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Abstract. In this paper we show that a certain class of nonlinear operators associated with M-
matrices behaves similarly to M-matrices in the sense that their inverse operators map the cone
of positive vectors of �n to itself. It is also proven that a certain iteration process can be used to
find the values of these inverse operators at any point within the cone of positive vectors. Some
results of computational experiments based on this iteration process are presented and discussed.

1. Introduction

We will consider operators from �
n to �n of the structure

M(x) = Ax+F(x)

where A is an M-matrix and F(x) is a nonlinear operator from �
n to �

n . The main
result of this paper will be the statement that if F(x) satisfies certain reasonable con-
ditions then M−1 maps the cone of positive vectors to itself. It will also be shown that
an iteration sequence can be constructed that will converge to the value of M−1 at any
point of the cone of positive vectors. On an intuitive level it means that if we introduce
some nonlinear perturbations to an operator associated with an M-matrix, we obtain a
nonlinear operator that behaves similarly to an M-matrix when it comes to some prop-
erties of its inverse. Namely, any positive matrix maps the cone of positive vectors to
itself and so does this inverse operator.

This problem was brought to the attention of the author of this paper by the late
Israel Koltracht, and the techniques used in this paper are similar to techniques used
in some of Israel Koltracht’s papers [1], [2], [3]. The problem considered in [1]–[3]
was to find a positive eigenvector of a nonlinear perturbation of an M-matrix, while
the problem considered in this paper is basically about finding the inverse operator of
a nonlinear perturbation of an M-matrix on the cone of positive vectors. Applying the
techniques of [1]–[3] to a very different problem required some substantial changes in
the proof and entirely different conditions for the existence of a solution (the conditions
λ > μ and (2) from [1] are replaced by the conditions (4) and (5) in this paper).
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We use the term positive matrix to refer to a matrix whose all entries are positive
numbers. We use the term M-matrix to refer to a positive stable matrix whose non-
diagonal entries are all nonpositive [4]. In this paper we will rely heavily on the fact
that if A is an M-matrix then (A+ cI)−1 is a positive matrix for any c > 0. This fact is
easy to prove because if A is an M-matrix then A+ cI (for c > 0) is also an M-matrix,
and the inverse of any M-matrix is a positive matrix [4].

We can reduce the problem of finding the inverse of the operator M(x) on the
cone of positive vectors to a certain nonlinear vector equation. Namely, we consider
the following problem: find a vector x ∈ �n that satisfies the equation

Ax+F(x) = B (1)

where A is an M-matrix of the size n×n , F(x) is a vector function from �
n to �n that

depends on the vector x , and B = [b1,b2, ...,bn]T is a positive column vector in �n , i.e.
bi > 0 for every i = 1, ...,n .

We can reformulate the problem of finding a solution of equation (1) into a prob-
lem of finding a fixed point of a certain transformation from �

n to �n , namely:

x = S(x), S(x) = (cI +A)−1(B+ cx−F(x)) (2)

where c > 0 is any positive constant. We will use the symbol p to denote the Perron
vector of the matrix A−1 and use the symbol μ to denote the smallest (by absolute
value) eigenvalue of the matrix A (since A is an M-matrix, μ is always real and pos-
itive), so that Ap = μ p and A−1p = μ−1p . In order to prove the main result of this
article, we will need the Monotone Fixed Point Theorem [5] applied in the context of
our problem.

THEOREM 1.1. (Monotone Fixed Point Theorem applied to �n ) Consider a space
of vectors of �n with the partial order relation < defined in the following way: for any
two vectors x = [x1, ...,xn]T ∈�n and y = [y1, ...,yn]T ∈�n we will say that x is smaller
than y (denoted as x < y) if xi � yi for all i = 1, ...,n and xi < yi for at least one i .

If x ∈ �n , y ∈ �n and x < y we can define the interval [x,y] ⊂ �
n in the following

way: we will say that t ∈ [x,y] if and only if x � t � y.
Let y ∈ �n and z ∈ �n are such that y < z and let transformation S: �n → �

n be
defined and continuous on the interval [y,z] and suppose the following conditions are
satisfied:

1) y < S(y) < z

2) y < S(z) < z

3) y � x1 < x2 � z implies y < S(x1) < S(x2) < z

Then

a) the fixed point iteration xk = S(xk−1) with x0 = y converges in
�

n : xk → x∗ , S(x∗) = x∗ , y < x∗ < z
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b) the fixed point iteration xk = S(xk−1) with x0 = z converges in
�

n : xk → x∗ , S(x∗) = x∗ , y < x∗ < z

c) if x is a fixed point of S in [y,z] then x∗ � x � x∗

d) S has a unique fixed point in [y,z] if and only if x∗ = x∗

2. Iteration process and its convergence to the positive solution

Now we are ready to prove the main result of this article. It will state the existence
of a positive solution of equation (1) for a positive b and convergence of a certain
iteration process to this solution.

THEOREM 2.1. Suppose in the equation (1) A is an M-matrix, B ∈ �n is a pos-
itive vector, μ is the smallest (by absolute value) eigenvalue of the matrix A (μ is
always a real positive number), and p = [p1, ..., pn]T is a positive eigenvector that
corresponds to μ . Let

F(x) =

⎡
⎢⎢⎢⎣

f1(x1)
f2(x2)

...
fn(xn)

⎤
⎥⎥⎥⎦ (3)

be such that for every i = 1, ...,n the components fi : [0,+∞) → � are C1[0,+∞)
functions satisfying the condition

lim
t→0

fi(t) = di � 0 (4)

and there exist real numbers ei and ti such that for every t > ti the following condition
holds

fi(t)
t

> ei > −μ . (5)

Then (1) has a positive solution.
If, in addition to the conditions given above, for every i = 1, ...,n the following

condition holds:
fi(s)
s

<
fi(t)
t

whenever 0 < s < t, (6)

then a positive solution is unique and there exists a vector x0 such that the sequence
xn+1 = S(xn) (where S(x) is defined as in (2)) converges to the unique positive solution
of (1). Moreover, there exist positive numbers α1 and α2 (where α1 < α2 ) such that for
any α ∈ (0,α1)∪ (α2,∞) the vector x0 = α p will generate the sequence xn+1 = S(xn)
that will converge to the unique positive solution of (1).

Before we start the proof of Theorem 2.1, we can point out that the condition (5) is
not restrictive. The condition (5) means that for the large values of x the graph of fi(x)
stays above a straight line y = −μx . Any function that has a limit on infinity that is not
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equal to the negative infinity satisfies this condition. Any continuous periodic function
also satisfies this condition.

The proof will be based on the ideas that are similar to the ideas of the proof given
in [1] and will be based on showing that the conditions of the Monotone Fixed Point
Theorem given in [5] are satisfied for the transformation S(x) . It will guarantee the
existence of positive solution and its uniqueness.

Proof. Now we start the proof of Theorem 2.1.
First of all, the condition (4) guarantees that there exists α1 > 0 such that for any

β1 ∈ (0,α1) we have bi − μβ1pi > fi(β1pi) for any i = 1, ...,n . To show that, it is
enough to take t = β1pi and note that limt→0(bi−μt) = bi > 0 but limt→0 fi(t) = di �
0.

Similarly, the condition (5) guarantees that there exists α2 (we can always select
it so that α2 > α1 ) such that for any β2 ∈ (α2,∞) we have bi − μβ2pi < fi(β2pi) for
any i = 1, ...,n . To show that, we can take t = β2pi , rewrite the inequality that we want

to prove as bi
t − μ < fi(t)

t and note that limt→∞

(
bi
t

)
= 0.

We can always choose a positive number c such that

c > max
1�i�n

(
sup

β1 pi�t�β2 pi

| f ′i (t)|
)

(7)

and then we reformulate the problem of finding the solution of equation (1) into a
problem of finding a fixed point of the transformation S : �n → �

n , where S is defined
as in (2), i.e.

S(x) = (cI +A)−1(B+ cx−F(x)).

To prove the existence of a solution of (1), it is enough to show that S(x) satisfies the
conditions of the Monotone Fixed Point Theorem given above for y = β1p and z = β2p .

First of all, we want to show now that the condition (1) of the Monotone Fixed
Point Theorem is satisfied, i.e. y < S(y) < z . In the proof below we will use the fact
that p = (A + cI)−1(c + μ)p . We will also use the fact that if c > 0 and A is an
M-matrix then A+ cI is also an M-matrix.

Since (A+ cI)−1u > 0 whenever u > 0 it suffices to show that

(c+ μ)(β1p) < B+ cβ1p−F(β1p) < (c+ μ)(β2p) (8)

We start from proving the left part of this double inequality. The argument below
is valid for i = 1, ...,n . From bi−μβ1pi > fi(β1pi) we have bi−μβ1pi− fi(β1pi) > 0
and so (c+ μ)(β1pi)+bi − μβ1pi − fi(β1pi) > (c+ μ)(β1pi) and after canceling out
the term μβ1pi in the left part we will get bi +cβ1pi− fi(β1pi) > (c+μ)(β1pi) , which
is exactly the componentwise notation of the left part of the double inequality (8).

Now let us prove the right part of the double inequality (8).
By our choice of β2 for any i = 1, ...,n we have fi(β2pi) > bi − μβ2pi . It can be

rewritten as fi(β1pi)+( fi(β2pi)− fi(β1pi)) > bi−μβ2pi or, if we estimate the change
in f by its derivative multiplied by change in argument, and use (7), we will obtain that
fi(β1pi)+ c(β2pi −β1pi) > bi − μβ2pi and after moving some terms into the left part
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we get fi(β1pi)− cβ1pi − bi > −μβ2pi − cβ2pi If we multiply it by −1 we will get
(μ + c)β2pi > bi + cβ1pi − fi(β1pi) , which is exactly the componentwise notation of
the right part of equality (8).

We also need to prove that the second condition of the Monotone Fixed Point
Theorem is satisfied, namely, y < S(z) < z . Due to the fact that (A+cI)−1 is a positive
matrix it suffices to show only that

(c+ μ)(β1p) < B+ cβ2p−F(β2p) < (c+ μ)(β2p) (9)

Now we will show that the right part of this double inequality holds. The argument
below is valid for i = 1, ...,n . From bi − μβ2pi < fi(β2pi) we have bi − μβ2pi −
fi(β2pi) < 0 and so we can write (c+μ)(β2pi)+bi−μβ2pi− fi(β2pi) < (c+μ)(β2pi)
and then after canceling out the term μβ2pi in the left part we get bi +cβ2pi− fi(β2pi)
< (c+ μ)(β2pi), which is exactly the componentwise notation of the right part of the
double inequality (9).

Now, let us prove the left part of the double inequality (9). From our choice of
β1 we have fi(β1pi) < bi − μβ1pi which can be written as fi(β2pi)− ( fi(β2pi)−
fi(β1pi)) < bi − μβ1pi or, if we estimate the the change in f by its derivative mul-
tiplied by the change in argument, and use (7), we will get fi(β2pi)− c(β2pi−β1pi) <
bi − μβ1pi . and after some simplification it will become fi(β2pi) − cβ2pi − bi <
−(μ + c)(β1pi) . Finally, if we multiply it by −1 we will get (μ + c)(β1pi) < bi +
cβ2pi − fi(β2pi), which is exactly the componentwise notation of the left part of the
double inequality (9).

Now we have to show that if β1p � x1 < x2 � β2p then S(x1) < S(x2) . It will
guarantee that the condition (3) of the Monotone Fixed Point Theorem is satisfied. We
can write S(x2)− S(x1) as (A + cI)−1((B + cx2 −F(x2))− (B + cx1 +F(x1))) . Due
to the fact that (A+ cI)−1 is a positive matrix it suffices to show only that (B+ cx2 −
F(x2))− (B + cx1 + F(x1)) > 0. It can be shown by some simple algebraic transfor-
mations and estimating the change in f by the maximum of its derivative multiplied
by the change in argument and then by the use of (7). We have (for i-th compo-
nent) that bi + cx2i − fi(x2i)− bi − cx1i − fi(x1i) = c(x2i − x1i)− ( fi(x2i)− fi(x1i)) >
c(x2i− x1i)− c(x2i− x1i) = 0. So β1p � x1 < x2 � β2p implies S(x1) < S(x2) .

We have checked that the conditions (1)–(3) of the Monotone Fixed Point Theorem
are satisfied. It guarantees that there exists at least one fixed point of the transformation
defined by (2) that will also be a solution of the equation (1). The Monotone Fixed
Point Theorem also implies that if we choose x0 = β1p or x0 = β2p then the sequence
xn+1 = S(xn) will converge to a fixed point of the transformation S(x) (which will also
be a solution of equation (1)). And finally, it states that these fixed point(s) of S(x)
will lie between β1p and β2p , which guarantees the positivity of all components of the
solution of (1).

Now we need to prove the uniqueness of the positive solution under the conditions
given in the Theorem 2.1. Suppose now that the condition (6), i.e.

fi(s)
s

<
fi(t)
t

whenever 0 < s < t
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is satisfied. We will show that in this case for any two positive solutions x∗ and x∗ it
must be x∗ = x∗ .

Since both x∗ and x∗ are solutions of our equation, we have

Ax∗ +F(x∗) = B

Ax∗ +F(x∗) = B

By multiplying the first equation by xT∗ and the second equation by x∗T , and subtracting
the second equation from the first one we will see that

xT
∗ F(x∗)− x∗TF(x∗) = xT

∗ B− x∗TB

or, written in terms of vector components on the left side, that

n

∑
i=1

( fi(x∗i )x∗i− fi(x∗i)x∗i ) = =
n

∑
i=1

(
x∗ix∗i

(
fi(x∗i )
x∗i

− fi(xi∗)
xi∗

))

= (xT
∗ − x∗T )B

Since x∗ , x∗ and B are always positive vectors and x∗ > x∗ , we can use the con-
dition (6) and conclude that the right part of the expression above is always nonpositive
while the left part of the expression above is always nonnegative. It may happen only
when both of them are equal to zero. But since B is positive, the right hand side is equal
to zero only when x∗ = x∗ . So the uniqueness of the positive solution of (1) under the
condition (6) is proved.

The proof of Theorem 2.1 is complete. �

Before we proceed to the results of the numerical experiments, we should point out
that Theorem 2.1 holds when A is any square matrix such that (cI +A)−1 is a positive
matrix for some value of c that satisfies the condition (7). So, generally speaking, A
does not have to be necessarily an M-matrix. Some matrices related to discretization
of operator of the second derivative using orthogonal polynomials are not M-matrices,
but for them we can still find c such that (7) holds and (cI +A)−1 is a positive matrix.
In practical computations, it can be checked directly by computing (cI + A)−1 . For
example, we are using the Legendre polynomials to discretize operator of the second
derivative (with zero boundary conditions) at collocation points by a matrix and the
iteration process presented in the proof of Theorem 2.1 still works very well in our
numerical experiments. The details of such discretization by Legendre polynomials are
given in [6], [3].

The second important fact to be aware of is that both the proof of the Theorem 2.1
and the iteration process introduced in the proof of it are still fully valid if we consider
a two-dimensional version of this theorem, namely when x is not a vector but a square
matrix, A is a Stieltjes matrix and Ax is replaced with Ax+ xAT . We can view it as a
discrete analogue of the Laplace operator. We run a few computational experiments in
two dimensions using the discretization by Legendre polynomials at collocation points
that was mentioned before, and we present some of the results in the next section.



ON ONE PROPERTY OF INVERSES 395

3. Some results of computational experiments

We did a few numerical experiments in order to evaluate the performance of the
iteration procedure for solving the equation (1) that was described above. The matrix
A was a 199×199 matrix of the three-point central finite difference approximation of
the second derivative multiplied by −1, i.e.

A =
1
h2 ·

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

−1
. . .

. . .
. . . 2 −1

0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

Table 1: Convergence results for the first numerical experiment.

Iterations Residue (2-Norm)
1 2.0134
2 0.4198
5 0.0028
10 6.4150 ·10−7

15 1.5206 ·10−10

Figure 1: The solution for the first numerical experiment.

In the first numerical experiment we have solved the finite difference approxima-
tion of the boundary value problem −(x(t))′′ +(x(t))3 = 1− t2 on the interval [−1,1]
with zero boundary conditions x(−1) = x(1) = 0 using a uniform mesh of 199 points.
In this case the operator of the second derivative was approximated by the matrix (10)
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with h = 0.01 while all other functions were approximated by their values at the mesh
points. We used the iteration procedure xn+1 = S(xn) with S(x) defined as in (2) with
c = 1 and the initial iteration x0 was chosen to be the Perron vector of the matrix A−1 .
The results of this numerical experiment are given below.

In the second numerical experiment we have solved the finite difference approxi-
mation of the boundary value problem −(x(t))′′+(x(t))2 = 10et cos(πt

2 ) on the interval
[−1,1] with zero boundary conditions x(−1) = x(1) = 0 using a uniform mesh of 199
points. As in the previous example, the operator of the second derivative was approxi-
mated by the matrix (10) with h = 0.01 while all other functions were approximated by
their values at the mesh points. We used the iteration procedure xn+1 = S(xn) (where
the transformation S(x) was defined as in (2)) with c = 10 and the initial iteration x0

was chosen to be the Perron vector of the matrix A−1 . The results of this numerical
experiment are given below.

Table 2: Convergence results for the second numerical experiment.

Iterations Residue (2-norm)
1 77.9216
2 48.3652
10 0.2187
20 1.7290 ·10−4

30 1.3633 ·10−7

40 2.9634 ·10−10

Figure 2: The solution for the second numerical experiment.

We also run some computational experiments for a two-dimensional version of
(1), that is for Ax + xAT + F(x) = B . In that case, the iteration process (2) has to
be slightly modified, but the idea stays the same as for the one-dimensional case. We
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used two-dimensional discretization by Legendre polynomials at collocation points and
techniques described in [3], [6]. For example, in the third numerical experiment we
found a solution u(x,y) to a discretized version of a boundary value problem −Δu+
u3 = 2e−

1
4

√
x2+y2

on the square [−10,10]× [10,10] with zero boundary conditions on
the boundary using a mesh of 64×64 points. We use c = 2 in the iteration process (2).
The results of this numerical experiment are given below.

Table 3: Convergence results for the third numerical experiment.

Iterations Residue (2-norm)
1 19.0366
2 12.0016
10 0.2574
20 0.0025
30 4.2151 ·10−5

40 9.7700 ·10−7

50 2.3584 ·10−8

Figure 3: The solution for the third numerical experiment.

Our numerical experiments consistently showed that increasing c slowed down
convergence of the iteration process. However, c cannot be made too small due to
the lower bound (7). The typical choice of c is our numerical experiments was in the
interval between 1 and 100.
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