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Abstract. Let n be an even integer with n � 4 . In this note we study classical adjoint commuting
mappings ψ on the space of n×n alternate matrices, and on the space of n×n skew-Hermitian
matrices with respect to a proper involution, satisfying one of the following conditions:

• ψ(adj (A+αB)) = adj (ψ(A)+αψ(B))

• ψ(adj (A−B)) = adj (ψ(A)−ψ(B)) and ψ is surjective

for scalar α and matrices A,B in each respective matrix spaces. Here, adj A denotes the classical
adjoint of a matrix A .

1. Introduction

Let F be a field and m,n be positive integers. By Mm,n(F) we denote the linear
space of m×n matrices over F . If m = n , we simply write Mn(F) = Mn×n(F) . Let
A∈Mn(F) . We say that A is an alternate matrix if At =−A and the diagonal elements
of A are all zero, or equivalently utAu = 0 for all u ∈ Mn,1(F) , where At stands for
the transpose of A . Suppose that F is a field which possesses an involution − of F

(i.e., − : F→ F is an automorphism of F such that a = a for all a∈ F). Then A is said
to be skew-Hermitian (respectively, Hermitian) with respect to the involution − of F if
A

t = −A (respectively, A
t = A). Here, A is the matrix obtained from A by applying −

entrywise. Let F− := {a ∈ F : a = a} (respectively, SF− := {a ∈ F : a = −a} ) denote
the set of all symmetric elements (respectively, skew-symmetric elements) of F with
respect to the involution − of F . One can easily check that F− forms a subfield of F

and is called the fixed field with respect to the involution − . Evidently, F−= F when the
involution − is identity. Otherwise, the involution − is proper. Throughout, we shall
use Kn(F) , SHn(F) and Hn(F) to designate the linear space of all n× n alternate
matrices over F , the F− -linear space of all n×n skew-Hermitian matrices over F , and
the F− -linear space of all n×n Hermitian matrices over F , respectively.

The classical adjoint, sometimes called the adjugate, of a matrix A ∈ Mn(F) ,
denoted by adjA , is the n× n matrix whose (i, j)-th entry is the ( j, i)-th cofactor
of A . The notion of the classical adjoint is one of the important matrix functions on
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square matrices and has been employed to various studies of generalized invertibility of
matrices, see [15]. Let M1 and M2 be matrix spaces such that adjA ∈ Mi whenever
A ∈ Mi for i = 1,2. A mapping ψ : M1 → M2 is called classical adjoint-commuting
if

ψ(adjA) = adjψ(A) for every A ∈ M1. (1.1)

The study of classical adjoint commuting linear mappings was initiated by Sinkhorn
in [17] over the complex field by using the classical result Frobenius [5] concerning
determinant linear preservers. Later on, similar problems on various matrix spaces
have been considered, see [18, 19, 20, 21], and [23, Chapter 10] and the references
therein. Recently, inspired by the works of [3, 16], the present authors started the study
of classical adjoint commuting mappings ψ on the space of square matrices over a
field in [1], and on the space of Hermitian matrices over a field which possesses an
involution, see [2], satisfying one of the following two conditions:

(A1) ψ(adj (A+ αB)) = adj (ψ(A)+ αψ(B))

(A2) ψ(adj (A−B)) = adj (ψ(A)−ψ(B))

for scalar α and matrices A,B in each respective matrix space. One knows that ψ
satisfies condition (A1) or (A2) implies that ψ(0) = 0, and so condition (1.1) holds true
for ψ .

Note that when n is a positive even integer, by adj (−A) = (−1)n−1adjA for any
A∈ Mn(F) , we see that if A is an alternate matrix (respectively, a skew-Hermitian ma-
trix with respect to an involution − of F), then adj A is alternate (respectively, skew-
Hermitian) because adjA has zero diagonal entries and (adj A)t = −adj A (respec-

tively, (adj A)
t
= −adj A).

Let n be an even integer with n � 4. In this present note, basically, by employing
a similar idea and technique used in [1, 2], we continue to study classical adjoint com-
muting mappings ψ on the space of n×n alternate matrices, and on the space of n×n
skew-Hermitian matrices with respect to a proper involution, satisfying either condition
(A1) or condition (A2). Let F[x] denote the ring of polynomials in an indeterminate x
over a field F . More precisely, we prove the following results:

THEOREM 1. Let n be an even integer such that n � 4 . Let F be a field with
at least n + 2 elements such that xn−1 − a ∈ F[x] has a root for every a ∈ F . Then
ψ : Kn(F) → Kn(F) is a mapping satisfying

ψ(adj (A+ αB)) = adj (ψ(A)+ αψ(B)) (1.2)

for every A,B ∈ Kn(F) and α ∈ F if and only if either ψ(A) = 0 for every invertible
matrix A ∈ Kn(F) and rank (ψ(A) + αψ(B)) � n− 2 for every A,B ∈ Kn(F) and
α ∈ F ; or there exist an invertible matrix P ∈ Mn(F) with PtP = μIn , and nonzero
scalars μ ,λ ∈ F with (λ μ)n−2 = 1 , such that either

ψ(A) = λPAPt f or every A ∈ Kn(F)
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or when n = 4 ,
ψ(A) = λPA∗Pt f or every A ∈ K4(F),

where ⎛⎜⎜⎝
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞⎟⎟⎠
∗

=

⎛⎜⎜⎝
0 a12 a13 a23

−a12 0 a14 a24

−a13 −a14 0 a34

−a23 −a24 −a34 0

⎞⎟⎟⎠. (1.3)

THEOREM 2. Let m and n be even integers such that m,n � 4 . Let K be a field
with at least three elements, and let F be a field with at least three elements such that
xn−1−a ∈ F[x] has a root for every a ∈ F . Then ψ : Kn(F) → Km(K) is a surjective
mapping satisfying

ψ(adj (A−B)) = adj (ψ(A)−ψ(B)) (1.4)

for every A,B ∈ Kn(F) if and only if m = n, F and K are isomorphic, and there exist
a field isomorphism σ : F → K , an invertible matrix P ∈ Mn(K) with PtP = μIn , and
nonzero scalars μ ,λ ∈ K with (λ μ)n−2 = 1 , such that either

ψ(A) = λPAσPt f or every A ∈ Kn(F)

or when n = 4 ,
ψ(A) = λP(A∗)σ Pt f or every A ∈ K4(F),

where ⎛⎜⎜⎝
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞⎟⎟⎠
∗

=

⎛⎜⎜⎝
0 a12 a13 a23

−a12 0 a14 a24

−a13 −a14 0 a34

−a23 −a24 −a34 0

⎞⎟⎟⎠.

Here, Aσ is the matrix obtained from A = (ai j) by applying σ entrywise, i.e.,
Aσ = (σ(ai j)) .

THEOREM 3. Let m and n be even integers such that m,n � 4 . Let F be a field
which possesses a proper involution − of F such that either |F−|= 2 or |F−|> n+1 .
Then ψ : SHn(F) → SHm(F) is a mapping satisfying

ψ(adj (A+ αB)) = adj (ψ(A)+ αψ(B))

for every A,B ∈ SHn(F) and α ∈ F− if and only if either ψ(A) = 0 for every rank
one matrix A ∈ SHn(F) and rank (ψ(A)+αψ(B)) � m−2 for every A,B ∈ SHn(F)
and α ∈ F

− ; or m = n and

ψ(A) = λPAσP
t

f or every A ∈ SHn(F),

where σ : F → F is a field isomorphism satisfying σ(a) = σ(a) for all a ∈ F and
σ(a) = a for all a ∈ F− , P ∈ Mn(F) is invertible with P

t
P = ς In , and λ ,ς ∈ F− are

scalars with (λ ς)n−2 = 1 .
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THEOREM 4. Let m and n be even integers such that m,n � 4 . Let F and K

be fields which possess proper involutions − of F and ∧ of K , respectively, such that
either |K∧| = 2 , or |F−|, |K∧| > 3 . Then ψ : SHn(F) → SHm(K) is a surjective
mapping satisfying

ψ(adj (A−B)) = adj (ψ(A)−ψ(B))

for every A,B ∈ SHn(F) if and only if m = n, F and K are isomorphic, and

ψ(A) = λPAσ P̂t f or every A ∈ SHn(F),

where σ : (F,− )→ (K,∧ ) is a field isomorphism satisfying σ̂(a) = σ(a) for all a∈ F ,
P∈ Mn(K) is invertible with P̂tP = ς In and λ ,ς ∈ K∧ are scalars with (λ ς)n−2 = 1 .

Besides these results, we have also classified surjective classical adjoint commut-
ing additive mappings on alternate matrices (in Corollary 1) and characterized clas-
sical adjoint commuting additive mappings on skew-Hermitian matrices (in Theorem
5). In Proposition 4, we address a general description of the structure of mappings
ϕ : Hn(F) → Hm(F) that satisfy

ϕ(μn−2adj (A+ αB)) = μm−2adj (ϕ(A)+ αϕ(B))

for every A,B ∈ Hn(F) and α ∈ F
− , where μ is a fixed nonzero scalar in F

− ∪SF
− .

This result serves as a tool in the proof of Theorem 3, and also it slightly improves a
result and corrects a misprint in [2, Theorem 2.12].

Before starting our proofs, we give some examples of nonzero degenerate classical
adjoint commuting mappings on alternate matrices sending invertible matrices to zero,
and nonzero degenerate classical adjoint commuting mappings on skew-Herimitian ma-
trices that map rank one matrices and invertible matrices to zero.

EXAMPLE 1. Let m and n be even integers such that m,n � 4.

(i) Let F be either the real field R or the complex field C . Let f : F → F be a
nonzero function and let ψ1 : Kn(F) → Km(F) be the mapping defined by

ψ1(A)=

{
f (a12)(E12−E21) if A = (ai j) is of rank k with 2 � k � n−2

0 otherwise.

(ii) Let F be a field with n− 1 elements. Let g : Kn(F) → F and h : F → F be
nonzero functions. Let ψ2 : Kn(F) → Km(F) be the mapping defined by

ψ2(A)=

⎧⎪⎨⎪⎩
∑

m
2 −1
i=1 h(a12)(E2i−1,2i−E2i,2i−1) if A = (ai j) is of rank two

g(A)(E12−E21) if A is of rank k, 2 < k < n

0 otherwise.

Here, Ei j stands for the square matrix unit whose (i, j)-th entry is one and zero else-
where. It is easily verified that each ψi satisfies conditions (A1) and (A2), and sends
invertible matrices to zero.
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EXAMPLE 2. Let m and n be even integers such that m,n � 4, and let F and K

be fields which possess proper involutions − of F and ∧ of K , respectively.

(i) Let λ ,λ1, . . . ,λm−2 ∈ SK∧ := {a ∈ K : â = −a} be nonzero scalars. Let ϕ1 :
SHn(F) → SHm(K) be the mapping defined by

ϕ1(A) =

⎧⎪⎨⎪⎩
λE11 if A is of rank k, 2 < k < n

∑m−2
i=1 λiEii if A is of rank two

0 otherwise.

(ii) Let σ : (F,− ) → (K, ∧) be a field isomorphism such that σ(a) = σ̂(a) for all
a ∈ F . Let ϕ2 : SHn(F) → SHm(K) be the mapping defined by

ϕ2(A) =
{

σ(a12)E12 + σ(a21)E21 if A = (ai j) is of rank k with 1 < k < n
0 otherwise.

Each ϕi satisfies conditions (A1) and (A2) sending rank one matrices as well as invert-
ible matrices to zero.

We remark that each nonzero degenerate classical adjoint commuting mapping
provided in Examples 1 and 2 is neither injective nor surjective.

2. Alternate matrices

Let n be an integer such that n � 2 and F be a field. It is an elementary fact
that each nonzero alternate matrix A ∈ Kn(F) is necessarily of even rank and can be
expressed as

A = P(J1⊕·· ·⊕ Jr ⊕0n−2r)Pt (2.5)

for some integer 1 � r � n/2 and invertible matrix P ∈ Mn(F) , where

J1 = · · · = Jr =
(

0 1
−1 0

)
∈ M2(F), (2.6)

see for instance [10, p.g. 161] or [22, Proposition 1.34]. Denote Jn := J1 ⊕·· ·⊕ Jn/2 ∈
Kn(F) . When n is even, Jn is invertible and adjJn =−Jn . If A∈Kn(F) is an alternate
matrix with n even, then each (i, i)-th cofactor of A is zero. It follows that adjA has
zero diagonal entries. Moreover, since (adj A)t = (−1)n−1adj A = −adj A , we have
adj A ∈ Kn(F) and

rank adjA =

{
0 if rankA �= n,

n if rankA = n.
(2.7)

For the basic properties and preliminary results of classical adjoint matrices we refer
the reader, for instance, to [23, Appendix D].

Let q be an integer such that q � 2. Let F be a field and F[x] be the ring of
polynomials in an indeterminate x over F . Evidently, if F is algebraically closed, then
the following condition:

xq−a ∈ F[x] has a root in F for every a ∈ F (2.8)



490 WAI LEONG CHOOI AND WEI SHEAN NG

holds in F . Besides algebraically closed fields, we see that

• if F = Fp is a Galois field of p elements with p = 2 or pr = kq for some positive
integers r and k , then, by the fact that ap = a for every a ∈ Fp , condition (2.8)
holds true in Fp ;

• if q is odd and F is the real field R , then it follows from the intermediate value
theorem that condition (2.8) holds in R .

By this observation, we have the following result.

PROPOSITION 1. Let n be an integer such that n � 2 , and let F be a field.
Then F satisfies condition (2.8) for q = n− 1 if and only if for each invertible matrix
A ∈ Mn(F) , there exists an invertible matrix B ∈ Mn(F) such that A = adjB.

Proof. We prove the necessity part. Let A ∈ Mn(F) be invertible. Denote λ :=
(detA)n−2 . Then λ �= 0 and there is a nonzero scalar λ0 ∈ F such that λ n−1

0 = λ−1 .
Thus A = λ−1(λA) = adjB , where B = λ0(adj A) ∈Mn(F) is invertible. We are done.

We now consider the sufficiency part. Let a∈F . We claim that there exists a scalar
α0 in F such that αn−1

0 −a = 0. The result is trivial when a = 0. We consider a �= 0.
Then there exists an invertible matrix B0 ∈ Mn(F) such that adj B0 = aIn . Hence
(detB0)n−2B0 = adj (adj B0)= adj (aIn)= an−1In . So B0 is diagonal. Let B0 = α0In for
some scalar α0 ∈F . Then αn−1

0 In = adj B0 = aIn implies that αn−1
0 = a . Consequently,

F satisfies condition (2.8) for q = n−1. We are done. �
Inspired by Proposition 1, we obtain the following lemma.

LEMMA 1. Let n be a positive even integer and F be a field. Then F satisfies
condition (2.8) for q = n−1 if and only if for each invertible matrix A ∈ Kn(F) , there
exists an invertible matrix B ∈ Kn(F) such that A = adjB.

Proof. Let A ∈ Kn(F) be invertible. By Proposition 1, there exists an invertible
matrix B ∈ Mn(F) such that A = adj B . Since B = (detB)−(n−2)adj A , it follows that
B ∈ Kn(F) .

Conversely, let a ∈ F . We claim that there exists α0 ∈ F such that αn−1
0 = a .

The result is clear when a = 0. Consider now a �= 0. Then aJn = adj B0 for some
invertible matrix B0 ∈ Kn(F) . Since (detB0)n−2B0 = adj (aJn) = −an−1Jn , it follows
that B0 =−α0Jn for some scalar α0 ∈ F . So αn−1

0 Jn = adj (−α0Jn) = aJn . This yields
αn−1

0 = a , as desired. Then F satisfies condition (2.8) for q = n− 1. This completes
our proof. �

In what follows, unless otherwise stated, we let m and n be even integers such
that m,n � 4, and let F and K denote fields.

LEMMA 2. Let A,B ∈ Kn(F) . Then the following statements hold.

(a) If A is of rank r , then there exists a rank n− r matrix X1 ∈ Kn(F) such that
rank (A+X1) = n.
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(b) There exists a matrix X2 ∈ Kn(F) such that rank (A+X2) = rank (B+X2) = n.

(c) There exists a nonzero matrix X3 ∈ Kn(F) such that either A or X3 is of rank n
but not both with rank (A+X3) = n.

(d) If |F|> n+1 and rank (A+B) = n, then there exists a scalar λ ∈ F with λ �= 1
such that rank (A+ λB) = n.

Proof. Recall that J1, . . . ,Jn/2 denote the 2× 2 alternate matrix defined in (2.6).
Suppose that A ∈ Kn(F) is of rank r . It follows from (2.5) that r � 0 is necessarily
even, and there exists an invertible matrix P ∈ Mn(F) such that

A = P(J1⊕·· ·⊕ Jr/2⊕0n−r)Pt . (2.9)

(a) In view of (2.9), we select X1 = P(0r⊕Jr+1⊕·· ·⊕Jn/2)Pt ∈Kn(F) . It is clear
that X1 is of rank n− r and A+X1 is of rank n , as required.

(b) Suppose that A = B . It follows from (a) that there exists a matrix X2 ∈ Kn(F)
such that rank (A+X2) = n . We consider A �= B . Let H := A−B ∈ Kn(F) be of rank
k with 0 < k � n even. By (2.5), there exists an invertible matrix Q ∈Mn(F) such that
H = Q(J1 ⊕ ·· · ⊕ Jk/2 ⊕ 0n−k)Qt . Let h be the odd integer such that n

2 − 1 � h � n
2 .

We set

C =

⎧⎪⎨⎪⎩
QSQt if k < n

2 +1

Q(S−T )Qt if k � n
2 +1 and h = n

2 −1

Q(U −V )Qt if k � n
2 +1 and h = n

2

where S = (E1n−E2,n−1)+ · · ·+(En−1,2−En1) ∈ Kn(F) , T = J1⊕·· ·⊕ Jn/4⊕ 0n/2 ∈
Kn(F) , V = J1 ⊕ ·· · ⊕ J(n+2)/4⊕ 0(n−2)/2 ∈ Kn(F) , Zp = E1p +E2,p−1 + · · ·+Ep1 ∈
Mp(F) with p = (n−4)/2, and

Z =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ ∈ K 4(F) and U =

⎛⎝ 0(n−4)/2 0 Z(n−4)/2
0 Z 0

−Z(n−4)/2 0 0(n−4)/2

⎞⎠∈ K n(F).

It can be checked that C ∈Kn(F) is of rank n and rank (H +C) = n . Let X2 :=C−B .
It is easy to see that X2 ∈ Kn(F) , and A+X2 = H +C and B+X2 = C are of rank n .
We are done.

(c) If A is of rank n , then, by (2.9), we have A = PJnPt . We select

X3 := P(E1n−En1)Pt ∈ Kn(F).

It is clear that rankX3 = 2 < n and rank (A+X3) = n , as required. We now consider
rankA = r < n . If A = 0, then we take X3 = Jn . Suppose that A �= 0. Let h be the odd
integer such that n

2 −1 � h � n
2 . In view of (2.9), we choose

X3 =

⎧⎪⎨⎪⎩
PSPt if r < n

2 +1

P(S−T )Pt if r � n
2 +1 and h = n

2 −1

P(U −V)P t if r � n
2 +1 and h = n

2 ,
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where S,T,U,V ∈ Kn(F) are alternate matrices as defined in (b). Then X3 ∈ Kn(F) is
of rank n and rank (A+X3) = n . We are done.

(d) The result is clear when B = 0. Consider now B �= 0. For each x ∈ F , we
denote p(x) = det(A+ xB) . Then p(x) ∈ F[x] is a nonzero polynomial in x over F . In
view of (2.5), there exists an invertible matrix N ∈ Mn(F) such that B = N(J1 ⊕·· ·⊕
Js/2⊕0n−s)Nt with s � 1 even. Then

p(x) = ζ det(G+ x(J1⊕·· ·⊕ Js/2⊕0n−s)),

where ζ = det(NNt)∈ F is nonzero and G = N−1A(N−1)t ∈Kn(F) . Since |F|� n+2
and deg p(x) � s � n , it follows that there exists a scalar λ0 ∈ F with λ0 �= 1 such that
p(λ0) �= 0. Then rank (A+ λ0B) = n . We complete the proof. �

LEMMA 3. Let ψ : Kn(F) → Km(K) be a mapping satisfying condition (1.4).
Let A ∈ Kn(F) . Then the following statements hold.

(a) If F satisfies condition (2.8) for q = n− 1 , then A is invertible implies that
ψ(A) = 0 or ψ(A) is invertible.

(b) If A is singular, then ψ(A) is singular.

(c) ψ is injective if and only if rankψ(A) = m ⇔ rankA = n.

Proof. (a) If A is invertible, then there exists an invertible matrix B∈Kn(F) such
that A = adjB by Lemma 1. Thus ψ(A) = adjψ(B) . If ψ(B) is invertible, then ψ(A)
is invertible. If ψ(B) is singular, then rankψ(B) � m−2, and so ψ(A) = 0.

(b) If A is singular, then rankA � n−2 and adj A = 0. So adjψ(A) = ψ(adjA) =
ψ(0) = 0. Therefore, rankψ(A) � m−2, and thus ψ(A) is singular.

(c) By (b), we have rankψ(A) = m implies that rankA = n . Let A be of rank n .
By the injectivity of ψ , together with (a), we conclude that rankψ(A)= m . Conversely,
we let H,K ∈Kn(F) such that ψ(H) = ψ(K) . Let rank (H−K) = k . By Lemma 2 (a),
there exists a rank n− k matrix X ∈ Kn(F) such that H −K +X is of rank n . Then
adj ψ(H −K +X) is of rank m . By (1.4), we see that adj ψ(X) = adj ψ(K − (K −
X)) = adj (ψ(K)−ψ(K −X)) = adj (ψ(H)−ψ(K−X)) = adj ψ(H −K +X) . Thus
rankψ(X) = m , and so rankX = n . We thus have k = 0, and hence H = K . Then ψ
is injective. We are done. �

LEMMA 4. Let F be a field satisfying condition (2.8) for q = n− 1 . Let ψ :
Kn(F) → Km(K) be a mapping satisfying condition (1.4). Let P ∈ Mn(F) be an in-
vertible matrix and let LP : Kn(F) → Km(K) be the mapping defined by

LP(A) = ψ(PAPt) f or every A ∈ Kn(F). (2.10)

If LP(Jn) = 0 , then LP(A) = 0 for every invertible matrix A ∈ Kn(F) .
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Proof. We first show that if A,B∈Kn(F) are invertiblematrices such that rank (A−
B) < n , then

LP(A) = 0 ⇒ LP(B) = 0. (2.11)

Since rank (A− B) < n , it follows that adj (P(A− B)Pt) = 0, and so ψ(adj (P(A−
B)Pt)) = 0. It follows from (1.4) and (2.10) that adj (LP(A)− LP(B)) = 0. Since
LP(A) = 0, we have adj LP(B) = 0, and so rankψ(PBPt) < m . Hence LP(B) =
ψ(PBPt) = 0 by Lemma 3 (a). Denote

H := {J⊕X | X ∈ K n−2(F) and rankX = n−2}⊆ Kn(F).

Here, J ∈ K 2(F) is the 2×2 alternate matrix defined in (2.6). We now claim that

LP(H) = 0 for every H ∈ H . (2.12)

Let H ∈ H . Then H is of rank n . Since rank (Jn −H) < n , it follows from our
assumption LP(Jn) = 0 and (2.11) that LP(H) = 0, as required.

Let A ∈ Kn(F) be an arbitrary invertible alternate matrix. Then A can be ex-
pressed as

A =
(

aJ B
−Bt C

)
∈ K n(F) (2.13)

where a ∈ F , B = (bi j) ∈ M2,n−2(F) and C ∈ K n−2(F) . We argue in the following
two sub-cases:

Case I: n = 4. Then we have C = cJ for some scalar c ∈ F . We first consider
A is of form (2.13) with b21 = b22 = 0. Since rankA = 4, it follows that a,c �= 0.
Let H1 = J⊕C ∈ H . Then rank (A−H1) < 4. It follows from (2.11) and (2.12) that
LP(A) = 0. Suppose now that A is an invertible alternate matrix of form (2.13) with
C �= 0. We select

H2 =

⎛⎜⎜⎝ αJ

(
b11 b12

0 0

)
(−b11 0
−b12 0

)
C

⎞⎟⎟⎠∈ K 4(F),

where

α =

{
a if a �= 0,

1 if a = 0.

In both cases, we see that each H2 is invertible, LP(H2) = 0 and rank (A−H2) < 4.
Then LP(A) = 0 by (2.11). Consider now A is of form (2.13) with C = 0. Therefore
B is invertible. If a �= 0, then we choose

H3 =

⎛⎜⎜⎝ aJ

(
b11 b12

0 0

)
(−b11 0
−b12 0

)
J

⎞⎟⎟⎠ ∈ K 4(F).
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Clearly, H3 is invertible, LP(H3) = 0 and rank (A−H3) < 4. Then LP(A) = 0 by
(2.11). If a = 0, then we select

H4 =
(

J B
−Bt 0

)
∈ K 4(F).

It is clear that H4 is invertible, LP(H4) = 0 and rank (A−H4) < 4. Then LP(A) = 0
by (2.11). We are done.

Case II: n � 6. Let A be an invertible alternate matrix of form (2.13). If C is
invertible, then we select K1 = J⊕C ∈ Kn(F) . Clearly, K1 ∈ H and rank (A−K1) <
n , and so LP(A) = 0 by (2.11). We now consider C is singular. Since rankA = n and

rank

(
aJ B
−Bt 0

)
� 4,

it follows that rankC = n− 4. By the fact of (2.5), there exists an invertible matrix
P ∈ Mn−2(F) such that

C = P(J1⊕·· ·⊕ J(n−4)/2⊕02)Pt , (2.14)

where Ji = J for i = 1, . . . ,(n−4)/2. We argue in the following two cases:
Suppose that n � 8. We select K2 = J⊕P(J1⊕·· ·⊕ J(n−4)/2⊕ J)Pt ∈ Kn−2(F) .

It is clear that K2 ∈ H , LP(K2) = 0 by (2.12), and rank (A−K2) < n . It follows from
(2.11) that LP(A) = 0, as desired.

Suppose that n = 6. Let N denote the set of all 6×6 invertible alternate matrices
of the form

N =
(

xJ X
−X t Y

)
∈ K 6(F)

for which x ∈ F is nonzero, X = (xi j) ∈ M2,4(F) with x2 j = 0 for j = 1, . . . ,4, and
Y ∈ K4(F) is invertible. We claim that

LP(N) = 0 for every N ∈ N . (2.15)

To see this, we take K3 = J⊕Y ∈K6(F) . Since Y ∈K4(F) is invertible, it follows that
K3 ∈ H , and so LP(K3) = 0 by (2.12). Note that rank (N−K3) < 6 yields LP(N) = 0
by (2.11). Let A be an invertible alternate matrix of form (2.13) with C singular. In
view of (2.14), we have C = P(J1⊕02)Pt ∈ K4(F) . We choose

K4 =

⎛⎜⎜⎜⎜⎜⎝
J

(
b11 · · · b14

0 · · · 0

)
⎛⎜⎝−b11 0

...
...

−b14 0

⎞⎟⎠ P(J⊕ J)Pt

⎞⎟⎟⎟⎟⎟⎠ ∈ K6(F).
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Then K4 ∈ N . Since

rank (A−K4) = rank

⎛⎜⎜⎜⎜⎜⎝
(a−1)J

(
0 · · · 0

b21 · · · b24

)
⎛⎜⎝0 −b21

...
...

0 −b24

⎞⎟⎠ P(02⊕ J)Pt

⎞⎟⎟⎟⎟⎟⎠� 4,

it follows from (2.15) and (2.11) that LP(A) = 0. The proof is completed. �

LEMMA 5. Let F be a field satisfying condition (2.8) for q = n− 1 . Let ψ :
Kn(F) → Km(K) be a mapping satisfying condition (1.4). Then the following state-
ments hold true.

(a) ψ(Jn) = 0 if and only if rankψ(A) � m−2 for all A ∈ Kn(F) .

(b) ψ(Jn) �= 0 if and only if ψ injective.

Proof. (a) Let A∈Kn(F) . If A is singular, then ψ(A) is singular by Lemma 3 (b).
So, rankψ(A) � m−2, as desired. If A is invertible, then, since ψ(Jn) = 0, in view of
Lemma 4, by setting P = In , we have ψ(A) = 0. Conversely, if rankψ(A) � m−2 for
all A ∈ Kn(F) , then rankψ(Jn) � m− 2, and so ψ(Jn) = 0 by Lemma 3 (a). We are
done.

(b) Since ψ(0) = 0, it follows from the injectivity of ψ that ψ(Jn) �= 0. Con-
versely, suppose that ψ(Jn) �= 0. We claim that rankA = n if and only if rankψ(A) =
m . The sufficiency part follows from Lemma 3 (b). Let A ∈ Kn(F) be of rank n . By
(2.5), there exists an invertible matrix P ∈ Mn(F) such that A = PJnPt . We define the
mapping LP : Kn(F) → Km(K) such as

LP(X) = ψ(PXPt) for all X ∈ Kn(F).

Then LP(P−1Jn(P−1)t) = ψ(Jn) �= 0. Suppose that rankψ(A) �= m . It follows from
Lemma 3 (a) that ψ(A) = 0, and so LP(Jn) = ψ(PJnPt) = ψ(A) = 0. Then, by Lemma
4, we obtain LP(X) = 0 for every invertible matrix X ∈ Kn(F) . In particular, we have
LP(P−1Jn(P−1)t) = 0, a contradiction. Hence ψ is injective by Lemma 3 (c). �

Let k and n be even integers with n � k � 4, and let F be a field with at least
three elements. Let S be a nonempty subset of Kn(F) . We define

S ⊥k := {A ∈ Kn(F) : rank (A−X) � k for all X ∈ S }
and S ⊥k⊥k := (S ⊥k)⊥k if S ⊥k is nonempty. Two alternate matrices A,B ∈ Kn(F)
are said to be adjacent if rank (A−B) = 2. We recall the following result proved in
[12, Lemmas 3.2 and 3.3].

LEMMA 6. Let k and m be even integers with m � k � 4 , and let F be a field
with at least three elements. Let A,B ∈ Kn(F) be matrices such that rank (A−B) � k .
Then A,B is a pair of adjacent matrices if and only if

∣∣{A,B}⊥k⊥k
∣∣� 3 .
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A mapping ϕ : Kn(F) → Km(K) is said to preserve adjacency in both directions
if rank (A−B) = 2 ⇔ rank (ϕ(A)−ϕ(B)) = 2 for all A,B ∈ Kn(F) . The following
result is known, see the works of [6, 12, 7, 8].

PROPOSITION 2. Let m and n be even integers with m,n � 4 . Let F and K

be fields with at least three elements. If ϕ : Kn(F) → Km(K) is a surjective mapping
satisfying

rank (A−B) = n ⇔ rank (ϕ(A)−ϕ(B)) = m (2.16)

for every A,B ∈ Kn(F) , then ϕ is a bijective mapping preserving adjacency in both
directions, m = n, and F and K are isomorphic.

Proof of Theorem 2. We note that adj A∗ = (adj A)∗ for every A ∈ K4(F) where
A∗ ∈ K4(F) is the alternate matrix as defined in (1.3). The sufficiency part is clear.

We now consider the necessity part. Suppose that ψ(Jn) = 0. By Lemma 5 (a),
we have ψ(A) is singular for all A ∈ Kn(F) . This contradicts to the surjectivity of ψ .
Then ψ(Jn) �= 0, and so ψ is injective by Lemma 5 (b). Let A,B ∈ Kn(F) . Then, in
view of Lemma 3 (c) and by condition (1.4), we have

rank (A−B) = n ⇔ rank ψ(adj (A−B)) = m

⇔ rank adj (ψ(A)−ψ(B)) = m

⇔ rank (ψ(A)−ψ(B)) = m.

It follows from Proposition 2 that ψ is a bijective mapping preserving adjacency in both
directions, m = n , and F and K are isomorphic. By the fundamental theorem of the
geometry of alternate matrices, see [13] or [22, Theorem 4.4], together with ψ(0) = 0,
we see that there exist a field isomorphism σ : F→K , an invertible matrix P∈Mn(K)
and a nonzero scalar λ ∈ K such that either

ψ(A) = λPAσPt for every A ∈ Kn(F) (2.17)

or when n = 4, we also have

ψ(A) = λP(A∗)σ Pt for every A ∈ K4(F). (2.18)

We next claim that PtP = μIn for some nonzero scalar μ ∈F such that (λ μ)n−2 =
1. Since adj (A∗) = (adjA)∗ for every A∈K4(F) , we consider only the first case (2.17)
as the second case (2.18) can be verified similarly. By (2.17), we obtain

λPadj (Aσ −Bσ )Pt = ψ(adj (A−B))= adjψ(A−B)= λ n−1adjPtadj (Aσ −Bσ )adjP

for all A,B ∈ Kn(F) . This implies that λ n−2(detQ)Q−1adj (Aσ −Bσ )Q−1 = adj (Aσ −
Bσ ) for every A,B ∈ Kn(F) , where Q = PtP is invertible with Qt = Q . In particular,
we have λ n−2(detQ)Q−1XQ−1 = X for every invertible X ∈ Kn(F) . Let 1 � i �= j �
n . Since Jn + λ (Ei j −Eji) is invertible, it can be verified that λ n−2(detQ)Q−1(Ei j −
Eji)Q−1 = Ei j −Eji for every 1 � i �= j � n . Consequently, we obtain

Q(Ei j −Eji) = λ n−2(Ei j −Eji)adj Q for every 1 � i �= j � n. (2.19)
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Let Q = (qi j) . Since Qt = Q , it follows from (2.19) that qi j = 0 for every 1 � i �= j � n
and qiiq j j − q2

i j = λ n−2(detQ) for every 1 � i �= j � n . Thus PtP = Q = μIn for
some nonzero scalar μ ∈ F such that μ2 = λ n−2(detQ) . Since detQ = μn , we obtain
(λ μ)n−2 = 1. This completes our proof. �

As an immediate consequence of Theorem 2, we have

COROLLARY 1. Let m and n be even integers with m,n � 4 . Let K be a field
with at least three elements, and let F be a field with at least three elements such
that xn−1 − a ∈ F[x] has a root for every a ∈ F . Then ϕ : Kn(F) → Km(K) is a
surjective classical adjoint commuting additive mapping if and only if m = n, F and
K are isomorphic, and there exist a field isomorphism σ : F → K , an invertible matrix
P ∈ Mn(K) with PtP = μIn , and nonzero scalars μ ,λ ∈ K with (λ μ)n−2 = 1 , such
that either

ψ(A) = λPAσPt f or every A ∈ Kn(F)

or when n = 4 ,
ψ(A) = λP(A∗)σ Pt f or every A ∈ Kn(F),

where ⎛⎜⎜⎝
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞⎟⎟⎠
∗

=

⎛⎜⎜⎝
0 a12 a13 a23

−a12 0 a14 a24

−a13 −a14 0 a34

−a23 −a24 −a34 0

⎞⎟⎟⎠.

We now proceed to prove Theorem 1.

LEMMA 7. Let m and n be even integers such that m,n � 4 , and let F be a field
with |F| = 2 or |F| > n+ 1 satisfying condition (2.8) for q = n− 1 . If ψ : Kn(F) →
Km(F) is a mapping satisfying condition (1.2) with ψ(Jn) �= 0 , then ψ is linear.

Proof. If ψ satisfies condition (1.2), then it satisfies condition (1.4), and so ψ is
injective by Lemma 5 (b). In view of Lemma 3 (c), together with condition (1.2), we
have

rank ψ(A+ αB) = m ⇔ rank (A+ αB) = n ⇔ rank (ψ(A)+ αψ(B)) = m (2.20)

for all A,B ∈ Kn(F) and α ∈ F . Let H,K ∈ Kn(F) and λ ∈ F such that rank (H +
λK)= n . By using the fact of (2.20), we obtain ψ(H+λK)adj ψ(H+λK)= detψ(H+
λK)Im , and also (ψ(H) + λ ψ(K))adj (ψ(H) + λ ψ(K)) = det(ψ(H) + λ ψ(K))Im .
Further, since adj ψ(H + λK) = adj (ψ(H)+ λ ψ(K)) , it follows that

ψ(H + λK) =
detψ(H + λK)

det(ψ(H)+ λ ψ(K))
(ψ(H)+ λ ψ(K)). (2.21)

By a similar argument as in (2.21), we have

ψ(H + λK) =
detψ(H + λK)

det(ψ(H)+ ψ(λK))
(ψ(H)+ ψ(λK)). (2.22)
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If we choose H = 0 and λK is of rank n , then, by the same argument as in (2.21), we
obtain

ψ(λK) =
detψ(λK)
detλ ψ(K)

λ ψ(K). (2.23)

We first claim that
ψ(αA) = αψ(A) (2.24)

for every invertible matrix A ∈ Kn(F) and α ∈ F . The result holds when α = 0.
Consider α �= 0. By Lemma 2 (c), there is a nonzero singular matrix C1 ∈ Kn(F) such
that rank (C1 + αA) = n . By the facts of (2.21) and (2.22), we have

λ1ψ(αA)−λ2αψ(A) = (λ2−λ1)ψ(C1), (2.25)

where λ1 = det(ψ(C1)+ αψ(A)) and λ2 = det(ψ(C1)+ ψ(αA)) are nonzero scalars
in F . Suppose λ1 �= λ2 . Since A is invertible, it follows from (2.23) that ψ(αA) and
ψ(A) are linearly dependent. So ψ(αA) = β ψ(A) for some nonzero scalar β ∈ F .
Substituting into (2.25), we obtain

(λ1β −λ2α)ψ(A) = (λ2−λ1)ψ(C1).

By the injectivity of ψ , ψ(A) and ψ(C1) are nonzero, and so rankψ(A) = rankψ(C1) .
This leads to a contradiction since rankψ(A)= m but rankψ(C1) < m by Lemma 3 (b).
Hence λ1 = λ2 , and thus the desired conclusion follows immediately from (2.25).

We next claim that if H,K ∈ Kn(F) such that H +K is invertible, then

H,K are linearly independent ⇒ ψ(H),ψ(K) are linearly independent. (2.26)

Suppose to the contrary that ψ(H) and ψ(K) are linearly dependent. By the injectivity
of ψ , we have ψ(H) and ψ(K) are distinct nonzero matrices. Then there exists a
nonzero scalar γ ∈ F such that ψ(K) = γψ(H) . Since rank (H + K) = n , it follows
from (2.20) that rank ((1+ γ)ψ(H)) = rank (ψ(H)+ ψ(K)) = m . Thus rankψ(H) =
m , and so rankH = n by Lemma 3 (b). It follows from (2.24) that ψ(K) = γψ(H) =
ψ(γH) . By the injectivity of ψ , we obtain K = γH . This contradicts to the assumption
that H and K are linearly independent.

We show that
ψ(H +K) = ψ(H)+ ψ(K) (2.27)

for all alternate matrices H,K ∈ Kn(F) such that H +K and K are invertible and H
is singular. The result holds when H = 0. Consider H �= 0. By the fact of (2.21), we
have

ψ(H +K)
detψ(H +K)

=
ψ(H)+ ψ(K)

det(ψ(H)+ ψ(K))
.

The result clearly holds when |F| = 2. We now consider F is a field with at least n+2
elements satisfying condition (2.8) for q = n−1. By Lemma 2 (d), there is a nonzero
scalar λ0 ∈ F such that H +(1+ λ0)K is invertible. Again, by the fact of (2.21), we
get

ψ(H +K)+ ψ(λ0K)
det(ψ(H +K)+ ψ(λ0K))

=
ψ(H +K + λ0K)

detψ(H +K + λ0K)
=

ψ(H)+ ψ((1+ λ0)K)
det(ψ(H)+ ψ((1+ λ0)K))

.
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Since K is invertible, it follows from (2.24) that ψ((1 + λ0)K) = (1 + λ0)ψ(K) =
ψ(K)+ ψ(λ0K) . Then we have

α2ψ(H +K)−α1(ψ(H)+ ψ(K)) = (α1 −α2)ψ(λ0K). (2.28)

where α1 = det(ψ(H+K)+ψ(λ0K)) and α2 = det(ψ(H)+ψ((1+λ0)K)) are nonzero
scalars in F . Since ψ(H +K) and ψ(H)+ψ(K) are invertible linearly dependent ma-
trices, we have ψ(H) + ψ(K) = α0ψ(H + K) for some nonzero scalar α0 ∈ F . It
follows from (2.28) that

(α2 −α1α0)ψ(H +K) = (α1 −α2)ψ(λ0K). (2.29)

H and K are linearly independent implies that H +K and λ0K are linearly indepen-
dent. So ψ(H + K) and ψ(λ0K) are linearly independent by (2.26). By (2.29), we
have α1 = α2 , and the desired result follows immediately from (2.28).

We now claim that

ψ(αA) = αψ(A) for every A ∈ Kn(F) and α ∈ F. (2.30)

The result holds when α = 0, A = 0 or A is invertible. Consider now α �= 0 and
A is a nonzero singular alternate matrix. By Lemma 2 (c), we can find an invertible
matrix C2 ∈ Kn(F) such that rank (αA +C2) = n . In view of (2.24) and (2.27), we
see that ψ(αA) + ψ(C2) = ψ(αA +C2) = ψ(α(A + α−1C2)) = αψ(A + α−1C2) =
α(ψ(A)+α−1ψ(C2)) = αψ(A)+ψ(C2) . Then we have ψ(αA) = αψ(A) , and so the
homogeneity of ψ is shown.

We finally show that ψ is additive. Let A,B ∈ Kn(F) . If either A = 0 or B = 0,
then the result holds. Suppose that A and B are nonzero. We first consider A+B is
invertible. Again, by (2.21), we have

ψ(A+B)
detψ(A+B)

=
ψ(A)+ ψ(B)

det(ψ(A)+ ψ(B))
. (2.31)

The result holds true when |F| = 2. Consider now F is a field with at least n+ 2 el-
ements satisfying condition (2.8) for q = n− 1. If A and B are linearly dependent,
then A = μ0B for some nonzero scalar μ0 ∈ F . By the homogeneity of ψ , we have
ψ(A+B) = ψ((μ0 +1)B) = (μ0 +1)ψ(B) = μ0ψ(B)+ ψ(B) = ψ(A)+ ψ(B) , as de-
sired. If A and B are linearly independent. By Lemma 2 (d), there exists a nonzero
scalar μ1 ∈ F such that A+(1+ μ1)B is invertible. By (2.21) and the homogeneity of
ψ , we obtain

ψ(A+B)+ ψ(μ1B)
det(ψ(A+B)+ ψ(μ1B))

=
ψ(A)+ ψ(B)+ ψ(μ1B)

det(ψ(A)+ ψ(B)+ ψ(μ1B))
,

and so, together with (2.31), we have

(a1−a2a3)ψ(A+B) = (a2−a1)ψ(μ1B)

where a1 = det(ψ(A) + ψ(B) + ψ(μ1B)) , a2 = det(ψ(A + B) + ψ(μ1B)) and a3 =
det(ψ(A)+ψ(B))

detψ(A+B) are nonzero scalars. On the other hand, since A and B are linearly
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independent, it follows that ψ(A+B) and ψ(μ1B) are linearly independent. Therefore,
we conclude that a1 = a2 , and so a3 = 1. The desired result follows immediately from
(2.31). Next, we consider A+B is singular. By Lemma 2 (b), there exists an alternate
matrix C3 ∈ Kn(F) such that rank (A +C3) = rank (A + B +C3) = n . Then we have
ψ(A+C3) = ψ(A)+ ψ(C3) , and also

ψ(A+B)+ ψ(C3) = ψ(A+B+C3) = ψ(A+C3)+ ψ(B) = ψ(A)+ ψ(C3)+ ψ(B).

Hence ψ(A+B) = ψ(A)+ ψ(B) , as required. Consequently, together with (2.30), ψ
is a linear mapping. The proof is complete. �

Proof of Theorem 1. The sufficiency part is clear. We now prove the necessity
part. Evidently, ψ satisfies condition (1.4). We argue in the following two sub-cases:

Case I: ψ(Jn) = 0. In view of Lemma 5 (a), we have rankψ(A) � n− 2 for all
A ∈ Kn(F) , and thus

rankψ(A+ αB) � n−2 for all A,B ∈ Kn(F) and α ∈ F.

Let H ∈ Kn(F) be an invertible matrix. By Lemma 1, there exists an invertible matrix
K ∈Kn(F) such that H = adjK . So ψ(H) = ψ(adjK) = adjψ(K) = 0 as rankψ(K) �
n−2. Hence ψ(A) = 0 for every invertible matrix A ∈ Kn(F) .

Case II: ψ(Jn) �= 0. Then ψ is an injective linear mapping by Lemmas 5 (b) and
7, and hence ψ is surjective. By Corollary 1, together with the homogeneity of ψ , we
prove the desired result. �

3. Skew-Hermitian matrices

Throughout this section, unless otherwise stated, we let F and K be fields which
possess proper involutions − of F and ∧ of K , respectively. We recall that F− =
{a ∈ F : a = a} and SF−= {a ∈ F : a = −a} (respectively, K∧ = {a ∈ K : â = a} and
SK∧ = {a∈K : â =−a} ). Since − is proper, there exists an element i∈ F , with i =−i
when char F �= 2, and i = 1 + i when char F = 2, such that F = F−⊕ iF− (see [14,
p.g. 601]), and also 1 ∈ SF− when charF = 2, and 1 ∈ F− . It follows that SF− �= {0}
and F

− �= {0} . Note that if n is a positive even integer, then μn ∈ F
− and ηn ∈ K

∧
for every elements μ ∈ F−∪SF− and η ∈ K∧∪SK∧ .

We start with the following basic result.

LEMMA 8. Let m and n be even integers with m,n � 4 . Let μ ∈ F− ∪ SF−
and η ∈ K∧∪ SK∧ be fixed but arbitrarily chosen nonzero scalars and ϕ : Hn(F) →
Hm(K) be a map satisfying

ϕ(μn−2adj (H −K)) = ηm−2adj (ϕ(H)−ϕ(K)) for every H,K ∈ Hn(F). (3.32)

Let A,B ∈ Hn(F) . Then the following statements hold.

(a) ϕ(μn−2adjA) = ηm−2 adj ϕ(A) .
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(b) adj ϕ(A−B) = adj (ϕ(A)−ϕ(B)) .

(c) rankϕ(A) � 1 if rankA = 1 .

(d) rankϕ(A) � m−1 if rankA = n−1 .

(e) rankϕ(A) � m−2 if rankA � n−2 .

(f) ϕ is injective if and only if rankϕ(A) = m ⇔ rankA = n.

Proof. (a) It is clear that ϕ(0) = 0. So ϕ(μn−2adjA) = ϕ(μn−2adj (A− 0)) =
ηm−2adj (ϕ(A)−ϕ(0)) = ηm−2adjϕ(A) .

(b) By (a) and (3.32), we see that ηm−2adjϕ(A− B) = ϕ(μn−2adj (A− B)) =
ηm−2adj (ϕ(A)−ϕ(B)) , and the result follows.

(c) If A is of rank one, then there is a rank n− 1 matrix B ∈ Hn(F) such that
adjB = 1

μn−2 A by [2, Lemma 2.2]. Then ϕ(A) = ϕ(μn−2adjB) = ηm−2adj ϕ(B) .

Since ηm−2adj ϕ(A) = ϕ(μn−2adjA) = ϕ(0) = 0, we obtain rankϕ(A) < m , and so
rankϕ(B) < m . Hence rankϕ(A) = rank (ηm−2adj ϕ(B)) � 1, as required.

(d) If A is of rank n−1, then rankϕ(μn−2adjA)� 1 by (c). So adj ϕ(μn−2adjA)=
0. On the other hand, adj ϕ(μn−2adjA) = adj (ηm−2adj ϕ(A)) = (ηm−2)m−1adj (adj ϕ
(A)) . Thus adj (adj ϕ(A)) = 0 implies that rankϕ(A) � m−1.

(e) If rankA � n−2, then ηm−2adj ϕ(A) = ϕ(μn−2adjA) = ϕ(0) = 0. Therefore
rankϕ(A) � m−2.

(f) Since ψ(0) = 0, by the injectivity of ϕ , we have Ker ϕ = {0} . By (d)
and (e), we see that rankϕ(A) = m implies that rankA = n . We now consider A is
of rank n . Suppose that rankϕ(A) < m . Then η−(m−2)ϕ(μn−2adj (μn−2adjA)) =
(ηm−2)m−1adj (adj ϕ(A)) = 0, which implies that μn−2adj (μn−2adjA) = 0 because
Kerϕ = {0} . This contradicts to the assumption that rankA = n . So rankϕ(A) = m .

Conversely, suppose that ϕ(H)= ϕ(K) for some H,K ∈Hn(F) . We let rank (H−
K) = k . It follows from [2, Lemma 2.4 (a)] that we can choose a rank n− k matrix
Y ∈ Hn(F) such that rank (H−K +Y ) = n . Then rankϕ(H−K +Y ) = m . By (b), we
see that

adj ϕ(Y ) = adj (ϕ(K)−ϕ(K−Y)) = adj (ϕ(H)−ϕ(K−Y )) = adj ϕ(H−K +Y )

is of rank m . Thus rankϕ(Y ) = m implies that rankY = n , and so k = 0. Hence H = K
and ϕ is injective, as desired. �

LEMMA 9. Let m and n be even integers with m,n � 4 . Let μ ∈ F−∪SF− and
η ∈K∧∪SK∧ be fixed but arbitrarily chosen nonzero scalars and ϕ : Hn(F)→Hm(K)
be a mapping satisfying condition (3.32). Suppose that P ∈ Mn(F) is invertible, and
that TP : Hn(F) → Hm(K) is the mapping defined by

TP(A) = ϕ(PAP
t) f or every A ∈ Hn(F).

Then the following statements hold.
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(i) If rankTP(In) �= m, then rankTP(A) � m−2 for all A ∈ Hn(F) and TP(A) = 0
for all rank one matrices A ∈ Hn(F) .

(ii) If rankTP(In) = m, then rankTP(aEii) = 1 for all integers 1 � i � n and nonzero
scalars a ∈ F

− .

Proof. Throughout this proof, we denote θ := μn(n−2)det(PP)n−2 , ϑ := μn−2θ n−1

and U := adjP . It is clear that θ ,ϑ ∈ F− are nonzero scalars and rankU = n . Cer-
tainly, by the definition of TP , we see that Lemma 8 (c), (d) and (e) hold true for TP ,
and

adj TP(A−B) = adj (TP(A)−TP(B)) f or every A,B ∈ Hn(F). (3.33)

(a) We note that μn−2adj (μn−2adj (PP
t)) = θPP

t
. It follows that TP(θ In) =

ϕ(θPP
t)= ϕ(μn−2adj (μn−2adj (PP

t))= ηm−2adj (ηm−2adj TP(In)) . Since rank TP(In)
< m , we get

TP(θ In) = 0. (3.34)

Also, ϕ(ϑU
t
U) = ϕ(μn−2adj (θPP

t)) = ηm−2adj TP(θ In) . It follows from (3.34) that

ϕ(ϑU
t
U) = 0. (3.35)

We next claim that
ϕ(U tϑEiiU) = 0 for i = 1, . . . , n. (3.36)

Let 1 � i � n . By using the fact that θ n−1Eii = adj (θ (In−Eii)) as well as (3.33), (3.34)
and Lemma 8 (a), we get ϕ(U tϑEiiU)= ϕ(U t(μn−2θ n−1)EiiU)= ϕ(μn−2adj (Pθ (In−
Eii)P

t)) = ηm−2adj TP(θ In−θEii) = ηm−2adj (TP(θ In)−TP(θEii)) = ηm−2adj
(−TP(θEii)) = 0 because rankTP(θEii) � 1 by Lemma 8 (c). We next show, for each
1 � i � n , that

TP(αEii) = 0 for every α ∈ F
−. (3.37)

The result clearly holds for α = 0. Suppose that α �= 0. Let β = μ (n−2)(n−1)α ∈ F− .
By the fact of adj (ϑ In−ϑEii−ϑEj j +θ−1ϑ 2−nβEj j) = θ−1βEii with i �= j , adjU =
(detP)n−2P , (3.35) and (3.36), we have

TP(αEii)= ϕ((μ−1)(n−2)(n−1)θP(θ−1β )EiiP
t)

= ϕ((μ−1)(n−2)(n−1)μ (n−2)ndet(PP)n−2P(θ−1β )EiiP
t)

= ϕ(μn−2(detP)n−2P(θ−1βEii)(detP)n−2P
t)

= ϕ(μn−2(adjU)adj (ϑ In−ϑEii−ϑEj j + θ−1ϑ 2−nβEj j)(adjU t))

= ϕ(μn−2adj (U t(ϑ In−ϑEii−ϑEj j + θ−1ϑ 2−nβEj j)U))

= ηm−2adj (ϕ(U t(ϑ In−ϑEii + θ−1ϑ 2−nβEj j)U)−ϕ(UtϑEj jU))

= ηm−2adj ϕ(U t(ϑ In + θ−1ϑ 2−nβEj j)U −U
tϑEiiU)

= ηm−2adj (ϕ(U t(ϑ In + θ−1ϑ 2−nβEj j)U)−ϕ(UtϑEiiU))

= ηm−2adj ϕ(ϑ U
t
U +U

t(θ−1ϑ 2−nβEj j)U)

= ηm−2adj (ϕ(ϑ U
t
U)−ϕ(−U

t(θ−1ϑ 2−nβEj j)U))

= ηm−2adj (−ϕ(−U
t(θ−1ϑ 2−nβEj j)U)) = 0
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since rankϕ(−U
t(θ−1ϑ 2−nβ )Ej jU) � 1. By the fact of (3.33) and (3.37), we have

adj TP(A+ α1E11 + · · ·+ αnEnn) = adj TP(A) (3.38)

for every matrix A ∈ Hn(F) and scalars α1, . . . ,αn ∈ F− . We next claim, for each
1 � i � n , that

ϕ(U t(αEii)U) = 0 for every α ∈ F
−. (3.39)

Since adj (In−Eii−Ej j + γEj j) = γEii with i �= j and γ = (μ−1)n−2α ∈ F
− , together

with (3.33) and (3.38), we have

ϕ(U t(αEii)U) = ϕ(μn−2(adjP
t)(adj (In−Eii−Ej j + γEj j))adjP)

= ηm−2adj TP(In−Eii−Ej j + γEj j)

= ηm−2adj TP(γEj j) = 0.

It follows from Lemma 8 (b) and (3.39) that

adj ϕ(A+ U
t(α1E11 + · · ·+ αnEnn)U) = adj ϕ(A) (3.40)

for every matrix A ∈Hn(F) and scalars α1, . . . ,αn ∈ F
− . Let 1 � i, j,k � n be distinct

integers. Denote Xi jk := In −Eii −Ej j − 2Ekk . Let a ∈ F− be a nonzero scalar. Then
aa ∈ F− and adj (aEi j + aEji + Xi jk) = aEi j + aEji + aaXi jk . By Lemma 8 (a) and
(3.38), we obtain

ϕ(μn−2U
t(aEi j +aEji +aaXi jk)U) = ϕ(μn−2adj (P(aEi j +aEji +Xi jk)P

t))

= ηm−2adj TP(aEi j +aEji +Xi jk)

= ηm−2adj TP(aEi j +aEji) = 0

since rankTP(aEi j +aEji) � m−2. Consequently, we have

ϕ(μn−2U
t(aEi j +aEji +aaXi jk)U) = 0 (3.41)

for every distinct integers 1 � i, j,k � n and scalar a ∈ F− .
We now show that TP sends all rank one matrices into zero. Let H ∈ Hn(F) be a

rank one matrix. By [2, Lemma 2.2], there exists a rank n−1 matrix R = (ri j)∈Hn(F)
such that θ−1H = adjR . By Lemma 8 (a), we have

TP(H) = ϕ(θP(θ−1H)Pt)

= ϕ(μ (n−2)n det(PP)n−2P(adjR)Pt)

= ϕ(μ (n−2)n(adjU)(adjR)(adjU
t))

= ϕ(μn−2adj (μn−2U
t
RU))

= ηm−2adj ϕ(μn−2U
t
RU).
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By using (3.40) and following by Lemma 8 (b) and (3.41), we see that

adj ϕ(μn−2U
t
RU) = adj ϕ

(
∑

1�i< j�n

μn−2U
t(r jiE ji + r jiEi j)U +

n

∑
i=1

U
t(μn−2riiEii)U

)

= adj ϕ

(
∑

1�i< j�n

μn−2U
t(r jiE ji + r jiEi j)U

)

= adj ϕ

(
∑

1�i< j�n

μn−2U
t(r jiE ji + r jiEi j)U + μn−2U

t(r21r21X12k)U

)

= adj ϕ

⎛⎜⎜⎝ ∑
1 � i < j � n,
i �= 1 and j �= 2

μn−2U
t(r jiE ji + r jiEi j)U

⎞⎟⎟⎠ .

Continuing in this way, we obtain

adj ϕ(μn−2U
t
RU) = adj ϕ(μn−2U

t(rn,n−1En,n−1 + rn,n−1En−1,n)U) = 0

since rankϕ(μn−2U
t(rn,n−1En,n−1 + rn,n−1En−1,n)U) � m−2. Consequently, we con-

clude that TP(H) = 0 for every rank one matrix H ∈ Hn(F) .
We now prove that adj TP(A) = 0 for all A∈Hn(F) . The result obviously holds if

A = 0. Suppose that rankA = k with 1 � k � n . In view of [2, Lemma 2.3], there exist
rank one matrices A1, . . . ,Ah ∈Hn(F) , with k � h � k+1, such that A = A1 + · · ·+Ah .
By (3.33), we have adj TP(A) = adj (TP(A1 + · · ·+ Ah−1)− TP(−Ah)) = adjTP(A1 +
· · ·+Ah−1) = · · · = adj TP(A1) = 0. So rankTP(A) � m− 2 for every A ∈ Hn(F) , as
desired.

(b) Since ϕ(μn−2U
t
U) = ϕ(μn−2adj (PP

t)) = ηm−2adj TP(In) , it follows that
ϕ(μn−2U

t
U) is of rank m . Suppose that TP(a0Ei0i0) = 0 for some integer 1 � i0 � n

and some nonzero scalar a0 ∈ F− . Let s,t be two distinct integers such that 1 � s,t � n
with s, t �= i0 . Since

adj (In−Ess− (1+a0)Ei0i0 − (1−a−1
0 )Ett) = −Ess,

it follows from (3.33) and Lemma 8 (e) that

ϕ(μn−2U
t(−Ess)U) = ϕ(μn−2adj (P(In−Ess− (1+a0)Ei0i0 − (1−a−1

0 )Ett )P
t))

= ηm−2adj TP(In−Ess− (1+a0)Ei0i0 − (1−a−1
0 )Ett )

= ηm−2adj (TP(In−Ess−Ei0i0 − (1−a−1
0 )Ett )−TP(a0Ei0i0))

= ηm−2adj TP(In−Ess−Ei0i0 − (1−a−1
0 )Ett ) = 0

because rank (In −Ess −Ei0i0 − (1− a−1
0 )Ett) = n− 2. By Lemma 8 (b) and (d), we

have

adj ϕ(μn−2U
t
U) = adj ϕ(μn−2U

t(In−Ess +Ess)U)

= adj (ϕ(μn−2U
t(In−Ess)U)−ϕ(μn−2U

t(−Ess)U)

= adj ϕ(μn−2U
t(In−Ess)U),



ADJOINT COMMUTING MAPPINGS ON ALTERNATE AND SKEW-HERMITIAN MATRICES 505

which implies that rankϕ(μn−2U
t
U) �= m , a contradiction. Thus TP(aEii) �= 0 for

every nonzero a ∈ F− . By Lemma 8 (c), rankTP(aEii) = 1 for every integer 1 � i � n
and nonzero scalar a ∈ F− . The proof is complete. �

LEMMA 10. Let m and n be even integers with m,n � 4 . Let μ ∈ F−∪SF− and
η ∈ K

∧∪ SK
∧ be fixed but arbitrarily chosen nonzero scalars, and let ϕ : Hn(F) →

Hm(K) be a mapping satisfying condition (3.32). If rankϕ(In)= m, then ϕ is injective
and

rank (H −K) = n ⇔ rank (ϕ(H)−ϕ(K)) = m

for every H,K ∈ Hn(F) .

Proof. Let A ∈ Hn(F) be of rank one. It follows from [2, Lemma 2.1] that there
exist an invertible matrix P ∈ Mn(F) and a nonzero scalar α ∈ F− such that A =
P(αE11)P

t . We define the mapping TP : Hn(F) → Hm(F) such as

TP(H) = ϕ(PHP
t) for every H ∈ Hn(F).

Then TP(P−1P−1 t
) is of rank m . Suppose that rankTP(In) �= m . Then, by Lemma

9 (a), we have rankTP(H) � m−2 for every matrix H ∈ Hn(F) , which contradicts to

the fact that rankTP(P−1P−1 t
) = m . So rankTP(In) = m , and thus rankTP(aEii) = 1

for all integers 1 � i � n and nonzero scalars a ∈ F− by Lemma 9 (b). Therefore,
rankϕ(A) = rankTP(αEii) = 1. Hence ϕ preserves rank one matrices.

Let X ,Y ∈ Hn(F) with ϕ(X) = ϕ(Y ) . Suppose that X −Y �= 0. By [2, Lemma
2.4 (d)], there is a matrix Z ∈Hn(F) with rankZ � n−2 such that rank (X −Y +Z) =
n− 1. Then adj (X −Y + Z) = 1, and so rankϕ(μn−2adj (X −Y +Z)) = 1. On the
other hand, ϕ(μn−2adj (X −Y +Z)) = ηm−2adj ϕ(X +Z−Y ) = ηm−2adj (ϕ(X +Z)−
ϕ(Y )) = ηm−2adj (ϕ(X + Z)−ϕ(X)) = ηm−2adj ϕ(Z) = 0, a contradiction. Hence
X = Y , and so ϕ is injective.

Let H,K ∈ Hn(F) . By the injectivity of ϕ , it follows from Lemmas 8 (a), (b) and
(f) that

rank (H−K) = n ⇔ rank ψ(μn−2adj (H −K)) = m

⇔ rank ηm−2adj (ψ(H −K)) = m

⇔ rank (ψ(H)−ψ(K)) = m.

The proof is complete. �

PROPOSITION 3. Let m and n be even integers with m,n � 4 . Let μ ∈ F−∪SF−
and η ∈ K∧∪ SK∧ be any fixed nonzero scalars. Then ϕ : Hn(F) → Hm(K) is an
additive mapping satisfying

ϕ(μn−2adj H) = ηm−2adj ϕ(H) for every H ∈ Hn(F)
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if and only if either ϕ = 0 , or m = n and

ϕ(A) = λPAσ P̂t f or every A ∈ Hn(F),

where σ : (F,− ) → (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)
for all a ∈ F , P ∈ Mn(K) is invertible with P̂tP = ς In , and λ ,ς ∈ K∧ are scalars
with (λ ςησ(μ)−1)n−2 = 1 .

Proof. The sufficiency part is clear. We now consider the necessity part. By the
additivity of ϕ , we see that ϕ satisfies (3.32). We argue in the following two sub-cases:

Case I: rankϕ(In) �= m . In view of Lemma 9 (a), by considering P = In , we have
ϕ(A) = 0 for every rank one matrix A ∈ Hn(F) . By the additivity of ϕ , we show that
ϕ = 0, as desired.

Case II: rankϕ(In) = m . By Lemma 10, ϕ is injective, and so ϕ preserves
rank one matrices by Lemma 8 (c). Note that m = rank (ϕ(E11) + · · ·+ ϕ(Enn)) �
∑n

i=1 rankϕ(Eii) = n . Suppose that n > m . Then rank (ϕ(E11)+ · · ·+ ϕ(Enn)) < n . It
follows from [4, Theorem 2.1] that there exist integers 1 � s1 < · · ·< sp � n , with m �
p < n , such that rankϕ(Es1s1 + · · ·+Espsp) = m . Then m = rank (ηm−2adj ϕ(Es1s1 +
· · ·+Espsp)) = rankϕ(μn−2adj (Es1s1 + · · ·+Espsp)) � 1, a contradiction. Hence m = n .
By [14, Main Theorem, p.g. 603] and [11, Theorem 2.1 and Remark 2.4], we have

ϕ(A) = λQAσ Q̂t for every A ∈ Hn(F),

where σ : (F,− ) → (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)
for every a ∈ F , Q ∈ Mn(K) is an invertible matrix and λ ∈ K∧ is a nonzero scalar.
We now claim that there exists a nonzero scalar ς ∈ K

∧ such that

QQ̂t = ς In and (ηλ ςσ(μ)−1)n−2 = 1. (3.42)

In view of Lemma 8 (a), we see that ηn−2adj ϕ(In) = ϕ(μn−2In) . Then ηn−2λ n−1adj
(QQ̂t) = λ σ(μ)n−2QQ̂t , and so QQ̂t = (λ ησ(μ)−1)n−2(adj Q̂t)(adjQ) . Let ξ :=
(λ ησ(μ)−1)n−2 ∈ K∧ . Then

(Q̂tQ)2 = Q̂t(QQ̂t)Q = ξ Q̂t(adj Q̂t)(adjQ)Q = ξ det(Q̂tQ)In. (3.43)

Let 1 � i < j � n . Since adj (In−Eii−Ej j +Ei j +Eji) = −(In−Eii−Ej j +Ei j +Eji) ,
it follows from Lemma 8 (a) that

ηn−2adj ϕ(In −Eii−Ej j +Ei j +Eji) = −ϕ(μn−2(In−Eii−Ej j +Ei j +Eji)).

Then ηn−2adj (λQ(In − Eii − Ej j + Ei j + Eji)Q̂t) = −λQ(σ(μ)n−2(In − Eii − Ej j +
Ei j +Eji))Q̂t , and by (3.43), we have

Q̂tQ(In−Eii−Ej j +Ei j +Eji)Q̂tQ = ξ det(Q̂tQ)(In−Eii−Ej j +Ei j +Eji)

= (Q̂tQ)2(In−Eii−Ej j +Ei j +Eji).
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Pre-multiplying by (Q̂tQ)−1 gives Q̂tQ(In −Eii−Ej j +Ei j +Eji) = (In −Eii−Ej j +
Ei j +Eji)Q̂tQ for every 1 � i < j � n . Then Q̂tQ = ς In for some nonzero scalar ς ∈
K∧ , and so QQ̂t = ς In . Further, since ηn−2adj (λ ς In) = ηn−2adj (λQQ̂t) = ηn−2adj
ψ(In) = ψ(μn−2In) = λ σ(μ)n−2ς In , it follows that (ηλ ς σ(μ)−1)n−2 = 1. Claim
(3.42) is shown. We complete the proof. �

Proposition 3 gives a slight extension of Theorem 2.10 in [2].
Let m and n be even integers with m,n � 4. Let μ ∈ F−∪ SF− be a fixed but

arbitrarily chosen nonzero scalar, and let ϕ : Hn(F)→Hm(F) be a mapping satisfying

ϕ(μn−2adj (H + αK)) = μm−2adj (ϕ(H)+ αϕ(K)) (3.44)

for every H,K ∈ Hn(F) and α ∈ F− . Then ϕ satisfies condition (3.32) for (K,∧ ) =
(F,− ) and η = μ . Thus Lemmas 8, 9 and 10 hold true for ϕ . In particular, by an
argument analogous to the proof of Lemma 8 (b), we have

adj ϕ(H + αK) = adj (ϕ(H)+ αϕ(K))

for every H,K ∈ Hn(F) and α ∈ F− . Further, if rankϕ(In) = m , then, by Lemma 10,
we see that ϕ is injective and, in view of Lemma 8 (f) and by a similar argument as in
the last paragraph of the proof of Lemma 10, we have

rank ϕ(H + αK) = m ⇔ rank (H + αK) = n ⇔ rank (ϕ(H)+ αϕ(K)) = m

for every H,K ∈ Hn(F) and α ∈ F− . Therefore, by following the lines of the anal-
ogous proof in Lemma 7 applied on Hermitian matrices or [2, Lemma 2.9], it can be
shown that ϕ is additive and ϕ(αA) = αϕ(A) for every matrix A ∈ Hn(F) and scalar
α ∈ F− . We formulate this observation as a lemma:

LEMMA 11. Let m and n be even integers with m,n � 4 . Let F be a field which
possesses a proper involution − of F such that either |F−| = 2 or |F−| > n+ 1 . Let
ϕ : Hn(F)→Hm(F) be a mapping satisfying condition (3.44). If rankϕ(In) = m, then
ϕ is additive and ϕ(aA) = aϕ(A) for every matrix A ∈ Hn(F) and scalar a ∈ F− .

PROPOSITION 4. Let m and n be even integers with m,n � 4 , and F be a field
which possesses a proper involution − of F such that either |F−|= 2 or |F−|> n+1 .
Let μ ∈ F−∪SF− be a fixed but arbitrarily chosen nonzero scalar. Then ϕ : Hn(F) →
Hm(F) is a mapping satisfying

ϕ(μn−2adj (H + αK)) = μm−2adj (ϕ(H)+ αϕ(K))

for every H,K ∈Hn(F) and α ∈ F− if and only if ϕ(A) = 0 for every rank one matrix
A ∈ Hn(F) and rank (ϕ(A)+ αϕ(B)) � m− 2 for every A,B ∈ Hn(F) and α ∈ F− ;
or m = n and

ϕ(A) = λPAσP
t

f or every A ∈ Hn(F),

where σ : F → F is a field isomorphism satisfying σ(a) = σ(a) for all a ∈ F and
σ(a) = a for all a ∈ F− , P ∈Mn(F) is invertible satisfying P̂tP = ς In , and λ ,ς ∈ F−
are scalars satisfying (λ ς μσ(μ)−1)n−2 = 1 .
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Proof. The sufficiency part is clear. To prove the necessity part, we first see that if
rankϕ(In) �= m , then it follows from Lemma 9 (a), by considering P = In , that ϕ(A) = 0
for every rank one matrix A ∈ Hn(F) , and rankϕ(A) � m−2 for every A ∈ Hn(F) .

We next consider rankϕ(In) = m . By Lemma 11 and Proposition 3, we conclude
that m = n and ϕ(A) = λQAσQ

t
for every A ∈Hn(F) , where σ : F → F is a nonzero

field homomorphism satisfying σ(a) = σ(a) for all a ∈ F , Q ∈ Mn(K) is invertible
with Q̂tQ = ς In , and λ ,ς ∈F− are scalars with (λ ς μσ(μ)−1)n−2 = 1. It follows from
ϕ(aIn) = aϕ(In) for every a∈F

− , and hence σ(a) = a for every a∈F
− . Furthermore,

since − is proper, there exists a scalar i∈ F with i =−i when charF �= 2, and i = 1+ i
when charF = 2, such that F = F−⊕ iF− . It is easily verified that σ(i) =−σ(i) when
char F �= 2, and σ(i) = 1+ σ(i) when char F = 2. We thus have F = F−⊕σ(i)F− .
Let α ∈ F . Then there exist scalars β1,β2 ∈ F− such that α = β1 + σ(i)β2 . Let
γ = β1 + iβ2 ∈ F . We see that σ(γ) = α . Hence σ is surjective, and so it is an
isomorphism. The proof is complete. �

We remark that Proposition 4 gives a slight improvement, as well as a correction
for a misprint, of Theorem 2.12 in [2]. When F is the complex field C , we have the
field isomorphism σ on C is either the identity or the complex conjugate of C .

Let μ ∈ SF− be a nonzero scalar. Then μ−1 ∈ SF− . We note that if A∈SHn(F) ,
then (μA)t = μA

t = −μ(−A) = μA . This implies that μA ∈ Hn(F) . Conversely, if
μA ∈ Hn(F) , then μA = (μA)t = μA

t = (−μ)At = −μA
t
. Thus A

t = −A , and so
A ∈ SHn(F) . We thus obtain

A ∈ SHn(F) ⇔ μA ∈ Hn(F) (3.45)

for any fixed nonzero scalar μ ∈ SF− . Likewise, we also have

A ∈ Hn(F) ⇔ μA ∈ SHn(F) (3.46)

for any fixed nonzero scalar μ ∈ SF− . Then (3.45) and (3.46) lead to

SHn(F) = μHn(F) := {μA : A ∈ Hn(F)} (3.47)

Hn(F) = μSHn(F) := {μA : A ∈ SHn(F)} (3.48)

for any fixed nonzero scalar μ ∈ SF− .

LEMMA 12. Let m,n be even integers with m,n � 4 . Let μ ∈ SF− and η ∈ SK∧
be fixed but arbitrarily chosen nonzero scalars. Let ψ : SHn(F) → SHm(K) be a
mapping. If ϕ : Hn(F) → Hm(K) is the mapping defined by

ϕ(H) = η−1ψ(μH) for every H ∈ Hn(F),

then the following statements hold:

(a) ψ(adj (A− B)) = adj (ψ(A)−ψ(B)) for every A,B ∈ SHn(F) if and only if
ϕ(μn−2adj (H−K)) = ηm−2adj (ϕ(H)−ϕ(K)) for every H,K ∈ Hn(F) .
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(b) If (K,∧ ) = (F,− ) and η = μ , then ψ(adj (A + αB)) = adj (ψ(A) + αψ(B))
for every A,B ∈ SHn(F) and α ∈ F− if and only if ϕ(μn−2adj (H + αK)) =
μm−2adj (ϕ(H)+ αϕ(K)) for every H,K ∈ Hn(F) and α ∈ F− .

Proof. It suffices to prove the lemma only for statement (a) as statement (b) can
be shown similarly. Let H,K ∈ Hn(F) . By the definition of ϕ and (3.47), we see that
ηm−2adj (ϕ(H)−ϕ(K)) = ηm−2adj (η−1ψ(μH)−η−1ψ(μK)) = η−1adj (ψ(μH)−
ψ(μK)) = η−1ψ(adj (μ(H−K))) = η−1ψ(μn−1adj (H−K)) = ϕ(μn−2adj (H−K)) ,
as required.

Conversely, consider A,B ∈ SHn(F) . By the definition of ϕ and (3.48), we
see that adj (ψ(A)−ψ(B)) = ηm−1adj (η−1ψ(μ(μ−1A))−η−1ψ(μ(μ−1B))) = ηm−1

adj (ϕ(μ−1A)−ϕ(μ−1B)) = η(ηm−2adj (ϕ(μ−1A)−ϕ(μ−1B))) = ηϕ(μn−2adj μ−1

(A−B)) = ψ(μ(μ−1adj (A−B))) = ψ(adj (A−B)) . We are done. �
We are now ready to prove our main theorems of this section.

THEOREM 5. Let m and n be even integers with m,n � 4 . Let F and K be
fields which possess proper involutions − of F and ∧ of K , respectively. Then ψ :
SHn(F) → SHm(K) is a classical adjoint commuting additive mapping if and only if
either ψ = 0 , or m = n and

ψ(A) = λPAσ P̂t f or every A ∈ SHn(F)

where σ : (F,− ) → (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)
for all a ∈ F , P ∈ Mn(K) is invertible with P̂tP = ς In , and λ ,ς ∈ K∧ are scalars
with (λ ς)n−2 = 1 .

Proof. The sufficiency part is clear. We now consider the necessity part. By the ad-
ditivity of ψ , we have ψ(adj (A−B)) = adj (ψ(A)−ψ(B)) for every A,B ∈ SHn(F) .
Let μ ∈ SF− and η ∈ SK∧ be two fixed nonzero scalars. In view of (3.47), we define
the mapping ϕ : Hn(F) → Hm(K) such as

ϕ(H) = η−1ψ(μH) for every H ∈ Hn(F). (3.49)

By Lemma 12 (a) and ψ(0) = 0, we have ϕ(μn−2adj H) = ηm−2adj ϕ(H) for every
H ∈ Hn(F) . We now claim that ϕ is additive. Let H,K ∈ Hn(F) . Then ϕ(H +
K) = η−1ψ(μ(H +K)) = η−1(ψ(μH)+ψ(μK)) = ϕ(H)+ϕ(K) . By Proposition 3,
together with (3.49), we have either ϕ = 0, or m = n and there exist a nonzero field

homomorphism σ : (F,− ) → (K,∧ ) with σ̂(a) = σ(a) for all a ∈ F , an invertible
matrix P ∈ Mn(K) with P̂tP = ς In , and scalars α,ς ∈ K∧ with (ηας σ(μ)−1)n−2 =
1, such that ϕ(H) = αPHσ P̂ t for all H ∈ Hn(F) . By (3.49), we have

ψ(μH) = ηαPHσ P̂t = (ηα σ(μ)−1)P(μH)σ P̂t for every H ∈ Hn(F).

Let λ := ηα σ(μ)−1 . Then λ ∈ K∧ since η ,σ(μ)−1 ∈ SK∧ and α ∈ K∧ . It follows
from (3.47) that

ψ(A) = λPAσ P̂ t for every A ∈ SHn(F)
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with P̂ tP = ς In and (λ ς)n−2 = 1. We are done. �

Proof of Theorem 3. The sufficiency part is clear. To prove the necessity part,
we let μ ∈ SF− be a fixed nonzero scalar and ϕ : Hn(F) → Hm(F) be the mapping
defined by

ϕ(H) = μ−1ψ(μH) for every H ∈ Hn(F). (3.50)

By the assumption of ψ and Lemma 12 (b), we see that ϕ satisfies (3.44). By Proposi-
tion 4, we have either

(a) ϕ(H) = 0 for every rank one matrix H ∈ Hn(F) , and rankϕ(H) � m− 2 for
every H ∈ Hn(F) ; or

(b) m = n and ϕ(A) = αPAσP
t

for every A ∈ Hn(F) , where σ : F → F is a field
isomorphism satisfying σ(a) = σ(a) for all a ∈ F and σ(a) = a for all a ∈
F− , P ∈ Mn(F) is invertible with P̂tP = ς In , and α,ς ∈ F− are scalars with
(ας μσ(μ)−1)n−2 = 1.

If Case (a) holds, then ψ(A) = ψ(μ(μ−1A)) = μϕ(μ−1A) = 0 for all rank one
matrices A ∈ SHn(F) . Let A ∈ SHn(F) be any matrix. Then we have rankψ(A) =
rankψ(μ(μ−1A)) = rankϕ(μ−1A) � m−2 by (3.50). We are done.

If Case (b) holds, then, by (3.50) and (3.47), we have ψ(A) = ψ(μ(μ−1A)) =
μϕ(μ−1A) = λPAσ P̂t for every A∈SHn(F) , where P̂tP = ς In , and λ = μασ(μ)−1 ,
ς ∈ F

− with (λ ς)n−2 = 1. This completes our proof. �

Proof of Theorem 4. The sufficiency part is clear. We now consider the necessity
part. Let μ ∈ SF− and η ∈ SK∧ be any fixed nonzero scalars and ϕ : Hn(F)→Hm(K)
be the mapping defined by

ϕ(H) = η−1ψ(μH) for every H ∈ Hn(F). (3.51)

By Lemma 12 (a), we see that ϕ satisfies (3.32). We claim that ϕ is surjective. Let
Y ∈ SH m(K) . Then ηY ∈ Hm(K) by (3.45). By the surjectivity of ψ , there is a
matrix X ∈ SH n(F) such that ψ(X) = ηY . Then μ−1X ∈ Hn(F) and ϕ(μ−1X) =
η−1ψ(X) = Y , as desired. Suppose that rankϕ(In) �= m . It follows from Lemma 9 (a),
by considering P = In , that rankϕ(H) � m−2 for all H ∈ Hn(F) . This contradicts to
the surjectivity of ϕ , and so rankϕ(In) = m . In view of Lemma 10, we see that ϕ is a
bijection satisfying

rank (H −K) = n ⇔ rank (ϕ(H)−ϕ(K)) = m

for every H,K ∈ Hn(F) . We now show that m = n , F and K are isomorphic and

ϕ(A) = αPAσ P̂t for every A ∈ Hn(F), (3.52)

where σ : (F,− )→ (K,∧ ) is a field isomorphism satisfying σ̂(a) = σ(a) for all a∈ F ,
P ∈ Mn(K) is invertible with P̂tP = ς In , and α,ς ∈ K∧ are nonzero scalars with
(αςησ(μ)−1)n−2 = 1. We divide our proof into the following two cases.
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Case I: |K∧| = 2. Thus −1 = 1 since 0,1,−1 ∈ K . Then rank (H −K) = n if
and only if rank (ϕ(H)+ ϕ(K)) = m for H,K ∈ Hn(F) . We claim that ϕ is additive.
Let A,B ∈ Hn(F) . If rank (A + B) = n , then, together with Lemma 8 (f), we have
rankϕ(A+B) = rank (A− (−B)) = rank (ϕ(A)+ϕ(−B)) = m . By Lemma 8 (b) and a
similar argument as in the proof of (2.21), we obtain

ϕ(A+B)
detϕ(A+B)

=
ϕ(A)+ ϕ(−B)

det(ϕ(A)+ ϕ(−B))
.

Since detϕ(A + B) = 1 = det(ϕ(A) + ϕ(−B)) , it follows that ϕ(A + B) = ϕ(A) +
ϕ(−B) for every A,B ∈ Hn(F) with rank (A+B) = n . By the injectivity of ψ , we see
that ϕ(−In) = ϕ(0− In) = ϕ(0)+ ϕ(In) = ϕ(In) implies that In = −In . Then F is of
characteristic 2, and so the claim holds. We now consider rank (A + B) < n . By [2,
Lemma 2.4 (b)], there exists C ∈ Hn(F) such that rank (A+C) = rank (A+B+C) =
n . Then ϕ(A +C) = ϕ(A) + ϕ(C) and ϕ(A + B)+ ϕ(C) = ϕ(A + B +C) = ϕ(A +
C)+ ϕ(B) = ϕ(A)+ ϕ(C)+ ϕ(B) . Hence ϕ(A+B) = ϕ(A)+ ϕ(B) , as required. By
Proposition 3 and the bijectivity of ϕ , Claim (3.52) is proved.

Case II: |F−|, |K∧| > 3. Since ϕ(0) = 0, by combining [9, Theorem 3.6] and
the fundamental theorem of the geometry of Hermitian matrices [22, Theorem 6.4], we
have m = n , F and K are isomorphic, and

ϕ(A) = αPAσ P̂t for every A ∈ Hn(F),

where σ : (F,− ) → (K,∧ ) is a field isomorphism satisfying σ̂(a) = σ(a) for every
a ∈ F , P ∈ Mn(K) is invertible, and α ∈ K∧ is nonzero. By an argument analo-
gous to Claim (3.42), we see that PP̂t = ς In for some nonzero scalar ς ∈ K∧ and
(αςησ(μ)−1)n−2 = 1. So Claim (3.52) is proved.

In view of (3.51) and (3.52), we obtain ψ(μH) = ηϕ(H) = λP(μH)σ P̂t for every
H ∈Hn(F) , where λ := αησ(μ)−1 ∈K∧ , PP̂t = ς In and (λ ς)n−2 = 1. Then ψ(A) =
λPAσ P̂t for every A ∈ SHn(F) by (3.47). We are done. �
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