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Abstract. 1In this paper a local diffeomorphism, which allows to investigate different matrix sub-
manifolds is introduced. With its help the submanifold of complex matrices with fixed structure
of Jordan blocks is described. Then, explicit formulas of some special perturbations of Jordan
structure are given.

Introduction

The submanifold of real symmetric matrices with fixed multiplicities of chosen
eigenvalues for the first time was considered by V.I. Arnold [1]. He found a formula
for codimension of this submanifold. The results of Arnold were generalized for the
case of compact real self-adjoint operators in [2], where a special local diffeomorphism
that takes Arnold’s submanifold to a flat subspace was introduced. One of the authors
(Ya. Dymarskii) developed the aforementioned results in [3], [4]. In the self-adjoint
case, it was found that to track some (not all) of the eigenvalues is more complicated
than to track all them. This is because we cannot use the full orbit of the matrix. In this
paper we will study the subset of complex matrices with fixed structure of Jordan blocks
associated with some (not all) chosen eigenvalues. The main purpose of this paper is to
study the smooth structure of this subset. Similarly to the paper [2], we define a map
(local diffeomorphism) ¥ in the space of matrices. This map locally parameterizes the
submanifold of interest. The map has the following remarkable property: its domain
is naturally decomposed into the direct sum of two subspaces which are invariant un-
der linearization of the diffeomorphism. The first subspace “controls” the part of the
spectrum we are interested in, while the second “controls” the corresponding invariant
subspaces. This property allows to locally parameterize various subspaces of matrices
generated by the given matrix such as its orbit, the bundle of matrices introduced in [5],
and the submanifolds of matrices with fixed structure of Jordan blocks associated with
some chosen eigenvalues. The domain decomposition is also based on the results of
V.1. Arnold: the first subspace is the “versal family” of the matrix [5], the second is
the tangent space of the orbit of the same matrix. The aforementioned invariance of the
subspaces generates yet another remarkable property of the diffeomorphism: it locally
maps the tangent space of the submanifold of interest on the submanifold itself.
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This paper is organized as follows. In the first section we introduce the basic no-
tations and review some necessary facts from the theory of orbits and some families of
matrices. In the second section the diffeomorphism ¥ is introduced and studied. The
third section describes the set of matrices with a single eigenvalue that is associated
with a fixed structure of Jordan blocks. In the fourth section we prove the main theo-
rem about the submanifold of complex matrices with fixed structure of Jordan blocks
associated with the chosen eigenvalue. In the fifth section we generalize last theorem
to the case of several eigenvalues. Finally, in the last section we describe some one-
parameter perturbations of a given matrix.

1. Notations and definitions

By C"*" we denote the space of n-by-n complex matrices with Hermitian inner
product (A,B) := Tr(A-B*), where B* is the adjoint of B. Let J be a Jordan matrix
with spectrum ¢ and A € 6. Then J=J(A)@J(o\ 1), where J(A) is the direct sum
of Jordan blocks with the eigenvalue A and J(o \ A1) is the direct sum of Jordan blocks
with the other eigenvalues. Let m be the algebraic multiplicity of A, s the geometric
multiplicity of A, and let k := {ky,...,ks} be the Segré characteristic at A. We denote
by Ne(J) C C™" an e-neighborhood of J. We will study the set N (/,&,A,k) of
matrices A € Ng(J) such that A has a single eigenvalue A’ that is close to A, and the
corresponding Jordan blocks J(A,A’) have the same structure as the blocks J(4).

Let P, be the Riesz projection operator that is associated with 4, and Py, the
Riesz projection operator that is associated with 6\ 1. Space C" can be represented
in the form C" = C" & C"~™, where summands are invariant subspaces; C" = P, (C")
corresponds to the eigenvalue A, C"™" = Pg;(C") corresponds to the rest of the
spectrum o . This decomposition generates the decomposition of the matrix space: an
arbitrary matrix B € C"*" has the block representation

B11 B12
B= [L1 P12 1
{Bz,l 32,2} M)

where Byg € M ;= C"™"™ By, € (me(n—m) , By1 € (C(n—m)xm’ By» € (C(n—m)x(n—m)_
The structure of the Jordan blocks J(A) generates the block representation

Bi1 Bya ... By
By Boy ... By

Bia=|. . . . )
le Bs2 Bss

It is well known [5] that the Lie group GL(m, C) of all nonsingular m x m matrices
acts on the linear manifold M by the formula

Adg: M — M, Adg(J) :=GJG™" (G € GL(m,C)).

By 0(A) we denote the orbit of an arbitrary fixed matrix A € M under the action of
GL(m,C). An orbit is a smooth submanifold that consists of all matrices similar to A.
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In [5] V.I. Arnold introduced the special family of matrices (Arnold’s family in
the following) that differs from the original Jordan form in that some entries instead of
being zero are holomorphic functions of parameters that vanish when the value of the
parameters is zero. More specifically, a matrix from the Arnold’s family is A = J(4) +
By,1, where By has the form described in Figure 1: each oblique segment denotes
a sequence of identical numbers, and the blank entries denote zero. Also in [5], it’s
proved that all matrices J(A)+ By,; (sufficiently close to J(A)) can be simultaneously
reduced by the transformation

J(A)+By1 — C(Bra) '(J(A) + B11)C(B1,1) = J(A) + Bua, 3)

where C(By,1) is holomorphic at zero, C(0) =1, and By,; belongs to a submanifold,
transversal to the centralizer and of complementary dimension (equal to the dimension
of the orbit).
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Figure 1: Matrix from Mz Figure 2: Matrix from Figure 3: Solution of

tangent space AX=XB

The set of all matrices in Fig. 1 forms a linear subspace Mz C M of dimension
dim(My) = ki +3ky + ... + (25 — 1 )k;. @)

This subspace is orthogonal and transversal to the tangent space Tj(;)0'(J(1)) to the
orbit of J(A) at J(1). By

Fam .= {J(A) +B1,1 ‘ By € ME}

we denote the Arnold’s family.

As has been shown in [5], the tangent vectors to the orbit of J(4) at J(A) are the
matrices that can be represented in the form [C,J(A)] :=C-J(A)—J(A)-C. We claim
that any matrix S € Tj(3)0(J(4)) has the form described in Figure 2: the sum of all
entries in each line is equal to zero, all other entries (*) are arbitrary. First, from the
form of matrices S (see Figure 2), it is obvious that

codim(7y1)0(J(4))) = dim(M). (5)

Second, matrices of aforementioned form are orthogonal to matrices from the sub-
space Mz. We finally note that Mg is orthogonal and transversal to the tangent space
Ty)0(J(A)) to orbitof J(A) at J(A).
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Thus, M is a direct sum of the orthogonal subspaces: M = My @ Tj(;,)0(J(A));
an arbitrary matrix By 1 € M has the unique representation

Bi1 =F(B1,1) +S(B1,1), (6)

where
F:M—M; S:M— TJ(}L)ﬁ(J(A))

are the orthogonal projections.

2. Local diffeomorphism
Decompositions (1) and (6) define the linear maps
}’;v\ §: orxn _y onxn

pogy— [FBr) 0| oo [S(Bry) Bia
F(B) [ 0 Bal|’ S(B) := By, 0|
Consider now the map on a small neighborhood of zero N(0):
Y: N(0) CcC™" — C™
~1

P(B) = <1+ (§(B))T) (J+ﬁ(B)) (1+ (§(B))T) . 7)

THEOREM 1. The following statements hold.
1. P(0)=J.
2. Matrices J+ F(B) and Y(B) are similar.
3. The map ¥ is holomorphic at zero.

4. The map Y is a diffeomorphism of a sufficiently small neighborhood N(0) onto
some neighborhood Ng(J).

Proof. The first and the second statements follow from formula (7).

From formula (7) and linearity of the maps S and F it follows that ¥ is an analytic
map.

To prove the fourth statement, we find the derivative DW(0) and prove that it is
a linear isomorphism. Expanding (I+ (S(B))7)! in Taylor series and separating the
linear part, we obtain
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where o(B) is second-order infinitesimal. Therefore,
DY(0)B=F(B)+[(S(B).J] = ®)

_ [FB11) + [(S(B1,1)",J(X)] Byy-J(\ L) —J(A)- B,
~ [ J(6\A)-Bi,—Bi,-J(A) Ba» '

Let us show that the map DW(0) is a bijection. To this end it is necessary and sufficient
that the equation
DY¥Y(0)B=0 9)

has the unique trivial solution B = 0. Equation (9) is equivalent to the system of matrix
equations:
F(B11) + [(S(B1,1))" I (X)) =0 e M,
B> =0 € (C<n7m)><(nﬂn)7
By, -J(c\A)—J(A)-BL =0 eCm<(r=m),
J(6\A)-B,—Bl,-J(A)=0 eClmxm

(10)

Note that the equations are independent and each of them contains one of the
blocks of decomposition (1) as an unknown. The last two equations are Sylvester equa-
tions. Since A is not an eigenvalue of matrix J(o \ 1), then these equations have only
trivial solutions [7]. It remains to show that the first equation has the unique trivial
solution. Since

F(By,1) € Mg,
[(S(B1x))" I (A)] € Ty O(J (X)),
My LTy 0(J(1))

the first equation of system (10) is equivalent to the system

{F(Bl,l):OEME, (11
[(S(B1,1)" I (A)] =0 € Ty) O(J(R)).

From the first equation of system (11) and equality (6) we obtain that By; = S(By,1).
From Lemma in [5, §4], we have that [(S(By1))”,J(A)] = 0 if and only if S(By,)
is perpendicular to the orbit of J(1). But, since S(B1,1) € Ty(z)0(J(1)), it must be
S(B11) =0. So the first equation of system (10) has only the trivial solution By1 =0.
O

Note, that the map W has the properties of exponential mapping at identity element
of a group, i.e. takes tangent space to the submanifolds on submanifolds. Therefore,
the following lemma is true.

LEMMA 1. Themap ‘¥ locally takes the tangent space Ty O (J (L)) on O(J(A)).

Note that the restriction of the mapping (7) on M is a particular case of Arnold’s
transformation (3), and the definition of the matrix S(Bj) is analogously to [2]. We
will see the advantages of definition (7) in Theorems 2-4.



416 ALEXANDER BONDAR AND YAKOV DYMARSKII

3. Case of a single eigenvalue

In this section n=m. By V" (Jor,k) C M we denote the subset of m-dimensional
Jordan matrices J(A') with the same structure as the block J(A). Obviously, the subset
V™ (Jor,k) is the one-dimensional affine subspace of matrices J(A') = J(1)+ (A —A)I
(A" € C). Consider the set V" (k) C M of all matrices, which have Jordan form from
the space V™ (Jor,k), i.e. V™ (k) is a “bundle of matrices with the Jordan form J(1)”
in the terminology of [5]. By N™(k,&) = V" (k) \Ne(J(A)) we denote a neighborhood
of J(A) in the bundle V" (k). In Arnold’s lemma [5, §5] proved that

codim(N" (k,&)) = codim(V" (k)) = (ki +3ky+5kz+ ...+ (2s — 1)k;) — 1. (12)

Since m = n, then N (J,€,A,k) = N"(k,e), J=J(A), B= By, and

-1

¥(B) = <I+ (S(B))T> (J(?L) +F(B)) (1+ (S(B))T> . (13)
We will need the linear subspace
" :={(A'=A)I+S(B) | ' € C, S(B) € Ty, 0(J(A))} C M.
Using (4) and (5), we get

codim(7"™) = codim(Tj ;) O(J(A))) — 1 = (ki + 3ky + 5ks + ...+ (2s — 1)ky) — 1.
(14)
We give below a new local parametrization of the bundle V" (k).

THEOREM 2. The next statements hold.

1. The subset N™(k,€) is equal to
N™(k,e) = ¥(T™" NN(0)).

2. The tangent space Ty \N™ (k,€) is equal to
Ty)N" (k) =
3. The map ¥ locally takes the tangent space Ty \N™ (k,€) on N™(k,€).

Proof. First, map (13) takes a small matrix B € T" N N(0) to the matrix

-1

¥(B) = (1+ (S(B))T) (J(?L) + (A - A)I) (1+ (S(B))T> _
= (14 (s8)") (52 (1+ (s®)")

Now, by statement 2 of Theorem 1, ¥(7" N N(0)) C N"(k,€). To conclude the proof
of the first statement, it remains to note that ‘{_’ ia a local diffeomorphism (statement 4
of Theorem 1) and codim(7") = codim(N" (k,€)) (see (12), (14)).
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The derivative of W (see (8)) takes the matrix B from the tangent space To(T™) =
T™ to the matrix
D¥(0)B= (A" —A)I+ [S(B)",J(A)], (15)

where [S(B)",J(A)] € Tya)€(J(A)). Since ¥ is local diffeomorphism, it follows that
the tangent space is
Ty N"™ (k) := DW(0)(T™) = ", (16)

Combining Theorem 1 and statements 1, 2, we obtain statement 3. O
4. Submanifold N (J,¢,1,k)
In this section n > m. We will need the linear subspace
T:={B|BycT"} CcC"".
Now we state and prove the main result of the paper.
THEOREM 3. The following statements hold.
1. The subset N (J,SJL,%) C C™" js equal to

N (J,&,A,k) =¥(T NN(0)).

2. The subset N (J,S,?L,E) C C"™" is an analytic submanifold with complex codi-
mension in C"™":

codimN (J,&,4,k) = (ki +3ky +5k3+...+ (25— 1)k;) — 1.

3. The tangent space TN (J,S,?L,E) is equal to

T)N (J,€,A,k) =T.
4. The map Y locally takes the tangent space TyN (J,S,?L,E) on N (J,S,?L,E).
Proof. By definition (7), the map ¥ takes the small matrix B to the matrix
P¥(B) = (1+ (§(B))T) <J+ﬁ(3)) (1+ (§(B))T) .

_ <I+ [S(%:)T B(zj,1]> . [J(l) +57(Bl,1) J(G\AO) +Bm] .

_ 17
I+ S(B11)" By, : a7
Bi, 0 '
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Now, the matrix J + F (B) has block diagonal form and the spectra of diagonal blocks
J(A)+F(By1,) and J(o \ 1) + B, do not intersect. If we combine this with statement
2 of Theorem 1 and statement 1 of Theorem 2, we get

¥(B) €N (J,&,A,k) < F(Biy)+S(B1y) € T"NN(0).
By definition of T,

F(B11)+S(B11) € T"NN(0) & Be TNN(0). (18)

Now, the second statement follows from (18) and formula (14).
Using (8), we get that the tangent space is

T)N (J,€,A,k) =D¥(0)(T) =

(A =)+ [(S(By,)" . J(A))[BLy - (0 \A) —J(A) B,
H J(6\A)-Bi,—Bi,-J(1) | 2 B1a 21},B€T}.

Now, if we recall equalities (15) and (16) for (A’ — A)I + [(S(B141))T,J(1)], we get
TyN (J,&,A,k) ={B|Biy€T"} =T.

Combining statements 1 and 3, we obtain the last statement of the Theorem. O

Let us now consider the special cases of Theorem 3. If the eigenvalue A has a
single m-dimensional Jordan block (i.e. k = {m}), then the subset N (J,&,4,{m}) C
M 1is an analytic submanifold of complex codimension m — 1 [8]. If the eigenvalue
A has m one-dimensional Jordan’s blocks (i.e. k = {1,1,...,1}), then the subset
N (J,&,A,{1,1,...1}) C M is an analytic submanifold of complex codimension m? — 1.
The tangent space TN (J,€,4,{1,1,...1}) consists of the matrices [B;; ]1-27,»:1 such that
By, is an m-dimensional scalar matrix (diagonal matrix with all its main diagonal en-
tries equal) and the rest of the blocks are arbitrary.

5. Case of several eigenvalues

By A = {Ai,...,A,} C 0 we denote the subset of fixed eigenvalues. Then
J=JA)@J(o\A) =JAh)@...eJ(A,) &@J(c \A), where J(A;) (i=1,...,p) is
a direct sum of Jordan blocks with the eigenvalue A; and J(o \ A) is a direct sum
of Jordan blocks with other eigenvalues. Let m; be the algebraic multiplicity of A;,
s; the geometric multiplicity of ;, and let k(i) := (ki (i),ka(i),. ..k (i)) be the Segré
characteristic at A;. By K = (k(1),k(2),...,k(p)) we denote the ordered list of these
vectors. We will study the set N(J,&,A,K) C C"™" of matrices A € N¢(J) such that A
has a unique eigenvalue 7Li’ , which is close to A;, and the corresponding Jordan block
J(A,A]) has the same structure as the block J(4;), fori=1,...,p.

We use notations similar to the notations from Sections 1 and 3. Invariant spaces
corresponding to the selected eigenvalues and the complement subspace generate the
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block representation of an arbitrary matrix:

419

B - -
B> B
B= Bpp , (19)
E Bp+l,p+1
where
Bi11|Bi12]|---| Bils;
Bio1|Bin|---| Bias;
Bii = : : ) ;
Bi,s,—l Bi,s,—Z e Bi,s,—,s,—
[[0[B12 - Bip |] 0
0 |B2s By 0 0
B RO B[
B= 0 |Bpp+| |’ B= 0
0 0 Bpi .- Bpiip|0
Analogously to the maps F(B) and S(B), we define
[[F(BL1) |
F (Bz,z) 0
Fy(B) = F(Bp,p)
0 Bp+1,p+1
[[S(B1,1) ]
S(Bz,z) B
Sp(B) := S(Bp,p)
B 0

Analogously to (7), define the map

P (B) = (I+ (Sp(B)")(J + Fp(B)) (I + (Sp(B))) "
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It is easily verified that statements of Lemma 1 hold for the map ¥p.
We will use the subspace

TP - = {B ‘ Bi,i € Tmi, = 1,...,p} - (Cn><n,

where
" = {()Li/ — A+ Sii | Al ec, Sii € TJ(;Ll.)ﬁ(J(JL,-))}

THEOREM 4. The following statements hold.

1. The subset N(J,&,A,K) is defined as follows

N(J,&,A,K) =¥, (TP NN(0)).

2. The subset N(J,e,A,K) C C"*" is an analytic submanifold of complex codimen-
sion
codimN(J,&,A,K) =

— _g (k1 (i) + 3ka (i) + Ska(i) + ...+ (25— ks (i) — p,

3. The tangent space TyN(J,&,A,K) is equal to

T)N(J,&,A.K) =T?.

4. The map ¥y locally takes the tangent space TyN(J,€,A,K) on N(J,&,AK).

The proof of Theorem 4 is completely analogous to the proof of Theorem 3.

The special case is A = ¢. In this case, the map ¥}, locally takes the tangent
space TyOrb on Orb(J). This case is similar to the case of a single eigenvalue (see
statement 4 of Theorem 2).

REMARK 1. In [5, §4] Arnold claims that there exists other form of versal fami-
lies J(A)+ By,1 in which the number of non-zero entries in By,; is minimal (and equal
to the number of parameters). To do this it is sufficient to take for the family of matrices
By,1 matrices for which on each oblique segment in Figure 1 one entry is an indepen-
dent parameter, and all the other entries are zero. The non-zero element can be chosen
on each oblique segment at an arbitrary place. Each of these families generates a dif-
feomorphism likewise V. Note that Lemma 1 and statement 4 of Theorems 2, 3 and 4
are valid exactly because of the special family J(A) + M.

6. Perturbation theory

One-parameter perturbations (families), which keep (or change) the Jordan struc-
ture of the initial matrix are often used in applications. Using the local diffeomorphism
¥, we can write down some of these perturbations.

Let E,, be the block matrix of the form (1), where blocks By 2,B,,1,B22 equal to
zero and block By is the m X m identity matrix. Denote by T the linear space of
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block matrices of the form (1), where By,;1 € Tj(;)0(J(A)) and the other blocks are
arbitrary. An arbitrary matrix B € T has unique representation in the form

B=y-E,+B, whereycC, BT (20)

Let $>"~1 C C™ be the sphere (of real dimension 2m — 1) of normalized right eigen-
vectors of J corresponding to the eigenvalue 4. Let u € $*"~! and N(u) C $"~! be
a small neighborhood of u.

Now we describe the one-parameter families of matrices (under small parameter
t € C), which keep the Jordan structure.

THEOREM 5. Suppose

() € C, 7(0) =0,
B'(t)eT' c C™" B'(0)=0

are arbitrary small analytic functions. The following assertions hold.

1. The matrix function

Ar)="P(y(t) En+B'(1)), A(0)=J

is analytic and A(t) has eigenvalue A(t) = A + y(t) with the same Jordan struc-
ture as J(A).

2. Conversely, if an analytic function A(t) € C"" (A(0) =J) preserves the Jordan
structure of the eigenvalue A, then there exists a unique pair of analytic functions
y(t) and B(t) for which A(t) =¥ (y(t) - En+ B'(1)).

3. If w(t) € N(u) € S ', w(0) = u is a continuous function then u(t) = <I—|—

(§ (B’ (t))) T)w(t) is the family of corresponding normalized right eigenvectors

of A(t).

Proof. Let us prove the first statement. We first note that y(¢) - E, + B'(1) € T . If
we combine this with the first statement of Theorem 3, we get that A(¢) is an analytic
function and A(t) € N (J,€,4,k). Substituting y(r) -1 for F(By,;) in (17), we get that
A(r) has eigenvalue A () = A + y(z) with the same Jordan structure as J(1).

Let’s prove the second statement. Since WV is local diffeomorphism, the superpo-
sition of mappings

f() =" (A(1))

is an analytic function. Since A(¢) € N (J,€,4,k) , it follows that f(t) € T . Using (20),
we get f(r) = y(t)- Em+ B'(t). The functions y(¢) and B'(r) are analytic because
representation (20) is unique.
The third statement follows from first statement and definition (7) of the map ¥. O
Now we study some special cases of perturbation of the Jordan structure. First,
consider the case when the Jordan structure fall into direct sum of one-dimensional



422 ALEXANDER BONDAR AND YAKOV DYMARSKII

Jordan blocks. Let D,,(r) € C™" be a matrix function of the form (1), where blocks
B12(t),B2,1(t),B22(t) are equal to zero and

)/1([) .. 0
BI,I(Z)Z e
0 ... Ym(r)
THEOREM 6.

Suppose
%(t) €C, %(0)=0 (i=1,...,m),
Yi(t) # vj(t) for i+ j andt #0,
B'(t)eT' cC™ B'(0)=0

are arbitrary small analytic functions. Then the matrix function

A(t) =¥ (Du(t) +B'(1))

is analytic and A(t) has m different simple eigenvalues A; = A +y(t) (i=1,...,m)
that are close to A.

Proof. The proof is analogous to the proof of the first statement of Theorem 5.
The only difference among them is the structure of Jordan blocks: substituting D,,(7)
by F(By,1) in (17), we get that matrix J(4)+D,,(¢) has m different simple eigenvalues
Ai=A+v%@),i=1,...m. O

Consider now the case when the Jordan structure transfigures into single Jordan
block. Let Uy, () € C"" be the matrix function of the form (1), where blocks By x(f),
By1(t), Baa(r) are equal to zero and and block Byj(r) := Uy1(r) has the form de-
scribed in Figure 4: entries on positions &y, k; + 1; ky +kp, k1 +ka+ 1;...; Zf;ll ki,
S5l ki+1 are correspondingly equal to 7i(¢),7%(¢),...,%s—1(f) and all other entries
equal to zero.

k k, ek,
k, 0 0 0 | o
}/](t)
k| 0 0 0 | o
72(1)

0 0 0

7.\4([

k| o 0 0 |0

Figure 4: Matrix Uy (1)
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THEOREM 7. Suppose

Y1) eC, %(0)=0(i=0,...s—1),
B'(t)eT cC”", B'(0)=0

are arbitrary small analytic functions. Then the matrix function
A@) =¥ (0(t) - En+Un(t)+B'(1))

is analytic and A(t) has unique eigenvalue A" := A + y(t) (that is close to L) with a
single m-dimensional Jordan block.

Proof. The matrix A(r) is similar to the matrix J+ ¥ (¢) - Ey + Up(2). By def-
inition of Uy1(r) (see Figure 4), the matrix J(A)+ y(¢r) - 1+ Uy (r) has eigenvalue
A+ (t) of algebraic multiplicity m. Since

rank((](?t) +10(0) T+ Upa(0)) — (A+70(0) -1) —m—1,

it follows that geometric multiplicity of A + y(¢) is equal to one [7]. So, matrix
J+1(t) - Ey + Un(t) has unique eigenvalue A’ := A + (1) ~ A with a single m-
dimensional Jordan block. O

Theorems 5-7 can be restated for the cases when we track some or all of the eigen-
values.

Acknowledgement. The authors thank V. V. Sergeichuk for valuable comments and
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