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CLASSICAL ADJOINT COMMUTING MAPPINGS ON
ALTERNATE MATRICES AND SKEW-HERMITIAN MATRICES

WAI LEONG CHOOI AND WEI SHEAN NG

(Communicated by C.-K. Li)

Abstract. Let n be an even integer with n > 4. In this note we study classical adjoint commuting
mappings ¥ on the space of n x n alternate matrices, and on the space of n x n skew-Hermitian
matrices with respect to a proper involution, satisfying one of the following conditions:

o y(adj(A+aB)) = adj (y(A)+ay(B))
e y(adj(A—B))=adj(y(A)—y(B)) and y is surjective

for scalar o and matrices A, B in each respective matrix spaces. Here, adj A denotes the classical
adjoint of a matrix A.

1. Introduction

Let F be a field and m,n be positive integers. By .#,,(F) we denote the linear
space of m x n matrices over F. If m = n, we simply write .#,(F) = #,x,(F). Let
A € #,(F). We say that A is an alternate matrix if A’ = —A and the diagonal elements
of A are all zero, or equivalently u’Au =0 for all u € .4, (F), where A’ stands for
the transpose of A. Suppose that F is a field which possesses an involution ~ of F
(i.e., ~ :F — F is an automorphism of F such that @ = a for all a € F). Then A is said
to be skew-Hermitian (respectively, Hermitian) with respect to the involution ~ of I if
A" = —A (respectively, A’ = A). Here, A is the matrix obtained from A by applying
entrywise. Let F~:={a € F : @ = a} (respectively, SF~:= {a € F:@= —a}) denote
the set of all symmetric elements (respectively, skew-symmetric elements) of F with
respect to the involution ~ of [F. One can easily check that [~ forms a subfield of F
and is called the fixed field with respect to the involution ~ . Evidently, F~=IF when the
involution ~ 1is identity. Otherwise, the involution ~ is proper. Throughout, we shall
use J#,(F), “¢,(F) and ,(F) to designate the linear space of all n x n alternate
matrices over I, the F~ -linear space of all n x n skew-Hermitian matrices over [, and
the '~ -linear space of all n x n Hermitian matrices over [F, respectively.

The classical adjoint, sometimes called the adjugate, of a matrix A € 4, (F),
denoted by adjA, is the n x n matrix whose (i, j)-th entry is the (j,i)-th cofactor
of A. The notion of the classical adjoint is one of the important matrix functions on
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square matrices and has been employed to various studies of generalized invertibility of
matrices, see [15]. Let .#| and .#, be matrix spaces such that adjA € .#; whenever
A€ A fori=1,2. Amapping y : .4 — #, is called classical adjoint-commuting
if

v(adjA) =adjy(A) forevery A € 4. (L.1)

The study of classical adjoint commuting linear mappings was initiated by Sinkhorn
in [17] over the complex field by using the classical result Frobenius [5] concerning
determinant linear preservers. Later on, similar problems on various matrix spaces
have been considered, see [18, 19, 20, 21], and [23, Chapter 10] and the references
therein. Recently, inspired by the works of [3, 16], the present authors started the study
of classical adjoint commuting mappings ¥ on the space of square matrices over a
field in [1], and on the space of Hermitian matrices over a field which possesses an
involution, see [2], satisfying one of the following two conditions:

A1 (adj(A+aB)) = adj (y(4) + oy(B))
(4D (adj(A—B)) = adj (w(A) - w(B))

for scalar o and matrices A,B in each respective matrix space. One knows that v
satisfies condition (A1) or (A2) implies that y(0) = 0, and so condition (1.1) holds true
for y.

Note that when 7 is a positive even integer, by adj(—A) = (—1)""'adjA for any
A€ #,(F), we see that if A is an alternate matrix (respectively, a skew-Hermitian ma-
trix with respect to an involution ~ of ), then adj A is alternate (respectively, skew-
Hermitian) because adjA has zero diagonal entries and (adj A)’ = —adj A (respec-
tively, (adj A)' = —adj A).

Let n be an even integer with n > 4. In this present note, basically, by employing
a similar idea and technique used in [1, 2], we continue to study classical adjoint com-
muting mappings Y on the space of n X n alternate matrices, and on the space of n xn
skew-Hermitian matrices with respect to a proper involution, satisfying either condition
(A1) or condition (A2). Let F[x] denote the ring of polynomials in an indeterminate x
over a field F. More precisely, we prove the following results:

THEOREM 1. Let n be an even integer such that n > 4. Let F be a field with
at least n+2 elements such that X*~' —a € F[x] has a root for every a € F. Then
v ) (F) — J6,(F) is a mapping satisfying

y(adj (A + aB)) = adj (w(A) + ay(B)) (1.2)

forevery A,B € J,(F) and o € F if and only if either w(A) = 0 for every invertible
matrix A € J,(F) and rank (y(A) + ay(B)) < n—2 for every A,B € J,(F) and
o € F; or there exist an invertible matrix P € .#,(F) with P'P = ul,, and nonzero
scalars p, A € F with (Au)"~2 =1, such that either

W(A) = APAP" for every A € J#,(F)
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or when n=4,
W(A) = APA*P" forevery A € #4(F),

where .
0 ap a3 au 0 ap az ax
—aipy 0 axp ay|_[—-an 0 a ay (1.3)
—aiz —azz 0 axy —aiz —ayy 0 az | '
—ayy —azy —azg 0 —ap3 —agq —azy 0

THEOREM 2. Let m and n be even integers such that m,n > 4. Let K be a field
with at least three elements, and let F be a field with at least three elements such that
X""! —a € Fx| has a root for every a € F. Then y : J#,(F) — J,(K) is a surjective
mapping satisfying

y(adj (A— B)) = adj (y(4) — y(B)) (1.4)
forevery A,B € J6,(F) ifand only if m=n, F and K are isomorphic, and there exist
a field isomorphism ¢ : F — K, an invertible matrix P € #,(K) with P'P = ul,, and
nonzero scalars [, A € K with (Ap)"~2 =1, such that either

W(A) = APA°P" forevery A € ,(F)

or when n =4,
w(A) =AP(A*)°P" forevery A € #4(F),

where
*
0 ap a3 an 0 ap a3 ax
—aip 0 axp ay | _[—-an 0 aiu ay
—ap3 —a3 0 az —aiz —ay 0 axy
—ayy —az —az 0 —az3 —azq —aze 0

Here, A° is the matrix obtained from A = (a;;) by applying © entrywise, i.e.,
A% = (G(a,-j)).

THEOREM 3. Let m and n be even integers such that m,n > 4. Let F be a field
which possesses a proper involution ~ of T such that either |F~| =2 or |[F~| >n+1.
Then v : 56,(F) — %7, (F) is a mapping satisfying

y(adj (A + aB)) = adj (w(A) + ay(B))

for every A,B € %5,(F) and oo € T~ if and only if either y(A) = 0 for every rank
one matrix A € 5, (F) and rank (y(A) + oy (B)) < m—2 for every A,B € %9, (F)
and o € F~; or m =n and

w(A) = APA°P' for every A € S,(F),

where o :TF — T is a field isomorphism satisfying o(a) = o(a) for all a € F and
o(a)=a forall a€F~, P e .#,(F) is invertible with P'P = ¢I,,, and A, € F~ are
scalars with (A¢)"% = 1.
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THEOREM 4. Let m and n be even integers such that m,n > 4. Let F and K
be fields which possess proper involutions = of F and " of K, respectively, such that
either |K"| =2, or [F~|,|K"| > 3. Then v : 9,(F) — ,(K) is a surjective
mapping satisfying

v(adj(A—B)) =adj (y(A) — y(B))

forevery A,B € %5,(F) ifand only if m=n, F and K are isomorphic, and
w(A) = APA°P" for every A € S5,(F),

where 6 : (F,”) — (K,") is a field isomorphism satisfying G/(;) =0(a) forall acF,
P € #,(K) is invertible with P'P = gl, and A,¢ € K" are scalars with (Ag)" % = 1.

Besides these results, we have also classified surjective classical adjoint commut-
ing additive mappings on alternate matrices (in Corollary 1) and characterized clas-
sical adjoint commuting additive mappings on skew-Hermitian matrices (in Theorem
5). In Proposition 4, we address a general description of the structure of mappings
o : ,(F) — 52, (F) that satisfy

(1" *adj (A + 0B)) = p"*adj (9(4) + cr(B))

forevery A,B € #,(F) and oo € F~, where u is a fixed nonzero scalar in F~ USF~.
This result serves as a tool in the proof of Theorem 3, and also it slightly improves a
result and corrects a misprint in [2, Theorem 2.12].

Before starting our proofs, we give some examples of nonzero degenerate classical
adjoint commuting mappings on alternate matrices sending invertible matrices to zero,
and nonzero degenerate classical adjoint commuting mappings on skew-Herimitian ma-
trices that map rank one matrices and invertible matrices to zero.

EXAMPLE 1. Let m and n be even integers such that m,n > 4.

(i) Let F be either the real field R or the complex field C. Let f:F — F be a
nonzero function and let y; : JZ,(F) — 7, (F) be the mapping defined by

f(a12)(E12 _E21) ifA= (aij) isof rank k with2 <k <n—2
vi(A)= .
0 otherwise.

(ii) Let F be a field with n — 1 elements. Let g: %, (F) - F and h:F — F be
nonzero functions. Let y, : J#,(F) — %, (F) be the mapping defined by

;’77:—11 h(alz)(Ezi,in — E2,'72,',1) ifA= (a,-j) is of rank two
v2(A) =} g(A)(E1p — Ey) if Ais of rank k, 2 <k <n
0 otherwise.

Here, E;; stands for the square matrix unit whose (i, j)-th entry is one and zero else-
where. It is easily verified that each y; satisfies conditions (A1) and (A2), and sends
invertible matrices to zero.
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EXAMPLE 2. Let m and n be even integers such that m,n > 4, and let F and K
be fields which possess proper involutions ~ of F and  of K, respectively.

(i) Let A,A1,...,Ap2 € SK" := {a € K:a= —a} be nonzero scalars. Let ¢ :
S96,(F) — S5¢,(K) be the mapping defined by

AEN ifAisofrankk, 2 <k <n
01(A) = l’."z_lz ME;; if A is of rank two
0 otherwise.

(i) Let o: (F,”) — (K,”) be a field isomorphism such that ¢(a) = G/(;) for all
a€F. Let @, : 95¢,(F) — #,(K) be the mapping defined by

o(ai2)Ein+ 0(axi)Er if A= (ajj) is of rank k with 1 <k <n
P(A) = i
0 otherwise.
Each ¢; satisfies conditions (A1) and (A2) sending rank one matrices as well as invert-
ible matrices to zero.
We remark that each nonzero degenerate classical adjoint commuting mapping
provided in Examples 1 and 2 is neither injective nor surjective.

2. Alternate matrices

Let n be an integer such that n > 2 and F be a field. It is an elementary fact
that each nonzero alternate matrix A € J%,(IF) is necessarily of even rank and can be
expressed as

A=P1® - ®J, 0, 2,)P (2.5)

for some integer 1 < r < n/2 and invertible matrix P € .#,(FF), where

Jime = (_Ol é) € M(F), 2.6)

see for instance [10, p.g. 161] or [22, Proposition 1.34]. Denote J,, :=J; & - - DIy €
Jn(F). When n is even, J, is invertible and adjJ,, = —J,,. If A € J%,(F) is an alternate
matrix with n even, then each (i,7)-th cofactor of A is zero. It follows that adjA has
zero diagonal entries. Moreover, since (adjA)’ = (—1)""'adjA = —adj A, we have
adj A € %, (F) and
. { 0 if rankA # n,
rank adjA = . 2.7
n if rankA =n.
For the basic properties and preliminary results of classical adjoint matrices we refer
the reader, for instance, to [23, Appendix D].
Let g be an integer such that ¢ > 2. Let F be a field and F[x] be the ring of
polynomials in an indeterminate x over [F. Evidently, if [ is algebraically closed, then
the following condition:

x?—a € Flx] has arootin IF for everya € F (2.8)
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holds in . Besides algebraically closed fields, we see that

o if F =T, is a Galois field of p elements with p =2 or p” = kg for some positive
integers r and k, then, by the fact that a” = a for every a € IF,, condition (2.8)
holds true in I, ;

e if g is odd and [ is the real field R, then it follows from the intermediate value
theorem that condition (2.8) holds in R.

By this observation, we have the following result.

PROPOSITION 1. Let n be an integer such that n > 2, and let T be a field.
Then F satisfies condition (2.8) for ¢ = n — 1 if and only if for each invertible matrix
A € M,(F), there exists an invertible matrix B € .#,(F) such that A = adjB.

Proof. We prove the necessity part. Let A € ., (F) be invertible. Denote A :=
(detA)"2. Then A # 0 and there is a nonzero scalar A9 € F such that 1] ' = 17",
Thus A = A~!(AA) = adj B, where B = Ag(adj A) € .#,(F) is invertible. We are done.

We now consider the sufficiency part. Let a € F. We claim that there exists a scalar
0p in [F such that %71 —a=0. The result is trivial when a = 0. We consider a # 0.
Then there exists an invertible matrix By € .#,(FF) such that adj By = al,,. Hence
(detBy)" 2By = adj (adj Bo) = adj (al,) = a"~'I,. So By is diagonal. Let By = agl, for
some scalar o € F. Then ag_lln = adj Bp = al,, implies that ag_l = a. Consequently,
[ satisfies condition (2.8) for ¢g =n— 1. We are done. [J

Inspired by Proposition 1, we obtain the following lemma.

LEMMA 1. Let n be a positive even integer and F be a field. Then F satisfies
condition (2.8) for ¢ = n— 1 if and only if for each invertible matrix A € J,(IF), there
exists an invertible matrix B € J%,(F) such that A = adjB.

Proof. Let A € J%,(F) be invertible. By Proposition 1, there exists an invertible
matrix B € .#,(F) such that A = adj B. Since B = (detB)~("~2adj A, it follows that
B e J(F).

Conversely, let a € F. We claim that there exists oy € F such that oco’l =a.
The result is clear when @ = 0. Consider now a # 0. Then aJ, = adj By for some
invertible matrix By € %, (IF). Since (detBy)" 2By = adj (aJ,,) = —a"~'J,, it follows
that By = —0yJ,, for some scalar oy € F. So 066!71.],, = adj (—onJ,) = aJ,. This yields
(ngl =a, as desired. Then [ satisfies condition (2.8) for ¢ = n — 1. This completes
our proof. [

In what follows, unless otherwise stated, we let m and n be even integers such
that m,n > 4, and let F and K denote fields.

LEMMA 2. Let A,B € J,(FF). Then the following statements hold.

(a) If A is of rank r, then there exists a rank n—r matrix X, € J,(F) such that
rank (A +X;) =n.
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(b) There exists a matrix Xp € J,(F) such that rank (A4 X») = rank (B+X») = n.

(c) There exists a nonzero matrix X3 € J4,(F) such that either A or X3 is of rank n
but not both with rank (A + X3) = n.

(d) If |F| > n—+1 and rank (A+ B) = n, then there exists a scalar A € F with A # 1
such that rank (A + AB) = n.

Proof. Recall that Jy,...,J,/, denote the 2 x 2 alternate matrix defined in (2.6).
Suppose that A € %,(FF) is of rank r. It follows from (2.5) that r > 0 is necessarily
even, and there exists an invertible matrix P € .#,(F) such that

A:P(Jl@@Jr/Z@Onfr)P[ (2.9)

(a) In view of (2.9), we select X| = P(0, D J4 1D+ @Jn/z)Pt € J(F). Itis clear
that X; is of rank n — r and A + X is of rank 7, as required.

(b) Suppose that A = B. It follows from (a) that there exists a matrix X, € %, (F)
such that rank (A 4+ X,) = n. We consider A # B. Let H := A — B € J,(F) be of rank
k with 0 < k < n even. By (2.5), there exists an invertible matrix Q € .#,(F) such that
H=0(1® - ®J®0, )0 Let h be the odd integer such that 5 —1 <h < 5.
We set

050" ifk<2+1
C={ Q(S—T)Q" ifk>"+1landh=
QU -V)Q' ifk>%+1andh=

where § = (Eln_E2,n71)+"'+(En71,2_Enl) 6,%/,7(15'), T:J1@®Jn/4@0n/2 €
%H(F)7 Vv :JIEB@J(H+2)/4@ 0(n72)/2 € %(F)7 Zp :E1p+E2,p—l+"'+Ep1 S
Mp(F) with p=(n—4)/2, and

-1

IS IS

0 010
0 001 Om-—ay2 0 Z—g)2

Z= 1000 € #4(F) and U = 0 Z 0 e Hn(F).
0 -100 —Zn-4)/2 0 03,—4)2

It can be checked that C € %, (F) is of rank n and rank (H+C) =n. Let X, :==C—B.
It is easy to see that X, € J%,(F), and A+ X, = H+C and B+ X, = C are of rank n.
We are done.

(¢) If A is of rank n, then, by (2.9), we have A = PJ,P'. We select

X3 := P(Eln—Enl)Pt € %(F)

It is clear that rankX3 =2 < n and rank (A + X3) = n, as required. We now consider
rankA =r <n. If A =0, then we take X3 = J,,. Suppose that A # 0. Let & be the odd
integer such that 5 — 1 </ < 5. In view of (2.9), we choose

PSP ifr<fi+l
Xy={ P(S—T)P' ifr>%+1landh=2—1
PU—-V)P" if r>5+1landh=7%,
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where S,T,U,V € J,(F) are alternate matrices as defined in (b). Then X3 € J4,(F) is
of rank n and rank (A 4+ X3) = n. We are done.

(d) The result is clear when B = 0. Consider now B # 0. For each x € F, we
denote p(x) =det(A+xB). Then p(x) € F[x] is a nonzero polynomial in x over F. In
view of (2.5), there exists an invertible matrix N € .#,(F) such that B=N(J; ®--- P
Js/2®0n—s)N" with s > 1 even. Then

p(x) = Cdet(G+x(J1 @ ®Jy, ®0,-y)),

where § =det(NN') € F is nonzero and G=N"'A(N~!)" € 2%, (F). Since |F| >n+2
and deg p(x) < s < n, it follows that there exists a scalar Ay € F with A9 # 1 such that
p(A) # 0. Then rank (A + AgB) = n. We complete the proof. [J

LEMMA 3. Let v : J6(F) — ,(K) be a mapping satisfying condition (1.4).
Let A € J%,(F). Then the following statements hold.

(a) If T satisfies condition (2.8) for g = n— 1, then A is invertible implies that
W(A) =0 or y(A) is invertible.

(b) If A is singular, then y(A) is singular.
(c)  isinjective if and only if ranky(A) =m < rankA = n.

Proof. (a) If A is invertible, then there exists an invertible matrix B € J%,(F) such
that A = adjB by Lemma 1. Thus y(A) = adj y(B). If w(B) is invertible, then y(A)
is invertible. If y(B) is singular, then rank y(B) < m—2, and so y(A) =0.

(b) If A is singular, then rankA <n—2 and adj A =0. So adj y(A) = y(adjA) =
w(0) = 0. Therefore, rank y(A) < m—2, and thus y(A) is singular.

(c) By (b), we have rank y(A) = m implies that rank A = n. Let A be of rank n.
By the injectivity of v, together with (a), we conclude that rank y(A) = m. Conversely,
we let H,K € J,(F) such that w(H) = w(K). Let rank (H — K) = k. By Lemma 2 (a),
there exists a rank n — k matrix X € J,(F) such that H — K + X is of rank n. Then
adj w(H — K +X) is of rank m. By (1.4), we see that adj y(X) = adj w(K — (K —
X)) = adj (y(K) = w(K — X)) = adj (y(H) — (K — X)) = adj y(H — K +X). Thus
rank y(X) = m, and so rankX = n. We thus have k = 0, and hence H = K. Then y
is injective. We are done. [

LEMMA 4. Let F be a field satisfying condition (2.8) for g =n—1. Let y :
Jin(F) — 6, (K) be a mapping satisfying condition (1.4). Let P € .#,(F) be an in-
vertible matrix and let Lp : J6,(F) — J6,(K) be the mapping defined by

Lp(A) = w(PAP") forevery A € J%,(F). (2.10)

If Lp(J,) =0, then Lp(A) = 0 for every invertible matrix A € J¢,(F).
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Proof. We first show thatif A, B € /%, (F) are invertible matrices such that rank (A —
B) < n, then
Lp(A)=0 = Lp(B)=0. 2.11)

Since rank (A — B) < n, it follows that adj(P(A — B)P") =0, and so y(adj(P(A —
B)P")) = 0. It follows from (1.4) and (2.10) that adj(Lp(A) — Lp(B)) = 0. Since
Lp(A) = 0, we have adj Lp(B) = 0, and so rank y(PBP') < m. Hence Lp(B) =
y(PBP") =0 by Lemma 3 (a). Denote

A ={JBX|X € #,_2(F) and rankX =n—2} C % (F).
Here, J € J¢5(F) is the 2 x 2 alternate matrix defined in (2.6). We now claim that
Lp(H)=0 forevery H € 7. (2.12)

Let H € 7. Then H is of rank n. Since rank(J, —H) < n, it follows from our
assumption Lp(J,) =0 and (2.11) that Lp(H) = 0, as required.

Let A € J%,(FF) be an arbitrary invertible alternate matrix. Then A can be ex-
pressed as

A= (_“;,t g) € A u(F) (2.13)

where a € F, B= (b;j) € M>,»(F) and C € J#,_»(IF). We argue in the following
two sub-cases:

Case I: n =4. Then we have C = ¢J for some scalar ¢ € F. We first consider
A is of form (2.13) with by; = by, = 0. Since rankA = 4, it follows that a,c # 0.
Let H =J@®C € . Then rank (A — H;) < 4. It follows from (2.11) and (2.12) that
Lp(A) = 0. Suppose now that A is an invertible alternate matrix of form (2.13) with
C #0. We select

0 0
B=1/ 1.0 c
b1 0

_Jaifa#0,
) 1lifa=0.

o (bu bn)
S %4(1[?)’

where

In both cases, we see that each H, is invertible, Lp(H>) = 0 and rank (A — Hy) < 4.
Then Lp(A) =0 by (2.11). Consider now A is of form (2.13) with C = 0. Therefore
B is invertible. If a # 0, then we choose

by1 by
alJ ( 0 0

H; = —by, 0 P ) E%4(F).
—b12 0



494 WAI LEONG CHOOI AND WEI SHEAN NG

Clearly, Hs is invertible, Lp(H3) = 0 and rank (A — H3) < 4. Then Lp(A) =0 by
(2.11). If a =0, then we select

Hy = (—{B’ g) € A 4(F).

It is clear that Hy is invertible, Lp(Hs) =0 and rank (A — Hy) < 4. Then Lp(A) =0
by (2.11). We are done.

Case II: n > 6. Let A be an invertible alternate matrix of form (2.13). If C is
invertible, then we select K1 =J @& C € %, (F). Clearly, K; € 5 and rank (A —K;) <
n,and so Lp(A) =0 by (2.11). We now consider C is singular. Since rankA = n and

al B
rank(_Bt 0) <4,

it follows that rankC = n —4. By the fact of (2.5), there exists an invertible matrix
P € M, _»>(F) such that

C= Py & @iy 0P, (2.14)

where J; =J for i=1,...,(n—4)/2. We argue in the following two cases:

Suppose that n > 8. We select Ky =J S P(J1 - @ J(,_4)0 BJ)P' € Hp o(F).
Itis clear that K> € 7, Lp(K;) =0 by (2.12), and rank (A — K») < n. It follows from
(2.11) that Lp(A) = 0, as desired.

Suppose that n = 6. Let .4 denote the set of all 6 x 6 invertible alternate matrices

of the form
xJ X
N = (—X[ Y) S f6(F)

for which x € IF is nonzero, X = (x;;) € .#>4(F) with x,; =0 for j=1,...,4, and
Y € #4(FF) is invertible. We claim that

Lp(N) =0 foreveryN € /. (2.15)

To see this, we take K3 =J @Y € J#(IF). Since Y € %, (F) is invertible, it follows that
K3 € 7, and so Lp(K3) =0 by (2.12). Note that rank (N — K3) < 6 yields Lp(N) =0
by (2.11). Let A be an invertible alternate matrix of form (2.13) with C singular. In
view of (2.14), we have C = P(J; ® 0,)P" € #4(FF). We choose

b1y -+ big
R
Ky=| (~bu0 € Hg(F).
P(J&J)P'

—b14 0
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Then K4 € 4. Since

0 --- 0
—1)J
(a—1) <b21 b24)
rank (A — K4) = rank 0 —bn <4,
Do P(0,®J)P!
0 —bay
it follows from (2.15) and (2.11) that Lp(A) = 0. The proof is completed. [

LEMMA 5. Let [ be a field satisfying condition (2.8) for g =n—1. Let y :
J(F) — %, (K) be a mapping satisfying condition (1.4). Then the following state-
ments hold true.

(@) y(Jn) =0 ifand only if rank y(A) <m—2 forall A € J%,(F).

(b) w(Jn) #0 ifand only if  injective.

Proof. (a)Let A € %, (F). If A is singular, then y(A) is singular by Lemma 3 (b).
So, rank W(A) < m—2, as desired. If A is invertible, then, since y(J,) =0, in view of
Lemma 4, by setting P = I,,, we have y(A) = 0. Conversely, if rank y(A) < m—2 for
all A € J,(FF), then rank y(J,,) < m—2, and so y(J,) =0 by Lemma 3 (a). We are
done.

(b) Since y(0) = 0, it follows from the injectivity of y that y(J,) # 0. Con-
versely, suppose that y(J,) # 0. We claim that rankA = n if and only if rank y(A) =
m. The sufficiency part follows from Lemma 3 (b). Let A € J%,(F) be of rank n. By
(2.5), there exists an invertible matrix P € .#,(FF) such that A = PJ,P". We define the
mapping Lp : J6,(F) — ,(K) such as

Lp(X) = y(PXP") forall X € J%,(F).

Then Lp(P~'J,(P~')") = w(J,) # 0. Suppose that rank w(A) # m. It follows from
Lemma 3 (a) that w(A) =0, and so Lp(J,) = w(PJ,P") = y(A) =0. Then, by Lemma
4, we obtain Lp(X) = 0 for every invertible matrix X € %, (F). In particular, we have
Lp(P~'J,(P~1)") = 0, a contradiction. Hence  is injective by Lemma 3 (c). [

Let £ and n be even integers with n > k > 4, and let FF be a field with at least
three elements. Let . be a nonempty subset of %, (F). We define

4= {A € #(F) :rank (A — X) < k forall X € .}

and .7tk = (0L if L is nonempty. Two alternate matrices A, B € %, (IF)
are said to be adjacent if rank (A — B) = 2. We recall the following result proved in
[12, Lemmas 3.2 and 3.3].

LEMMA 6. Let k and m be even integers with m > k > 4, and let F be a field
with at least three elements. Let A,B € J,(F) be matrices such that rank (A — B) < k.
Then A,B is a pair of adjacent matrices if and only if |{A,B}J‘”‘k| >3.
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A mapping ¢ : ,(F) — J,(K) is said to preserve adjacency in both directions
if rank(A—B) =2 < rank(@(A) —¢(B)) =2 forall A,B € J%,(F). The following
result is known, see the works of [6, 12, 7, 8].

PROPOSITION 2. Let m and n be even integers with m,n > 4. Let F and K
be fields with at least three elements. If ¢ : 6, (F) — J6,(K) is a surjective mapping
satisfying

rank(A—B)=n < rank(@(A)—@(B))=m (2.16)
Sor every A,B € J,(F), then @ is a bijective mapping preserving adjacency in both
directions, m = n, and F and K are isomorphic.

Proof of Theorem 2. We note that adj A* = (adj A)* for every A € J#(IF) where
A" € #4(F) is the alternate matrix as defined in (1.3). The sufficiency part is clear.

We now consider the necessity part. Suppose that y(J,) = 0. By Lemma 5 (a),
we have W(A) is singular for all A € J,(F). This contradicts to the surjectivity of .
Then y(J,) # 0, and so v is injective by Lemma 5 (b). Let A,B € J%,(F). Then, in
view of Lemma 3 (c) and by condition (1.4), we have

rank(A—B)=n < rank y(adj(A—B))=m
< rank adj (y(A) — y(B)) =m
< rank (y(A) — y(B)) =m.
It follows from Proposition 2 that y is a bijective mapping preserving adjacency in both
directions, m = n, and F and K are isomorphic. By the fundamental theorem of the
geometry of alternate matrices, see [13] or [22, Theorem 4.4], together with w(0) =0,

we see that there exist a field isomorphism ¢ : F — K, an invertible matrix P € .#,(K)
and a nonzero scalar A € K such that either

w(A) = APA°P" forevery A € %, (F) (2.17)
or when n =4, we also have
W(A) = AP(A*)°P" forevery A € J#4(F). (2.18)

We next claim that P! P = ul, for some nonzero scalar i € F such that (Au)" % =
1. Since adj (A*) = (adjA)* forevery A € J#4(IF), we consider only the first case (2.17)
as the second case (2.18) can be verified similarly. By (2.17), we obtain

APadj (A° — B°)P' = y(adj (A — B)) = adj w(A — B) = A" 'adj P'adj (A° — B®)adj P

for all A, B € J%,(IF). This implies that A"~2(detQ)Q~'adj (A° —B°)Q~! = adj (A° —
B°) for every A,B € J,(F), where Q = P'P is invertible with Q" = Q. In particular,
we have A"2(detQ)Q X0 ! = X for every invertible X € %, (F). Let 1 <i# j <
n. Since J, + A(E;; — Ej;) is invertible, it can be verified that A"~*(detQ)Q ! (E;; —
Eﬁ)Q’1 =E;;—Ej; forevery 1 <i# j < n. Consequently, we obtain

Q(Eij—Eji) = A""*(E;j—Ej)adjQ forevery | <i# j<n. (2.19)
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Let Q= (gij). Since Q" = Q, it follows from (2.19) that ¢;; =0 forevery 1 <i# j<n
and giiqjj — q7; = A" *(detQ) for every 1 <i# j<n. Thus P'P = Q = ul, for
some nonzero scalar g € F such that u?> = A"~2(detQ). Since detQ = u", we obtain
(Au)"2 = 1. This completes our proof. []

As an immediate consequence of Theorem 2, we have

COROLLARY 1. Let m and n be even integers with m,n > 4. Let K be a field
with at least three elements, and let T be a field with at least three elements such
that X"~' —a € F[x] has a root for every a € F. Then ¢ : #(F) — Hn(K) is a
surjective classical adjoint commuting additive mapping if and only if m =n, F and
K are isomorphic, and there exist a field isomorphism ¢ : F — K, an invertible matrix
P € #,(K) with P'P = ul,, and nonzero scalars i, € K with (Ap)"~> =1, such
that either

W(A) = APA°P" for every A € J,(F)

or when n=4,
W(A) = AP(A*)°P" forevery A € J,(IF),

where

0 ap aps au\ 0 ap a3 ax
—ap 0 axy an| | —ap 0 ay axy
—ai3—ap 0 axu| | —ai—as 0 axn|
—ayy —az —az 0 —az3 —azq —aze 0

We now proceed to prove Theorem 1.

LEMMA 7. Let m and n be even integers such that m,n > 4, and let F be a field
with |F| =2 or |F| > n+ 1 satisfying condition (2.8) for q=n—1. If y: J%,(F) —
Jm(F) is a mapping satisfying condition (1.2) with w(J,) # 0, then y is linear.

Proof. If y satisfies condition (1.2), then it satisfies condition (1.4), and so y is
injective by Lemma 5 (b). In view of Lemma 3 (¢), together with condition (1.2), we
have

rank Y(A+aB)=m < rank(A4+oB)=n < rank(y(A)+ay(B)) =m (2.20)

forall A,Be€ J%(F) and o € F. Let H,K € %,(F) and A € F such that rank (H +
AK) = n. By using the fact of (2.20), we obtain w(H+AK)adj w(H+AK) =dety(H +
AK)Iy, and also (y(H) + Ay(K))adj (y(H) + Ay(K)) = det(y(H) + Ay(K))ln.
Further, since adj w(H + AK) = adj (y(H) + Ay (K)), it follows that

dety(H + AK)

W(H +AK) = det(W(H)MW(K))(IV(H)+7LV/(K))- (2.21)

By a similar argument as in (2.21), we have

V(H + AK) = e b s (W) + W (K)) 22)
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If we choose H =0 and AK is of rank n, then, by the same argument as in (2.21), we
obtain
B dety(AK)

V(AK)

We first claim that
y(aA) = ay(A) (2.24)

for every invertible matrix A € %,(F) and oo € F. The result holds when a = 0.
Consider o # 0. By Lemma 2 (¢), there is a nonzero singular matrix C; € J%,(F) such
that rank (C; + 0tA) = n. By the facts of (2.21) and (2.22), we have

My (aA) —hoy(A) = (A2 —A)y(Ch), (2.25)

where A; = det(y(Cy) + ay(A)) and A, = det(y(Cy) + w(ctA)) are nonzero scalars
in F. Suppose A; # A,. Since A is invertible, it follows from (2.23) that w(oA) and
y(A) are linearly dependent. So w(aA) = Bw(A) for some nonzero scalar 3 € F.
Substituting into (2.25), we obtain

(MB —ho)y(A) = (A2 — ) y(Cy).

By the injectivity of v, w(A) and w(C)) are nonzero, and so rank y(A) = rank y(Cy).
This leads to a contradiction since rank y(A) = m but rank y(C;) < m by Lemma 3 (b).
Hence A; = A;, and thus the desired conclusion follows immediately from (2.25).

We next claim that if H,K € J,(F) such that H + K is invertible, then

H,K are linearly independent = w(H), y(K) are linearly independent. ~ (2.26)

Suppose to the contrary that y(H) and y(K) are linearly dependent. By the injectivity
of v, we have y(H) and y(K) are distinct nonzero matrices. Then there exists a
nonzero scalar y € F such that y(K) = yw(H). Since rank (H + K) = n, it follows
from (2.20) that rank ((1+ )y (H)) = rank (w(H) + w(K)) = m. Thus rank y(H) =
m, and so rank H = n by Lemma 3 (b). It follows from (2.24) that y(K) = yy(H) =
y(vH). By the injectivity of y, we obtain K = yH . This contradicts to the assumption
that H and K are linearly independent.
We show that
y(H+K)=y(H)+ y(K) (2.27)

for all alternate matrices H,K € %,(FF) such that H + K and K are invertible and H
is singular. The result holds when H = 0. Consider H # 0. By the fact of (2.21), we
have
VH+K)  y(H)+y(K)
dety(H+K) det(y(H)+w(K))"

The result clearly holds when |F| =2. We now consider F is a field with at least n+ 2
elements satisfying condition (2.8) for ¢ =n — 1. By Lemma 2 (d), there is a nonzero
scalar Ap € F such that H + (1 + A0)K is invertible. Again, by the fact of (2.21), we
get

V(H+K)+y(K)  wH+K+2K)  y(H)+y(1+)K)
det(w(H +K) +yw(AK)) dety(H+K+2K) det(w(H)+w((1+2A)K))"
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Since K is invertible, it follows from (2.24) that w((1+ A9)K) = (1 + A9)w(K) =
V(K) + y(AK). Then we have

wy(H+K)—on(y(H)+y(K)) = (o1 — 02) y(AK). (2.28)

where o = det(y(H+K)+ y(AK)) and o = det(y(H)+ w((1+2A9)K)) are nonzero
scalars in F. Since y(H +K) and y(H)+ y(K) are invertible linearly dependent ma-
trices, we have w(H)+ y(K) = oy (H + K) for some nonzero scalar o € F. It
follows from (2.28) that

(02 —onao)y(H +K) = (o1 — 00)y(AK). (2.29)

H and K are linearly independent implies that H + K and AgK are linearly indepen-
dent. So y(H +K) and y(A4K) are linearly independent by (2.26). By (2.29), we
have a; = o, and the desired result follows immediately from (2.28).

We now claim that

v(aA) = ay(A) forevery A € %, (F) and o € F. (2.30)

The result holds when o« =0, A =0 or A is invertible. Consider now o # 0 and
A is a nonzero singular alternate matrix. By Lemma 2 (c), we can find an invertible
matrix C € J%,(F) such that rank (0tA + C>) = n. In view of (2.24) and (2.27), we
see that y(aA) +y(Cy) = (A +C) = y(a(A+ o 'C)) = ay(A+ o~ 1Cy) =
a(y(A)+a 'y(G)) = ay(A)+ y(Cy). Then we have w(aA) = ay(A), and so the
homogeneity of y is shown.

We finally show that y is additive. Let A,B € J%,(F). If either A=0 or B=0,
then the result holds. Suppose that A and B are nonzero. We first consider A+ B is
invertible. Again, by (2.21), we have

V(A+B) _ y(A)+y(B)
dety(A+B)  det(y(A)+y(B))

The result holds true when |F| = 2. Consider now F is a field with at least n+2 el-
ements satisfying condition (2.8) for g=n—1. If A and B are linearly dependent,
then A = tpB for some nonzero scalar Ly € F. By the homogeneity of v, we have
V(A+B) =y((to+1)B) = (o + 1)w(B) = toy(B) + y(B) = y(A) + y(B), as de-
sired. If A and B are linearly independent. By Lemma 2 (d), there exists a nonzero
scalar p; € F such that A+ (1 + pp)B is invertible. By (2.21) and the homogeneity of
V¥, we obtain

2.31)

YA+B) +y(uB) (A +y(B)+y(uB)
det(y(A+B)+y(mB))  det(y(A)+y(B) +y(wB))’

and so, together with (2.31), we have

(a1 — aas)y(A+B) = (a2 — ar) y(u1B)
where a; = det(y(A) + w(B) + y(wB)), ay = det(y(A+ B)+ y(u;B)) and a3 =

% are nonzero scalars. On the other hand, since A and B are linearly
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independent, it follows that w(A + B) and w(u;B) are linearly independent. Therefore,
we conclude that a; = a,, and so a3 = 1. The desired result follows immediately from
(2.31). Next, we consider A + B is singular. By Lemma 2 (b), there exists an alternate
matrix Cz € J,(F) such that rank (A + C3) = rank (A + B+ C3) = n. Then we have
Y(A+C3) = y(A)+ w(C3), and also

V(A+B)+y(G) =y(A+B+GC) = y(A+C) + y(B) = y(A) + w(C3) + y(B).

Hence y(A+ B) = w(A) + w(B), as required. Consequently, together with (2.30), y
is a linear mapping. The proof is complete. []

Proof of Theorem 1. The sufficiency part is clear. We now prove the necessity
part. Evidently, y satisfies condition (1.4). We argue in the following two sub-cases:

Case I: w(J,) =0. In view of Lemma 5 (a), we have rank y(A) < n—2 for all
A € J,(F), and thus

rank y(A+oB) <n—2 forall A,B € J,(F)and a € F.

Let H € %, (F) be an invertible matrix. By Lemma 1, there exists an invertible matrix
K € J%,(FF) suchthat H =adjK. So y(H) = y(adjK) =adj y(K) =0 as rank y(K) <
n—2.Hence y(A) =0 for every invertible matrix A € 7,(F).

Case II: y(J,) #0. Then v is an injective linear mapping by Lemmas 5 (b) and
7, and hence v is surjective. By Corollary 1, together with the homogeneity of v, we
prove the desired result. [

3. Skew-Hermitian matrices

Throughout this section, unless otherwise stated, we let ' and K be fields which
possess proper involutions ~ of F and " of K, respectively. We recall that F~ =
{a€F:a=a} and SF ={a €F:a=—a} (respectively, K" = {a € K:a=a} and
SK"={a€K:a= —a}). Since ~ is proper, there exists an element i € F, with i = —i
when charF # 2, and i = 1 +i when char F = 2, such that F = F @ iF~ (see [14,
p.g.601]), and also 1 € SF~ when charF =2, and 1 € F~. It follows that SF~ # {0}
and F~ # {0} . Note that if n is a positive even integer, then u"” € F~ and n" € K"
for every elements y € F~ USF~ and n € K"USK".

We start with the following basic result.

LEMMA 8. Let m and n be even integers with m,n > 4. Let 4 € F~ USF~
and 1 € KNUSK? be fixed but arbitrarily chosen nonzero scalars and ¢ : 5;,(F) —
I (K) be a map satisfying

o(u"2adj (H—K)) =n"2adj (p(H) — ¢(K)) for every H,K € #,(F). (3.32)
Let A,B € J¢,(F). Then the following statements hold.

(@ @(u"*adjA) =n" 2adj p(A).
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(b) adj p(A—B) = adj (@(A) — ¢(B)).

(c) rank@(A) <1 if rankA = 1.

(d) rank@(A) <m—1 if rankA =n—1.

(e) rank@(A) <m—2 if rankA <n—2.

(f) @ isinjective if and only if rank @(A) =m < rankA =n.

Proof. (a) It is clear that @(0) = 0. So @(u"2adjA) = @(u"2adj(A —0)) =
n"2adj (9(A) — 9(0)) = n" *adj p(A).

(b) By (a) and (3.32), we see that " 2adj@(A — B) = ¢(u"?adj(A — B)) =
n"2adj (p(A) — @(B)), and the result follows.

(c) If A is of rank one, then there is a rank n— 1 matrix B € J7,(F) such that
adjB = ﬁA by [2, Lemma 2.2]. Then ¢(A) = @(u"2adjB) = n" 2adj ¢(B).
Since n"2adj p(A) = @(u"2adjA) = ¢(0) = 0, we obtain rank ¢(A) < m, and so
rank @ (B) < m. Hence rank ¢(A) = rank (n" 2adj ¢(B)) < 1, as required.

(d)If A is of rank n— 1, then rank @(u"2adjA) < 1 by (c). So adj @(u"adjA) =
0. On the other hand, adj ¢(u"2adjA) = adj (n"2adj @(A)) = (n"~2)"'adj (adj ¢
(A)). Thus adj (adj ¢(A)) = 0 implies that rank @(A) <m— 1.

(e) If rankA < n —2, then " 2adj @(A) = @(u"2adjA) = ¢(0) = 0. Therefore
rank (A) <m—2.

(f) Since w(0) = 0, by the injectivity of @, we have Kerp = {0}. By (d)
and (e), we see that rank ¢(A) = m implies that rank A = n. We now consider A is
of rank n. Suppose that rank @(A) < m. Then N~ (" 2g(u" 2adj(u" 2adjA)) =
(n™=2)"1adj (adj @(A)) = 0, which implies that u”" 2adj (u" 2adjA) = 0 because
Ker @ = {0} . This contradicts to the assumption that rank A = n. So rank ¢(A) = m.

Conversely, suppose that ¢(H) = ¢(K) forsome H,K € J#,(F). We let rank (H —
K) = k. It follows from [2, Lemma 2.4 (a)] that we can choose a rank n — k matrix
Y € J%,(F) such that rank (H —K+Y) =n. Then rank (H — K +Y) = m. By (b), we
see that

adj @(Y) = adj (¢(K) — @(K —Y)) = adj (¢(H) — p(K - Y)) =adj p(H - K+Y)
is of rank m. Thus rank @ (Y) = m implies that rankY =n, and so k =0. Hence H =K

and ¢ is injective, as desired. [J

LEMMA 9. Let m and n be even integers with m,n > 4. Let 1 € F~USF~ and
N € K'USK" be fixed but arbitrarily chosen nonzero scalars and ¢ : 7,(F) — #,(K)
be a mapping satisfying condition (3.32). Suppose that P € .#,(F) is invertible, and
that Tp : 74,(F) — 5,(K) is the mapping defined by

Tp(A) = @(PAP') for every A € #,(F).

Then the following statements hold.
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(i) If rank Tp(I,) # m, then rank Tp(A) < m—2 for all A € 74, (F) and Tp(A) =0
for all rank one matrices A € 7,(FF).

(ii) If rank Tp(I, ) m, then rank Tp(aE;;) = 1 for all integers 1 <i < n and nonzero
scalars a € F~
Proof. Throughout this proof, we denote 6 := u""~2) det(PP)"~2, ¢ := u" 26"~
and U :=adjP. Itis clear that 8,9 € F~ are nonzero scalars and rankU = n. Cer-
tainly, by the definition of 7p, we see that Lemma 8 (c), (d) and (e) hold true for 7p,
and
adj Tp(A—B) = adj (Tp(A ) Tp(B)) forevery A,B € 5, (F). (3.33)
(a) We note that " 2adj(u" 2adj(PP')) = PP . 1t follows that Tp(61,) =
@(0PP") = o(u"2adj (u"2adj (PP’ )) n™=2adj (n™2adj Tp(1,)). Since rank Tp(I,)
<m, we get

Tp(61,) = 0. (3.34)
Also, o(0U'U) = ¢(u" 2adj (6PP")) = 0™ 2adj Tp(61,) . It follows from (3.34) that
p(vT'U) =0. (3.35)

We next claim that
o(U'OE;U)=0 fori=1,...,n. (3.36)

Let 1 <i < n. By using the fact that "~ 'E; = adj (6 (I, — E;;)) as well as (3.33), (3.34)
and Lemma 8 (a), we get (U 0E;U) = o(U' (1" 20" V)E;U) = o(u" 2adj (PO (I, —

t

Ei)P')) =n""2adj Tp(01, — OE;) = n" 2adj (Tp(01,) — Tp(OE;)) = n™ 2adj
(=Tp(OE;;)) = 0 because rank Tp(0E;;) < 1 by Lemma 8 (c). We next show, for each
1 <i< n,that

Tp(aE;) =0 forevery o € F. (3.37)

The result clearly holds for oo = 0. Suppose that ot #0. Let § = u("’z)("’l)a clF .
By the fact of adj (01, — OE; — OE;;j+ 0 19> "BE;;) = 0 'BE; with i # j, adjU =
(detP)"—2P, (3.35) and (3.36), we have
Tp(aky)=((u™ )" 2" DoP(0 " B)EP)

= p((u~")r=2 =1 (1=2n gey(pPY-2p(9~1 B)E;P")
@(u"2(detP)"2P(0~ ' BE;;)(detP)"2P")
w"2(adjU) adj (91, — OE; — OEj;j+ 0~ 9> "BE;;)(adjU"))
w"2adj (U' (01, — OE; — OE;;+ 6~ ' 0> "BE;;)U))
=n""2adj ((U' (01, — OE; + 0 0> "BE;;)U) — (U VE;;U))
=n""2adj (U (81, + 0~ ' 0> "BE; ;) \U —U' OE;U)
=n""adj (p(U" (81, + 0~ ' 0> "BE;;)U) — ¢(U' VE;U))
=n""2adj (8T U +U' (69> "BE;;)U)
=n"2adj (p(T'U) — (=T (6~ 07 "BE;))U))
=n""2adj (—(~U' (6~ ' 9> "BE;;)U)) =0

(
(
=o(
=o(
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since rank o(—U' (6~ 19> "B)E;;U) < 1. By the fact of (3.33) and (3.37), we have

adj Tp(A+ oy Eq + -+ o Epy) = adj Tp(A) (3.38)
for every matrix A € J7,(F) and scalars «,...,0, € F~. We next claim, for each
1 <i<n,that

(U (aE;)U) =0 forevery a c F~. (3.39)

Since adj (I, — E; — Ejj+ VE;;) = YE; with i # j and y= (u~')" 20 € F~, together
with (3.33) and (3.38), we have
o(U" (aEq)U) = @(u"*(adj P') (adj (I, — Eii — Ejj + YE;;)) adj P)
=n""2adj Tp (I — Eii — Ej; + VE};)
=n""2adj Tp(YE;) = 0.

It follows from Lemma 8 (b) and (3.39) that
adj @A+ T (Er1 + -+ 0uEnn)U) = adj @(A) (3.40)

for every matrix A € J¢,(F) and scalars a,...,0, € F~. Let 1 <i, j,k < n be distinct
integers. Denote X;j := I, — Ej — Ejj —2Ey. Let a € F~ be a nonzero scalar. Then
da € F~ and adj(aE;; +aE;j; + Xiji) = aE;j +aEj; + aaX;j,. By Lemma 8 (a) and
(3.38), we obtain

@(u"2T" (aEij + aEji +aaX;)U) = @(u" 2adj (P(aE;; +aEji + Xiji)P'))
=n""2adj Tp(aEij +aEji + Xijx)
= T]m_zadj Tp(aE,‘j —|—5Ej,') =0

since rank 7p(aE;; +akEj;) < m— 2. Consequently, we have
Q(U" 2T (aEij +TEji +daX;jx)U) = 0 (3.41)

for every distinct integers 1 < i, j,k < n and scalar a € F~.

We now show that Tp sends all rank one matrices into zero. Let H € J%,(F) be a
rank one matrix. By [2, Lemma 2.2], there exists a rank n— 1 matrix R = (r;;) € J4,(F)
such that ~'H = adjR. By Lemma 8 (a), we have

w2 det(PP)"2P(adjR)P")
u"I"(adjU) (adj R) (adj U"))
u"*adj (u"*U'RU))
"2adj o(u""*U'RU).
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By using (3.40) and following by Lemma 8 (b) and (3.41), we see that

adjw(u"zU’Rw:adj«p( S w U (riE i+ TRES)U +2U r”E,-»U)

I<i<j<n i=1

=adj ¢ ( Y, WU (riEji+ mE,-,-)U)
1<i<j<n

1<i<j<n

:adj (P< 2 IJ" 2U (rlejl+rjl lj)U+lJ' (1’217”21X12k)U>

=adj ¢ 2 ‘Ltnizﬁt (rj,-Ej,- —|—EE,'J‘)U
1<i<j<n,
i#land j#2
Continuing in this way, we obtain
adj @(u" *U'RU) = adj (" T (rn—1Enp1 + Fan 1En-1,2)U) =0

since rank (p(,u”_zﬁt (Fun—1Enpn—1 4+ Tapn—1En—1,)U) < m—2. Consequently, we con-
clude that Tp(H) = 0 for every rank one matrix H € J,(F).

We now prove that adj 7p(A) =0 for all A € 7%,(F). The result obviously holds if
A = 0. Suppose that rank A = k with 1 <k < n. In view of [2, Lemma 2.3], there exist
rank one matrices A1, ..., A, € 5, (F), with k <h<k+1,suchthat A=A +---+A.
By (3.33), we have adj Tp(A) = adj (Tp(A1 + --- + Ap—1) — Tp(—Ay)) = adj Tp(A; +

o+ Ap_1)=---=adjTp(A1) =0. So rankTp(A) < m —2 for every A € 7, (F), as
desired.

(b) Since @(u"2U'U) = @(u" 2adj(PP")) = n" 2adj Tp(I,), it follows that
(p(u"’zﬁtU) is of rank m. Suppose that Tp(agEj,;,) = 0 for some integer 1 <ip < n
and some nonzero scalar ay € F~ . Let s,7 be two distinct integers such that 1 < s,z <n
with s, # iy . Since

adj (I, — Ess — (1 + ao)Ejyiy — (1 —ag ") Ey) = —Egs,
it follows from (3.33) and Lemma 8 (e) that

(P(.un72Ut(_E-\n\')U) = (P(.unizadj (P(Iy — Egs — (1 +ao)Eigiy — (1 — aal)Ett)pt))
=n""adj Tp(I, — Ess— (1 +ao)Eiyiy — (1 —ag ') Ex)
= n'"_zadj (Tp(I — Ess — Eigiy — (1- aal)Ett) - TP(aOEioio))
=n""2adj Tp(I, — Ess — Eigiy — (1 —ag )Ex) =0

because rank (I, — Egs — Ejpi, — (1 — aal)En) =n—2. By Lemma 8 (b) and (d), we
have

adj (U 2U'U) = adj @(u"2U" (I — Es + Ess)U)
= adj ((u"2U" (I, — Ess)U) — (0" *U" (—Ess)U)
=adj o(u" U (I, — Ey)U),
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which implies that rank (1" 2U'U) # m, a contradiction. Thus Tp(aE;;) # 0 for
every nonzero a € F~. By Lemma 8 (¢), rank 7p(aEj;) = 1 for every integer 1 <i<n
and nonzero scalar a € F~. The proof is complete. [

LEMMA 10. Let m and n be even integers with m,n > 4. Let 1 € F~USF~ and
n € KNUSK" be fixed but arbitrarily chosen nonzero scalars, and let ¢ : 7;,(F) —
I (K) be a mapping satisfying condition (3.32). If rank ¢(I,,) =m, then @ is injective
and
rank(H—K)=n < rank(p(H)—@(K))=m

forevery H,K € 76,(F).

Proof. Let A € 7,(F) be of rank one. It follows from [2, Lemma 2.1] that there
exist an invertible matrix P € .#,(F) and a nonzero scalar oo € F~ such that A =
P(0E, )P’ . We define the mapping Tp : 5, (F) — #,(F) such as

Tp(H) = @(PHP') for every H € 7 (F).

Then TP(P’IP—lt) is of rank m. Suppose that rank 7p(I,) # m. Then, by Lemma
9 (a), we have rank Tp(H) < m — 2 for every matrix H € ., (IF), which contradicts to
the fact that rank TP(P’IP—lt) =m. So rank7p(l,) = m, and thus rank 7p(aEj;) = 1
for all integers 1 < i < n and nonzero scalars a € F~ by Lemma 9 (b). Therefore,
rank @(A) = rank Tp(E;;) = 1. Hence ¢ preserves rank one matrices.

Let X,Y € J%,(F) with ¢(X) = ¢(Y). Suppose that X —Y # 0. By [2, Lemma
2.4 (d)], there is a matrix Z € %, (F) with rankZ < n—2 such that rank (X —Y +Z) =
n—1. Then adj(X —Y +Z) = 1, and so rank¢(u"2adj (X —Y +Z)) = 1. On the
other hand, (p(u" 2adj (X — Y+Z)) =n"2adj (X +Z—Y) =n"2adj (p(X +2Z) —
o(Y)) = n"2adj (p(X +Z) — (X)) N 2adj ¢(Z) = 0, a contradiction. Hence
X =Y ,and so ¢ is injective.

Let H,K € ,(F). By the injectivity of ¢, it follows from Lemmas 8 (a), (b) and
(f) that

rank (H — K) =n < rank y(u" 2adj(H — K)) =
& rank N 2adj (y(H — K)) =
< rank (y(H) — y(K)) = m.

The proof is complete. []
PROPOSITION 3. Let m and n be even integers with m,n > 4. Let u € T~ USF~

and n € KNUSK" be any fixed nonzero scalars. Then ¢ : #;,(F) — #,(K) is an
additive mapping satisfying

o(u"adj H) = 1" *adj (H) for every H € ;(F)
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if and only if either ¢ =0, or m =n and
@(A) = APA®P" for every A € #;(F),

where o : (F,”) — (K,") is a nonzero field homomorphism satisfying G/(;) = o(a)
forall a €F, Pe #,(K) is invertible with P'P = ¢gl,, and A, € K" are scalars
with (Agno(u)~1)'2=1.

Proof. The sufficiency part is clear. We now consider the necessity part. By the
additivity of ¢, we see that ¢ satisfies (3.32). We argue in the following two sub-cases:
Case I: rank ¢(1,) # m. In view of Lemma 9 (a), by considering P = I,,, we have
¢(A) =0 for every rank one matrix A € .7,(F). By the additivity of ¢, we show that
¢ =0, as desired.
Case II: rank¢@(l,) = m. By Lemma 10, ¢ is injective, and so ¢ preserves
rank one matrices by Lemma 8 (c). Note that m = rank (¢(Eq;) + -+ @(Eu)) <
i rank @(E;) = n. Suppose that n > m. Then rank (@(Ej) + -+ @(Ep)) <n. It
follows from [4, Theorem 2.1] that there exist integers 1 <s1 < --- <5, <n, with m <
p <n, such that rank @(Es,s, + -+ + Ej 5,) = m. Then m = rank (1"~ 2adj ©(Ess, +
c4Ey,,)) =rank @(u"2adj (Ey 5, 4+ -+ Ey,,)) < 1, a contradiction. Hence m=n.
By [14, Main Theorem, p.g. 603] and [1 1, Theorem 2.1 and Remark 2.4], we have

@(A) = LQA°Q" for every A € 7, (F),

where ¢ : (F,” ) — (K,") is a nonzero field homomorphism satisfying o (a) = 6(a)
for every a € F, Q € .#,(K) is an invertible matrix and A € K" is a nonzero scalar.
We now claim that there exists a nonzero scalar ¢ € K" such that

00" =¢l, and (MAgo(n) )" 2=1. (3.42)

In view of Lemma 8 (a), we see that n"~2adj ¢(I,) = @(u"2I,). Then n" 21" 'ad

(Q0") = Ao(u)" 200", and so Q0" = (Anc(u)~!)" %(adjQ")(adj Q). Let & :=
(Ano(u)~1"2 € K". Then

(0'0)* = 0'(00")0 = £0'(adj 0" ) (adj Q)0 = £ det(Q" Q)1 (3.43)

Let 1 <i< j<n.Since adj(l, —E;i—E;;+Ejj+Ej;)=—(,—Ei—Ej;+E;; +Eji),
it follows from Lemma 8 (a) that

n"?adj (I, — Ei — Ej;+ Eij+ Eji) = —@(u" (I, — Eii — Ejj + Eij + Eji)).

Then 1" 2adj (AQ(I, — Eii — Ej; + Eij + Ej))0") = —A0(0 ()" (I, — Eyj — Ejj +
Eij+E;j;))Q", and by (3.43), we have
QtQ(ln —Eii—Ejj—l—Eij-l-Eji)Q\tQ = édet(Q’Q)(I —Eii—E'j+Eij+Eji)
(Q Q) ( —E;— EJ+E,,+E,,)
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Pre-multiplying by (Q'Q)~! gives Q'Q(l, — Eii— Ejj+ Eij+ Eji) = (I, — Ei — Ej; +
Ejj +Eji)@Q forevery 1 <i < j<n. Then 0'0= ¢l, for some nonzero scalar ¢ €
K", and so Q0" = ¢l,. Further, since n"2adj (A¢l,) = n" 2adj (ALQQ") = n"2adj
(L) = w(u"21,) = Ao(u)""%¢l,, it follows that (nA¢o(u)~")"~? = 1. Claim
(3.42) is shown. We complete the proof. [J

Proposition 3 gives a slight extension of Theorem 2.10 in [2].
Let m and n be even integers with m,n > 4. Let u € F~ USF~ be a fixed but
arbitrarily chosen nonzero scalar, and let ¢ : 5, (F) — .7,(IF) be a mapping satisfying

o(u"*adj (H + oK) = u"adj (p(H) + :p(K)) (3.44)

for every H,K € ,(F) and a € F~. Then ¢ satisfies condition (3.32) for (K,") =
(F,7) and 1 = . Thus Lemmas 8, 9 and 10 hold true for ¢. In particular, by an
argument analogous to the proof of Lemma 8 (b), we have

adj @(H + oK) = adj (p(H) + a@(K))

forevery H,K € 42,(F) and a € F~. Further, if rank ¢(,) = m, then, by Lemma 10,
we see that ¢ is injective and, in view of Lemma 8 (f) and by a similar argument as in
the last paragraph of the proof of Lemma 10, we have

rank 9(H+ oK) =m < rank(H+oK)=n < rank(@(H)+a@(K)) =m

for every H,K € ,(F) and o € F~. Therefore, by following the lines of the anal-
ogous proof in Lemma 7 applied on Hermitian matrices or [2, Lemma 2.9], it can be
shown that ¢ is additive and @(0A) = o (A) for every matrix A € J%,(F) and scalar
a € F~. We formulate this observation as a lemma:

LEMMA 11. Let m and n be even integers with m,n > 4. Let F be a field which
possesses a proper involution ~ of T such that either |F~| =2 or |F~| >n+1. Let
o : 9,(F) — 52,(F) be a mapping satisfying condition (3.44). If rank ¢(I,) = m, then
o is additive and @(aA) = a@(A) for every matrix A € 7,(F) and scalar a € F~.

PROPOSITION 4. Let m and n be even integers with m,n > 4, and F be a field
which possesses a proper involution ~ of F such that either |[F~| =2 or |F~| >n+1.
Let p € F~USF~ be a fixed but arbitrarily chosen nonzero scalar. Then ¢ : 7,(F) —
() is a mapping satisfying

o(u"adj (H + aK)) = " *adj (¢(H) + a.9(K))

Sorevery H,K € 5,(F) and oo € F~ if and only if ¢(A) =0 for every rank one matrix
A € 7,(F) and rank (p(A) + op(B)) < m—2 for every A,B € ,(F) and o € F~;
or m=n and

@(A) = APA®P" for every A € J,(F),
where ¢ :F — F is a field isomorphism satisfying % =o(a) foral a€TF and
o(a)=a forall a € ¥, P € .#,(F) is invertible satisfying P'P = ¢l,, and A,c € F~
are scalars satisfying (Aguo(u)~1)"2=1.
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Proof. The sufficiency part is clear. To prove the necessity part, we first see that if
rank @(I,) # m, then it follows from Lemma 9 (a), by considering P =1I,,, that ¢(A) =
for every rank one matrix A € .7,(FF), and rank ¢(A) < m—2 forevery A € J,(F).

We next consider rank ¢(I,) = m. By Lemma 11 and Proposition 3, we conclude
that m =n and @(A) = AQA“@Zfﬂevery A € 7, (F), where o : F — F is a nonzero
field homomorphism satisfying o(a) = o(a) forall a € F, Q € .#,(K) is invertible
with 0'Q = ¢l,, and A,¢ € F~ are scalars with (Acuo(u)~")"2 =1. It follows from
o(al,) =a@(I,) forevery a € F~, and hence o (a) =a forevery a € F~. Furthermore,
since ~ is proper, there exists a scalar i € F with i=—i when charﬁz, and i=1+i
when charF =2, such that F =F @ iF~ . Itis easily verified that (i) = —c(i) when
charF # 2, and o(i) = 1+ o(i) when charF =2. We thus have F =F @& o(i)F~.
Let oo € F. Then there exist scalars 31,3, € F~ such that o = ) + o(i)2. Let
y=PB1+if, € F. We see that 6(y) = a. Hence o is surjective, and so it is an
isomorphism. The proof is complete. []

We remark that Proposition 4 gives a slight improvement, as well as a correction
for a misprint, of Theorem 2.12 in [2]. When F is the complex field C, we have the
field isomorphism ¢ on C is either the identity or the complex conjugate of C.

Let u € SF~ be a nonzero scalar. Then u~! € SF~. We note that if A € .%5%,(F),
then (MA) =TA' = —u(—A) = pA. ThlS 1mphes that [,LA € 4, (F ) Conversely, if
UA € #;(F), then pA = (A =TA' = (—u)A' = —pA'. Thus A' = —A, and so
A € %5,(F). We thus obtain

Ae 7, (F) < uAc a4 (F) (3.45)
for any fixed nonzero scalar u € SF~. Likewise, we also have
Ae 4, (F) & uAe 9 (F) (3.46)
for any fixed nonzero scalar p € SF~. Then (3.45) and (3.46) lead to
SH(F) = ust,(F) :={uA:A e 7 (F)} (3.47)
Ho(F) = WIH(F) = {UA: A € SH4(F)) (3.48)

for any fixed nonzero scalar u € SF~.

LEMMA 12. Let m,n be even integers with m,n > 4. Let i € SF~ and n € SK"
be fixed but arbitrarily chosen nonzero scalars. Let vy : %5,(F) — %#,(K) be a
mapping. If ¢ : 7,(F) — 5,(K) is the mapping defined by

O(H)=n""y(uH) forevery H € 7;(F),
then the following statements hold:

(a) y(adj(A—B)) = adj(y(A ) W (B)) for every A,B € %, (F) if and only if
o (1" 2ad (H — K)) = 0" 2ad) (9 (H) — ¢(K)) for every H,K & 4 (F).
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() If (K) = (F,) and 0 = i, then wiadj (A + iB)) = adj ((A) + aw(B))
for every A,B € S,(F) and o € F~ if and only if o(u" 2adj(H + aK)) =
u"2adj (o(H) + oo (K)) for every H,K € #,(F) and o € F~.

Proof. 1t suffices to prove the lemma only for statement (a) as statement (b) can
be shown similarly. Let H,K € J%,(F). By the definition of ¢ and (3.47), we see that
n"2adj (p(H) — @(K)) = n"*adj(n~"y(uH) —n~"'y(uK)) = n~'adj (y(uH) —
y(uK))=n"y(adj (W(H —K)))=n""y(u""adj (H — K)) = o(u"*adj (H — K)),
as required.

Conversely, consider A,B € .%5%,(F). By the definition of ¢ and (3.48), we
see that adj (y(A) — w(B)) =n"""adj (n 'y (u(u='4)) —n~y(u(u='B))) =n""
adj (@(n~'A) —@(u"'B)) =n(n™ ?adj (p(u~'A) — @(u~'B))) = no(u" *adj p~!
(A—B))=y(u(u'adj(A—B))) = y(adj (A — B)). We are done. [J

We are now ready to prove our main theorems of this section.

THEOREM 5. Let m and n be even integers with m,n > 4. Let F and K be
fields which possess proper involutions ~ of F and " of K, respectively. Then y :
S,(F) — S,,(K) is a classical adjoint commuting additive mapping if and only if
either Wy =0, or m =n and

w(A) = APA°P" for every A € 5,(F)
where ¢ : (F,”) — (K,"') is a nonzero field homomorphism satisfying G/(;) =o(a)
forall a € F, Pe #,(K) is invertible with P'P = ¢I,, and A,¢ € K" are scalars
with (A¢)" 2 =1.

Proof. The sufficiency part is clear. We now consider the necessity part. By the ad-
ditivity of v, we have y(adj (A — B)) =adj (y(A) — y(B)) forevery A,B € %5, (F).
Let u € SF~ and 1 € SK” be two fixed nonzero scalars. In view of (3.47), we define
the mapping ¢ : 54, (F) — 5, (K) such as

o(H)=n"'y(uH) forevery H € /;(F). (3.49)

By Lemma 12 (a) and w(0) = 0, we have ¢@(u" 2adj H) = n™ 2adj ¢(H) for every
H € J,(F). We now claim that ¢ is additive. Let H,K € ,(F). Then ¢(H +
K)=n""y(u(H+K)) =n"(y(uH)+y(uK)) = ¢(H) + ¢(K). By Proposition 3,
together with (3.49), we have either ¢ =0, orm=n and there exist a nonzero field
homomorphism o : (F,” ) — (K,*) with o(a) = o(a) for all a € F, an invertible
matrix P € ., (K) with P'P = ¢I,, and scalars o, ¢ € K" with (na¢o(u)=')"2 =
1, such that @(H) = aPHOP" for all H € 7, (F). By (3.49), we have

w(uH) =naPH°P' = (naco(u)~")P(uH)®P' for every H € .7 (F).

Let A:=noo(u)~!. Then A € K" since n,0(u)~' € SK" and o € K". It follows
from (3.47) that R
Ww(A) = APA°P" forevery A € 5,(F)
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with P'P = ¢, and (A¢)" 2= 1. We are done. [J

Proof of Theorem 3. The sufficiency part is clear. To prove the necessity part,
we let 4 € SF~ be a fixed nonzero scalar and ¢ : J7,(F) — J7,(F) be the mapping
defined by

o(H) =u 'y(uH) forevery H € /,(F). (3.50)

By the assumption of y and Lemma 12 (b), we see that ¢ satisfies (3.44). By Proposi-
tion 4, we have either

(a) @(H) =0 for every rank one matrix H € ,(F), and rank ¢(H) < m — 2 for
every H € J,(F); or

(b) m=n and @(A) = aPA°P' for every A € #,(F), where ¢ : F — F is a field
isomorphism satisfying o(a) = o(a) forall @ € F and o(a) =a forall a €
F~, P € #,(F) is invertible with P'P = ¢I,, and o, ¢ € F~ are scalars with
(aguo(u) ')y 2=1.

If Case (a) holds, then y(A) = w(u(u='A)) = ue(u=—'A) =0 for all rank one
matrices A € .5, (F). Let A € .%%,(F) be any matrix. Then we have rank y(A) =
rank y(u(u='A)) = rank @(u~'A) < m—2 by (3.50). We are done.

If Case (b) holds, then, by (3.50) and (3.47), we have y(A) = y(u(u='A)) =
pno(uA) = APACP! forevery A € .9,(F), where P'P=¢l,,and A = poo(u) !,
¢ € F~ with (A¢)"2 = 1. This completes our proof. [J

Proof of Theorem 4. The sufficiency part is clear. We now consider the necessity
part. Let t € SF~ and n € SK” be any fixed nonzero scalars and ¢ : ,(F) — 2, (K)
be the mapping defined by

o(H)=n"'y(uH) forevery H € ,(F). (3.51)

By Lemma 12 (a), we see that ¢ satisfies (3.32). We claim that ¢ is surjective. Let
Y € #,,(K). Then nY € ,(K) by (3.45). By the surjectivity of v, there is a
matrix X € ..5#,(F) such that w(X) =nY. Then u~'X € 7, (F) and o(u~'X) =
n~'y(X) =Y, as desired. Suppose that rank ¢(I,) # m. It follows from Lemma 9 (a),
by considering P = I, that rank ¢ (H) < m—2 for all H € .7,(F). This contradicts to
the surjectivity of ¢, and so rank @(I,) = m. In view of Lemma 10, we see that ¢ is a
bijection satisfying

rank(H—K)=n < rank(p(H)—@(K))=m
forevery H,K € 7,(F). We now show that m =n, F and K are isomorphic and
@(A) = aPA°P" for every A € #,(F), (3.52)
where 6 : (F,”) — (K,") is a field isomorphism satisfying G/(;) =o(a) forallaeF,

P € #,(K) is invertible with P'P = ¢I,, and a,¢ € K" are nonzero scalars with
(ogno(u)~1)"=2 = 1. We divide our proof into the following two cases.
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Case I: |[K"| =2. Thus —1 =1 since 0,1,—1 € K. Then rank (H — K) =n if
and only if rank (¢(H)+ ¢(K)) =m for H,K € 7,(F). We claim that ¢ is additive.
Let A,B € J¢,(F). If rank (A + B) = n, then, together with Lemma 8 (f), we have
rank (A + B) = rank (A — (—B)) =rank (¢(A) + ¢(—B)) = m. By Lemma 8§ (b) and a
similar argument as in the proof of (2.21), we obtain

eA+B) _ _9A)+o(-B)
deto(A+B)  det(p(A)+¢(—B))

Since det@(A + B) = 1 = det(¢(A) + @(—B)), it follows that ¢(A+ B) = ¢(A) +
¢o(—B) forevery A,B € 7;,(F) with rank (A + B) = n. By the injectivity of v, we see
that ¢(—1,) = ¢(0—1,) = ¢(0) + @(I,) = ¢(I,) implies that I, = —1I,,. Then F is of
characteristic 2, and so the claim holds. We now consider rank (A + B) < n. By [2,
Lemma 2.4 (b)], there exists C € 7%, (F) such that rank (A +C) =rank (A+B+C) =
n. Then @(A+C) = @(A)+ ¢(C) and @A+ B)+ ¢(C) = p(A+B+C) = p(A+
C)+@(B) = @(A)+ ¢(C)+ ¢(B). Hence ¢(A+ B) = ¢(A) + ¢(B), as required. By
Proposition 3 and the bijectivity of ¢, Claim (3.52) is proved.

Case II: [F~|, [K"| > 3. Since ¢(0) = 0, by combining [9, Theorem 3.6] and
the fundamental theorem of the geometry of Hermitian matrices [22, Theorem 6.4], we
have m =n, F and K are isomorphic, and

@(A) = aPA°P" for every A € #,(F),

where o : (F,”) — (K,") is a field isomorphism satisfying o(a) = o(a) for every
aclF, Pe .#,(K) is invertible, and o € K" is nonzero. By an argument analo-
gous to Claim (3.42), we see that PP = gl, for some nonzero scalar ¢ € K and
(agno(u)~1)"=2 = 1. So Claim (3.52) is proved.

In view of (3.51) and (3.52), we obtain y(uH) =n¢(H) = AP(UH)C P for every
H € #,(F), where A :=ano(u)~' € K", PP" =¢I, and (Ag)"?=1. Then y(A) =
APACP' for every A € .75, (F) by (3.47). We are done. []
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