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ASYMPTOTIC GENERALIZED VALUE DISTRIBUTION

OF SOLUTIONS OF THE SCHRÖDINGER EQUATION

Y. CHRISTODOULIDES

Abstract. The theory of generalized value distribution for boundary values of Herglotz func-
tions is applied to the Weyl-Titchmarsh m -function in Sturm-Liouville theory, and leads to a
description of generalized value distribution of the logarithmic derivative − v′

v , where v is a
basic solution of the Schrödinger equation.

1. Introduction

Given a Lebesgue measurable function f , the distribution of values of f may be
described by a mapping M : (A,S) → R , defined for a pair of Borel sets A , S by
M (A,S) = |λ ∈ A : f (λ ) ∈ S|. Here, |.| denotes Lebesgue measure, and M (A,S) is
the Lebesgue measure of the points λ in A such that f (λ ) is in S .

A case of particular interest is when f is the (real) boundary value function of a
Herglotz function F . In this case, the mapping M is defined in terms of a family of
measures {μy} (y ∈ R), corresponding to a family of Herglotz functions Fy generated
from F . A theory of value distribution for boundary values of Herglotz functions has
been developed in recent years [7]. This theory applies to Herglotz functions quite gen-
erally, even when they attain boundary values with strictly positive imaginary part. Of
special importance is the case when the Herglotz function F is taken to be the Weyl-
Titchmarsh m-function associated with the Schrödinger equation. It is well known that
the boundary behaviour of the m-function is closely linked with spectral properties of
the corresponding operator. Even in the case that the m-function exhibits highly irreg-
ular boundary behaviour, its value distribution may be quite regular, and is therefore an
important tool in spectral analysis. Results about the asymptotic value distribution of
solutions of the Schrödinger equation have also been obtained, and have been used for
spectral analysis [2].

The theory of value distribution for boundary values of Herglotz functions has
been generalized [3, 4], in order to allow for a description of value distribution in terms
of measures other than Lebesgue measure. An interesting feature of this generalized
theory is that it is closely connected with compositions of Herglotz functions. In this
paper we apply the generalized theory of value distribution for Herglotz functions, and
obtain a result regarding the asymptotic generalized value distribution of solutions of
the Schrödinger equation.
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The paper is organized as follows. In Section 2 we state some basic results about
Herglotz functions, in particular their integral representation. In Section 3 we define the
generalized value distribution of a Herglotz function and present some related results.
Finally, in Section 4 we apply this theory to the Weyl-Titchmarsh m-function associated
with the Schrödinger equation on the half-line.

2. Herglotz function preliminaries

Let F be a Herglotz function, that is, analytic with positive imaginary part in the
upper half-plane C+ = {z : Imz > 0} . Then, F admits the integral representation [6, 1]

F(z) = c1 + c2z+
∫

R

{
1

t − z
− t

t2 +1

}
dρ(t), (1)

where c1 , c2 are real constants (c2 � 0), and the function ρ(t) is non-decreasing, right-
continuous, and determined up to an additive constant. For a given Herglotz function
F , the constants c1 , c2 are specified by

c1 = ReF(i), c2 = lim
s→+∞

1
s
ImF(is).

The function ρ(t) gives rise to a measure μ , defined for finite intervals (a,b] by
μ((a,b]) = ρ(b)− ρ(a) , and μ extends to Borel sets. The measure μ is referred
to as the ‘spectral measure’ corresponding to the Herglotz function F , and satisfies the
condition ∫

R

1
1+ t2

dμ(t) < ∞, (2)

which is sufficient for the integral in (1) to converge absolutely.
The decomposition of μ into an absolutely continuous part μa.c. , and a singular

part μs , with respect to Lebesgue measure, is determined by the boundary behaviour
of F near the real axis [8]. The boundary value F+(λ ) of F at the point λ ∈ R , is
defined by F+(λ ) = limε→0+ F(λ + iε) , and exists as a finite number Lebesgue almost
everywhere. Then, the support of μa.c. is the set {λ ∈ R : 0 < ImF+(λ ) < +∞} , and
the density function f of μa.c. is given by f (λ ) = 1

π ImF+(λ ) , whereas the support of
μs is the set {λ ∈ R : ImF+(λ ) = +∞}.

3. Herglotz functions and value distribution

Given a Herglotz function F , we define a one-parameter family of Herglotz func-
tions Fy (y ∈ R) by

Fy(z) =
1

y−F(z)
. (3)

Let {μy} be the measures corresponding to Fy through the integral representation (1).
The generalized value distribution associated with the Herglotz function F is defined
by

νS(A) =
∫

S
μy(A)dσ(y), (4)
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for any Borel sets A , S , where the measure σ corresponds to a Herglotz function φ ,
with integral representation

φ(z) = aφ +bφ z+
∫

R

{
1

t − z
− t

t2 +1

}
dσ(t). (5)

(We note that in the case of the standard theory of value distribution of Herglotz func-
tions, the integral in (4) takes place with respect to Lebesgue measure). In the special
case when the boundary values of F are real almost everywhere, then the measures μy

are purely singular, and we have [3]

νS(A) = νS
(
A∩F−1

+ (S)
)

= νR

(
A∩F−1

+ (S)
)
. (6)

Thus the measure νS of the set A is concentrated on the points λ in A at which the
boundary value of F is in S , and also it agrees on this set with the measure νR (for
which the integral in (4) takes place over R).

The measure νS is closely related with compositions of Herglotz functions. For
any Borel set B , we have [3]

νS(B) = μ(φS◦F)(B)−bφ μ(B), (7)

where μ(φS◦F) is the measure corresponding to the composed Herglotz function φS ◦
F , and φS is the Herglotz function having the same representation as φ , except that
integration takes place over the set S instead of R . Thus, if bφ = 0, then νS is precisely
the measure corresponding to the function φS ◦F .

A key result in the description of asymptotic value distribution of solutions of
the Schrödinger equation, in the case of Lebesgue measure, was an estimate of value
distribution for a family of Herglotz functions translated by an increment iδ off the real
axis, defined by

Fδ
y (z) =

1
y−F(z+ iδ )

, y ∈ R, z ∈ C+. (8)

Let μδ
y denote the measures corresponding to the Herglotz functions Fδ

y , and A be a
bounded Borel set. Then, we have [2]∣∣∣∣∣

∫
S

μδ
y (A)dy−

∫
S

μy(A)dy

∣∣∣∣∣ � EA(δ ), (9)

where EA(δ ) is a non-decreasing function of δ , with limδ→0+ EA(δ ) = 0. The estimate
is uniform for arbitrary Herglotz function F and Borel set S .

An analogous result holds in the case of generalized value distribution. If the
measure σ is absolutely continuous, then for any ε > 0 we have∣∣∣∣∣

∫
S

μδ
y (A)dσ(y)−

∫
S

μy(A)dσ(y)

∣∣∣∣∣ � CEA(δ )+ ε, (10)
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which holds uniformly for all Herglotz functions F such that F(i) lies in a compact set
K , and the constant C depends on K and ε . This result is obtained from the relation∫

S
μδ

y (A)dσ(y) =
1
π

∫
R

θ (t + iδ ,A)dνS(t), (11)

where θ is the angle subtended at the point z∈C+ by the set S on the real axis, defined
by

θ (z,S) =
∫

S
Im

[
1

t− z

]
dt. (12)

From (11), by considering measures ν0 , ν1 , such that μ(φS◦F)(B) = ν0(B)+ ν1(B) for
any Borel set B (and hence νS(B) = ν0(B) + ν1(B)− bφ μ(B) by (7)), where ν0 is
bounded by Lebesgue measure, and ν1 can be made arbitrarily small, we obtain (10).
A detailed proof of (10) will be published elsewhere.

4. Asymptotic value distribution and the Schrödinger equation

We consider the Schrödinger equation on the half-line 0 � x < ∞ , at complex
spectral parameter z ,

− d2 f (x,z)
dx2 +V(x) f (x,z) = z f (x,z), (13)

where the potential function V is real-valued and integrable over bounded subintervals
of [0,+∞) . We make no special assumptions about V in the limit as x → +∞ . We
are assuming the limit-point case at infinity [5], in which case no boundary conditions
are required at infinity to define the associated operator T = − d2

dx2 +V as a self-adjoint
operator (with Dirichlet boundary condition at x = 0).

Let u , v , be solutions of (13) which satisfy at x = 0, for z ∈ C+ ,

u(0,z) = 1 v(0,z) = 0

u′(0,z) = 0 v′(0,z) = 1.

}
(14)

Then, the Weyl-Titchmarsh m-function is defined by the condition

u(.,z)+m(z)v(.,z) ∈ L2(0,∞). (15)

The m-function mN for the truncated interval [N,∞) is defined in a similar way. If
uN , vN are solutions of (13), with V defined on the interval [N,∞) , and satisfy the
conditions (14) at x = N , then mN is defined by the condition

uN(.,z)+mN(z)vN(.,z) ∈ L2(N,∞).

In terms of m(z) , mN(z) is given by [2]

mN(z) =
u′(N,z)+m(z)v′(N,z)
u(N,z)+m(z)v(N,z)

. (16)
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In Theorem 1 below we give an expression for the asymptotic generalized value
distribution of the Herglotz function − v′

v , where v is the solution of (13) which satisfies
the boundary conditions (14). This expression involves an integral of the generalized
angle subtended θσ and the boundary values of the m-function mN ; θσ is defined
by (12) except that, integration takes place with respect to the measure σ instead of
Lebesgue measure. If the measure σ is absolutely continuous, and z is restricted on a
compact subset of C+ , then θσ (z,S) is bounded.

Before we state Theorem 1, we introduce the ‘distance of separation’ γ , defined
for z1 , z2 ∈ C+ by

γ(z1,z2) =
|z1 − z2|√
Imz1

√
Imz2

. (17)

γ is invariant under Möbius transformations [2]. Also, for any two points z1 , z2 ∈ C+ ,
and Borel set S , the following inequality holds, relating the generalized angle subtended
θσ and γ : ∣∣θσ (z1,S)−θσ(z2,S)

∣∣ � γ(z1,z2)
√

θσ (z1,S)
√

θσ (z2,S). (18)

THEOREM 1. Suppose that the measure σ is absolutely continuous, with density
function hσ , and let A be a bounded Borel subset of an essential support of the ab-
solutely continuous part μa.c. of the spectral measure μ of the Dirichlet Schrödinger

operator T = − d2

dx2 +V acting in L2(0,∞) . Moreover, we make the following assump-
tions:

(i) For any fixed z ∈ C+ , there exists a compact subset Kz of C+ such that for all

N sufficiently large we have − v′(N,z)
v(N,z) ∈ Kz ,

(ii) There exists a compact set K1 of C+ such that for all λ ∈ A and N sufficiently

large, we have mN
+(λ ) ∈ K1 , and − v′(N,i)

v(N,i) ∈ K1 ,

(iii) For z = λ + iδ , λ ∈ A and any δ > 0 fixed, we have Kz ⊂ K1 .
Then, for any Borel subset S of R we have

lim
N→∞

∣∣∣∣∣νN
−S

(A)− 1
π

∫
A

θσr

(
mN

+(λ ),S
)
dλ

∣∣∣∣∣ = 0, (19)

where the measure νN
S

is defined by νN
S

(B) =
∫
S μN

y (B)dσ(y) for any Borel set B, the
measures μN

y correspond to the family of Herglotz functions

FN
y (z) =

1

y+ v′(N,z)
v(N,z)

, y ∈ R,

the set −S is defined by −S = {λ ∈ R : −λ ∈ S} , and the measure σr has density
function hσr given by hσr(t) = hσ (−t) .

Proof. We sketch the proof, which is based on the proof of Theorem 1 in [2]. For
any positive number p > 0, we divide the set A into a finite partition A = A0 ∪A1 ∪
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...∪An of (n+1) disjoint sets such that

γ
(
m+(λ ),m( j)) � p all λ ∈ Aj, j = 1,2, ...,n, (20)

where m( j) = m+(λ j) for some fixed λ j ∈ Aj , and the set A0 has arbitrarily small
measure. From (16) we obtain an expression for the boundary values of mN , and since
γ is invariant under Möbius transformations, (20) implies

γ
(

mN
+(λ ),

u′(N,λ )+m( j)v′(N,λ )
u(N,λ )+m( j)v(N,λ )

)
� p, all λ ∈ Aj, j = 1,2, ...,n. (21)

Then, by using (18) we obtain an estimate in terms of θσr , and integrating with respect
to λ over Aj leads to the bound

∣∣∣∣∣ 1
π

∫
Aj

θσr

(
mN

+(λ ),S
)
dλ − 1

π

∫
Aj

θσr

(
u′(N,λ )+m( j)v′(N,λ )
u(N,λ )+m( j)v(N,λ )

,S

)
dλ

∣∣∣∣∣ � Cp|Aj|,
(22)

valid for all λ ∈ Aj , j = 1, ...,n and N > 0 (C is a constant depending on the compact
set K1 ).

Now, for j = 1, ...,n , we define the set Aδ0
j = {z : z = λ + iδ0,λ ∈ Aj} , for some

δ0 > 0. We have [2]

γ
(
− v′(N,z)

v(N,z)
,−u′(N,z)+m( j)v′(N,z)

u(N,z)+m( j)v(N,z)

)
→ 0 (23)

uniformly in m( j) , and for all z ∈ Aδ0
j , j = 1, ...,n , as N → ∞ . Thus, as before we may

obtain an estimate of the generalized angle subtended. We have

∣∣∣∣∣
∫

Aj

1
π

θσ

(
− v′(N,λ + iδ0)

v(N,λ + iδ0)
,−S

)
dλ

−
∫

Aj

1
π

θσ

(
− u′(N,λ + iδ0)+m( j)v′(N,λ + iδ0)

u(N,λ + iδ0)+m( j)v(N,λ + iδ0)
,−S

)
dλ

∣∣∣∣∣ � 1
π

p|Aj| (24)

for all λ ∈ Aj , j = 1, ...,n , and N sufficiently large.
Each of the two integrals in (24) is the generalized value distribution (in a different,

but equivalent form) of the Herglotz function in the integrand, which is translated by an
increment iδ0 off the real axis. Therefore, in each case we may use (10) to compare the
difference between the integrals in (24) with the corresponding integrals in the limit as
δ → 0+ . We can make this difference arbitrarily small by our choice of δ0 . Combining
with (22), and adding over all j , then yields (19).
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We note the identity θσr(−z,−S) = θσ (z,S) , and that

lim
δ→0+

1
π

∫
Aj

θσ

(
− v′(N,λ + iδ )

v(N,λ + iδ )
,−S

)
dλ

= lim
δ→0+

∫
Aj

{
1
π

∫
−S

Im

[
1

y+ v′(N,λ+iδ )
v(N,λ+iδ )

]
dσ(y)

}
dλ

= lim
δ→0+

∫
−S

{
1
π

∫
Aj

ImFN
y (λ + iδ )dλ

}
dσ(y) =

∫
−S

μN
y (Aj)dσ(y) = νN

−S
(Aj). �
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