
Operators
and

Matrices

Volume 8, Number 2 (2014), 399–409 doi:10.7153/oam-08-20

ESSENTIAL NORM OF GENERALIZED COMPOSITION

OPERATORS ON WEIGHTED HARDY SPACES
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(Communicated by N.-C. Wong)

Abstract. Upper and lower bounds for the essential norm of generalized composition operators
on weighted Hardy spaces are estimated.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C , ∂D its
boundary, H(D) the space of all holomorphic functions on D, and H∞(D) the space
of all bounded analytic functions on D with the norm ‖ f‖∞ = supz∈D | f (z)|.

For a ∈ D, let σa be the involutive Möbius transformation of the unit disk, inter-
changing points a and 0, that is, σa(z) = (a− z)/(1−az).

Let ω be a positive continuous integrable function on [0,1) . If ω(z) = ω(|z|) for
every z ∈ D , we call it a weight. We say, that a weight ω is almost standard if it is
non-increasing and such that ω(r)/(1− r)1+γ is non-decreasing for some γ > 0. By
Hω we denote the weighted Hardy space consisting of all f ∈ H(D) such that

‖ f‖2
Hω = | f (0)|2 +

∫
D

| f ′(z)|2ω(z)dA(z) < ∞,

where dA(z) = 1
π dxdy = 1

π rdrdθ stands for the normalized area measure on D (for this
and some related spaces see, e.g. [1, 6]). By some calculation we see that a function
f (z) = ∑∞

n=0 anzn belongs to Hω if and only if

∞

∑
n=0

ωn|an|2 < ∞,

where ω0 = 1 and

ωn = 2n2
∫ 1

0
r2n−1ω(r)dr, n ∈ N.

The sequence (ωn)n∈N0 is called the weight sequence of the weighted Hardy space.
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Let g ∈ H(D) and ϕ be a holomorphic self-map of D. The next operator denoted
by Jg,ϕ was introduced by S. Li and S. Stević in [8]

Jg,ϕ f (z) =
∫ z

0
f ′ (ϕ (ζ ))g(ζ )dζ , f ∈ H(D). (1)

It is called the generalized composition operator. The operator Jg,ϕ is a generalization
of the integral-type operator Jg, which is obtained for ϕ(z) = z.

When g(z) = ϕ ′(z), then Jg,ϕ is reduced to the difference of a composition oper-
ator and a point evaluation operator, more precisely Jϕ ′,ϕ = Cϕ − δϕ(0). Operator (1)
is one of products of linear operators on H(D) , which have attracted some attention
recently, mainly due to the fact that these kind of operators make a link between classi-
cal function theory and operator theory. For some results in the area see, e.g. [2]–[4],
[6]–[35] and the references therein. Recall that

β (a,z) =
1
2

log
1+ |σa(z)|
1−|σa(z)|

is the hyperbolic metric on D. Fix r ∈ (0,1) and consider the hyperbolic disk or the
Bergman disk D(a,r) of radius r and hyperbolic center a . That is,

D(a,r) = {z ∈ D : β (a,z) < r}, a ∈ D.

It is well known that D(a,r) is a Euclidean disk whose Euclidean center and Euclidean
radius are given respectively by

(1− s2)a
(1− s2|a|2) and

(1−|a|2)s
(1− s2|a|2) ,

where s = tanhr ∈ (0,1).
In the following known lemmas (see e.g. [5] or [33]), we recall some useful prop-

erties of the hyperbolic disks.

LEMMA 1. Let r be a fixed positive number. Then for all a and z in D satisfying
β (a,z) < r , we have

A(D(a,r)) � 1−|a|2 � |1−az| � 1−|z|2, (2)

where A(D(a,r)) denotes the area of D(a,r).

LEMMA 2. Let r ∈ (0,1] be fixed. Then there exist a positive integer M and a
sequence {a j} in D such that:

(a) The disk D is covered by {D(a j,r)} j∈N
.

(b) Every point in D belongs to at most M sets in {D(a j,2r)} j∈N
.

(c) If j �= m, then β (a j,am) � r
2 .
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In what follows, we make use of Carleson measure techniques, so we give a short
introduction to Carleson windows and Carleson measures.

The arcs in the unit circle ∂D be sets of the form I = {z ∈ ∂D : θ1 � argz < θ2},
where θ1 , θ2 ∈ [0,2π) and θ1 < θ2 . Normalized length of an arc I will be denoted by
|I|, that is,

|I| = 1
2π

∫
I
|dz|.

Let I be an arc in ∂D and let S(I) be the Carleson window defined by

S(I) = {z ∈ D : 1−|I|� |z| < 1,z/|z| ∈ I}.

Let 0 < α < ∞. Recall that a positive Borel measure μ on D is an α -Carleson
measure if

‖μ‖α = sup
|I|>0

μ(S(I))
|I|α < ∞.

A vanishing α -Carleson measure is one for which μ(S(I)) = o(|I|α) as |I| → 0 uni-
formly in arcs I ⊂ ∂D.

In this paper, we continued our work in [29], where we have established Carleson
type Theorem for weighted Hardy spaces and characterized the boundedness of opera-
tor (1) on weighted Hardy spaces. The following results are proved in [29].

THEOREM 1. Let ω be an almost standard weight, r ∈ (0,1) fixed and μ be a
positive Borel measure on D. Then the following statements are equivalent:

(i) The following quantity is bounded

C1 := sup
a∈D

μ(D(a,r))
ω(a)(1−|a|2)2 ;

(ii) There is a constant C2 > 0 such that, for every f ∈ Hω ,

∫
D

| f ′(z)|2dμ(z) � C2‖ f‖2
Hω ;

(iii) The following quantity is bounded

C3 := sup
a∈D

∫
D

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ dμ(z).

Moreover, the following asymptotic relationships hold

C1 �C2 �C3. (3)
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THEOREM 2. Let ω be an almost standard weight, g ∈ H(D) and ϕ be a holo-
morphic self-map of D. Then the following statements are equivalent:

(i) Jg,ϕ is bounded on Hω .

(ii) The pull-back measure μg,ω,ϕ = νg,ω ◦ ϕ−1 of νg,ω induced by ϕ is an ω -
Carleson measure, where dνg,ω (z) = |g(z)|2ω(z)dA(z).

(iii) L := sup
a∈D

∫
D

(1−|a|2)2+2γ

ω(a)|1− aϕ(z)|4+2γ |g(z)|2ω(z)dA(z) < ∞.

Moreover, if Jg,ϕ is bounded on Hω , then

‖Jg,ϕ‖2 � L.

The essential norm ‖T‖e of a bounded linear operator T on a Banach space X is
given by

‖T‖e = inf
{‖T +K‖ : K is compact on X

}
,

i.e., its distance in the operator norm from the space of compact operators on X . The
essential norm provides a measure of non-compactness of T. Clearly T is compact if
and only if ‖T‖e = 0. For some results in the area see, e.g. [4, 13, 15, 17, 21, 24, 28, 30]
and the references therein.

Here we estimate the essential norm of the operator Jg,ϕ on weighted Hardy space.
Throughout this paper constants are denoted by C and they are positive, but not

necessarily the same at each occurrence. The notation A � B means that there is a
positive constant C such that B/C � A � CB .

2. Essential norm of Jg,ϕ on Hw

To estimate the essential norm of operator Jg,ϕ , we define the next quantity

‖μ‖ω = sup
0<|I|<1

μ(S(I))
ω(1−|I|)|I|2 < ∞. (4)

The quantity ‖μ‖ω in (4) and constants C1 , C2 and C3, in Theorem 1 are comparable.
Indeed, let I be and arc in ∂D such that 0 < |I| < 1 and a = (1−|I|)eiθ . Then a ∈ D

and |a| = 1−|I|. Thus

C3 �
∫

D

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ dμ(z) �
∫

S(I)

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ dμ(z).

By (2) and some standard geometric arguments, we can easily obtain that there is an
absolute constant C > 0 such that

(1−|a|2)2+2γ

|1− az|4+2γ � C
|I|2 , z ∈ S(I).
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Thus

C3 � C
ω(1−|I|)|I|2

∫
S(I)

dμ(z) = C
μ(S(I))

ω(1−|I|)|I|2 .

Since I is an arbitrary arc, we have

‖μ‖ω = sup
0<|I|<1

μ(S(I))
ω(1−|I|)|I|2 � CC3. (5)

Let a∈ D be arbitrary. For a fixed r ∈ (0,1) there is an arc I in ∂D such that 0 < |I|<
1, |I| � 1−|a| and D(a,r) ∈ S(I) [3]. Since ω is an almost standard weight we get

μ(D(a,r))
ω(a)(1−|a|2)2 � C sup

0<|I|<1

μ(S(I))
ω(1−|I|2)|I|2 = C||μ ||ω .

Taking supermum over a ∈ D, we have

C1 = sup
a∈D

μ(D(a,r))
ω(a)(1−|a|2)2 � C||μ ||ω . (6)

Combining (3), (5) and (6), we have that ‖μ‖ω and constants C1 , C2 and C3, in The-
orem 1 are comparable. This settles the claim.

DEFINITION. A positive Borel measure μ on D is called an ω -Carleson measure
if it satisfies either of the equivalent conditions in Theorem 1 or condition (4).

A positive Borel measure μ on D is called a vanishing ω -Carleson measure if it
satisfies the following condition

lim
|I|→0

μ(S(I))
ω(1−|I|)|I|2 = 0

(
or equivalently, lim

|a|→1

μ(D(a,r))
ω(a)(1−|a|2)2 = 0

)
.

For g ∈ H(D) and ϕ a holomorphic self-map of D, define the next quantity

Λϕ
g (a) :=

∫
D

(1−|a|2)2+2γ

ω(a)|1− aϕ(z)|4+2γ |g(z)|2ω(z)dA(z).

THEOREM 3. Let ω be an almost standard weight, g ∈ H(D) and ϕ be a holo-
morphic self-map of D. Let Jg,ϕ be bounded on Hω . Then there is an absolute constant
C � 1 such that

limsup
|a|→1

Λϕ
g (a) � ‖Jg,ϕ‖2

e � C limsup
|a|→1

Λϕ
g (a).

In order to prove Theorem 3, we need several lemmas. First, we quote an auxiliary
result from [6].

LEMMA 3. Let ω be an almost standard weight. Then

∫
D

ω(z)
|1− az|4+2γ dA(z) � ω(a)

(1−|a|2)2+2γ .
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Moreover, if

fa(z) =
1√

ω(a)
(1−|a|2)1+γ

(1− az)1+γ , (7)

then ‖ fa‖Hω � 1.

LEMMA 4. Let 0 < r < 1 , D(0,r) = {z ∈ D : |z| < r} and μ be a finite positive
Borel measures on D. Set

M∗
r (μ) = M∗

r = sup
|a|�r

∫
D

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ dμ(z).

Then, if μ is an ω -Carleson measure for the weighted Hardy space Hω , so is μ̃r =
μ |D\D(0,r). Moreover,

‖μ̃r‖ω � NM∗
r ,

where N is a positive constant.

Proof. Let

Mr = sup
0<|I|�1−r

μ(S(I))
ω(1−|I|)|I|2 .

Let I ⊂ ∂D be a non-degenerate arc. Then |I| = γ(1− r) for some γ ∈ (0,1/(1− r)] .
If 0 < γ � 1, then S(I) ⊂ D\D(0,r), and so

μ̃r(S(I)) = μ(S(I)) � Mrω(1−|I|)|I|2.

If γ > 1. Then 1 < ([γ]+1)/γ � 2. Let m = [γ]+1. Then I can be covered by m
arcs I1, I2, . . . , Im , such that |Ik| = 1− r, k = 1,2, . . . ,m. We have

μ̃r(S(I)) = μ(S(I)∩ (D\D(0,r))) �
m

∑
k=1

μ(S(Ik))

� Mr

m

∑
k=1

ω(1−|Ik|)|Ik|2 = Mrmω(1−|I1|)|I1|2

� 4Mr

m
ω(1−|I1|)|I|2 =

4Mr

m
ω

(
1− |I|

γ

)
|I|2 � 4Mrω(1−|I|)|I|2,

where in the last inequality we have used the monotonicity of ω(r) . This implies that
‖μ̃r‖ω � 4Mr, which means that μ̃r is an ω -Carleson measure.

To complete the proof, it is enough to prove that Mr � NM∗
r for some N > 0. Take

|I|� 1−r. Let a = (1−|I|)eiθ . Then |a|= 1−|I|� r. By using the standard geometric
arguments it is easy to see that there is a positive constant C such that

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ � C
ω(1−|I|)|I|2 ,
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when z ∈ S(I) and eiθ is the mid point of I. Hence

μ(S(I))
ω(1−|I|)|I|2 � 1

C

∫
S(I)

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ dμ(z)

� 1
C

∫
D

(1−|a|2)2+2γ

ω(a)|1− az|4+2γ dμ(z) � M∗
r

C
. (8)

From this and by taking the supremum over all I with 0 < |I| � 1− r, we get Mr �
M∗

r /C, as desired. �

Let Rn be the orthogonal projection of Hω onto znHω and Qn = I −Rn, that is,
for f = ∑∞

k=0 akzk in Hω , let

(Rn f )(z) =
∞

∑
k=n

akz
k and (Qn f )(z) =

n−1

∑
k=0

akz
k.

We recall the following lemma, ([3, Proposition 3.15]).

LEMMA 5. Let Hw be a weighted Hardy space. Then for each r ∈ (0,1) and
f ∈ Hw

1. |(Rn f )(z)| � ‖ f‖Hw

( ∞

∑
k=n

r2k

wk

)1/2
for |z| � r

2. |(Rn f )′(z)| � ‖ f‖Hw

( ∞

∑
k=n

k2 r2(k−1)

wk

)1/2
for |z| � r,

where wk = ‖zk‖2
Hω , k ∈ N0 = N∪{0} .

LEMMA 6. Let Hw be a weighted Hardy space and ϕ be a holomorphic self-map
of D . Then

‖Jg,ϕ‖e � liminf
n→∞

‖Jg,ϕRn‖. (9)

Proof. Since Rn +Qn = I and Qn is compact on Hω , we have that for each n∈ N

‖Jg,ϕ‖e = ‖Jg,ϕRn + Jg,ϕQn‖e � ‖Jg,ϕRn‖e � ‖Jg,ϕRn‖,

from which inequality (9) follows. �

Now we are in a position to estimate the essential norm of Jg,ϕ : Hω → Hω , that
is, we are in a position to prove Theorem 3.

Proof of Theorem 3. Upper bound. By Lemma 6, we have

‖Jg,ϕ‖2
e � liminf

n→∞
‖Jg,ϕRn‖2

e = liminf
n→∞

sup
‖ f‖Hω �1

‖(Jg,ϕRn) f‖2
Hω .
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Thus

‖(Jg,ϕRn) f‖2
Hω =

∫
D

|(Rn f )′(ϕ(z))|2|g(z)|2ω(z)dA(z)

=
∫

D

|(Rn f )′(z)|2dμg,ω,ϕ (z)

=
(∫

D\D(0,r)
+

∫
D(0,r)

)
|(Rn f )′(z)|2dμg,ω,ϕ (z)

= I1(n)+ I2(n).

Since μg,ω,ϕ is an ω -Carleson measure for the weighted Hardy space Hω , so by
Lemma 5, we have that

I2(n) � sup
|z|�r

|(Rn f )′(z)|2
∫

D(0,r)
dμg,ω,ϕ(z) � C‖ f‖2

Hω

( ∞

∑
k=n

k2 r2(k−1)

ωk

)
→ 0,

as n → ∞ . Thus for a fixed r we have sup‖ f‖Hω �1 I2(n) → 0, as n → ∞.

On the other hand, if we denote by μg,ω,ϕ r = μg,ω,ϕ |D\D(0,r), then by Theorem 1
(ii) and Lemma 4, we have

I1(n) =
∫

D

|(Rn f )′(z)|2dμg,ω,ϕr
(z)

� C‖μg,ω,ϕ r‖ω

∫
D

|(Rn f )′(z)|2ω(z)dA(z)

� CNM∗
r (μg,ω,ϕ)‖ f‖2

Hω .

Therefore,

lim
n→∞

‖Jg,ϕRn‖2
e � CN lim

r→1
M∗

r (μg,ω,ϕ )

= CN limsup
|a|→1

∫
D

(1−|a|2)2+2γ

ω(a)|1− aϕ(z)|4+2γ |g(z)|2ω(z)dA(z),

which gives the desired upper bound.
Lower bound. Consider the function fa defined as in Lemma 3. Then ‖ fa‖Hω � 1

and fa → 0 uniformly on compact subsets of D as |a| → 1. Fix a compact operator K
on Hω . Then ‖K fa‖Hω → 0 as |a| → 1 (see [3] for the original idea). Therefore,

‖Jg,ϕ +K‖ � limsup
|a|→1

‖(Jg,ϕ +K) fa‖Hω

� limsup
|a|→1

(‖Jg,ϕ fa‖Hω −‖K fa‖Hω

)
= limsup

|a|→1
‖Jg,ϕ fa‖Hω .

Thus

‖Jg,ϕ‖2
e = inf

K
‖Jg,ϕ +K‖2 � limsup

|a|→1

∫
D

(1−|a|2)2+2γ

ω(a)|1− aϕ(z)|4+2γ |g(z)|2ω(z)dA(z). �
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Before we formulate and prove the next corollary, for a Borel measure μ , we
define the following Dirichlet-type space

Dμ(D) =
{

f ∈ H(D) : ‖ f‖2
Dμ :=

∫
D

| f ′(z)|2dμ(z) < ∞
}
.

COROLLARY 2. Let g ∈ H(D) and ϕ be a holomorphic self-map of D . Then the
following statements are equivalent:

(i) Jg,ϕ is compact on Hω .

(ii) The inclusion i : Hω → Dμg,ω,ϕ is compact.

(iii) The pull-back measure μg,ω,ϕ = νg,ω ◦ϕ−1 of νg,ω induced by ϕ is a vanishing
ω -Carleson measure.

(iv) lim
|a|→1

∫
D

(1−|a|2)2+2γ

ω(a)|1− aϕ(z)|4+2γ |g(z)|2ω(z)dA(z) = 0.

Proof. By definition (i) is equivalent to (ii). Theorem 3 implies that (i) is equiva-
lent to (iv). Applying (8) with μ = μg,ω,ϕ we get that (iv) implies (iii).

(iii)⇒(ii) Assume ( fn)n∈N is a bounded sequence in Hω , say by L , such that
fn → 0 on compacta of D as n → ∞ . For an ε > 0 we choose ρ ∈ (0,1) such that

sup
|a|>ρ

μg,ω,ϕ (D(a,r))
ω(a)(1−|a|2)2 < ε.

Let (zn)n∈N be a sequence as in Lemma 2, that is, (zn)n∈N is a sequence with a positive
separation constant such that ∪∞

n=1D(zn,r) = D and that every point in D belongs to
at most M sets in the family {D(zn,2r)}n∈N.

For each ρ ∈ (0,1) we have

∫
D

| f ′n(z)|2dμg,ω,ϕ(z) =
(∫

D(0,ρ)
+

∫
D\D(0,ρ)

)
| f ′n(z)|2dμg,ω,ϕ (z) = J1(n)+ J2(n).

Clearly, for each ρ ∈ (0,1) , we have

lim
n→∞

J1(n) = 0. (10)

Since there are ρ1 ∈ (0,1) and k ∈ N , such that ∪n�kD(zn,r) ⊆ D\D(0,ρ1) , we have

∫
D\D(0,ρ1)

| f ′n(z)|2dμg,ω,ϕ (z) �
∞

∑
n=k

∫
D(zn,r)

| f ′n(z)|2dμg,ω,ϕ (z)

�
∞

∑
n=k

μg,ω,ϕ (D(zn,r)) sup
w∈D(zn,r)

| f ′n(w)|2

� C
∞

∑
n=k

μg,ω,ϕ (D(zn,r))
ω(zn)(1−|zn|2)2

∫
D(zn,3r)

| f ′n(z)|2ω(z)dA(z)
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� Cε
∞

∑
n=k

∫
D(zn,3r)

| f ′n(z)|2ω(z)dA(z)

� CMε
∫

D

| f ′n(z)|2ω(z)dA(z) = CML2ε. (11)

From (11) we have that

limsup
n→∞

∫
D\D(0,ρ1)

| f ′n(z)|2dμg,ω,ϕ(z) � CML2ε. (12)

Since ε > 0 is arbitrary from (10) with ρ = ρ1 and (12) we get limn→∞ ‖ fn‖Dμg,ω,ϕ = 0,
from which the compactness of the inclusion i : Hω → Dμg,ω,ϕ follows. �
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