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BIVARIATE MATRIX FUNCTIONS

DANIEL KRESSNER

(Communicated by F. Hansen)

Abstract. A definition of bivariate matrix functions is introduced and some theoretical as well
as algorithmic aspects are analyzed. It is shown that our framework naturally extends the usual
notion of (univariate) matrix functions and allows to unify existing results on linear matrix equa-
tions and derivatives of matrix functions.

1. Introduction

Given a square matrix A and a univariate scalar function f (z) defined on the
spectrum of A , the matrix function f (A) is again a square matrix of the same size.
Well-known examples include the matrix inverse A−1 , the matrix exponential exp(A)
and the matrix logarithm log(A) , see the recent monograph by Higham [17] for an
excellent overview on the analysis and computation of such matrix functions.

This paper is concerned with the following question. What is a suitable and gen-
eral extension of the concept of matrix functions to bivariate functions? More specifi-
cally, given two square matrices along with a bivariate scalar function f (x,y) , is there
a sensible way of “evaluating f at these matrices”? As will be seen in the course of
this paper, this question has been considered many times in the literature in different
settings. However, to the best of our knowledge, the most general case in the finite-
dimensional setting has not been put in a unified mathematical framework, with mini-
mal assumptions on f and A,B . The main contribution of this paper is to provide such
a unification, covering several existing results and hopefully leading to new insights.

Given an m×m matrix A and an n× n matrix B , the bivariate matrix func-
tion f{A,B} proposed in this paper is not a matrix but a linear operator on the set
of m×n matrices. In Section 2, three equivalent characterizations are provided, based
on bivariate Hermite interpolation, an explicit expression, and a Cauchy integral for-
mulation. In Section 3, it is shown how these characterizations connect to existing
notions of in the literature. In Section 4, it is shown that f{A,B} nicely extends
some well-known properties of univariate matrix functions. For example, the eigen-
values of f{A,B} are the values of f at the eigenvalues of A and B . Another useful
property is (g ◦ f ){A,B} = g

(
f{A,B}) , allowing to succinctly express compositions

of bivariate with univariate functions. For example, this shows that the solution to
the matrix Sylvester equation AX −XBT = C can be written as X = f{A,B}(C) with
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f (x,y) = 1/(x− y) . Section 5 presents another important special case of bivariate ma-
trix functions: The Fréchet derivative of a univariate function f at a matrix A is shown
to admit the expressions f [1]{A,AT} with f [1](x,y) = ( f (x)− f (y))/(x− y) . Section 6
sketches a general algorithm for computing bivariate matrix functions. However, it
should be stressed that this algorithm can be expected to be inferior in terms of effi-
ciency and robustness compared to more specialized algorithms covering the special
cases mentioned above. In Section 7, the natural extension of our definition from bi-
variate to general multivariate functions is given. Some further developments that could
result from the framework developed in this note are outlined in the concluding section.

2. Definition and basic properties

Before defining bivariate matrix functions, we briefly recall the definition of a uni-
variate matrix function. Let A∈Cm×m have the pairwise distinct eigenvalues λ1, . . . ,λs

and let indλi
(A) denote the index of λi , that is, the size of the largest Jordan block asso-

ciated with λi . Then the matrix function associated with a univariate scalar function f
is defined as f (A) := p(A) , where p(z) is the unique Hermite interpolating polynomial
of degree less than ∑s

i=1 indλi
A satisfying

∂ g

∂ zg p(λi) =
∂ g

∂ zg f (λi), g = 0, . . . , indλi
A−1, i = 1, . . . ,s. (1)

It is assumed that f is defined on the spectrum of A in the sense of [17], which in
particular means that all required derivatives of f exist. Following [17], we say that p
interpolates f at A if (1) is satisfied.

2.1. Definition via Hermite interpolation

To extend the definition above from the univariate to the bivariate setting, we first
consider the case of polynomials.

DEFINITION 2.1. Let A ∈ Cm×m,B ∈ Cn×n and consider a bivariate polynomial
p(x,y) = ∑s

i=1 ∑t
j=1 pi jxiy j with pi j ∈ C . Then p{A,B} : Cm×n → Cm×n is defined by

p{A,B}(C) :=
s

∑
i=1

t

∑
j=1

pi jA
iC(BT ) j. (2)

Note that the transposition of B in (2) is purely a matter of convention, which
has the main advantage that it allows for a non-ambiguous extension to multivariate
functions, see Section 7.

As in the univariate case, we will approach a general bivariate function by means
of Hermite interpolation. This is only possible if the function is defined on the spectra
of A and B in the following sense.
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DEFINITION 2.2. Let A ∈ Cm×m have pairwise distinct eigenvalues λ1, . . . ,λs

and let B ∈ Cn×n have pairwise distinct eigenvalues μ1, . . . ,μt . Then a bivariate func-
tion f (x,y) is defined on the spectra of A and B if the following mixed partial deriva-
tives exist and are continuous:

∂ g+h

∂xg∂yh f (λi,μ j),
g = 0, . . . , indλi

(A)−1, i = 1, . . . ,s,
h = 0, . . . , indμ j (B)−1, j = 1, . . . ,t.

Bivariate Hermite interpolation on tensor grid data is well-understood and can
be easily performed by tensorized univariate Hermite interpolation, see, e.g., [1, 19].
In particular, for any f (x,y) defined on the spectra of A and B there is a bivariate
polynomial p(x,y) satisfying

∂ g+h

∂xg∂yh p(λi,μ j) =
∂ g+h

∂xg∂yh f (λi,μ j),
g = 0, . . . , indλi

(A)−1, i = 1, . . . ,s,
h = 0, . . . , indμ j (B)−1, j = 1, . . . ,t.

(3)

The choice of p(x,y) is unique if it has degree less than ∑s
i=1 indλi

(A) in x and degree
less than ∑t

j=1 indμ j (B) in y . As in the univariate case, we say that p interpolates f at
{A,B} if (3) is satisfied.

DEFINITION 2.3. The bivariate matrix function associated with a bivariate scalar
function f (x,y) defined on the spectra of A and B is defined by f{A,B} := p{A,B} ,
where p(x,y) is the bivariate polynomial of minimal degree interpolating f at {A,B} .

In the following, we discuss some basic properties of bivariate matrix functions.

LEMMA 2.4. Under the conditions of Definition 2.3,

f{A,B}(C) = P
(

f{P−1AP,Q−1BQ}(P−1CQ−T )
)
QT (4)

for any two invertible matrices P,Q of matching size.

Proof. It is straightforward to verify this statement for polynomials f , which con-
cludes the proof by definition. �

LEMMA 2.5. Consider any two polynomials p1, p2 satisfying the interpolation
conditions (3). Then p1{A,B} = p2{A,B} .

Proof. By Lemma 2.4, we can assume A,B to be in Jordan canonical form. Since
the evaluation of bivariate matrix polynomials decouples for block diagonal matrices
A and B , it suffices to prove the statement for λiI +NA , and μ jI +NB , where NA,NB

are nilpotent matrices of index indλi
(A) and indμ j(B) , respectively. Set e := p1 − p2 .

Then

∂ g+h

∂xg∂yh e(λi,μ j) = 0, g = 0, . . . , indλi
(A)−1, h = 0, . . . , indμ j (B)−1
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and hence e takes the form

e(x,y) = ∑
g�indλi

(A)

h�indμ j (B)

egh(x−λi)g(y− μ j)h

for some coefficients egh . By Definition 2.1 and the nilpotency of NA,NB , this implies
e{λiI +NA,μ jI +NB} = 0. �

Lemma 2.5 has the convenient consequence that any polynomial satisfying the
appropriate Hermite interpolation conditions can be used for defining a bivariate matrix
function. As an immediate consequence, the evaluation at block diagonal matrices
decouples not only for polynomials but also for general functions.

LEMMA 2.6. Consider block (diagonal) matrices

A =
[

A11 0
0 A22

]
, B =

[
B11 0
0 B22

]
, C =

[
C11 C12

C21 C22

]
,

where Aii,Bj j are square and C is partitioned conformally with A and B. Then

f{A,B}(C) =
[

f{A11,B11}(C11) f{A11,B22}(C12)
f{A22,B11}(C21) f{A22,B22}(C22)

]
, (5)

holds for any f (x,y) defined on the spectra of A,B,

Proof. Clearly, any polynomial p interpolating f at {A,B} also interpolates f at
{Aii,Bj j} for i ∈ {1,2} , j ∈ {1,2} . Thus, by Lemma 2.5, it suffices to establish (5) for
the polynomial p , which is straightforward to verify. �

Lemma 2.6 extends in a direct manner to block diagonal matrices A,B with arbi-
trarily many square diagonal blocks.

2.2. An explicit expression in terms of Jordan canonical forms

The aim of this section is to characterize f{A,B}(C) in terms of the Jordan canon-
ical forms of A and B . First, let us briefly consider the special case that A and B are
given by

A = λ I +NA, B = μI +NB,

where NA,NB are nilpotent matrices of index m̃, ñ , respectively. Then an interpolating
polynomial is given by the truncated Taylor expansion

p(x,y) =
m̃−1

∑
g=0

ñ−1

∑
h=0

1
g!h!

∂ g+h

∂xg∂yh f (λ ,μ)(x−λ )g(y− μ)h.

According to Definition 2.3,

f{A,B}(C) =
m̃−1

∑
g=0

ñ−1

∑
h=0

1
g!h!

∂ g+h

∂xg∂yh f (λ ,μ)Ng
AC(NT

B )h. (6)
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Let us now consider general A and B with their Jordan canonical forms given by

A = PJAP−1, JA = diag
(
JA(λ1),JA(λ2), . . . ,JA(λs)

)
,

B = QJBQ−1, JB = diag
(
JB(μ1),JB(μ2), . . . ,JB(μt)

)
,

(7)

where JA(λi) contains all Jordan blocks belonging to the eigenvalue λi of A , and anal-
ogously JB(μ j) .

LEMMA 2.7. Consider A,B∈ C
n×n with the Jordan canonical forms (7) and par-

tition

P−1CQ−T =

⎡
⎢⎣C11 · · · C1t

...
...

Cs1 · · · Cst

⎤
⎥⎦

conformally. Then

f{A,B}(C) = P

⎡
⎢⎣F11 · · · F1t

...
...

Fs1 · · · Fst

⎤
⎥⎦QT

with

Fi j =
indλi

(A)−1

∑
g=0

indμ j (B)−1

∑
h=0

1
g!h!

∂ g+h

∂xg∂yh f (λi,μ j)
(
JA(λi)−λiI

)g
Ci j

(
JT
B (μ j)− μ jI

)h
(8)

for i = 1, . . . ,s and j = 1, . . . ,t .

Proof. By Lemma 2.4 and Lemma 2.6, we have Fi j = f{JA(λi),JB(μ j)}(Ci j) . The
formula (8) therefore follows directly from (6). �

Lemma 2.7 extends a similar expression given in [27, Sec. 10] for the solution of
matrix Sylvester equations, which will be seen below to correspond to the case f (x,y) =
1/(x− y) . A generalization to more general holomorphic functions is given in [43].
More specifically, in [27, Sec. 10], a more compact formulation has been attained by
defining matrices of the form

Vig = Pdiag
(
0, . . . ,0,

(
JA(λi)−λiI

)g
,0, . . . ,0

)
P−1,

Wjh = Qdiag
(
0, . . . ,0,

(
JB(μ j)− μ jI

)h
,0, . . . ,0

)
Q−1 (9)

for g = 0, . . . , ind(λi)−1, i = 1, . . . ,s and h = 0, . . . , ind(μ j)−1, j = 1, . . . ,t . Equiva-
lently,

Vig =
1

2π i

∮
Γ(λi)

(x−λi)g(xI−A)−1dx, Wjh =
1

2π i

∮
Γ(μ j)

(y− μ j)h(yI−B)−1dy,

where Γ(λi) and Γ(μ j) are sufficiently small circles surrounding λi and μ j , respec-
tively. By Lemma 2.7,

f{A,B}(C) = ∑
i, j

∑
g,h

1
g!h!

∂ g+h

∂xg∂yh f (λi,μ j)VigCWT
jh. (10)
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2.3. A Cauchy integral representation

For holomorphic f , the expression (10) leads to a Cauchy integral representation
of f{A,B}(C) . We refer to [24] for an introduction to multivariate holomorphic func-
tions.

THEOREM 2.8. Let ΩA,ΩB ⊂C be open sets containing the eigenvalues of A and
B, respectively, such that f is holomorphic on ΩA ×ΩB and continuous on ΩA ×ΩB .
Then

f{A,B}(C) = − 1
4π2

∮
ΓA

∮
ΓB

f (x,y)(xI −A)−1C(yI−BT )−1dydx, (11)

where ΓA,ΓB are the contours of ΩA,ΩB .

Proof. By changing the path of integration, the right-hand side of (11) can be
replaced by

− 1
4π2 ∑

i, j

∮
Γ(λi)

∮
Γ(μ j)

f (x,y)(xI −A)−1C(yI−BT )−1dydx, (12)

with sufficiently small circles Γ(λi),Γ(μ j) surrounding λi,μ j . The matrices Vig,Wjh

introduced in (9) allow for the decompositions

(xI−A)−1 = ∑
i

indλi
(A)−1

∑
g=0

1
(x−λi)g+1Vig, (yI−B)−1 = ∑

j

indμ j (B)−1

∑
h=0

1
(y− μ j)h+1Wjh.

Inserting this into (12) gives

− 1
4π2 ∑

i, j
∑
g,h

∮
Γ(λi)

∮
Γ(μ j)

f (x,y)
(x−λi)g+1(y− μ j)h+1VigCWT

jhdydx. (13)

Using

∂ g+h

∂xg∂yh f (λi,μ j) = −g!h!
4π2

∮
Γ(λi)

∮
Γ(μ j)

f (x,y)
(x−λi)g+1(y− μ j)h+1 dydx,

we thus obtain that the right-hand side of (11) is identical with the expression (10) for
f{A,B}(C) . �

For the case f (x,y) = 1/p(x,y) with an arbitrary bivariate polynomial p , the result
of Theorem 2.8 is attributed to Krein [25] in [27], see also [11, 36, 42] for subsequent
work considering this special case.

In many practically relevant instances of the univariate case, the eigenvalues of A
are contained in a domain of holomorphy of f and therefore ΩA is connected. This ap-
pears to happen less frequently for bivariate holomorphic functions. As a typical exam-
ple, consider f (x,y) = 1/(x− y) and let the eigenvalues of A be 1/2,1+1/2, . . . ,n+
1/2 while the eigenvalues of B are 1,2, . . . ,n . Then any ΩA ×ΩB in the sense of
Theorem 2.8 consists of at least n2 connected components, see also Figure 1.



BIVARIATE MATRIX FUNCTIONS 455

0 2 4 6
0

1

2

3

4

5

6

Eigenvalues of A

E
ig

en
va

lu
es

 o
f B

Figure 1: Red line: Singularities of f (x,y) = 1/(x−y) . Blue squares: Set (ΩA∩R)× (ΩB∩R)
for which ΩA ×ΩB satisfies the requirements of Theorem 2.8

3. Connections to existing literature

Meaningful notions of evaluating a multivariate function in linear operators or,
more generally, in elements from a Banach algebra have been proposed a number of
times in the literature. However, to the best of our knowledge, all existing definitions
have been proposed to suit an infinite-dimensional setting. In turn, this imposes certain
restrictions that turn out to be unnecessary in the finite-dimensional case. In particular,
we are not aware of any previous work that would allow for a non-holomorphic func-
tion f and non-diagonalizable matrices A,B . Nevertheless, it would be comforting
if these existing notions coincided with our definition of bivariate matrix functions, if
the restrictions mentioned above are imposed. In the following, we show for two such
notions that this is indeed the case.

3.1. Holomorphic functional calculus on commutative Banach algebras

The evaluation of a multivariate holomorphic functions in elements from a com-
mutative Banach algebra has a long history, see [2, 38] and [5] for a recent overview. An
introduction into this area and the general definition is beyond the scope of this paper.
Therefore we only consider a specialization of this framework to the finite-dimensional
setting.

For A∈ C
m×m,B∈ Cn×n , let us define A = In⊗A and B = B⊗ Im , where ⊗ de-

notes the usual Kronecker product. Then the algebra A generated by the three elements
Imn,A ,B is commutative, as A B = BA . Let P[x,y] denote the polynomial algebra
in x,y . Then there is a homomorphism Θ : P[x,y] → A that sends 1 �→ Imn , x �→ A ,
y �→ B . More specifically, we have

Θ : ∑
i j

pi jx
iy j �→ ∑

i j

pi jA
iB j = ∑

i j

pi j(I⊗Ai)(Bj ⊗ I) (14)

for pi j ∈ C . By Oka’s extension theorem [41, 5], this homomorphism can be extended
to map any function f that is holomorphic in an open neighborhood of Λ(A)×Λ(B)
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to an element of A , where Λ(·) denotes the set of eigenvalues of a matrix. It is well
known that this extension satisfies

Θ : f �→ − 1
4π2

∮
ΓA

∮
ΓB

f (x,y)(xI −A )−1(yI−B)−1dydx

= − 1
4π2

∮
ΓA

∮
ΓB

f (x,y)
(
I⊗ (xI−A)−1)((yI−B)−1⊗ I

)
dydx, (15)

with ΓA,ΓB as in Theorem 2.8.
It is immediately seen that (14) and (15) are just the matrix representations of the

expressions in (2) and (11), respectively. Hence, this specialization of the holomorphic
functional calculus coincides with our definition for the case of holomorphic functions.
A number of other works have also considered the finite-dimensional case of the holo-
morphic functional calculus, including [28, 29]. Recently, Gil’ [12] derived estimates
on ‖ f{A,B}(C)‖2 for holomorphic f based on the Cauchy integral representation (11).

3.2. Functions in Hermitian matrices

Another well established research direction involving bivariate matrix functions is
concerned with the convexity and monotonicity of functions for selfadjoint operators or
Hermitian matrices, see, e.g., [6, 15, 23, 39]. For example in [23, Pg. 542] a bivariate
function f in two Hermitian matrices A,B is defined as

∑
i, j

f (λi,μ j)(Wj0⊗Vi0), (16)

where we have made use of the notation introduced in Section 2.2. In particular, Vi0

and Wj0 are the orthogonal projections onto the null spaces of A− λiI and B− μ jI ,
respectively. Again, it is immediately seen that (16) is just the matrix representation of
our explicit expression (10) specialized to the Hermitian case.

4. Spectral properties and composition of functions

The eigenvalues of the linear operator f{A,B} are scalars λ ∈C for which there is
a nonzero C ∈ Cm×n such that f{A,B}(C) = λC . Equivalently, these are the eigenval-
ues of the mn×mn matrix M ( f{A,B}) , where M denotes the natural isomorphism
between linear operators on Cm×n and mn×mn matrices.

LEMMA 4.1. Let λ1, . . . ,λs and μ1, . . . ,μt denote the eigenvalues of A and B, re-
spectively. Then the eigenvalues of f{A,B} are given by f (λi,μ j) for i = 1, . . . ,s, j =
1, . . . ,t .

Proof. By Definition 2.3, f{A,B} = p{A,B} , where the polynomial p(x,y) =
∑i j pi jxiy j interpolates f at {A,B} . By a direct extension of the usual argument for
linear matrix equations (see, e.g., [18, Thm 4.45] and [44]), the eigenvalues of

M (p{A,B}) = ∑
i j

pi j
(
Bj ⊗Ai).
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are given by p(λi,μ j) = f (λi,μ j) . �
To discuss the index of f (λi,μ j) as an eigenvalue of f{A,B} , the following result

will turn out to be useful.

LEMMA 4.2. Let f1, f2 be holomorphic functions in the vicinity of the spectra of
A,B. Then f1{A,B} ◦ f2{A,B} = π{A,B} with π(x,y) = f1(x,y) f2(x,y) .

Proof. By an appropriate choice of contours ΓA and ΓB , Theorem 2.8 implies(
f1{A,B} ◦ f2{A,B})(C) =

1
16π4

∮
ΓA

∮
ΓB

∮
ΓA

∮
ΓB

f1(x1,y1) f2(x2,y2)(x1I−A)−1(x2I−A)−1 · · ·

· · ·C(y1I−BT )−1(y2I−BT )−1dy2dx2dy1dx1.

Using

− 1
4π2

∮
ΓA

∮
ΓA

f1(x1,y1) f2(x2,y2)(x1I−A)−1(x2I−A)−1dx2dx1

=
1

2π i

∮
ΓA

f1(x,y1) f2(x,y2)(xI−A)−1dx,

see, e.g., [27, Sec 7], and an analogous formula for (y1−B)−1(y2−B)−1 , we obtain(
f1{A,B} ◦ f2{A,B})(C) = − 1

4π2

∮
ΓB

∮
ΓA

f1(x,y) f2(x,y)(xI−A)−1C(yI−BT )−1dydx

= π{A,B}(C). �

An immediate consequence of Lemma 4.2, bivariate matrix functions evaluated
at the same arguments commute: f1{A,B} ◦ f2{A,B} = f2{A,B} ◦ f1{A,B} . Another
consequence is the power rule

f{A,B} ◦ · · ·◦ f{A,B}︸ ︷︷ ︸
d times

= f d{A,B}. (17)

COROLLARY 4.3. Let σ be an eigenvalue of f{A,B} . Then

indσ f{A,B} � max
{
indλ A+ indμB−1: σ = f (λ ,μ),λ ∈ Λ(A), μ ∈ Λ(B)

}
, (18)

where Λ denotes the set of eigenvalues of a matrix.

Proof. From Lemma 2.4 it is clear that we can assume without loss of generality
that A and B are already in Jordan canonical form (7). Then the matrix representation
of f{A,B} becomes block diagonal with diagonal blocks

M ( f{JA(λ ),JB(μ)}) =
indλ (A)−1

∑
i=0

indμ (B)−1

∑
j=0

pi j
(
JB(μ)− μI

) j ⊗ (
JA(λ )−λ I

)i
,
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for some coefficients pi j with p00 = f (λ ,μ) =: σ , see (8). Defining the polynomial
p(x,y) = ∑

i+ j�1
pi jxiy j , we have

f{JA(λ ),JB(μ)}−σ I = p{JA(λ )−λ I,JB(μ)− μI}

and therefore, by (17),

(
f{JA(λ ),JB(μ)}−σ I

)d = pd{JA(λ )−λ I,JB(μ)− μI}.

By the binomial theorem,

pd{JA(λ )−λ I,JB(μ)− μI} = ∑
i+ j�d

qi j
(
JB(μ)− μI

) j ⊗ (
JA(λ )−λ I

)i

for some coefficients qi j . A term in this sum becomes zero if i � indλ (A) or j �
indμ(B) , which will always be the case if d = indλ (A)+ indμ(B)−1. Hence,

indσ f{JA(λ ),JB(μ)} � indλ A+ indμB−1.

This shows the result by taking the maximum over all eigenvalue pairs λ ,μ that satisfy
σ = f (λ ,μ) . �

In most cases of practical interest, we expect that equality holds in (18). How-
ever, there are obvious exceptions, as the trivial example f (x,y) ≡ 0 demonstrates. A
more detailed study of the Jordan canonical form of f{A,B} in the case of a bivariate
polynomial f can be found in [33].

A bivariate matrix function f{A,B} can be composed with a univariate function
u(z) by applying the usual definition of matrix function to the matrix representation
M ( f{A,B}) . Formally, we let

u( f{A,B}) := M−1(u(M ( f{A,B}))).

This definition assumes u to be defined on the spectrum of f{A,B} , for which a suffi-
cient condition in terms of the Jordan structures of A and B follows from Corollary 4.3:
The derivatives

u(g)( f (λi,μ j)
)
,

i = 1, . . . ,s, j = 1, . . . ,t,
g = 0, . . . , indλi

A+ indμ j B−2,
(19)

are assumed to exist.

THEOREM 4.4. Consider a bivariate function f (x,y) defined on the spectra of
square matrices A,B and a univariate function u(z) for which the derivatives (19)
exist. Then

u( f{A,B}) = (u ◦ f ){A,B}. (20)
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Proof. Since both sides of (20) are linear in u , the power rule (17) implies that
the statement of the lemma holds for any polynomial u . Now, let the polynomial
p f interpolate f at {A,B} , and let pu be a Hermite interpolation of u satisfying

p(g)
u

(
f (λi,μ j)

)
= u(g)( f (λi,μ j)

)
for all i, j,g as in (19). Then

u( f{A,B}) = pu(p f {A,B}) = (pu ◦ p f ){A,B}.

The proof is concluded if we can show that pu ◦ p f interpolates u ◦ f at {A,B} . By
Faà di Bruno’s chain rule, the mixed derivative

∂ g+h

∂xg∂yh pu
(
p f (x,y)

)
can be expressed in terms of derivatives of pu up to order g + h and mixed partial
derivatives of p f up to order g,h in x,y . Applying this chain rule to the conditions (3)
for u ◦ f , all the resulting derivatives of pu and p f are found to match those of u and
f , respectively. Hence, (3) is satisfied; pu ◦ p f indeed interpolates u◦ f at {A,B} . �

To give some examples of Theorem 4.4, consider first the Sylvester equation AX−
XBT = C or, equivalently, f{A,B}(X) = C for f (x,y) = x− y . Provided that A and B
have disjoint spectra, Theorem 4.4 implies that the solution X = f{A,B}−1(C) can be
written as

X = fsylv{A,B}(C) with fsylv(x,y) =
1

x− y
.

Similarly, the solution to the Stein equation X −AXBT = C , if it exists and is unique,
can be written as

X = fstein{A,B}(C) with fstein(x,y) =
1

1− xy
.

As a last example, Theorem 4.4 implies the identity(
I⊗A+B⊗ I

)−1/2vec(C) = fisqr{A,B}(C) with fisqr(x,y) = (x+ y)−1/2, (21)

which allows for the application of the inverse matrix square root of I⊗A+B⊗ I with-
out having to form this matrix explicitly, see Section 6 for a more detailed discussion.

5. Fréchet derivatives of univariate matrix functions

Given a sufficiently often differentiable univariate function f (x) , the Fréchet deriva-
tive of f at a matrix A in direction C is defined as

Df{A}(C) := lim
h→0

1
h

(
f (A+hC)− f (A)

)
.

The following result shows that Df{A}(C) can be interpreted as a bivariate matrix
function representing the finite difference evaluated at A .
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THEOREM 5.1. Let A be a square matrix and let f be 2 · indλ A− 1 times con-
tinuously differentiable at λ for every λ ∈ Λ(A) . Then

D f{A}(C) = f [1]{A,AT}(C), with f [1](x,y) := f [x,y] =

{
f (x)− f (y)

x−y , for x �= y,
f ′(x), for x = y.

Proof. For f (x) = xk , it is well known (and easy to see) that

Df{A}(C) =
k

∑
i=1

Ak−iCAi−1 = f [1]{A,AT}(C)

with f [1](x,y) = ∑k
i=1 xk−iyi−1 = (xk − yk)/(x− y) for x �= y and f [1](x,x) = f ′(x) .

Because of linearity, this shows the statement of the theorem for every polynomial. For
the general case of a function f satisfying the assumptions, let p be an interpolating
polynomial matching the first 2 · indλ A− 1 derivatives of f at every eigenvalue λ of
A . Consider any pair of eigenvalues λ ,μ of A , and let

T =

⎡
⎢⎢⎢⎢⎣

τ0 1

τ1
. . .
. . . 1

τg+h+1

⎤
⎥⎥⎥⎥⎦ , τ0 = · · · = τg = λ , τg+1 = · · · = τg+h+1 = μ .

Then f (T ) is defined and equals p(T ) as long as 0 � g+ h � indλ A+ indμA− 1. A
result by Opitz [34] shows that the upper triangular entries of f (T ) are the divided
differences of f . In particular, the entry in the upper right corner equals

f
[

λ , . . . ,λ︸ ︷︷ ︸
g+1 times

, μ , . . . ,μ︸ ︷︷ ︸
h+1 times

]
=

⎧⎨
⎩

1
g!h!

∂ g+h

∂xg∂yh f [x,y]
∣∣∣
x=λ ,y=μ

for λ �= μ ,

1
(g+h)!

∂ g+h

∂xg+h f (x)
∣∣∣
x=λ

for λ = μ ,

which, together with f (T ) = p(T ) , shows

∂ g+h

∂xg∂yh p[1](λ ,μ) =
∂ g+h

∂xg∂yh f [1](λ ,μ)

for all 0 � g+h � indλ A+ indμA−1. Hence, p[1] satisfies the required interpolation
conditions and

Df{A}(C) = Dp{A}(C) = p[1]{A,AT} = f [1]{A,AT}
concludes the proof. �

Using Lemma 4.2 and Theorem 5.1, the trivial relation f [x,y]x− f [x,y]y = f [x,y]
(x− y) = f (x)− f (y), gives – expressed in terms of the matrix A – the commutator
relations

AD f{A}(C)−Df{A}(C)A = Df{A}(AC−CA) = f (A)C−C f (A), ∀C ∈ C
n×n

(22)
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for any holomorphic function f , see also [4, Thm 2.1]. Najfeld and Havel [32, Thm
4.4] have obtained an expression for Df{A} from (22) for functions f that admit a
power series with convergence radius ρ and ‖A‖< ρ . In [32], this expression is called
“generalized divided difference matrix”, which coincides with the matrix representation
of f{A,AT} and thus matches the statement of Theorem 5.1. Note, however, that
Theorem 5.1 imposes much weaker conditions on f and A .

Theorem 5.1 together with Lemma 4.1 reconfirm the well-known fact that the
eigenvalues of Df{A} are given by f [λ ,μ ] for all pairs λ ,μ ∈Λ(A) , see also Theorem
3.9 in [17]. Lemma 2.7 and (10) yield explicit expressions for Df{A} = f [1]{A,AT}
that recover an expression of Horn and Johnson stated in [18, Thm 6.6.14] under
stronger assumptions on the differentiability of f . Note that all these explicit expres-
sions coincide with a formula by Daleckiı̆ and Kreı̆n [8, 7] in the special case that A is
diagonalizable, see also (24) below and Theorem 3.11 in [17].

Finally, we demonstrate the versatility of the framework of bivariate matrix func-
tions by showing the well-known relation

f

([
A C
0 A

])
=

[
f (A) Df{A}(C)
0 f (A)

]
. (23)

THEOREM 5.2. Equation (23) holds under the assumptions of Theorem 5.1.

Proof. It is well known (and easy to show) that (23) holds for any polynomial.

Setting M =
[

A C
0 A

]
, we clearly have indλ M � 2 · indλ A for every λ ∈ Λ(A) . Hence,

for a polynomial p interpolating the first 2 · indλ A−1 derivatives of f at λ , we have
p(M) = f (M) . By the argument used in the proof of Theorem 5.1, p[1] interpolates
f [1] at {A,AT} . This concludes the proof:

f (M) = p(M) =
[

p(A) p[1]{A,AT}(C)
0 p(A)

]
=

[
f (A) f [1]{A,AT}(C)
0 f (A)

]
. �

Note that Theorem 5.2 imposes differentiability conditions on f that are minimal
for generic C . In comparison, Theorem 2.1 in [31] shows (23) only under the stronger
assumption that f is m−1 times continuously differentiable at every eigenvalue of A ,
where m = max{indλ A : λ ∈ Λ(A)} .

By applying the Cauchy integral representation for holomorphic matrix functions,
Equation (23) implies a well-known integral representation for Df (A) , see [40]. It
is instructive to rederive this representation from the Cauchy integral formulation of
Theorem 2.8 applied to f [1]{A,AT} .

6. Computation of bivariate matrix functions

The purpose of this section is to provide a rather informal discussion of possible
algorithms for computing f{A,B}(C) for medium-sized matrices A,B .
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Diagonalization of A and B . Suppose that A,B are diagonalizable:

P−1AP = diag(λ1, . . . ,λm), Q−1BQ = diag(μ1, . . . ,μn),

and let C̃ = P−1CQ−T . Then Lemma 2.7 implies

f{A,B}(C) = P
(
F̃ ◦ C̃

)
QT with F̃i j = f (λi,μ j), (24)

where “◦” denotes the Hadamard product. This expression is well-suited for (nearly)
normal matrices A and B but can be expected to run into numerical instabilities when
P and/or Q are ill-conditioned.

Diagonalization of B only. The above approach can be modified if only one of the
matrices, say B , is known to admit a well-conditioned basis of eigenvectors. Let
Q−1BQ = diag(μ1, . . . ,μn) and partition C̃ = CQ−T =

[
c1, . . . ,cn

]
. Then Lemma 2.4

and Lemma 2.6 imply

f{A,B}(C) =
[
y1, . . . ,yn

]
QT with y j = f{A,μ j}(c j). (25)

Note that f{A,μ j}= fμ j (A) is a univariate matrix function for fμ j (x) = f (x,μ j) . Hav-
ing a stable procedure for evaluating/applying fμ j (A) at hand, this approach can be
expected to be significantly more robust than (24). An analogous, row-wise procedure
can be performed if A is known to admit a well-conditioned basis of eigenvectors.

Taylor expansion. In the extreme case that all eigenvalues of B are nearly identical,
the diagonalization of B is clearly not the preferred option but this situation can be
exploited as well. Following the approach for univariate matrix functions proposed by
Kågström [22], see also [9], we let μ = trace(B)/n and consider the truncated Taylor
expansion

f (x,y) ≈ f (x,μ)+ (y− μ)
∂
∂y

f (x,μ)+ · · ·+ 1
k!

(y− μ)k ∂ k

∂yk f (x,μ). (26)

This yields an approximation for the bivariate matrix function in terms of the univariate

functions f (0)
μ (x) := f (x,μ), f (1)

μ (x) := ∂
∂y f (x,μ), . . . , f (k)

μ (x) := ∂ k

∂yk f (x,μ) :

f{A,B}(C) ≈ f (0)
μ (A)C+ f (1)

μ (A)C(BT − μI)+ · · ·+ 1
k!

f (k)
μ (A)C(BT − μI)k. (27)

Since B has all eigenvalues close to μ , one can expect that k does not need to be chosen
very large to obtain good accuracy, see [9, 17, 22, 30] for discussions. Compared

to (25), formula (27) has the requirement that not only f (0)
μ but also the derivatives

f (1)
μ , . . . , f (k)

μ need to be evaluated at A . Without going into implementation details, we
only mention that if the Schur-Parlett algorithm [9] is used for this purpose then the
mixed partial derivatives of f need to be available, which could be considered a not too
unreasonable requirement.
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Block diagonalization of B only. Diagonalization and Taylor expansion can be com-
bined in an obvious manner by considering a block diagonalization of B :

Q−1BQ = diag
(
B11, . . . ,Btt

)
(28)

such that Q is well-conditioned and the eigenvalues of each diagonal block Bj j are
nearly identical. Methods for performing such a decomposition reliably are a subtle
matter and have been discussed, e.g., in [9, 14, 35]. Assuming (28) is available,

f{A,B}(C) =
[
Y1, . . . ,Yn

]
QT with Yj = f{A,Bj j}(Cj),

where C̃ = CQ−T =
[
C1, . . . ,Cn

]
is partitioned in accordance with Q−1BQ . In effect,

each block column Yj can be computed by means of (27).
An analogous, block row-wise procedure can be derived if it is preferable to block

diagonalize A .

Summary. As noted in [9, 17], algorithms for evaluating univariate matrix functions
based on block diagonalization have their deficiencies. In particular, to obtain a very
well-conditioned Q , the spectrum of the diagonal blocks can often not be chosen very
narrow. Consequently, to yield good accuracy, a large value of k needs to be chosen
in the truncated Taylor expansion (27). The Schur-Parlett algorithm [9, 35] has been
demonstrated to allow for more narrow block diagonal spectra and is therefore preferred
over block diagonalization. It would be desirable to have a bivariate analogue of this
algorithm, which ideally would reduce to the well-known Bartels-Stewart algorithm
for Sylvester matrix equations if applied to f (x,y) = 1/(x− y) . Unfortunately, the
derivation of such an analogue appears to be difficult.

It should be stressed that there are far better algorithms available for the two most
important special cases of bivariate matrix functions; we refer to [21] for linear matrix
equations and to [17] for matrix Fréchet derivatives.

7. Extension to multivariate functions

For the sake of clarity, the focus of this paper has been on bivariate matrix func-
tions. However, the extension to arbitrary multivariate functions is rather simple.

First, consider a d -variate polynomial

p(x1, . . . ,xd) =
s1

∑
i1=1

· · ·
sd

∑
id=1

pi1,...,id x
i1
1 · · ·xid

d = ∑
i∈I

pix
i,

where we used the usual multiindex notation and I = {1,2, . . . ,s1}×·· ·×{1,2, . . . ,sd} .
For the evaluation of p at d matrices A1 ∈ Cn1×n1 , . . . ,Ad ∈ Cnd×nd , we propose to de-
fine

p{A1, . . . ,Ad}(C) := ∑
i∈I

piC×1 Ai1
1 ×2 Ai2

2 · · ·×d Aid
d ,



464 DANIEL KRESSNER

where C ∈ Cn1×n2×···×nd is a tensor of order d and × j denotes the j -mode multiplica-
tion of a tensor with a matrix [10, 3]. This matches (2) for d = 2 since Ai1

1 C(AT
2 )i2 =

C×1 Ai1
1 ×2 Ai2

2 .
For a general function f (x1, . . . ,xd) , tensor Hermite interpolation yields a polyno-

mial p(x1, . . . ,xd) satisfying

∂ |g|

∂xg p(λ1, . . . ,λd) =
∂ |g|

∂xg f (λ1, . . . ,λd),
g = (g1, . . . ,gd),
gk = 0, . . . , indλk

(Ak)−1, k = 1, . . . ,d,
(29)

for every tuple of eigenvalues λ1 ∈ Λ(A1), . . . ,λd ∈ Λ(Ad) , provided of course that all
required mixed derivatives of f exist and are continuous. The d -variate matrix function
associated with f can then be defined as f{A1, . . . ,Ad} := p{A1, . . . ,Ad}, which is a
linear operator on Cn1×n2×···×nd .

Mutatis mutandis, all results presented for bivariate matrix functions can be ex-
pected to admit d -variate extensions. For example, if f is holomorphic on an open set
Ω = Ω1×·· ·×Ωd , with Λ(Ak)⊂ Ωk , and continuous on Ω , the d -variate analogue of
the Cauchy integral formula of Theorem 2.8 becomes

f{A1, . . . ,Ad}(C)=
1

(2π i)d

∮
Γ1

· · ·
∮
Γd

f (x1, . . . ,xd)C×1 (x1I−A1)−1 · · ·×d (xdI−Ad)−1dx,

where Γk is the contour of Ωk .
The multivariate matrix function for f (x1, . . . ,xd) = 1/(x1 + · · ·+ xd) can be used

to solve discretizations of separable partial differential equations, see [13, 26]. We are
not aware of any other application.

8. Conclusions and outlook

The definition of bivariate matrix function proposed in this paper has resulted in
the unification and (mild) improvements of some existing results for linear matrix equa-
tions and matrix Fréchet derivatives.

The focus of this paper was on basic theoretical results. There is evidence that
the concept of bivariate matrix functions may offer a more abstract view and possibly
new insights for a variety of other, more advanced results. First, existing Krylov sub-
space methods for Lyapunov matrix equations [20, 37] can be extended and viewed as
bivariate polynomial matrix approximations. Second, an analogue of Theorem 5.1 for
Fréchet derivatives of bivariate matrix functions could lead to a more efficient way to
compute condition numbers for linear matrix equations, cf. [16, Sec. 16.3].
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