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SIMILARITY RESULTS FOR OPERATORS

OF CLASS C0 AND THE ALGEBRA H∞(T )

RAPHAËL CLOUÂTRE

(Communicated by L. Rodman)

Abstract. Given two multiplicity-free operators T1 and T2 of class C0 having the same finite
Blaschke product as minimal function, the operator algebras H∞(T1) and H∞(T2) are isomor-
phic and T1 is similar to T2 . We find conditions under which the norm of the similarity between
the operators can be controlled by the norm of the algebra isomorphism. As an application, we
improve upon earlier work and obtain results regarding similarity when the minimal function is
an infinite product of finite Blaschke products satisfying the generalized Carleson condition.

1. Introduction

One of the main features of C0 contractions is their classification up to quasisim-
ilarity in terms of the Jordan models. It is a natural impulse to wonder whether some-
thing could be said about similarity classes, and this is our aim here. In fact, our con-
cern in this paper is that of determining conditions under which we can improve the
quasisimilarity of an operator T of class C0 with its Jordan model to similarity. Early
results include those of [1], which inspired the work done in [5]. The corresponding
question for unitary equivalence was investigated by Arveson in his seminal paper [2].
More recently, there has been some interest in this type of question in the setting of
truncated Toeplitz operators ([4], [7]).

For the class C0 , the problem was considered in [5] where motivation was pro-
vided and some partial results were obtained. The point of view we would like to adopt
here is different from that of [5] in the sense that the basic assumption will be that the
algebras H∞(T ) and H∞(S(θ )) are boundedly isomorphic, instead of ϕ(T ) having
closed range for every inner divisor ϕ of θ (here θ denotes the minimal function of
T ). Theorem 5.2 below relates those two settings.

QUESTION. Let T1 ∈ B(H 1),T2 ∈ B(H 2) be multiplicity-free operators of class
C0 with the property that the algebras H∞(T1) and H∞(T2) are boundedly isomorphic.
Does it follow that T1 and T2 are similar?

We obtain a quantitative answer to this question in the case where the minimal
function is a finite Blaschke product. Let us briefly describe our main result. Let
T ∈ B(H ) be a multiplicity-free operator of class C0 with minimal function

θ = bλ1
. . .bλN

.

Mathematics subject classification (2010): 47A45, 30E05.
Keywords and phrases: Operators of class C0 , similarity.

c© � � , Zagreb
Paper OaM-08-22

425

http://dx.doi.org/10.7153/oam-08-22


426 RAPHAËL CLOUÂTRE

Assume that there exists a bounded algebra isomorphism

Ψ : H∞(T ) → H∞(S(θ ))

such that Ψ(u(T )) = u(S(θ )) for every u∈H∞ and such that ‖Ψ‖ is close to 1 (this is
made precise in the actual statement, see Corollary 3.6). Then, there exists an invertible
operator

X : H → H(θ )

such that XT = S(θ )X and

max{‖X‖,‖X−1‖} � C(Ψ,N)

where C(Ψ,N) > 0 is a constant depending only on Ψ and N . This norm control on
the similarity X was previously unknown, and it is our main contribution.

The plan of the paper is as follows. Section 2 deals with preliminaries. Section 3
contains the precise statement of the main result. It also deals with the case where the
underlying Hilbert space has dimension two. This case turns out to be particularly nice
since some assumptions can be dropped. In Section 4 we recall a concept from inter-
polation theory and explain how it applies to our purposes. Finally, we apply our main
theorem in Section 5 to obtain a similarity result for operators of class C0 , extending
work done in [5].

2. Preliminaries

We give here some background concerning operators of class C0 . Let H∞ be the
algebra of bounded holomorphic functions on the open unit disc D . Let H be a Hilbert
space and T a bounded linear operator on H , which we indicate by T ∈ B(H ) .
If T ∈ B(H ) is a completely non-unitary contraction, then its associated Sz.-Nagy–
Foias H∞ functional calculus is an algebra homomorphism Φ : H∞ → B(H ) with the
following properties:

(i) ‖Φ(u)‖ � u for every u ∈ H∞

(ii) Φ(p) = p(T ) for every polynomial p

(iii) Φ is continuous when H∞ and B(H ) are equipped with their respective weak-
star topologies.

We use the notation Φ(u) = u(T ) for u ∈ H∞ . The contraction T belongs to the
class C0 whenever Φ has a non-trivial kernel. It is known in that case that kerΦ =
θH∞ for some inner function θ called the minimal function of T , which is uniquely
determined up to a scalar factor of absolute value one. We now give the first elementary
result we will use. Recall that a function u ∈ H∞ divides another function v ∈ H∞ if
v = u f for some f ∈ H∞ . Moreover, given E ⊂ H , we denote by

∨
E the smallest

closed subspace containing E .



SIMILARITY RESULTS FOR OPERATORS OF CLASS C0 427

LEMMA 2.1. ([3] Theorem 2.4.6) Let T ∈B(H ) be an operator of class C0 with
minimal function θ . Given a family {θn}n of inner divisors of θ whose least common
inner multiple is θ , we have

H =
∨
n

kerθn(T ).

We denote by H2 the Hilbert space of functions

f (z) =
∞

∑
n=0

anz
n

holomorphic on the open unit disc, equipped with the norm

‖ f‖2
H2 =

∞

∑
n=0

|an|2.

For any inner function θ ∈H∞ , the space H(θ ) = H2�θH2 is closed and invariant for
S∗ , the adjoint of the shift operator S on H2 . The operator S(θ ) defined by S(θ )∗ =
S∗|(H2 � θH2) is called a Jordan block; it is of class C0 with minimal function θ .
Given u ∈ H∞ , we have that

‖u(S(θ ))‖ = ‖u‖H∞/θH∞ = inf{‖u+ θ f‖H∞ : f ∈ H∞}.

The following is another useful property of Jordan blocks.

LEMMA 2.2. ([3] Proposition 3.1.10) Let ϕ be an inner divisor of the inner func-
tion θ . Then, the operator S(θ )|kerϕ(S(θ )) is unitarily equivalent to S(ϕ) .

A vector x ∈ H is said to be cyclic for T ∈ B(H ) if

∨
{Tnx : n � 0} = H .

An operator having a cyclic vector is said to be multiplicity-free.

THEOREM 2.3. ([3] Theorem 2.3.6) Let T ∈ B(H ) be a multiplicity-free oper-
ator of class C0 . Then, the set of cyclic vectors for T is a dense Gδ in H .

A bounded linear operator X : H → H ′ is called a quasiaffinity if it is injective
and has dense range. The following result is the classification theorem mentioned in the
introduction. Its conclusion is summarized by saying that T is quasisimilar to S(θ ) .
Note that it is not stated here in its full generality, however this simpler version will
suffice since we will only deal with multiplicity-free operators.

THEOREM 2.4. ([3] Theorem 3.2.3) Let T ∈ B(H ) be a multiplicity-free oper-
ator of class C0 with minimal function θ . Then, there exist quasiaffinities X : H →
H(θ ) and Y : H(θ ) → H with the property that XT = S(θ )X and TY = YS(θ ).
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More details about all of the above background material can be found in [3]. Let
us close this section by setting some notation that will be used throughout the paper.
For λ ∈ D we set

bλ (z) =
z−λ
1−λz

and we denote by

κλ (z) =
1

1−λz

the reproducing kernel for H2 at λ ∈ D . Also set

eλ = κλ /‖κλ‖2
H2 .

If θ is a Blaschke product vanishing at λ , then it is easily verified that

eλ = PH(bλ )1 ∈ H(θ ).

3. Isomorphisms of the algebra H∞(T )

Let us start by recording a few elementary computational facts.

LEMMA 3.1. Let θ = bλ1
. . .bλN

and set ψ j = θ/bλ j
for each 1 � j � N . Then,

for every 1 � j,k � N we have

(i)

〈bλ j
,bλk

〉H2 = 1+ λ j
λk −λ j

1−λ jλk
+ λk

λ j −λk

1−λ jλk

(ii)
‖bλ j

−bλk
‖H2 � 2|bλ j

(λk)|1/2

(iii)
‖ψ jeλ j

−ψkeλk
‖H2 � 4|bλ j

(λk)|1/2

(iv)

‖κλ j
−κλk

‖H2 � |bλ j
(λk)|1/2

(
1

1−|λ j|2 +
1

1−|λk|2
)1/2

.

Proof. We note first that bλ j
(z) = (z−λ j)κλ j

(z) so that bλ j
= (S−λ j)κλ j

. Using

the fact that S∗κλ = λ κλ , we compute

〈bλ j
,bλk

〉H2 = 〈(S−λ j)κλ j
,(S−λk)κλk

〉H2

= (1+ λkλ j −|λ j|2−|λk|2)〈κλ j
,κλk

〉H2

=
1+ λkλ j −|λ j|2−|λk|2

1−λ jλk

= 1+ λ j
λk −λ j

1−λ jλk
+ λk

λ j −λk

1−λ jλk
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which gives (i). In particular, we find

|1−〈bλ j
,bλk

〉H2 | � 2|bλ j
(λk)|.

But then

‖bλ j
−bλk

‖2
H2 = ‖bλ j

‖2
H2 +‖bλk

‖2
H2 −〈bλ j

,bλk
〉H2 −〈bλk

,bλ j
〉H2

� 2|1−〈bλ j
,bλk

〉H2 |
� 4|bλ j

(λk)|
which is (ii). For (iii), we note that

eλ j
= 1+ λ jbλ j

and thus

ψ jeλ j
−ψkeλk

= (ψ j −ψk)+ λ jψ jbλ j
−λkψkbλk

= (ψ j −ψk)+ (λ j −λk)θ .

We find

‖ψ jeλ j
−ψkeλk

‖H2 � ‖ψ j −ψk‖H2 + |λ j −λk|
= ‖bλk

−bλ j
‖H2 + |λ j −λk|.

Note now that |bλ j
(λk)| � |λ j −λk|/2, so that by using (ii) we may write

‖ψ jeλ j
−ψkeλk

‖H2 � 2|bλ j
(λk)|1/2 +2|bλ j

(λk)| � 4|bλ j
(λk)|1/2

and (iii) is established. Finally, we have

‖κλ j
−κλk

‖2
H2 = ‖κλ j

‖2
H2 +‖κλk

‖2
H2 −〈κλ j

,κλk
〉H2 −〈κλk

,κλ j
〉H2

=
1

1−|λ j|2 +
1

1−|λk|2 − 1

1−λ jλk
− 1

1−λkλ j

=
λ j(λ j −λk)

(1−|λ j|2)(1−λ jλk)
+

λk(λk −λ j)

(1−|λk|2)(1−λkλ j)

� |bλ j
(λk)|

(
1

1−|λ j|2 +
1

1−|λk|2
)

whence (iv) follows. �
Using these computations we can now establish an estimate that will be of use

later.

LEMMA 3.2. Let θ = bλ1
. . .bλN

and set ψ j = θ/bλ j
for each 1 � j � N . Then,

for every 1 � j,k � N we have

‖ψ j −ψk‖H∞/θH∞ �
5
√

2|bλ j
(λk)|1/2

(1−max{|λ j|, |λk|}2)1/2
.
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Proof. If λ j = λk , then the conclusion holds trivially, so we assume henceforth
that λ j �= λk . We see that

‖ψ j −ψk‖H∞/θH∞ = inf{‖ψ j −ψk + θ f‖H∞ : f ∈ H∞}

= inf

{∥∥∥∥∥ θ
bλ j

bλk

(bλk
−bλ j

+bλ j
bλk

f )

∥∥∥∥∥
H∞

: f ∈ H∞

}

= inf{‖bλk
−bλ j

+bλ j
bλk

f‖H∞ : f ∈ H∞}
= ‖bλk

−bλ j
‖H∞/bλ j

bλk
H∞ .

Set ϕ = bλ j
bλk

. By Lemma 2.1, we have that

H(ϕ) = kerbλ j
(S(ϕ))∨kerbλk

(S(ϕ)).

The subspace kerbλi
(S(ϕ)) is one-dimensional for i ∈ { j,k} , and in fact it is spanned

by ϕeλi
/bλi

. Therefore, any h ∈ H(ϕ) can be written as

h = a jϕeλ j
/bλ j

+akϕeλk
/bλk

for some a j,ak ∈ C . In particular, we see that

h(λ j) = a jbλk
(λ j)

and
h(λk) = akbλ j

(λk).

We get

‖(bλk
−bλ j

)(S(ϕ))h‖ = ‖bλk
(λ j)a jϕeλ j

/bλ j
−bλ j

(λk)akϕeλk
/bλk

‖H2

= ‖h(λ j)ϕeλ j
/bλ j

−h(λk)ϕeλk
/bλk

‖H2

� |h(λ j)|‖ϕeλ j
/bλ j

−ϕeλk
/bλk

‖H2+|h(λ j)−h(λk)|‖ϕeλk
/bλk

‖H2

� ‖h‖H2(1−|λ j|2)−1/2‖ϕeλ j
/bλ j

−ϕeλk
/bλk

‖H2

+(1−|λk|2)1/2|h(λ j)−h(λk)|
� ‖h‖H2(1−|λ j|2)−1/2‖ϕeλ j

/bλ j
−ϕeλk

/bλk
‖H2

+(1−|λk|2)1/2‖h‖H2‖κλ j
−κλk

‖H2 .

By virtue of Lemma 3.1, we find

‖(bλk
−bλ j

)(S(ϕ))h‖ � 5|bλ j
(λk)|1/2‖h‖

(
1

1−|λ j|2 +
1

1−|λk|2
)1/2

�
5
√

2|bλ j
(λk)|1/2

(1−max{|λ j|, |λk|}2)1/2
‖h‖.
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Since h ∈ H(θ ) was arbitrary, we find

‖bλk
−bλ j

‖H∞/ϕH∞ = ‖(bλk
−bλ j

)(S(ϕ))‖ �
5
√

2|bλ j
(λk)|1/2

(1−max{|λ j|, |λk|}2)1/2

and in view of the equality

‖ψ j −ψk‖H∞/θH∞ = ‖bλk
−bλ j

‖H∞/ϕH∞

the proof is complete. �
For the next step, we introduce some notation. Given θ = bλ1

· · ·bλN
, we set

α0 = 1 and
αk = bλ1

. . .bλk

for 1 � k � N . These functions allow us to pick a basis for the underlying Hilbert space
that is well-adapted to our purpose, as is made clear in the following proposition. First
we need an easy lemma.

LEMMA 3.3. Let T ∈ B(H ) be a multiplicity-free operator of class C0 with min-
imal function θ = bλ1

. . .bλN
. Let ξ ∈ H be a unit vector which is also cyclic for T .

Then, the set {αk(T )ξ : 0 � k � N−1} is a basis for H .

Proof. It follows from Theorem 2.4 that H has dimension N , and thus it suffices
to show that the set {αk(T )ξ : 0 � k � N−1} is linearly independent. Assume therefore
that there are some c0, . . . ,cN−1 ∈ C such that

N−1

∑
k=0

ckαk(T )ξ = 0.

Because ξ is assumed to be cyclic for T , any vector h ∈ H can be written as h =
p(T )ξ for some polynomial p . Therefore, the relation above implies that

N−1

∑
k=0

ckαk(T ) = 0

and thus θ divides ∑N−1
k=0 ckαk . In particular, ∑N−1

k=0 ckαk must vanish at λ1 and we find

c0 =
N−1

∑
k=0

ckαk(λ1) = 0

whence θ divides c1α1 + . . .+ cN−1αN−1 . This implies that θ/bλ1
divides

c1 +
N−1

∑
k=2

ckαk/bλ1

so this last function vanishes at λ2 , which yields c1 = 0. Proceeding inductively, we
find c0 = c1 = . . . = cN−1 = 0. �

We now establish a crucial estimate on the angle between the different elements
of the basis appearing in the above lemma.
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PROPOSITION 3.4. Let T ∈ B(H ) be a multiplicity-free operator of class C0

with minimal function θ = bλ1
. . .bλN

. Define

η = sup
1� j,k�N

|bλ j
(λk)|1/2

(1−max{|λ j|, |λk|}2)1/2
.

Assume that ‖ψN(T )‖ > β + 5
√

2η for some 0 < β < 1 . Then, there exists a unit
vector ξ ∈ H which is cyclic for T with the property that

‖ϕ(T )ξ‖ � β

for every inner divisor ϕ of θ and

|〈α j(T )ξ ,αk(T )ξ 〉| �
√

1−β 2‖α j(T )ξ‖‖αk(T )ξ‖
for 0 � j < k � N−1 .

Proof. Since ‖ψN(T )‖ > β + 5
√

2η , we may invoke Theorem 2.3 to find a unit
vector ξ ∈ H which is cyclic for T and such that ‖ψN(T )ξ‖ > β + 5

√
2η . Using

Lemma 3.2, for every 1 � j � N−1 we find that

‖ψ j(T )ξ‖ � ‖ψN(T )ξ‖−‖(ψ j−ψN)(T )ξ‖
� β +5

√
2η −‖ψ j −ψN‖H∞/θH∞

� β .

Given an inner divisor ϕ of θ , there always exists some index 1 � j � N for which
ψ j = ϕ ′ϕ for some inner function ϕ ′ ∈ H∞ . Thus,

‖ϕ(T )ξ‖ � ‖ϕ ′(T )ϕ(T )ξ‖ = ‖ψ j(T )ξ‖ � β ,

and the first statement is established. Let us now consider U : K → K the minimal
unitary dilation of T : H → H (see [10] for details). For every function f ∈ H∞ and
every vector h ∈ H , we have that

( f (U)− f (T ))h = ( f (U)−PH f (U))h = PK �H f (U)h

so that

‖( f (U)− f (T ))h‖2 = ‖ f (U)h‖2−‖PH f (U)h‖2 = ‖ f (U)h‖2−‖ f (T )h‖2

and thus∥∥∥∥
(

θ
αk

(U)− θ
αk

(T )
)

α j(T )ξ
∥∥∥∥

2

=
∥∥∥∥ θ

αk
(U)α j(T )ξ

∥∥∥∥
2

−
∥∥∥∥θα j

αk
(T )ξ

∥∥∥∥
2

� ‖α j(T )ξ‖2−β 2

� (1−β 2)‖α j(T )ξ‖2
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whenever 0 � j < k � N−1. In addition, note that〈
θ
αk

(T )α j(T )ξ ,
θ
αk

(U)αk(T )ξ
〉

=
〈

θ
αk

(T )α j(T )ξ ,PH
θ
αk

(U)αk(T )ξ
〉

=
〈

θ
αk

(T )α j(T )ξ ,
θ
αk

(T )αk(T )ξ
〉

= 0

since θ (T ) = 0.
Using with these facts, we find

∣∣〈α j(T )ξ ,αk(T )ξ 〉∣∣= ∣∣∣∣
〈

θ
αk

(U)α j(T )ξ ,
θ
αk

(U)αk(T )ξ
〉∣∣∣∣

=
∣∣∣∣
〈(

θ
αk

(U)− θ
αk

(T )
)

α j(T )ξ ,
θ
αk

(U)αk(T )ξ
〉∣∣∣∣

�
∥∥∥∥
(

θ
αk

(U)− θ
αk

(T )
)

α j(T )ξ
∥∥∥∥‖αk(T )ξ‖

�
√

1−β 2‖α j(T )ξ‖‖αk(T )ξ‖
where we used the fact that (θ/αk)(U) is unitary. The proof is complete. �

This proposition was the last ingredient needed to prove the principal technical
tool of this section.

THEOREM 3.5. Let T1 ∈ B(H 1),T2 ∈ B(H 2) be multiplicity-free operators of
class C0 with minimal function θ = bλ1

. . .bλN
. Define

η = sup
1� j,k�N

|bλ j
(λk)|1/2

(1−max{|λ j|, |λk|}2)1/2
.

Assume that
‖ψN(T1)‖ > β1 +5

√
2η .

and
‖ψN(T2)‖ > β2 +5

√
2η

for some constants β1,β2 satisfying√
1− 1

(N−1)2 < β1,β2 < 1.

Then, there exists an invertible operator X : H 1 → H 2 such that XT1 = T2X and

max{‖X‖,‖X−1‖} � C(β1,β2,N)

where C(β1,β2,N) > 0 is a constant depending only on β1,β2 and N .
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Proof. By Proposition 3.4, for every i = 1,2 we can find a unit cyclic vector ξi ∈
H i with the property that

|〈α j(Ti)ξi,αk(Ti)ξi〉| �
√

1−β 2
i ‖α j(Ti)ξi‖‖αk(Ti)ξi‖

and
‖α j(Ti)ξi‖ � βi

whenever 0 � j < k � N−1. Given c0, . . . ,cN−1 ∈ C , let us set

X

(
N−1

∑
k=0

ckαk(T1)ξ1

)
=

N−1

∑
k=0

ckαk(T2)ξ2.

By Lemma 3.3, this defines an invertible operator X : H 1 → H 2 with Xξ1 = ξ2 .
Arguing as in the proof of Lemma 3.3, we see that

u(T1)ξ1 =
N−1

∑
k=0

ckαk(T1)ξ1

holds if and only if θ divides ∑N−1
k=0 ckαk −u , which in turn holds if and only if

u(T2)ξ2 =
N−1

∑
k=0

ckαk(T2)ξ2.

Therefore, we find
Xu(T1)ξ1 = u(T2)ξ2 = u(T2)Xξ1

for any function u ∈ H∞ . Now, every h ∈ H 1 can be written as h = p(T1)ξ1 for some
polynomial p , so that

XT1h = XT1p(T1)ξ1 = T2p(T2)Xξ1 = T2X p(T1)ξ1 = T2Xh

for every h ∈ H 1 , whence XT1 = T2X . It only remains to estimate the norm of X and
X−1 . Given c0, . . . ,cN−1 ∈ C , we see that

N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2 +2ℜ

(
∑

0� j<k�N−1

c jck〈α j(T1)ξ1,αk(T1)ξ1〉
)

�
N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2−2 ∑
0� j<k�N−1

|c j||ck||〈α j(T1)ξ1,αk(T1)ξ1〉|

�
N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2−2 ∑
0� j<k�N−1

|c j||ck|
√

1−β 2
1‖α j(T1)ξ1‖‖αk(T1)ξ1‖

=
(

1− (N−1)
√

1−β 2
1

)N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2

+
√

1−β 2
1

(
(N−1)

N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2−2 ∑
0� j<k�N−1

|c j||ck|‖α j(T1)ξ1‖‖αk(T1)ξ1‖
)
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The last bracketed term being positive, the calculation above gives∥∥∥∥∥
N−1

∑
k=0

ckαk(T1)ξ1

∥∥∥∥∥
2

�
(

1− (N−1)
√

1−β 2
1

)N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2.

Thus, ∥∥∥∥∥
N−1

∑
k=0

ckαk(T1)ξ1

∥∥∥∥∥
2

�
(

1− (N−1)
√

1−β 2
1

)N−1

∑
k=0

|ck|2‖αk(T1)ξ1‖2

�
(

1− (N−1)
√

1−β 2
1

)N−1

∑
k=0

|ck|2β 2
1

� β 2
1

N

(
1− (N−1)

√
1−β 2

1

)(N−1

∑
k=0

|ck|
)2

� β 2
1

N

(
1− (N−1)

√
1−β 2

1

)∥∥∥∥∥
N−1

∑
k=0

ckαk

∥∥∥∥∥
2

H∞

� β 2
1

N

(
1− (N−1)

√
1−β 2

1

)∥∥∥∥∥
N−1

∑
k=0

ckαk(T2)ξ2

∥∥∥∥∥
2

where we used ‖αk‖H∞ = 1. By symmetry, we also have

∥∥∥∥∥
N−1

∑
k=0

ckαk(T2)ξ2

∥∥∥∥∥
2

� β 2
2

N

(
1− (N−1)

√
1−β 2

2

)∥∥∥∥∥
N−1

∑
k=0

ckαk(T1)ξ1

∥∥∥∥∥
2

.

This shows that

‖X‖2 �
(

β 2
1

N

(
1− (N−1)

√
1−β 2

1

))−1

‖X−1‖2 �
(

β 2
2

N

(
1− (N−1)

√
1−β 2

2

))−1

and the proof is complete. �
The next corollary is our main result.

COROLLARY 3.6. Let T ∈ B(H ) be a multiplicity-free operator of class C0 with
minimal function θ = bλ1

. . .bλN
. Define

η = sup
1� j,k�N

|bλ j
(λk)|1/2

(1−max{|λ j|, |λk|}2)1/2
.

Consider
Ψ : H∞(T ) → H∞(S(θ ))



436 RAPHAËL CLOUÂTRE

such that Psi(u(T )) = u(S(θ )) for every u ∈ H∞ . Assume that Ψ is bounded and that√
1− 1

(N−1)2 < β < 1

where β = 1/‖Ψ‖−5
√

2η . Then, there exists an invertible operator X : H → H(θ )
such that XT = S(θ )X and

max{‖X‖,‖X−1‖} � C(Ψ,N)

where C(Ψ,N) > 0 is a constant depending only on Ψ and N .

Proof. Notice first that

‖ψN‖H∞/θH∞ = inf{‖ψN + θ f‖H∞ : f ∈ H∞}
= inf{‖1+(θ/ψN) f‖H∞ : f ∈ H∞}
= inf{‖1+bλN

f‖H∞ : f ∈ H∞}
� inf{‖(1+bλN

f )(λN)‖H∞ : f ∈ H∞}
= 1

and thus
‖ψN(S(θ ))‖ = ‖ψN‖H∞/θH∞ = 1,

By the contractive property of the functional calculus, we have

‖ψN(S(θ ))‖= ‖ψN‖H∞/θH∞ � ‖ψN(T )‖� ‖Ψ‖−1‖ψN(S(θ ))‖= ‖Ψ‖−1 = β +5
√

2η .

The result now follows directly from Theorem 3.5. �
Notice that the inequality√

1− 1
(N−1)2 < β =

1
‖Ψ‖ −5

√
2η

implies that η cannot be too large. This restricts the positions of the roots λ1, . . . ,λN

relative to each other and to the boundary of the disc. On the other hand, without these
inequalities the existence of the isomorphism Ψ is clearly a necessary condition for
similarity between T and S(θ ) .

The upcoming corollary deals with the simpler two-dimensional case where the
statements are neater and fewer conditions are needed. In fact, a careful look at the
proofs of this section shows that the assumptions involving η in the previous results
arise solely because of the need to obtain lower bounds on ‖ϕ(T )ξ‖ for every inner
divisor ϕ of θ from a given lower bound on ‖ψN(T )ξ‖ . In the two dimensional case,
there is a trick to obtaining these lower bounds without imposing any condition on η ;
it is the essence of the next lemma.
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LEMMA 3.7. Let T ∈ B(H ) be a contraction and let λ1,λ2 ∈ D . If ξ ∈ H is a
unit vector such that ‖bλ1

(T )ξ‖ � β , then

‖bλ2
(T )ξ‖ �

√
(1−|μ |)2− (1−|μ |2)(1−β 2)−|μ |,

where μ = bλ2
(λ1) .

Proof. A direct calculation shows that for any contraction R ∈ B(H ) and any
μ ∈ D , we have

I−bμ(R)∗bμ(R) = (1−|μ |2)(1− μR∗)−1(I−R∗R)(1− μR)−1

and thus

〈(I−bμ(R)∗bμ(R))(1− μR)h,(1− μR)h〉 = (1−|μ |2)〈(I−R∗R)h,h〉
for every h ∈ H . This implies that

‖bμ(R)(I− μR)h‖2 = ‖(I− μR)h‖2−〈(I−bμ(R)∗bμ(R))(1− μR)h,(1− μR)h〉
= ‖(I− μR)h‖2− (1−|μ |2)〈(I −R∗R)h,h〉
= ‖(I− μR)h‖2− (1−|μ |2)(‖h‖2−‖Rh‖2)

� (‖h‖− |μ |‖Rh‖)2− (1−|μ |2)(‖h‖2−‖Rh‖2)

� (1−|μ |)2‖h‖2− (1−|μ |2)(‖h‖2−‖Rh‖2).

Note now that if μ = bλ1
(λ2) , then bμ = bλ2

◦ b−1
λ1

. Applying the previous inequality
with R = bλ1

(T ) , h = ξ and μ = bλ1
(λ2) , we find

‖bλ2
(T )(I− μbλ1

(T ))ξ‖2 � (1−|μ |)2‖ξ‖2− (1−|μ |2)(‖ξ‖2−‖bλ1
(T )ξ‖2).

By assumption, this becomes

‖bλ2
(T )(I− μbλ1

(T ))ξ‖2 � (1−|μ |)2− (1−|μ |2)(1−β 2).

Finally, we have

‖bλ2
(T )ξ‖ � ‖bλ2

(T )(I− μbλ1
(T ))ξ‖− |μ |‖bλ2

(T )bλ1
(T )ξ‖

�
√

(1−|μ |)2− (1−|μ |2)(1−β 2)−|μ |
and this finishes the proof. �

COROLLARY 3.8. Let T ∈ B(H ) be a multiplicity-free operator of class C0 with
minimal function θ = bλ1

bλ2
. Consider

Ψ : H∞(T ) → H∞(S(θ ))

such that Psi(u(T )) = u(S(θ )) for every u ∈ H∞ . Assume that Ψ is bounded. Then,
there exists an invertible operator X : H → H(θ ) such that XT = S(θ )X and

max{‖X‖,‖X−1‖} � C(Ψ)

where C(Ψ) > 0 is a constant depending only on Ψ .
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Proof. Set μ = bλ1
(λ2) . Fix some number 0 < ε < ‖Ψ‖−1 and set β = ‖Ψ‖−1−

ε . Consider

β ′ =
√

(1−|μ |)2− (1−|μ |2)(1−β 2)−|μ |
and

γ = 1−2|μ |.
There exits a positive number r > 0 depending only on Ψ such that β ′ > β/2 and
γ > 1/2 if |μ | < r . We distinguish two cases. First, we assume that |μ | � r . This
corresponds to the case of “uniformly separated roots”, for which the existence of
an invertible operator X with the required properties is well-known (see for instance
Proposition 3.2 of [5]). We turn now to the case where |μ | < r . The unit vector
ζ = κλ1

/‖κλ1
‖H2 ∈ H(θ ) is cyclic for S(θ ) and

‖bλ2
(S(θ ))ζ‖ = 1

(these facts are easily verified, and they can be found in Lemma 3.2.1 and Corollary
3.2.4 of [2].) In particular, we have

‖bλ2
(S(θ ))‖ = 1

and thus

‖bλ2
(T )‖ � ‖Ψ‖−1‖bλ2

(S(θ ))‖ = ‖Ψ‖−1.

By Theorem 2.3, we can find a unit vector ξ ∈ H which is cyclic for T with the
property that

‖bλ2
(T )ξ‖ � β .

Note also that Lemma 3.7 implies that

‖bλ1
(T )ξ‖ � β ′

and

‖bλ1
(S(θ ))ζ‖ � γ.

Repeating the argument done in the proof Proposition 3.4 we find

|〈ξ ,bλ1
(T )ξ 〉| �

√
1−β 2‖ξ‖‖bλ1

(T )ξ‖

along with

〈ζ ,bλ1
(S(θ ))ζ 〉 = 0.

By Lemma 3.3, the set {ξ ,bλ1
(T )ξ} forms a basis for H while {ζ ,bλ1

(S(θ ))ζ}
forms a basis for H(θ ) . As in the proof of Theorem 3.5, we define X : H → H(θ ) as

X(c0ξ + c1bλ1
(T )ξ ) = c0ζ + c1bλ1

(S(θ ))ζ
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where c0,c1 ∈ C . This operator satisfies XT = S(θ )X . We have∥∥c0ξ + c1bλ1
(T )ξ

∥∥2 � |c0|2 + |c1|2‖bλ1
(T )ξ‖2−2|c0||c1|

√
1−β 2‖ξ‖‖bλ1

(T )ξ‖
� (1−

√
1−β 2)(|c0|2 + |c1|2‖bλ1

(T )ξ‖2)

� β ′2(1−
√

1−β 2)(|c0|2 + |c1|2)
� 1

2
β ′2(1−

√
1−β 2)‖c0ζ + c1bλ1

(S(θ ))ζ‖2

and ∥∥c0ξ + c1bλ1
(T )ξ

∥∥2 � 2(‖c0ξ‖2 +‖c1bλ1
(T )ξ‖2)

� 2(|c0|2 + |c1|2)
� 2γ−2‖c0ζ + c1bλ1

(S(θ ))ζ‖2.

Consequently, we find

‖X‖2 �
(

1
2

β ′2(1−
√

1−β 2)
)−1

‖X−1‖2 � 2γ−2

and using the fact that β ′ > β/2 and γ > 1/2, we get

‖X‖2 �
(

1
8

β 2(1−
√

1−β 2)
)−1

‖X−1‖2 � 8

which completes the proof. �

4. The generalized Carleson condition

Let us first recall a definition. A sequence of distinct points {λ j} j ⊂ D is said to
satisfy the Carleson condition if

inf
k

∏
j �=k

∣∣∣∣∣ λ j −λk

1−λ jλk

∣∣∣∣∣> 0. (1)

The main focus of the work done in [5] was the case where the minimal function of a
multiplicity-free operator of class C0 is a Blaschke product with zeros forming such a
sequence. The purpose of this section is to indicate that the following result (see [5])
carries over to a more general setting. Although the result itself is known, we hope our
approach (more precisely Lemma 4.2) might hold some independent interest.

THEOREM 4.1. Let {λ j} j ⊂ D be a sequence of distinct points and let θ ∈ H∞

be the corresponding Blaschke product. The following statements are equivalent:
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(i) {λ j} j ⊂ D satisfies the Carleson condition

(ii) every multiplicity-free operator T of class C0 with minimal function θ is similar
to S(θ ) .

The relevant concept for us will be the following (see [11] for more details). Let
{θn}n ⊂ H∞ be a sequence of inner functions. It will be convenient throughout to use
the following notation: given a subset A ⊂ N , we write

θA = ∏
n∈A

θn.

We say that the sequence {θn}n satisfies the generalized Carleson condition (with con-
stant C > 0) if for any finite set A ⊂ N there are functions fA,gA ∈ H∞ satisfying

fAθA +gA
θ
θA

= 1

with ‖ fA‖H∞ �C and ‖gA‖H∞ �C . It is a straightforward consequence of the definition
that the functions θA and θB have no common inner divisor if A and B are disjoint and
at least one of them is finite. Moreover, it is well-known that in the case where θn

is simply a Blaschke factor, the generalized Carleson condition is equivalent to the
classical Carleson condition (1) (see Lemma 3.2.18 in [11]).

Let {θn}n ⊂ H∞ be a sequence of inner functions satisfying the generalized Car-
leson condition with constant C > 0, and set θ = ∏n θn ∈H∞ . We have for every finite
or cofinite subset A ⊂ N a pair of functions fA,gA ∈ H∞ satisfying

fAθA +gA
θ
θA

= 1 (2)

and ‖ fA‖H∞ � C,‖gA‖H∞ � C . Set ϕA = gAθ/θA and notice that

‖ϕA‖H∞ � C. (3)

We use the usual notation for the symmetric difference of two sets:

A�B = (A\B)∪ (B\A).

LEMMA 4.2. Let T ∈ B(H ) be an operator of class C0 with minimal function
θ = ∏n θn where {θn}n satisfies the generalized Carleson condition. For every finite
or cofinite subset A ⊂ N , define

kA = 2ϕA(T )− I ∈ B(H ).

Then ϕA(T )ϕB(T ) = ϕA∩B(T ) , kA = k−1
A and kAkB = kN\(A�B) . Moreover,

G = {kA : A ⊂ N finite or cofinite }

is an abelian multiplicative subgroup of B(H ) .
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Proof. We first need to check that kA is well-defined since the function gA is
not uniquely determined. Assume that g1 and g2 are two functions in H∞ which are
candidates for gA , meaning that they satisfy

f1θA +g1
θ
θA

= 1

and

f2θA +g2
θ
θA

= 1

for some functions f1, f2 ∈ H∞ . Then, we find

(g1−g2)
θ
θA

= ( f2 − f1)θA.

We see that θA must divide the left-hand side, and thus it must divide g1−g2 seeing as
it has no common inner factor with θ/θA . Therefore, θ divides (g1−g2)θ/θA and we
have (g1−g2)(θ/θA)(T ) = 0. In other words, ϕA(T ) and kA are well-defined. Notice
now that

ϕ2
A =

(
gA

θ
θA

)2

= gA
θ
θA

(1− fAθA) = ϕA − fAgAθ

which implies that ϕA(T )2 = ϕA(T ) . A straightforward calculation now yields that
k−1
A = kA . Using (2), we find that

1 = fA fBθAθB + fAgBθA
θ
θB

+ fBgAθB
θ
θA

+ ϕAϕB = hθA∩B + ϕAϕB (4)

for some h ∈ H∞ . On the other hand, we have

fA∩BθA∩B + ϕA∩B = 1. (5)

Notice now that

θAθB = ∏
n∈A

θn ∏
n∈B

θn

= ∏
n∈B\A

θn ∏
n∈A\B

θn

(
∏

n∈A∩B

θn

)2

= ∏
n∈A∪B

θn ∏
n∈A∩B

θn

= θA∩BθA∪B.

Consequently, using (4) and (5) we find

θ
θA∩B

(
gAgB

θ
θA∪B

−gA∩B

)
= gAgB

θ
θA

θ
θB

−gA∩B
θ

θA∩B

= ϕAϕB −ϕA∩B

= ( fA∩B −h)θA∩B.
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Therefore, θA∩B divides the left-hand side, and as before since θA∩B and θ/θA∩B have
no common inner factor we conclude that θ divides ϕAϕB −ϕA∩B , which in turn im-
plies

ϕA(T )ϕB(T ) = ϕA∩B(T ).

We now proceed to show the identity kAkB = kN\(A�B) in a similar fashion. First we
note that

kAkB = 2(2ϕAϕB −ϕA−ϕB +1)(T )− I

so we need to establish

(2ϕAϕB −ϕA−ϕB +1)(T ) = ϕN\(A�B)(T )

which is equivalent to showing that the function θ divides the function

2ϕAϕB −ϕA−ϕB +1−ϕN\(A�B).

But we have

2ϕAϕB −ϕA−ϕB +1 = 2ϕAϕB −ϕA + fBθB

=
θ
θA

gA(2ϕB −1)+ fBθB

which is clearly divisible by θB\A . By symmetry, we also find that it is divisible by
θA\B . Since these last two inner functions do not have a common inner factor, we
conclude that

2ϕAϕB −ϕA−ϕB +1

is divisible by θ(A\B)∪(B\A) = θA�B. Thus,

2ϕAϕB −ϕA−ϕB +1−ϕN\(A�B).

is divisible by θA�B . On the other hand, using (2) we can write

2ϕAϕB −ϕA−ϕB +1 = ϕA(ϕB −1)+ ϕB(ϕA −1)+1

= −ϕA fBθB −ϕB fAθA +1.

Therefore, another application of (2) yields

2ϕAϕB −ϕA−ϕB +1−ϕN\(A�B)

= 1− fAθAϕB − fBθBϕA +( fN\(A�B)θN\(A�B)−1)

= − fAgBθA
θ
θB

− fBgAθB
θ
θA

+ fN\(A�B)θN\(A�B)

which is easily checked to be divisible by θN\(A�B) . Coupled with the previously
established divisibility relation, we conclude that θ divides

2ϕAϕB −ϕA−ϕB +1−ϕN\(A�B)
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which in turn implies that kAkB = kN\(A�B) . Note now that if A = N , then we can
choose fA = 0,gA = 1 and we get I = kN . To verify that G is an abelian multiplicative
subgroup of B(H ) , it therefore only remains to check that A�B is finite or cofinite
whenever A and B are, but this is elementary. �

Recall now a classical result of Dixmier (see [6] and [14]).

THEOREM 4.3. Let G be an abelian multiplicative subgroup of B(H ) . Assume
that

C = sup{‖k‖B(H ) : k ∈ G} < ∞.

Then, there exists an invertible operator X ∈ B(H ) such that XkX−1 is unitary for
every k ∈ G and with the property that

max{‖X‖,‖X−1‖} � C.

Combining Lemma 4.2 and Theorem 4.3, we obtain (see Proposition 3.2 of [5] for
more details) the following theorem which was proved in [16] by different means (see
also [12] for an English translation).

THEOREM 4.4. Let T ∈ B(H ) be an operator of class C0 . Assume that the
minimal function of T is θ = ∏n θn where {θn}n satisfies the generalized Carleson
condition with constant C > 0 . Then, there exists an invertible operator Y such that

YTY−1 =
⊕

n

T |kerθn(T )

and with the property that max{‖Y‖,‖Y−1‖} � (2C+1)2 .

5. A similarity result

In this section we apply Theorem 3.5 and Theorem 4.4 to similarity questions
for multiplicity-free operators of class C0 . Let us describe the precise setting for the
result we wish to prove. We assume that the minimal function is a Blaschke product θ
which can be written as θ = ∏n θn , where {θn}n ⊂H∞ is a sequence of finite Blaschke
products with at most N roots satisfying the generalized Carleson condition.

A particular case of this situation is that where θn = bN
λn

and {λn}n ⊂ D is a se-
quence satisfying the Carleson condition (see [11] for details). This is the case covered
by the main result of [5], stated below.

THEOREM 5.1. Let {λn}n ⊂ D be a sequence satisfying the Carleson condition
and {mn}n ⊂N be a bounded sequence. Let T ∈ B(H ) be a multiplicity-free operator
of class C0 with minimal function

θ (z) = ∏
n

(
λn

|λn|
z−λn

1−λnz

)mn

.

Assume that ϕ(T ) has closed range for every inner divisor ϕ of θ . Then, T is similar
to S(θ ) .
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We would now like to tackle the case where the functions θn might have distinct
roots. Such functions have been studied in the context of interpolation (see [8], [9],[13]
and [16]). Before proceeding, we make an addition to Theorem 4.1. We hope that it
can shed some light on the condition that will appear in our similarity result, especially
with regard to the assumption of Theorem 5.1.

THEOREM 5.2. Let {λn}n ⊂ D be a sequence of distinct points and let θ ∈ H∞

be the corresponding Blaschke product. The following statements are equivalent:

(i) {λn}n ⊂ D satisfies the Carleson condition

(ii) every multiplicity-free operator T of class C0 with minimal function θ is similar
to S(θ )

(iii) ϕ(T ) has closed range for every multiplicity-free operator T of class C0 with
minimal function θ and every inner divisor ϕ of θ

(iv) for every multiplicity-free operator T of class C0 with minimal function θ , there
exists a constant β > 0 such that

‖u(T )|kerϕ(T )‖ � β‖u‖H∞/ϕH∞

for every u ∈ H∞ and every inner divisor ϕ of θ .

Proof. The equivalence of (i), (ii) and (iii) is from [5]. To see that (ii) implies
(iv), assume XTX−1 = S(θ ) . By Lemma 2.2, we know that u(S(θ ))|kerϕ(S(θ )) is
unitarily equivalent to u(S(ϕ)) for every u ∈ H∞ and every inner divisor ϕ of θ , so
that

‖u(S(θ ))|kerϕ(S(θ ))‖ = ‖u(S(ϕ))‖ = ‖u‖H∞/ϕH∞ .

Note moreover that if we set Yϕ = X |kerϕ(T ) : kerϕ(T ) → kerϕ(S(θ )) , then

Yϕu(T )|kerϕ(T )Y−1
ϕ = u(S(θ ))|kerϕ(S(θ ))

and therefore

‖u(T )|kerϕ(T )‖ � 1

‖Yϕ‖‖Y−1
ϕ ‖‖u‖H∞/ϕH∞ � 1

‖X‖‖X−1‖‖u‖H∞/ϕH∞

which is (iv). To finish the proof, it suffices to show that (iv) implies (i). Let ψn =
θ/bλn . By definition, we need to show that |ψn(λn)| � β for some β > 0. Arguing as
in the proof of Corollary 3.6, we see that

‖ψn‖H∞/θH∞ = 1.

If we let
T =

⊕
n

S(bλn) =
⊕

n

λn
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then
ψn(T ) = 0⊕0⊕ . . .⊕ψn(λn)⊕0⊕ . . .

Using (iv), we find

|ψn(λn)| = ‖ψn(T )‖ � β‖ψn‖H∞/θH∞ � β

and we are done. �
We can now formulate our similarity result.

THEOREM 5.3. Let θ ∈ H∞ be a Blaschke product which can be written as θ =
∏n θn , where {θn}n ⊂ H∞ is a sequence of finite Blaschke products with at most N
roots satisfying the generalized Carleson condition. Define

η = sup
n

sup
λ ,μ∈θ−1

n (0)

|bλ (μ)|1/2

(1−max{|λ |, |μ |}2)1/2
.

Let T ∈ B(H ) be a multiplicity-free operator of class C0 with minimal function θ .
Assume that there exists a constant β such that√

1− 1
(N−1)2 < β −5

√
2η < 1

and
‖u(T )|kerθn(T )‖ � β‖u‖H∞/θnH∞

for every u ∈ H∞ and every n. Then, T is similar to S(θ ) .

Proof. By Theorem 4.4, we have that T is similar to⊕
n

T |kerθn(T )

and that S(θ ) is similar to ⊕
n

S(θ )|kerθn(T ).

Using Lemma 2.2, we see that S(θ ) is actually similar to
⊕

n S(θn) . Therefore, it is
sufficient to show that for each n the operator T |kerθn(T ) is similar to S(θn) via an
invertible operator

Xn : kerθn(T ) → H(θn)

satisfying
sup

n
{‖Xn‖,‖X−1

n ‖} < ∞.

But this follows from Corollary 3.6. Indeed, for each n we can define

ψn = θn/bλn
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for some λn ∈ θ−1
n (0) . Then by assumption we have

‖ψn(T )|kerθn(T )‖ � β‖ψn‖H∞/θnH∞

and as in the proof of Corollary 3.6, we see that

‖ψn‖H∞/θH∞ = 1.

When combined, these inequalities yield

‖ψn(T )|kerθn(T )‖ � β .

In view of our assumption on η(θ ) , we can apply Corollary 3.6 to finish the proof. �
The reader should note at this point that the inequalities appearing in the previous

theorem implicitely force η � (5
√

2)−1 since obviously 0 < β � 1.
If we restrict our attention to the special case where each θn has two roots, then

we obtain a simpler statement.

COROLLARY 5.4. Let θ ∈H∞ be a Blaschke product which can be written as θ =
∏n θn , where {θn}n ⊂ H∞ is a sequence of finite Blaschke products with at most two
roots satisfying the generalized Carleson condition. Let T ∈ B(H ) be a multiplicity-
free operator of class C0 with minimal function θ . Assume that there exists a constant
β such that

‖u(T )|kerθn(T )‖ � β‖u‖H∞/θnH∞

for every u ∈ H∞ and every n. Then, T is similar to S(θ ) .

Proof. Proceed as in the proof of Theorem 5.3, but use Corollary 3.8 instead of
Corollary 3.6. �

Let us close by making a few comments about η . For that purpose, let us introduce
another quantity related to θ ,

δ = inf
n

inf
λ ,μ∈θ−1

n (0)
|bλ (μ)|1/2.

If δ > 0, then a similarity result analogous to Theorem 5.3 follows immediately from
Theorem 4.4 (as was pointed out in the proof of Corollary 3.8). On the other hand,
if η = 0 then we are in the case covered by Theorem 5.1. Now, it is obvious that
0 � δ � η . This shows that our (implicit) condition η � (5

√
2)−1 closes part of the

gap between those two cases where similarity was known previously.
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[10] BÉLA SZ.-NAGY, CIPRIAN FOIAS, HARI BERCOVICI AND LÁSZLÓ KÉRCHY, Harmonic analysis
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