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EXISTENCE OF MAXIMAL SEMIDEFINITE INVARIANT

SUBSPACES AND SEMIGROUP PROPERTIES OF SOME

CLASSES OF ORDINARY DIFFERENTIAL OPERATORS

S. G. PYATKOV

Abstract. We describe sufficient conditions for the operator Lu = 1
g(x) L0u , with L0 an ordi-

nary differential operator dissipative on its domain and a function g changing its sign, to have
maximal semidefinite invariant subspaces in the Krein space L2,g(a,b) with the indefinite inner

product [u,v] =
∫ b
a g(x)u(x)v(x)dx . The semigroup properties of the restrictions of an operator

to these subspaces are studied. The similarity problem of L to a selfadjoint operator is discussed.

1. Introduction

We examine the differential operators of the form

Lu =
1

g(x)
L0u, x ∈ (a,b), (1)

where L0 is an ordinary differential operator of order 2m defined by the differential
expression

L0u =
m

∑
i, j=0

di

dxi aik
d ju
dx j (x ∈ (a,b), −∞ � a < b � ∞)

and some boundary conditions. The real valued function g(x) in (1) changes its sign
on (a,b) . Let (u,v) =

∫ b
a u(x)v(x)dx . We consider the case of a J -dissipative operator

L in the Krein space F0 = L2,g(a,b) endowed with the following inner product and
indefinite inner product:

(u,v)0 = (|g(x)|u(x),v(x)), [u,v]0 = (g(x)u(x),v(x)) (thus ‖u‖2
0 = (u,u)0).

By the definition, we have that Re [−Lu,u]0 � 0 for all u∈D(L) , with D(L) the domain
of L . The spectral problems for the operator L with a weight function g(x) changing
its sign on (a,b) (and elliptic problems of this type) were the subject on many investi-
gations. These problems arise in many fields of physics and applied mathematics (see,
for instance, [35, Ch. 5,6]).

The most interesting questions are the completeness questions and the Riesz basis
property of eigenfunctions and associated functions of L in F0 . Probably, the first

Mathematics subject classification (2010): 47E05, 34B24, 47A15, 47B50, 46C20, 47D06.
Keywords and phrases: Dissipative operator, Krein space, invariant subspace, analytic semigroup, sim-

ilarity.

c© � � , Zagreb
Paper OaM-08-13

237

http://dx.doi.org/10.7153/oam-08-13


238 S. G. PYATKOV

advances in the study of the Riesz basis property were made in [7, 40, 41]. Now it is
possible to say that there is a significant number of the articles devoted to this question
and we can refer to [11, 44, 45, 16, 30, 42], [36]–[39], where necessary bibliography
and the latest results can be found. Some other spectral properties are studied also in
[8, 9].

One more interesting question is the question on existence of maximal semidef-
inite invariant subspaces of L in the Krein space F0 and the corresponding question
on similarity of L to a selfadjoint or normal operator (see the definitions below and in
[4]). The last two questions are closely connected and in the case of the J -selfadjoint
operator L are equivalent ([24, Prop. 2.2]). If the operator L0 is selfadjoint in L2(a,b)
and the operator R : L2,g(a,b)→ L2,g(a,b) , Ru = L−1

0 g(x)u , is compact then this ques-
tion is equivalent to the Riesz basis property of eigenfunctions and associated function
of L in F0 . The most difficult case is the case of 0 /∈ ρ(L0) . The first results devoted
to existence of maximal semidefinite invariant subspaces for operators acting in some
Krein (Pontryagin) space belong to L. S. Pontryagin.

The most significant generalizations of his results were obtained in the articles
by Krein M. G., Langer H., Azizov T. Ya., Shkalikov A. A. (see the results and the
bibliography in [5, 6, 48, 49]). We refer also to the author results in [47, 46].

If maximal semidefinite invariant subspaces exist then the operator admits a de-
composition into the sum of two commuting operators defined on these subspaces; un-
der certain conditions, these operators to within a multiplication by −1 are generators
of analytic semigroups. The last fact allows us to study the solvability questions for
different equations involving this operator.

The basic aim of the present article is to consider the question of existence of
maximal semidefinite invariant subspaces of the operator L and to study the respective
semigroup properties of L . Together with the conventional case, we also examine the
case when the domain of L comprises discontinuous functions satisfying certain gluing
conditions at the discontinuity points. The operators of this type (among them are the
Schr0̈dinger operators with δ and δ ′ -interactions) arise in physics and applied math-
ematics (see [1, 2]). These discontinuity points are called interaction points. Second
order operators with δ and δ ′ -interactions and the function g changing its sign are
studied in [22]. In the present article, we mostly pay attention to the most difficult case
when the point 0 is the limit point of a continuous spectrum of L and use the results
of [47]. Simpler case 0 ∈ ρ(L) was considered recently in [33], where more stringent
conditions were used on the operator L itself and on the weight function g . The re-
sults of this article concerning with similarity are partially known in the case of m = 1.
We refer to the articles [26, 32] which contains the most essential results in this direc-
tion. Among the other articles devoted to the similarity questions, we note the articles
[12, 14, 15, 19, 20, 21, 23, 27, 28, 29].
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2. Definitions and auxiliary statements

2.1. Basic definitions.

Recall that a Krein space (see [4]) is a Hilbert space H with an inner product (·, ·)
in addition endowed with an indefinite inner product of the form [x,y] = (Jx,y) , where
J = P+ −P− (P± are orthoprojections in H , P+ +P− = I ). We put H± = R(P±) . In
what follows, the symbol I stands for the identity and the symbols D(A) , R(A) , and
N(A) designate the domain, the range, and the kernel of an operator A . The opera-
tor J is called a fundamental symmetry. A subspace M in H is said to be nonnega-
tive (positive, uniformly positive) if the inequality [x,x] � 0 (respectively, [x,x] > 0,
[x,x] � δ‖x‖2 (δ > 0)) holds for all x ∈M . Nonpositive, negative, uniformly negative
subspaces in H are defined in a similar way. If a nonnegative subspace M admits no
nontrivial nonnegative extensions, then it is called a maximal nonnegative subspace.
Maximal nonpositive (positive, negative, nonnegative, etc.) subspaces in H are defined
by analogy. A densely defined operator A is said to be dissipative (strictly dissipa-
tive, uniformly dissipative) in H if −Re(Ax,x) � 0 for all x ∈ D(A) (−Re(Ax,x) > 0
for all x ∈ D(A) or −Re(Ax,x) � δ‖u‖2 (δ > 0) for all x ∈ D(A)). Similarly, a
densely defined operator A is called a J -dissipative (strictly J -dissipative or uniformly
J -dissipative) whenever the operator JA is dissipative (strictly dissipative or uniformly
dissipative). A dissipative (J -dissipative) operator is said to be maximal dissipative
(maximal J -dissipative) if it admits no nontrivial dissipative (J -dissipative) extensions.
Let A : H → H be a J -dissipative operator. We say that a subspace M ⊂ H is invariant
under A if D(A)∩M is dense in M and Ax ∈ M for all x ∈ D(A)∩M . An operator
A such that −A is dissipative (maximal dissipative) is called accretive (maximal accre-
tive). Hence, taking the sign into account we can say that all statements valid for an
accretive operator are true for a dissipative operator as well. In what follows, we re-
place the word ”maximal” with the letter m and thus we write m-dissipative rather than
maximal dissipative. If A is an operator in a Krein space H then we denote by A∗ and
Ac the adjoint operators with respect to the inner product and the indefinite inner prod-
uct in H , respectively. The latter operator possesses the usual properties of an adjoint
operator (see [4]). Let A0 and A1 be two Banach spaces continuously embedded into a
topological linear space E : A0 ⊂E , A1 ⊂E . Such a pair {A0,A1} is called compatible
or an interpolation couple. The definition of the interpolation space (A0,A1)θ ,q can be
found in [50]. As conventionally, the symbols Ws

p(a,b) and Bs
p,q(a,b) (1 � p,q � ∞ ,

s > 0) stand for the Sobolev space and Besov space of functions defined on (a,b) (see
[50]). The space Ws

p,loc(a,b) comprises the functions f (x) such that f ∈Ws
p(c,d) for

every bounded interval (c,d) with [c,d] ⊂ (a,b) . The Lebesgue space Lp,loc(a,b) is
defined similarly.

2.2. Some general results.

We present here general results which are the base for our further considerations.

LEMMA 1. Let H be a Hilbert space (a Krein space). A maximal dissipative
(J -dissipative) operator A : H → H is always closed and a closed operator A is m-
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dissipative if and only if ρ(A)∩{z : Rez � 0} 	= /0 , in this case C+ = {z ∈ C : Rez >
0} ⊆ ρ(A) (see [4, Lemma 2.8]).

Let H be a complex Hilbert space with the norm ‖ · ‖ and the inner product (·, ·)
and let L : H → H be a closed densely defined operator. Assign Sθ = {z : |argz| < θ}
for θ ∈ (0,π ] and Sθ = (0,∞) for θ = 0. Recall that L : H →H is a sectorial operator
if there exists θ ∈ [0,π) such that σ(L) ⊆ Sθ , C \ Sθ ⊆ ρ(L) , and, for every ω > θ ,
there exists a constant c(ω) such that

‖(L−λ I)−1‖ � c/|λ | ∀λ ∈ C\ Sω . (2)

The minimal quantity θ with the above property is called the sectoriality angle of
L . Let L be sectorial and injective (we do not require that 0 ∈ ρ(L)). In this case,
completing the subspaces D(Lk) and R(Lk) (k ∈ N , N is the set of positive integers)
with respect to the norms ‖u‖DL = ‖Lku‖ and ‖u‖R

Lk = ‖L−ku‖ , we obtain new spaces
denoted by DLk and RLk , respectively (see [18],[3],[13]). Interpolation properties of
these spaces can be found in [18]. In the case of 0 ∈ ρ(L) , these spaces and their
interpolation properties are described in [17] (see also [50, Sect. 1.14.3]).

Let H1,H be a pair of compatible Hilbert spaces and let H1 ∩H be densely em-
bedded into H and H1 . The symbol (·, ·) stands for the inner product in H . Define the
negative space H ′

1 constructed on this pair as the completion of H∩H1 with respect to
the norm

‖u‖H′
1
= sup

v∈H1∩H
|(u,v)|/‖v‖H1 .

The following lemma can be found in [47, Prop. 2.4].

LEMMA 2. The spaces H1 , H ′
1 are dual to each other with respect to the pairing

(·, ·) and
(H1,H

′
1)1/2,2 = H. (3)

Thus the space of antilinear continuous functionals over H1 can be identified with H ′
1

and the norm in H1 is equivalent to the norm supv∈H′
1
|(v,u)|/‖v‖H′

1
.

Let L : H → H be a strictly m-J -dissipative operator in a Krein space H with the
indefinite inner product [·, ·] = (J·, ·) and the norm ‖ · ‖ , where J is the fundamental
symmetry and the symbol (·, ·) designates the inner product in H . Define the quantities

‖u‖2
F1

= −Re [Lu,u] (u ∈ D(L)), ‖u‖2
F−1

= −Re [L−1u,u] (u ∈ R(L)).

Suppose also that

∃c > 0 : |[Lu,v]| � c‖u‖F1‖v‖F1 ∀u,v ∈ D(L). (4)

Obviously, the quantity ‖u‖F1 is a norm on D(L) .
Define the spaces F1 and F−1 as completions of D(L)∩R(L) with respect to the

norms ‖ · ‖F1 and ‖ · ‖F−1 , respectively.
The following lemma results from [47, Prop. 2.7, Remark 2.2].
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LEMMA 3. Let L : H → H be a strictly m-J -dissipative operator satisfying (4)
with a nonempty resolvent set. Then the spaces F−1 , F1 , and H are compatible, the
subspaces F1 ∩H and F−1 ∩H are dense in H and F1 , in H and F−1 , respectively.
The operators J : H ∩F∓1 → H admit extensions to isomorphisms of F−1 onto F ′

1 and
F1 onto F ′

−1 , respectively, where F ′
1 and F ′

−1 are negative spaces constructed on the
pairs (F1,H) and (F−1,H) . The spaces F−1 and F1 are dual to each other. The norms

‖u‖F−1 = sup
v∈D(L)∩R(L)

|[u,v]|/‖v‖F1, ‖u‖F1 = sup
v∈D(L)∩R(L)

|[u,v]|/‖v‖F−1

are equivalent to the above norms in F−1 and F1 , respectively. Moreover, the expres-
sion [u,v] is defined for u ∈ F1 and v ∈ F−1 and we have the inequality

|[u,v]| � c1‖u‖F−1‖v‖F1,

with c1 a constant independent of u,v.

Given a strictly m-J -dissipative operator L satisfying the condition (4), we can
construct the spaces DL and RL using the same definition as in the case of a sectorial
operator. Assign Fs = (F1,H)1−s,2 (s∈ (0,1)). Let S0

θ = Sθ ∪(−Sθ ) (−Sθ = {z :−z∈
Sθ} ).

LEMMA 4. (see [47, Prop. 2.6, Lemmas 2.1, 2.2, 2.4]) Let L : H → H be a
strictly m-J -dissipative operator satisfying (4) with a nonempty resolvent set. Then
so is the operator L−1 and D(Lm)∩R(Lm) is dense in H , D(L) , and R(L) for every
m = 1,2, . . . . Moreover, the following equalities are equivalent:

(DL,RL)1/2,2 = H, (5)

(F1,F−1)1/2,2 = H; (6)

if (6) holds then there exists θ ∈ [0,π/2) such that σ(L) ⊆ S0
θ , C \ S0

θ ⊆ ρ(L) , and,
for every ω ∈ (θ ,π/2) , there exists a constant c(ω) such that

‖(L−λ I)−1‖ � c/|λ | ∀λ ∈ C\ S0
ω ; (7)

if there exists s ∈ (0,1) such that J ∈ L(Fs) then the equality (6) holds.

By the above membership J ∈ L(Fs) , we mean that the operator J|F1∩F0 admits
an extension of the class L(Fs) . Let L : H → H be a strictly m-J -dissipative operator
satisfying (4). Define the space H1 as the completion of D(L) with respect to the norm
‖u‖2

H1
= −Re[Lu,u]+‖u‖2

H and the space H−1 as the completion of H with respect to
the norm ‖u‖H−1 = supv∈H1

|[u,v]|/‖v‖H1 . Assign Hs = (H1,H)1−s,2 .

LEMMA 5. (see [47, Lemma 2.5]) Let L : H → H be a strictly m-J -dissipative
operator satisfying (4). Suppose that there exists a constant m > 0 such that

‖u‖2 � m(−Re [Lu,u]+‖u‖2
H−1

) ∀u ∈ D(L). (8)
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Then there exists a number ω0 � 0 such that Iω0 = {iω : |ω | � ω0} ⊂ ρ(L)} , i. e.,
ρ(L) 	= /0 . The inequality (8) certainly holds whenever

(H1,H−1)1/2,2 = H. (9)

If there exists s ∈ (0,1) such that J ∈ L(Hs) then the equality (9) holds.

We heavily rely on the following theorem [47, Theorem 3.1].

THEOREM 1. Let L : H → H be a strictly m-J -dissipative operator in a Krein
space H satisfying (4) with a nonempty resolvent set. If the equality (5) holds then
there exist maximal uniformly positive and uniformly negative L-invariant subspaces
H+ and H− such that H = H+ +H− , D(L) = D(L)∩H+ +D(L)∩H− (both sums
are direct), σ(L|H± ) ⊂ C∓ , and the operators ±L|H± are generators of analytic semi-
groups. If there exist uniformly positive and uniformly negative L-invariant subspaces
H+ and H− such that H = H+ +H− and D(L) = D(L)∩H+ +D(L)∩H− (the sums
are direct) then the equality (5) holds.

2.3. Conditions on the data and auxiliary statements.

We assume that the function g satisfies the condition

g(x) ∈ L1(c,d), ∀(c,d) ⊆ (a,b), d− c < ∞. (10)

and there exist open subsets G+ and G− of G = (a,b) consisting of finitely many
disjoint intervals such that g(x) > 0 a.e. (almost everywhere) on G+ , g(x) < 0 a.e.
on G− and G+ ∪G− = [a,b] . A point x0 ∈ ∂G+ ∩∂G− is called a turning point. Let
{xi}s

i=1 be all turning points of g . The fundamental symmetry J in L2,g(a,b) = F0 is
given as J = χG+ − χG− , with χG± the characteristic functions of the corresponding
sets. Let {yk}N

k=1 (N � ∞) be a collection of points in (a,b) . It is possible that some
of these points coincide with turning points. We assume that the sequence {yk}N

i=1 is
increasing and either N < ∞ or limn→∞ yn = b (the latter condition for the interaction
points is exposed in [31]). In what follows, the symbols f (x+) and f (x−) stand for the
right and left limits of a function f (x) at a point x , respectively. Let y0 = a . Consider
a sesquilinear form

a(u,v) =
m

∑
j,k=0

(a jk(x)u(i),v(k))+
H

∑
i=1

m−1

∑
j=0

(u( j)(yi+)Ui
jv−u( j)(yi−)V i

jv),

where the operators Ui
jv, V i

jv are of the form

Ui
jv =

m−1

∑
k=0

(ak
jiv

(k)(yi+)+bk
jiv

(k)(yi−)), V i
jv =

m−1

∑
k=0

(ck
jiv

(k)(yi+)+dk
jiv

(k)(yi−)),

with ak
ji,b

k
ji,c

k
ji,d

k
ji complex constants and the functions aik satisfy (10) for all i,k .

Define the quantity

‖u‖2
1 =

∫ b

a

m

∑
i=0

pi(x)|u(i)(x)|2 dx
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where pi(x) (i � m) , 1/pm(x) are nonnegative functions satisfying the condition (10).
To define the domain of the form a(u,v) , we introduce the boundary and gluing condi-
tions of the form

Bku =
m−1

∑
i=0

(αiku
(i)(a)+ βiku

(i)(b)) = 0 (k = 1,2, . . . ,m1 ,m1 � 2m), (11)

Bku =
m−1

∑
i=0

αiku
(i)(a) = 0, (k = 1,2, . . . ,m1, m1 � m), (12)

Bku =
m−1

∑
i=0

βiku
(i)(b) = 0 (k = 1,2, . . . ,m1, m1 � m), (13)

Bk
ju =

m

∑
i=1

(αk
jiu

(i−1)(yk+)−β k
jiu

(i−1)(yk−)) = 0, (14)

where j = 1,2, . . . ,m0 (m0 � m), k = 1,2, . . . ,N , and the vectors

(αk
j1,α

k
j2, . . . ,α

k
jm,−β k

j1, . . . ,−β k
jm) ( j = 1,2, . . . ,m0)

are linearly independent for every k = 1,2, . . . ,N . If the expression Bku contains the
values of u and its derivatives only in one of the points a or b then we call the boundary
condition Bku = 0 local. If all boundary condition are local (it is always true for an un-
bounded interval (a,b)) then we say that the boundary conditions are local. Otherwise,
the boundary conditions are called nonlocal.

Let y∞ = limn→∞ yn �+∞ in the case of N = ∞ and y∞ = yN otherwise. Denote by
S the class of functions u ∈ L1,loc(a,b) such that u ∈Wm

∞ (c,d) for every finite interval
(c,d)⊆ (a,b) with yi /∈ (c,d) for all i , the support supp u is bounded, b /∈ suppu in the
case of b = y∞ , and u satisfies the gluing conditions (14) and the boundary conditions
(11) if a 	= −∞ , b 	= +∞ , and b 	= y∞ , the boundary conditions (12) if a 	= −∞ and
b = +∞ or b = y∞ , and the boundary conditions (13) if a = −∞ and b 	= +∞ and
b 	= y∞ . Define the spaces H1 and F1 as the completions of S with respect to the norms
‖u‖H1 = (‖u‖2

1 + ‖u‖2
0)

1/2 and ‖ · ‖1 . By the symbol μ(·) , we mean the Lebesgue
measure.

LEMMA 6. Assume that either there exists a neighborhood U about the set {yk}N
k=1

such that p0(x) > 0 almost everywhere on U or m0 = m, the matrices {αk
ji}m

i, j=1 and

{β k
ji}m

i, j=1 are nondegenerate for every k , and

μ({x ∈ (a,b) : p0(x) 	= 0}) > 0. (15)

Then the space F1 can be identified with a subspace of L1,loc(a,b) comprising the
functions u which, after a possible modification on a set of zero measure, possess the
following properties: for every finite interval (c,d) ⊆ (a,b) such that yi /∈ (c,d) for
all i , u has the generalized derivatives u(i) for i � m on (c,d) , u(i) ∈ L∞(c,d) for
i �m−1 and these derivatives are absolutely continuous on (c,d) , and u(m) ∈ L1(c,d) .
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If (c,d) ⊆ (a,b) is an arbitrary finite interval and d < b or b 	= y∞ then there exists a
constant c such that

m−1

∑
i=0

‖u(i)‖L∞(c,d) +‖u(m)‖L1(c,d) � c‖u‖1 ∀u ∈ F1. (16)

There exist limx→yk±0 u(i)(x) , limx→a+ u(i)(x) (if a 	=−∞), and limx→b− u(i)(x) (if b 	=
+∞ and b 	= y∞ ), where i � m−1 and k = 1,2, . . . ,N . Thereby, all traces in (11)-(14)
are defined in the usual sense. The space F1∩F0 is dense in F1 and F0 . The space H1

being the subspace of F0 is dense in F0 .

Proof. We present the proof in the latter case, i.e., s = m , the corresponding ma-
trices are nondegenerate and the relation (15) holds. The proof in the former case uses
the same ideas and much simpler. Let u ∈ S and let (c,d) be a finite interval such that
yi /∈ (c,d) for all i . Since u ∈ Wm

2 (c,d) , we can change u on a set of zero measure
so that the new function u together with its derivatives u(i) (i � m− 1) is absolutely
continuous on every such interval (c,d) . We begin with the proof of the estimate (16)
which ensures all statements of the lemma except for the density claims. There exists
an interval (c,d) of finite length such that μ({x ∈ (a,b) : p0(x) 	= 0}∩ (c,d)) > 0 and
yi /∈ [c,d] for all i . Let u ∈ S . Write out the Taylor formula

u(x) =
m−1

∑
j=0

u( j)(c)
(x− c) j

j!
+

∫ x

c
u(m)(τ)

(x− τ)m−1

(m−1)!
dτ. (17)

Involving this equality and the Hölder inequality, we infer

∥∥√p0

m−1

∑
j=0

u( j)(c)
(x− c) j

j!

∥∥
L2(c,d) �

∥∥√p0u
∥∥

L2(c,d)+

∥∥√p0

∫ x

c
u(m)(τ)

(x− τ)m−1

(m−1)!
dτ

∥∥
L2(c,d) �

∥∥√p0u
∥∥

L2(c,d)+

(
∥∥p0‖L1(c,d)‖(pm)−1

∥∥
L1(c,d))

1/2(∫ d

c
pm|u(m)(τ)|2 dτ

)1/2 (d− c)m−1

(m−1)!
.

Due to the linear independence of the functions (x− c) j and the choice of the interval
(c,d) , the left-hand side of this inequality is estimated from below by the quantity
δ0 ∑m−1

j=0 |u( j)(c)| , where δ0 is a positive constant independent of the numbers u( j)(c) .
The right-hand side is estimated from above by c‖u‖1 (c is some positive constant).
Hence, we have the estimate

m−1

∑
j=0

|u( j)(c)| � c1‖u‖1 ∀u ∈ S, (18)

where the constant c1 is independent of u . With this estimate in hand, we use the
equality (17) one more time and arrive at the estimate

‖u‖Wm−1
∞ (c,d) +‖u(m)‖L1(c,d) � c2‖u‖1 ∀u ∈ S. (19)
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Consider an arbitrary finite interval (c1,d1) such that (c,d) ⊆ (c1,d1) ⊆ (a,b) and
d1 < b in the case of y∞ = b . There exist at most finitely many points yi ∈ (c1,d1) . Let
y j0 be the nearest to the interval (c,d) . Let, for example, y j0 < c . Again the Taylor
formula allows us to say that the estimate

‖u‖Wm−1
∞ (y j0 ,d) +‖u(m)‖L1(y j0

,d) � c3‖u‖1 ∀u ∈ S. (20)

is valid. Since the functions u(i) (i � m− 1) are continuous on [y j0 ,d) if we take
u(i)(y j0) = u(i)(y j0+) (the existence of limits on the right and on the left results from
the definition of the absolute continuity), the estimate (20) implies that

m−1

∑
j=0

|u( j)(y j0+)| � c2‖u‖1 ∀u ∈ S, (21)

In view of the conditions (14), we conclude that

m−1

∑
j=0

|u( j)(y j0−)| � c3‖u‖1 ∀u ∈ S, (22)

where c3 is a constant. Next, we can use the Taylor formula (17) of an arbitrary finite
semiinterval (c2,y j0 ] such that yi /∈ (c2,y j0) for all i , where we take take c = y j0 and
put u(i)(y j0) = u(i)(y j0−) . The above arguments validate the estimate of the form (19)
on (c2,y j0) . This estimate and the estimate (20) give the estimate

‖u‖Wm−1
∞ (c2,d) +‖u(m)‖L1(c,d) � c2‖u‖1 ∀u ∈ S. (23)

Repeating the arguments if necessary, we can obtain the estimate (23) on the whole
interval (c1,d1) . This estimates implies that any Cauchy sequence un ∈ S in the norm
of the space F1 has the limit which is the function possessing the properties from the
claim of the lemma.

Proceed with the second part of the proof. By construction, the class S is dense in
F1 . Obviously, the class C∞

0 ((a,b)\{yi : i = 1, . . . ,N})⊂ S is dense in F0 . We can just
assume the contrary and apply the Du Bois-Reymond lemma. Thus, the space F1 ∩F0

is dense in F1 and F0 and H1 is dense in F0 as well. �
Obviously, the form a(u,v) is defined on functions u,v ∈ S . The main conditions

on a is as follows.

∃M,m > 0 : Rea(u,u) � m‖u‖2
1, |a(u,v)| � M‖u‖1‖v‖1 ∀u,v ∈ S. (24)

The previous condition implies that the form a(u,v) defined on S admits an exten-
sion and thus is defined for u,v ∈ H1 and u,v ∈ F1 . We have that H1 ⊂ F0 . Construct
the negative space H ′

1 endowed with the norm ‖u‖H′
1
= supv∈H1

|(u,v)0|/‖v‖H1 . The
inner product (u,v)0 admits an extension to a duality relation between H1 and H ′

1
and thus, for every antilinear continuous functional f over H1 , there exists u ∈ H ′

1
such that f (v) = (u,v)0 . Given u ∈ F1 , the form a(u,v) defines an antilinear con-
tinuous functional over H1 and thereby there exists an element Au ∈ H ′

1 such that
a(u,v) = (−Au,v)0 . This procedure of construction of an operator using a sesquilinear
form with certain properties is conventional (see, for instance, [18]).
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LEMMA 7. The operator A : F0 → F0 with the domain D(A) = {u ∈ H1 : Au ∈
F0} is an m-dissipative operator and the operator L = JA with D(L) = D(A) is m-J-
dissipative. If the form a(u,v) is symmetric on S , i.e., a(u,v) = a(v,u) for all u,v ∈ S ,
then A is selfadjoint (respectively, L is J-selfadjoint).

Proof. Let f ∈ F0. Consider the equality a(u,v)+ λ0(u,v)0 = ( f ,v)0 (λ0 > 0).
In view of (24), we have Re (a(u,u)+λ0(u,u)0) � c0‖u‖2

H1
and |a(u,v)+λ0(u,v)0| �

c1‖u‖H1‖v‖H1 for all u,v ∈ H1 , where c1,c0 are positive constants. The Lax-Milgram
theorem (see [18, Theorem C.5.3]) implies that there exists a function u ∈H1 such that
a(u,v)+λ0(u,v)0 = ( f ,v)0 for all v∈H1 . By definition, u∈D(A) and −Au+λ0u = f .
Thus, positive reals belongs to ρ(A) . Due to the density of F0 in H ′

1 , D(A) is dense
in H1 and thereby in F0 . Moreover, it easy to justify that A is a closed operator. Thus,
A is a densely defined closed dissipative operator, and thereby L is an m-J-dissipative
(see Lemma 1). The next claim is a consequence of the definition. Let the form a(u,v)
be symmetric. We have that

−a(u,v) = (Au,v)0 = −a(v,u) = (Av,u) = (u,Av), ∀u,v ∈ D(A),

i.e., the operator A is symmetric and {λ : λ > 0} ⊆ ρ(A) . Hence, A is selfadjoint and
thereby L = JA is J-selfadjoint. �

We present some examples. Let the interaction points be absent. Assume that the
form a(u,v) is representable as a(u,v)=

∫ b
a ∑m

i=0 pi(x)u(i)v(i) , with pi ∈L1,loc(a,b) and
1/pm ∈ L1(c,d) for every bounded segment [c,d] ⊆ [a,b] . In this case the differential
expression Lu = ∑m

i=1(−1)i(piu(i))(i) can be written with the use of quasiderivatives
(see [34]). If all coefficients ai j of the form a are sufficiently smooth, for example,

ai j ∈ Wmax(i, j)
1,loc and the higher order coefficient amm is strictly positive and bounded,

then the domain of L includes the functions in W 2m
2,loc(a,b) , the operator L is defined

by the differential expression

Lu = −
m

∑
i, j=0

(−1)i di

dxi ai j
d ju
dx j (x ∈ (a,b))

and some boundary conditions

Bku =
2m−1

∑
i=0

(αiku(i)(a)+ βiku(i)(b)) = 0 (k = 1,2, . . . ,2m),

Bku =
2m−1

∑
i=0

αiku(i)(a) = 0, (k = 1,2, . . . ,m),

Bku =
2m−1

∑
i=0

βiku(i)(b) = 0 (k = 1,2, . . . ,m),

Here the first condition is used if a 	= −∞ , b 	= +∞ , the second if a 	= −∞ and b =
+∞ , and the third if a = −∞ and b 	= +∞ . In this case the differential expression is
understood in the usual sense. Similar statements can be obtained in the presence of
interaction points as well. In this case the description of L is slightly more complicated.
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2.4. Regularity conditions of the turning points.

We employ regularity conditions of the turning points those of [36]–[39]). Note
that the condition (I) below was used earlier in some other situations as a necessary and
sufficient condition ensuring some integral inequalities (see [10]). So, it is sometimes
called the Bennewitz condition (see [30]).

(I) A point xk ∈ ∂G+∩∂G− is regular if there exists a right neighborhood (xk,xk +
δ ) = I or a left neighborhood (xk − δ ,xk) = I about this point such that I ⊂ G+ ∪G−
and, for some ω ∈ (0,1) , we have

∣∣∣
∫ xk+ωη

xk

|g(τ)|dτ
∣∣∣ � 1

2

∣∣∣
∫ xk+η

xk

|g(τ)|dτ
∣∣∣ ∀η ∈ (0,δ ), (or ∀η ∈ (−δ ,0)) . (25)

In some cases, we need an additional regularity condition of a boundary point.
(II) The boundary point a 	= −∞ (b 	= ∞) is regular in the following cases:
a) there exists a right neighborhood I = (a,a+ δ ) about a (a left neighborhood

I = (b− δ ,b) about b ) such that, for some ω ∈ (0,1) , we have

∫ a+ωη

a
|g(τ)|dτ � 1

2

∫ a+η

a
|g(τ)|dτ ∀η ∈ (0,δ ); (26)

(respectively,
∫ b

b−ωη
|g(τ)|dτ � 1

2

∫ b

b−η
|g(τ)|dτ ∀η ∈ (0,δ );) (27)

In the following statement, we describe an equivalent regularity conditions. To
simplify the exposition, we state them for a point x0 = 0 and the interval (0,1) . The
condition (25) is actually the condition (b) below with f (η) =

∫ η
0 |g(τ)|dτ stated for

an arbitrary point.

THEOREM 2. The following conditions for a nondecreasing function f : (0,1) →
R+ are equivalent:

(a) ∀γ ∈ (0,1) ∃ω ∈ (0,1) such that ∀ε ∈ (0,1) f (ωε) � γ f (ε);
(b) ∃ω ∈ (0,1) such that f (ωε) � f (ε)/2 ∀ε ∈ (0,1);
(c) ∃β ∈ (0,1) ∃ω ∈ (0,1) such that ∀ε ∈ (0,1) f (ωε) � β f (ε);
(d) there exist constants c,d > 0 such that

f (η) � c
(η

ξ

)d
f (ξ ) ∀0 < η � ξ < 1.

(e) there are no sequences an,bn such that 0 < an < bn < 1 and

an/bn → 0, f (an)/ f (bn) → 1 as n → ∞.

The equivalence of (b), (d), and (e) is proven in Theorem 6 of [36]. The complete
proof can be found in [39].

Let g(x) ∈ L1(0,1) and g(x) > 0 a.e. on (0,1) . Denote by W̃m
2 (0,1) the subspace

of Wm
2 (0,1) comprising functions u(x) such that u(i)(0) = 0 for 0 � i � m−1.
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THEOREM 3. (see Theorem 18 in [38]) Each of the conditions (a)-(e) stated for
the function f (η) =

∫ η
0 |g(τ)|dτ is equivalent to the following claim: there exists θ ∈

(0,1) such that (Wm
2 (0,1),L2,g(0,1))1−θ ,2 = (W̃m

2 (0,1),L2,g(0,1))1−θ ,2 .

COROLLARY 1. Under the conditions of Theorem 3, there exists θ ∈ (0,1) such

that (
◦

W m
2 (0,1),L2,g(0,1))1−θ ,2 = (W

m
2 (0,1),L2,g(0,1))1−θ ,2 , where W

m
2 (0,1) = {u ∈

Wm
2 (0,1) : u(i)(1) = 0, i = 0,1, . . . ,m−1} .

3. The main results

Our main result is the following theorem.

THEOREM 4. Assume that the conditions (10), (24), and the conditions of Lemma 6
hold and there exists a neighborhood U about the set {xk}s

k=1 such that pm , 1/pm ∈
L∞(U) . Let one of the following conditions be valid:

a) the boundary conditions are local and every of the point xk (k = 1,2, . . . ,s) is
regular;

b) the boundary conditions are nonlocal and one of the boundary points and all
points xk (k = 1,2, . . . ,s) are regular; moreover, pm,1/pm ∈ L∞(U ∩ (a,b)) for some
neighborhood U about this boundary point.

Then there exist maximal uniformly positive and uniformly negative subspaces M±
of the space F0 invariant under L such that

C± ⊂ ρ(L|M±), F0 = M+ +M−, D(L) = D(L)∩M+ +D(L)∩M−,

where the sums are direct and the operators ±L|M± are generators of analytic semi-
groups.

Proof. To apply Theorem 1, we look for sufficient conditions ensuring the equality
(6), where H = F0 . As before in Subsection 2.2, we introduce the space H−1 as the
completion of the space F0 with respect to the norm ‖u‖H−1 = supv∈H1

|[u,v]0|/‖v‖H1 .
Define also the spaces Hs = (H1,F0)1−s,2 . First, we prove that ρ(L) 	= /0 using Lemma
5. We would like to check the condition (9). The conditions of the theorem and Lemma
6 imply that, for functions with support lying in a sufficiently small open neighborhood
U about the set {xk}s

k=1 , the norms in the spaces F1 and H1 are equivalent to the
norm of the space Wm

2 (U) . First, we examine the case of local boundary conditions.
Let xk ∈ ∂G+ ∩ ∂G− . In this case, either on the interval O−

k = (xk − ε,xk) or on
O+

k = (xk,xk + ε) , the inequality (25) holds (we assume that ε is smaller than δ that
of (25)). For example, examine the former interval. In the latter case the arguments
are the same. Decreasing ε if necessary, we may assume that [xk − ε,xk) ∈ G+ ∩U
or [xk − ε,xk) ∈ G− ∩U , (xk,xk + ε] ∈ G− ∩U or (xk,xk + ε] ∈ G+ ∩U , and yi /∈
[xk − ε,xk)∪ (xk,xk + ε] for all i . Assign Ok = O+

k ∪O−
k ∪{xk} and define the space

W1 as the space comprising the functions u ∈Wm
2 (Ok) if xk is not an interaction point

and the functions u ∈Wm
2 (O+

k )∩Wm
2 (O−

k ) satisfying (14) at xk otherwise. The norm
in W1 coincides with that in Wm

2 (Ok) . Obviously, there exists v∈ H1 with the property
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v|Ok = u . Let Ws = (W1,W0)1−s,2 . Demonstrate that there exists s0 > 0 such that the
operators S±k

S±k u =
{

u, x ∈ G±∩Ok

0, x ∈ G∓∩Ok

are continuous as operators from Ws into Ws for all s ∈ [0,s0] . Define some auxil-
iary spaces. Assign A1 = Wm

2 (O−
k ) , A0 = L2,g(O−

k ) , A0
1 = {u ∈ A1 : u(l)(xk) = 0 (l =

0,1, . . . ,m−1)} . Theorem 3 implies that there exists s0 > 0 such that

As = (A1,A0)1−s,2 = A0
s = (A0

1,A0)1−s,2.

Define an operator P0 : Ws → As , P0u = u|O−
k

. Obviously, P0 ∈ L(Ws,As) for all s .
Introduce also the operator

P1 : A0
s →Ws, P1u =

{
u, x ∈ O−

k
0, x ∈ O+

k
.

It is immediate that P1 ∈ L(A0
s ,Ws) for all s ∈ [0,1] . In this case, for s < s0 , we obtain

that P1P0 ∈ L(Ws) . By construction, P1P0u = S−k u . Hence, the operator S−k and thereby
the operator S+

k belong to the class L(Ws) for all s < s0 .
Given an arbitrary point xk ∈ ∂G+ ∩∂G− , construct a neighborhood Ok with the

above properties. Next, define functions ϕk ∈C∞
0 (Ok) such that ϕk = 1 in some neigh-

borhood about xk and suppϕ ′
k ∈ G+ ∪G− . In is possible in view of the definition of

the neighborhoods Ok . Without loss of generality, we may assume that the neighbor-
hoods Ok are disjoint and the closures does not contain the boundary points a and b .
Demonstrate that there exists s0 > 0 such that the operator

S : u →
{

u, x ∈ G+

0, x ∈ G−

is continuous as an operator from Hs into Hs for all s < s0 . Take as s0 the minimal of
the constants s0 defined in the above proof for every point xk . Fix s < s0 . Consider
the operators Sku = ϕku . Obviously, Sk ∈ L(H1)∩ L(F0) and, therefore, Sk ∈ L(Hs)
for all s ∈ [0,1] . Moreover, the supports of Sku lie in the corresponding neighborhoods
Ok . Hence, Sk ∈ L(Hs,Ws) (the spaces Ws are different for different neighborhoods).
In this case S+

k Sk ∈ L(Hs,Ws) . Constructs functions ϕ̃k ∈ C∞
0 (Ok) such that ϕ̃k = 1

in some neighborhoods about suppϕk . As is easily seen, the operators S̃k : u → ϕ̃ku ,
where the functions ϕ̃ku are extended by zero on the whole (a,b) , possess the property
S̃k ∈ L(Ws,Hs) . Thus, we infer S̃kS

+
k Sk ∈ L(Hs) for all s < s0 .

Examine the operator

P : u → (1−
N

∑
k=1

ϕk)u(x).

By definition, it is not difficult to establish that P ∈ L(Hs) for all s ∈ [0,1] . By con-
struction, SP ∈ L(Hs) for all s ∈ [0,1] . In this case the operator

S = SP+
N

∑
k=1

S̃kS
+
k Sk
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satisfies the condition S ∈ L(Hs) for all s < s0 . As a consequence, J ∈ L(Hs) for all
s < s0 . Lemma 5 validates the equality (9) and the relation ρ(L) 	= /0.

Consider the case of nonlocal boundary conditions. Recall that in this case a 	=
−∞ , b 	= +∞ , and y∞ 	= b , i.e., the number of interaction points is finite. For example,
let the point x = a be regular. Let (a,a+ δ ) be the neighborhood that of the definition
of the regularity such that pm,1/pm ∈ L∞(a,a+δ ) . Without loss of generality, we may
assume that (a,a+ δ ] ⊂ G+ or (a,a+ δ ] ⊂ G− and yi /∈ (a,a+ δ ] for all i . Take a
function ϕ(x) ∈ C∞[a,a+ δ ] such that suppϕ(x) ⊂ [a,a+ δ ) and ϕ(x) is equal to 1
on some set of the form [a,a+δ1] (δ1 < δ ) . Demonstrate that there exists s1 > 0 such
that the operator S0u = ϕ(x)u(x) is continuous as the mapping from Hs into Hs for
s < s1 . Construct an operator P1 taking a function u ∈ H1 into the function ϕ(x)u ∈
W

m
2 (a,a+ δ ) = {u ∈Wm

2 (a,a+ δ ) : u(i)(a+ δ ) = 0, i = 0,1, . . . ,m− 1} . Obviously,
P1 ∈ L(H1,W

m
2 (a,a+ δ ))∩L(L2,g(a,b),L2,g(a,a+ δ )) . Hence, P1 ∈ L(Hs,W

ms
2 (a,a+

δ )) , where W
ms
2 (a,a+ δ )) = (W

m
2 (a,a+ δ )),L2,g(a,a+ δ ))1−s,2 . In view of the reg-

ularity of a , there exists s1 > 0 such that W
sm
2 (a,a+ δ )) =

◦
W sm

2 (a,a+ δ ) for s < s1 .

The operator P2 taking a function u ∈ ◦
W sm

2 (a,a + δ ) into its zero extension on the

whole (a,b) possesses the property P2 ∈ L(
◦
W sm

2 (a,a+ δ ),Hs) for all s . In this case
the operator P2P1u = S0u is such that S0 ∈ L(Hs) for s < s1 . Since the operator of mul-
tiplication by a function ϕ ∈C∞

0 (a,b) such that yi /∈ supp ϕ ′(x) and xk 	∈ supp ϕ ′(x) for
all i,k belongs to L(Hs) for an arbitrary s ∈ [0,1] , we can conclude that the operator of
multiplication by a function ϕ(x) ∈C∞[a,b] such that set supp ϕ ′(x) does not contain
the points xk and yi for all i,k , ϕ(x) = 1 in some neighborhood about a , and ϕ(x) = 0
in some neighborhood about b belongs to L(Hs) for s < s1 . The multiplication op-
erators by functions representable as (1−ϕ(x)) for these functions ϕ(x) possess this
property as well. Next, we repeat the above arguments. As before, we can establish that

there exists a parameter s0 � s1 such that the above operators P ,
N
∑

k=1
S̃kS

+
k Sk belong

to the class L(Hs) for s < s0 . Next, we can construct a function ψ(x) ∈ C∞(R) such
that ψ(x) = 1 on G+ , ψ(x) = 0 beyond some small neighborhood V about G+ , and
supp ϕ ′(x) does not contain the points xk anf yi for all i,k . This neighborhood can
be chosen so small that SPu(x) = ψ(x)Pu(x) . The operator of multiplication by the
function ψ(x) belongs to L(Hs) for s < s0 and thus so is the operator SP . Hence, the
operator

S = SP+
N

∑
k=1

S̃kS
+
k Sk

satisfies the condition S ∈ L(Hs) for for s < s0 . Again, Lemma 5 ensures the relation
ρ(L) 	= /0. The next our aim is to prove the equality (6). As before, it suffices to prove
that there exists a number s0 > 0 such that J ∈ L(Fs) for all s < s0 . Since the norms in
H1 and F1 are equivalent for functions whose supports lie in some neighborhood about
the set {xk}s

k=1 , it is easy to see that the arguments in this case coincide with those used
in the proof of the equality (9). So we can state that the equality (6) holds. Now the
claim results from Lemma 4 and Theorem 1. �
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Recall that the operators A1,A2 : H → H (H is a Hilbert space) are called similar
if there exists a bounded and boundedly invertible operator T such that T (D(A1)) =
D(A2) and A2 = TA1T−1 .

THEOREM 5. Assume that the conditions of Theorem 4 hold and the form a(u,v)
is symmetric on the class S . Then the operator L is similar to a selfadjoint operator in
F0 .

Proof. The result follows from Theorem 4, Lemma 7, and Prop. 2.2 in [24]. �

REMARK 1. The conditions on the coefficients in the form a(u,v) insuring the
fulfillment of the conditions of Theorem 4 and on the constants in boundary and gluing
conditions can be specified in particular situations.

REMARK 2. The conditions of Theorem 4 on pm can be weakened. But in this
case, we need the corresponding refinements of Theorem 3.

REMARK 3. The proof of Theorem 4 is a modification of the corresponding proof
of the Riesz basis property in indefinite spectral Sturm-Liouville problems (see [42] or
[45]).

REMARK 4. All considerations become much more complicated in the case of
ker L 	= {0} or even in the case when the condition of Lemma 6 are violated. These
cases require a separate discussion.

EXAMPLE 1. We examine the simplest case. We take (a,b) = (−∞,∞) and

a(u,v) = (u′,v′)+ (qu,v)+

N

∑
k=1

[(αk
11u(yk+)+ αk

12u(yk−))v(yk+)+(αk
21u(yk+)+ αk

22u(yk−))v(yk−)],

where the function q is nonnegative and real-valued, {yk}N
k=1 is the set of interaction

points, and αk
i j are complex numbers. The gluing conditions (14) at the points yk are

written as
u(yk+) = αku(yk−), αk 	= 0, k = 1,2, . . . ,N. (28)

Let g(x) = sgnxg0(x) , with g0(x) > 0 a.e. The corresponding operator L is written as

Lu =
sgnx
g0(x)

(uxx −q(x)u), x ∈ R,

and the domain of L consists of the functions u ∈ L2,g0+q(R) such that ux ∈ L2(R) ,
uxx ∈ L1,loc(R) , Lu ∈ L2,g0(R) which satisfy (28) and the conditions

αkux(yk+)−ux(yk−)−Δku(yk−) = 0, Δk = |αk|2αk
11 + αk

12αk + αk
21αk + αk

22,
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where k = 1,2 . . . ,N and the symbols ux,uxx stand for the generalized derivatives in
the Sobolev sense. We suppose that

(A) g0,q ∈ L1,loc(R) , q � 0 a.e. on R , and μ{x ∈ (a,b) : q(x) 	= 0} > 0.
(B) ∑N

k=1 Δk(yk − y1) < ∞ , |αk| � 1, Δk ∈ R , and Δk � 0 for all k .

The fundamental symmetry J in the space F0 = L2,g0(R) is given by the equality
Ju = sgnxu . Obviously, F0 is a Krein space. The norm in F1 is defined as ‖u‖2

F1
=∫ ∞

−∞ |ux|2 +q(x)|u|2 dx . The last two conditions in (B), the equality

a(u,v) = (u′,v′)+ (qu,v)+
N

∑
k=1

Δku(yk−)v(yk−)

resulting from (28), and Lemma 7 ensure that L is m-J -dissipative and J -selfadjoint
in F0 . The first two conditions in (B) imply (24). Indeed, the first inequality in (24) is
obvious. Next, employing the representation

u(yk−) =
∫ yk

yk−1

u′ dx+
k−1

∑
j=2

∫ y j

y j−1

u′ dx
k−1

∏
s= j

αs +u(y1−)
k−1

∏
s=1

αs,

the Hölder inequality, and the second condition in (B), we infer

|u(yk−)|2 � 2(yk − y1)
∫ yk

y1

|u′|2 dx+2|u(y1−)|2.

In view of Lemma 6, the last summand and the whole right-hand side are estimated by
the quantity c(yk − y1)‖u‖2

F1
, with c a positive constant. In this case, we have

∣∣ N

∑
k=1

Δku(yk−)v(yk−)
∣∣ �

( N

∑
k=1

Δk|u(yk−)|2)1/2
N

∑
k=1

Δk|v(yk−)|2)1/2
,

N

∑
k=1

Δk|u(yk−)|2 � c‖u‖2
F1

N

∑
k=1

Δk(yk − y1),
N

∑
k=1

Δk|v(yk−)|2 � c‖v‖2
F1

N

∑
k=1

Δk(yk − y1).

The last two inequalities and the definition of the form a(u,v) ensure the last inequality
in (24). We note that the first two conditions in (B) are not optimal; moreover, it is
possible that yk = 0 for some k .

THEOREM 6. Let the condition (A) hold. Assume also that 0 is a regular point
of g . Then the claim of Theorem 4 holds and, moreover, L : F0 → F0 is similar to a
selfadjoint operator.

REMARK 5. In the case of the absence of the interaction points, this theorem is
a slight generalization of Kostenko’s result [32], where it assumed additionally that
g0 /∈ L1(a,b) and g0 is an even function.
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[43] S. G. PYATKOV, Elliptic eigenvalue problems with an indefinite weight function, Sib. Advan. in Math.

1, 2 (1994), 87–104.
[44] S. G. PYATKOV, Interpolation of Sobolev Spaces and Indefinite Elliptic Spectral Problems, Operator
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