ δu0

admits a unique solution u∈ Lp,ν(R;X) and such that u−χR>0(m)u ∈W 1
p,ν(R;X) and

u(0+) = u0 if ν is chosen sufficiently large.
Unique existence of u follows from our general solution theory. The remaining

facts follow from the representation

u− χR>0(m)u = u− ∂−1
ν δu0 = ∂−1

ν Fν(u)

and causality of ∂−1
ν Fν .

EXAMPLE 3.19. (Finite discrete delay) Let θ1, . . . ,θn ∈ R�0 be distinct, and let

Φ : C∞
c (R;Xn) →C∞,+

c (R;X ′)′ be (0,−1)-contracting. Then, for ν sufficiently large,
the equation

∂νu = Φν (τθ1u, · · · ,τθnu)

admits a unique solution u ∈ Lp,ν(R;X) .
It suffices to observe that the operator norm of

Θ : Lp,ν(R;X) → Lp,ν(R;Xn), f �→ (τθ1 f , . . . ,τθn f )

can be estimated arbitrarily close to 1, if ν was chosen sufficiently large.

EXAMPLE 3.20. (Continuous delay) Let Φ : C∞
c (R;Lp(R<0;X)) →C∞,+

c (R;X ′)′
be (0,−1)-Lipschitz. Then, for ν sufficiently large, the equation

∂νu = Φν(u(·))

admits a unique solution.
The assertion follows from the Example 3.16, where we estimated the operator

norm of the mapping φ �→ φ(·) in the weighted spaces under consideration.

3By Theorem 3.17, we have that the point evaluation at 0 , denoted by δ , is an element of W−1
p,ν . For a

Banach space element u0 we write δu0 for the derivative of the map t �→ χ[0,∞)(t)u0 . Thus, in this sense it

holds δu0 ∈W−1
p,ν (R;X) .
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EXAMPLE 3.21. (Neutral differential equations) Let Φ : C∞
c (R;Lp(R<0;X)2) →

C∞,+
c (R;X ′)′ be (0,0)-Lipschitz. Then the equation

∂νu = Φ(u(·),(∂νu)(·))

admits a unique solution u ∈W 1
p,ν(R;X) , if ν was chosen large enough.

Consider the mapping

Θ : W 1
p,ν(R;X) → Lp,ν(R;Lp(R<0;X)2), f �→ ( f(·),(∂ν f )(·)).

Note that the operator norm of W 1
p,ν(R;X) → Lp,ν(R;X)2, f �→ ( f ,∂ν f ) is bounded if

ν → ∞ and that the mapping Lp,ν(R;X) � f �→ f(·) ∈ Lp,ν(R;Lp(R<0;X)) has operator
norm tending to 0 if ν → ∞ , by the aforementioned example. We deduce that Θ is
eventually (1,0)-contracting, with arbitrarily small operator norm and that the map
Φ◦Θ is eventually (1,0)-contracting. Hence, our general solution theory applies.

In the following, we will treat some more concrete examples from the literature.

EXAMPLE 3.22. The following example has been considered in [3, 4, 12] and the
references therein. Let B ∈ L1(R>0;Rn×n) , (Aj) j ∈ �1(N;Rn×n) , (t j) j ∈ R

N
�0 and let

f ∈ Lp(R;Rn) be such that the support is bounded from below. Consider the problem
of finding x ∈ Lp,ν(R;Rn×n) such that

∂νx =
∞

∑
j=0

Ajτ−t j x+B∗ x+ f .

The unique existence of x follows by observing that the operator

F : Lp,ν(R;Rn) → Lp,ν(R;Rn)

x �→
(

∞

∑
j=0

Ajτ−t j x+B∗ x

)

is Lipschitz continuous. Indeed, Young’s inequality ensures |B∗ x| � |B|L1 |x| for all
x ∈ Lp,ν(R;Rn) . The first term we estimate as follows. Let x ∈ Lp,ν(R;Rn) . Then∣∣∣∣∣

∞

∑
j=0

Ajτ−t j x

∣∣∣∣∣�
∞

∑
j=0

∣∣Aj
∣∣ |x| = ∣∣(Aj) j

∣∣
�1 |x|

In [5] the oscillations of possible solutions to the following problem are discussed.

EXAMPLE 3.23. Let k ∈ N,n ∈ N>0 and for j ∈ {0, . . . ,k} let p j : R → R be
continuous and bounded and σ j ∈ R>0 . Let f ∈ Lp(R) with support bounded from
below and consider the following neutral differential equation of n ’th order

(x− p0(m)τ−σ0x)
(n) =

k

∑
j=1

p j(m)τ−σ j x+ f .
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For ν ∈ R>0 , we may equally discuss

∂ n
ν (x− p0(m)τ−σ0x) =

k

∑
j=1

p j(m)τ−σ j x+ f .

The latter is the same as

x = ∂−n
ν

(
k

∑
j=1

p j(m)τ−σ j x

)
+ p0(m)τ−σ0x+ ∂−n

ν f .

We observe that this is a fixed point problem, which admits a unique solution for ν
large enough. Indeed, the operator norm of(

∂−n
ν

(
k

∑
j=1

p j(m)τ−σ j

)
+ p0(m)τ−σ0

)
: Lp,ν(R) → Lp,ν(R)

can be estimated by∥∥∥∥∥∂−n
ν

(
k

∑
j=1

p j(m)τ−σ j

)
+ p0(m)τ−σ0

∥∥∥∥∥�
∥∥∥∥∥∂−n

ν

(
k

∑
j=1

p j(m)τ−σ j

)∥∥∥∥∥+
∥∥p0(m)τ−σ0

∥∥
� 1

νn

k

∑
j=1

∣∣p j
∣∣
∞ exp(−σ jν)+ |p0|∞ exp(−σ0ν),

which is eventually less than 1 if ν is large enough. Note that for having a solution
theory, the continuity of the p j ’s was not needed.

A different class of neutral differential equations, which was considered in [9, 10]
is as follows. We shall treat the Hilbert space case here for convenience.

EXAMPLE 3.24. Let H be a Hilbert space and M,L ∈ L(L2(R<0;H);H) . Con-
sider the following equation

(t �→ Mxt)′ = (t �→ Lxt)+ f , (1)

where f ∈ L2(R;H) with support bounded from below is given. Our space-time ap-
proach prerequisites the consideration of the operator

Θ : C∞
c (R;H) →C∞

c (R;L2(R<0;H)),φ �→ φ(·)

in a slightly different version than before. We note that for φ ∈C∞
c (R;H) and ν ∈R>0 ,

we have
∂ν Θφ = Θ∂νφ . (2)

For any ν ∈ R>0 there is a continuous extension Θν as a mapping from L2,ν(R;H) to
L2,ν(R;L2(R<0;H)) . Moreover, for all x ∈ L2,ν(R;H) we have

〈Θx,Θx〉 =
1
2ν

〈x,x〉.
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This equality yields the closedness of the range of Θν . Continuous extension of (2) for
all φ ∈ W 1

2,ν(R;H) yields that ∂ν leaves R(Θν) invariant. Furthermore, we have the

same property for ∂−1
ν . Hence, our perspective on (1) is the following. Consider

∂νM(Θνx) = LΘνx+ f .

By the continuous invertibility of Θ and the intertwining relation (2), this is the same
as to consider

∂νΘνM(Θνx) = ΘνLΘνx+ Θν f .

Assume Mν : R(Θν) → R(Θν),y �→ ΘνMy to be continuously invertible. Therefore,
we formulate the equation as follows

∂νΘνM(y) = ΘνLy+ Θν f .

for y ∈ R(Θν) . Now, our general solution theory applies to the equation

∂νy = Θν
(
LM−1

ν y+ f
)
.

This yields a unique solution y ∈ R(Θν) . The solution of equation (1) is then given by
x = Θ−1

ν M−1
ν y .

4. The non-reflexive case – spaces of continuous functions

In this section, we will describe how to adapt the general solution theory of Section
2 to the non-reflexive setting. The main difficulty to overcome is to give appropriate
meaning to “eventually (k, �)-Lipschitz continuous” in order to state a coherent theory.
For the whole section, let X be a Banach space. We focus here on the L∞ -norm, we
could, however, also treat the case of L1 -functions. As the case of L1 is a hybrid of
distributional derivatives similar to the previous part and the issues resulting from the
non-reflexivity of the underlying space as discussed in the following sections, we only
consider the L∞ -norm here.

4.1. The time-derivative

The distributional time-derivative as presented in Section 3 cannot be used in the
straightforward way by choosing L∞ as underlying space, since the (distributional)
time-derivative would not be densely defined anymore. Thus, we consider the more
or less classical way of discussing delay differential equations and use the space of
Banach space valued continuous functions Cν(R;X) , which we have already defined
in Theorem 3.17, as the underlying space.

DEFINITION 4.1. For ν ∈ R , define ∂ν : C1
ν(R;X) � Cν(R;X) →Cν (R;X), f �→

f ′ , where C1
ν (R;X) := { f ∈Cν(R;X); f ′ ∈Cν(R;X)} .

PROPOSITION 4.2. Let ν ∈ R \ {0} . Then 0 ∈ ρ(∂ν) , ∂−1
ν f (t) =

∫ t
−∞ f (τ)dτ

(t ∈ R , ν > 0 ) and
∥∥∂−1

ν
∥∥= 1

|ν| .
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Proof. For f ∈C∞
c (R;X) and ν > 0, we compute∣∣∣∣e−νt

∫ t

−∞
f (τ)dτ

∣∣∣∣=
∣∣∣∣
∫ t

−∞
e−νt+ντ f (τ)e−ντdτ

∣∣∣∣
�
∫ t

−∞
e−νt+ντdτ | f |Cν (R;X) =

1
ν
| f |Cν (R;X) .

In order to see the remaining inequality, for n∈N take a function φn ∈C∞
c (R) such that

0 � φn � 1 and φn = 1 on [−n,n] . Let x∈ X with |x|= 1 and define fn(t) := eνtφn(t)x
for n ∈ N, t ∈ R . Note that | fn|Cν (R;X) � 1 for all n ∈ N. Moreover, observe that for
n ∈ N we have

sup{∣∣e−νt(∂−1
ν fn)(t)

∣∣ ;t ∈ R} � e−νn
∫ n

−n
eντdτ

=
1
ν

e−νn (eνn− e−νn)
=

1
ν
(
1− e−2νn)→ 1

ν
(n → ∞).

This yields
∥∥∂−1

ν
∥∥� 1

ν . The case ν < 0 is similar. �

Hence, ∂ν is a possible choice for C in the basic solution theory. Before, we state
the solution theory also in this case, we define eventually Lipschitz continuous map-
pings to have a prototype of right-hand sides at hand. We denote Ck

ν(R;X) := Xk(∂ν )
for k ∈ {1,0,−1} . Due to the non-reflexivity of Cν(R;X) , we cannot define eventual
Lipschitz continuity for mappings with values in a space of linear functionals. Instead
of characterizing the negative extrapolation spaces as suitable duals, we introduce the
space C−∞(R;X) :=

⋃
ν∈R>0

C−1
ν (R;X) . In order to compare elements of “negative”

spaces for different parameters ν , we define the following equality relation between
these elements: For φ ∈C−1

ν (R;X) and ψ ∈C−1
μ (R;X) we define

φ = ψ :⇔ ∂−1
ν φ = ∂−1

μ ψ .

REMARK 4.3. Let φ ∈C−1
ν (R;X),ψ ∈C−1

μ (R;X) with φ = ψ . Then there exists
a sequence (ρn)n∈N in C∞

c (R;X) such that ρn → φ in C−1
ν (R;X) and ρn → ψ in

C−1
μ (R;X) as n→∞ . Indeed, let (γn)n∈N ∈C∞

c (R)N be a mollifier and define ρ̃n := γn∗
∂−1

ν φ ∈Cν (R;X)∩Cμ(R;X) . Then we obtain, due to the continuity of the translation
operator

[0,1] � s �→ ( f �→ f (·+ s)) ∈ L(Cν (R;X))

for each ν ∈ R>0 , that ρ̃n → ∂−1
ν φ in Cν(R;X) and Cμ(R;X) as n → ∞ . For k ∈ N

let now χk ∈ C∞
c (R) such that 0 � χk � 1 and χk = 1 on (−k,k) . Then an easy

computation shows χkρ̃n → ρ̃n in Cν(R;X) and Cμ(R;X) as k → ∞ . Hence, we find
a strictly increasing sequence (kn)n of integers such that (ρn)n := ((χkn ρ̃n)′)n has the
desired properties.
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DEFINITION 4.4. (eventually (k, �)-contracting) Let k, � ∈ {1,0,−1} and let Y
be a Banach space. A mapping F : C∞

c (R;X) →C−∞(R;Y ) is called eventually (k, �)-
Lipschitz continuous if the following assumptions are satisfied:

• there exists ν0 > 0 such that for all ν � ν0 we have F(0) ∈C�
ν (R;Y ) ,

• there exists ν1 > 0 and C > 0 such that for all ν � ν1 , u,v ∈C∞
c (R;X) we have

|F(u)−F(v)|C�
ν (R;Y ) � C |u− v|Ck

ν (R;X) .

For an eventually (k, �)-Lipschitz continuous mapping F , we denote by Fν its Lips-
chitz continuous extension from Ck

ν(R;X) to C�
ν(R;Y ) . Moreover, denote by |Fν |Lip

the infimum over all possible Lipschitz constants for Fν . We call F eventually (k, �)-
contracting if limsupν→∞|Fν |Lip < 1.

REMARK 4.5. Note that for a (k, �)-Lipschitz continuous mapping we have the
inclusion F [C∞

c (R;X)] � ⋂
ν�ν0

C−1
ν (R;X) for some ν0 > 0, where the intersection is

understood with respect to the equality relation defined above.

THEOREM 4.6. (Solution theory) Let F : C∞
c (R;X) → C−∞(R;X) be eventually

(0,−1)-contracting. Then there exists a unique solution u ∈Cν(R;X) of the equation

∂νu = Fν(u)

if ν is chosen sufficiently large.

Proof. Clear. �

REMARK 4.7. The latter theorem also extends to the case of (1,0)-contracting.
Moreover, similar to Section 3 and due to Proposition 4.2, we also have a solution
theory for (0,0)- or (1,1)-Lipschitz continuous mappings, which is the common situ-
ation.

THEOREM 4.8. (Causality) Let F : C∞
c (R;X) →C−∞(R;X) be (0,−1)-contrac-

ting. Then ∂−1
ν Fν is causal if ν is chosen sufficiently large.

Proof. Let ν0 ∈ R>0 be such that F admits a Lipschitz-continuous extension for
all ν � ν0 . Let τ ∈ R and let φ ∈ C∞(R) be such that 0 � φ � 1, φ(s) = 0 for
s � τ and φ(t) = 1 for t � τ − ε for some ε ∈ R>0 . We show that ∂−1

ν Fν(v)(t) =
∂−1

ν Fν(φ(m)v)(t) for v ∈ C∞
c (R;X) and t � τ − ε . Let ψ ∈ C∞

c (R;X ′) be such that
supsuppψ � τ − ε . We compute for v ∈C∞

c (R;X) and η � ν
∫

R

∣∣〈∂−1
ν Fν(v)− ∂−1

ν Fν(φ(m)v),ψ〉∣∣
�
∫

R

∣∣∂−1
ν Fν(v)− ∂−1

ν Fν(φ(m)v)
∣∣ |ψ | =

∫
R

∣∣∂−1
η Fη(v)− ∂−1

η Fη(φ(m)v)
∣∣ |ψ |
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�
∣∣∂−1

η Fη(v)− ∂−1
η Fη(φ(m)v)

∣∣
∞,η

∫ τ−ε

−∞
|ψ(t)|eηtdt

� |(1−φ(m))v|∞,η

∫ τ−ε

−∞
|ψ(t)|eηtdt

� sup{∣∣e−ηt v(t)
∣∣ ;τ − ε � t < ∞}

∫ τ−ε

−∞
|ψ(t)|eηtdt

= sup

{∣∣∣e−η(t+τ−ε)v(t + τ − ε)
∣∣∣ ;0 � t < ∞

}∫ 0

−∞
|ψ(t + τ − ε)|eη(t+τ−ε)dt

= sup{∣∣e−ηt v(t + τ − ε)
∣∣ ;0 � t < ∞}

∫ 0

−∞
|ψ(t + τ − ε)|eηtdt

→ 0 (η → ∞),

where in the second line we have used the definition of equality of elements in C−1
ν (R;X)

and C−1
η (R;X) . Thus,

sup{∣∣∂−1
ν Fν(v)(t)− ∂−1

ν Fν(φ(m)v)(t)
∣∣ ;−∞ < t � τ − ε} = 0.

This yields causality. �

THEOREM 4.9. (Independence of ν ) Let F :C∞
c (R;X)→C−∞(R;X) be (0,−1)-

contracting and ν0 > 0 such that |Fν |Lip < 1 for each ν � ν0 . Let ν � μ � ν0 and let
vν ∈Cν (R;X), vμ ∈Cμ(R;X) denote the solutions of the equations

∂νvν = Fν(vν) and ∂μvμ = Fμ(vμ),

respectively. Then vν = vμ .

Proof. Let t ∈ R and let φ ∈ C∞(R) be such that 0 � φ � 1 and φ(s) = 0 for
s � t and φ(s) = 1 for s � t− ε for some ε > 0. Note that for w ∈Cν(R;X) we have
φ(m)w ∈Cμ(R;X) with |φ(m)w|μ,∞ � e(ν−μ)t |φ(m)w|ν,∞ . Hence, ∂−1

ν Fν(φ(m)vν ) =
∂−1

μ Fμ(φ(m)vν ) , since we can approximate φ(m)vν by the same sequence of test func-
tions in both spaces Cν (R;X) and Cμ(R;X) . Hence, we obtain by using the causality
of ∂−1

ν Fν

|χR<t−ε (m)(vν − vμ)|∞,μ = |χR<t−ε (m)(∂−1
ν Fν(φ(m)vν )− ∂−1

μ Fμ(φ(m)vμ))|∞,μ

= |χR<t−ε (m)(∂−1
μ Fμ(φ(m)vν )− ∂−1

μ Fμ(φ(m)vμ))|∞,μ

�
∣∣Fμ
∣∣
Lip |φ(m)vν −φ(m)vμ |∞,μ .

�
∣∣Fμ
∣∣
Lip |χR<t (m)(vν − vμ)|∞,μ .

Thus, we get χR<t (m)vν = χR<t (m)vμ for each t ∈ R and hence, vν = vμ . �



234 R. PICARD, S. TROSTORFF AND M. WAURICK

4.2. Examples

Let us describe the space C−∞(R;R) := C−∞(R) in more detail. Let μ be a Borel
measure on R such that for some ν > 0 we have t �→ μ((−∞,t]) ∈Cν (R) . Then μ ∈
C−1

ν (R) . Indeed, let (gn)n be a C∞
c (R) sequence approximating μ((−∞, ·]) in Cν (R) .

Then g′n converges to μ in C−1
ν (R) . Moreover, the derivative applied to μ((−∞, ·]) is

just the distributional derivative: Let φ ∈C∞
c (R) then we have for n ∈ N∫

R

g′nφ = −
∫

R

gnφ ′ → −
∫

R

∫ t

−∞
dμ(s)φ ′(t)dt = −

∫
R

∫ ∞

s
φ ′(t)dt dμ(s) =

∫
R

φ dμ .

A particular instance of such measures are bounded measures with support bounded
below and a continuous cumulative distribution function. As a non-trivial example we
mention the derivative of the “devil’s staircase”.

Another example is the derivative of the function f : x �→ χ[0,∞)(x)cos(π
x )x . Since

f is of unbounded variation, its derivative (x �→ χ[0,∞)(x)cos(π
x )+ χ[0,∞)(x)

sin( π
x )

x π ) is
not a Borel measure.

EXAMPLE 4.10. (IVP for ODE) Let F : D(F) � XR →C−∞(R;X) with F(φ) =
0 for each φ ∈C∞

c (R;X)(� D(F)) with suppφ � (−∞,0) . We assume that for every
x ∈ X the mapping

Gx : C∞
c (R;X) →C−∞(R;X)

φ �→ F(φ + χ[0,∞)x)

is (0,−1)-contracting. Then, by Theorem 4.6, we find for every u(0) ∈ X a unique
solution v ∈Cν (R;X) of the equation

∂νv = Gu(0)(v).

Moreover, due to causality, v is supported on [0,∞) . We define u := v+ χ[0,∞)u
(0) ∈

C−1
ν (R;X) , which solves the equation u̇ = F(u) on the half axis R>0 . Furthermore,

v = u− χ[0,∞)u
(0) is continuous and thus, 0 = v(0−) = v(0+) = u(0+)− u(0) , which

gives that u satisfies the initial condition u(0+) = u(0) .

REMARK 4.11. (Nemitzkii-operator) The mapping F : φ �→ (t �→ f (φ(t))) for
some Lipschitz continuous f : X → X satisfies the assumptions from the previous ex-
ample.

EXAMPLE 4.12. Let H be a Hilbert space. Let T,K ∈ L(H) . Consider the initial
value problem: {

Ṡ(t) = TS(t)−S(t)T ,t > 0,

S(0) = K.

The latter equation has a unique continuous solution S : R�0 → L(H) . Indeed, consider
the operator

[·,T ] : L(H) → L(H),S �→ TS−ST.
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The latter is a continuous mapping with norm bounded by 2‖T‖ . Considering GK as
above with F(φ) := (t �→ [φ(t),T ]) for functions φ : R→ L(H) , we are in the situation
of Example 4.10.

Similarly to Section 3, we are now in the position to discuss several delay type
equations. For sake of brevity we shall only list the operators involved and compute
their operator norms.

EXAMPLE 4.13. The operator τθ : Cν (R;X) → Cν(R;X), f �→ f (·+ θ ) has op-
erator norm eνθ , which can be read off from the following. From

e−νt f (t + θ ) = eνθ e−ν(t+θ) f (t + θ )

for t ∈ R and f ∈C∞
c (R;X) , we see that ‖τθ‖ = eνθ .

EXAMPLE 4.14. The operator Cν(R;X) � φ �→ φ(·) ∈ Cν(R;Cb(R<0;X)) has a
norm bounded by 1. Indeed, for t ∈ R and φ ∈C∞

c (R;X) we compute

∣∣φ(t)
∣∣
Cb(R<0;X) = sup

θ∈R<0

|φ(t + θ )| = sup
θ∈R<0

∣∣∣φ(t + θ )e−ν(t+θ)
∣∣∣eν(t+θ) � |φ |ν,∞ eνt .

REMARK 4.15. Note that φ �→ φ(·) is not a strict contraction for ν large as it has
been in the Lp -case. Hence, in order to solve equations of the form

∂νu = Fν(u(·))

Fν needs to be (0,−1)-contracting. So, Lipschitz-continuity does not suffice to estab-
lish a well-posedness theorem, at least in the continuous case. Moreover, note that this
perspective also effects neutral differential equations of the form ∂νu = Fν(u(·),(∂νu)(·))
for suitable F . In that case one has to assume that F is (0,0)-contracting and not only
(0,0)-Lipschitz.
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