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APPROXIMATE DOUBLE COMMUTANTS AND DISTANCE FORMULAS

DON HADWIN AND JUNHAO SHEN

(Communicated by D. R. Farenick)

Abstract. We extend work of the first author concering relative double commutants and approx-
imate double commutants of unital subalgebras of unital C*-algebras, including metric versions
involving distance estimates. We prove metric results for AH subalgebras of von Neumann al-
gebras or AF subalgebras of primitive C*-algebras. We prove other general results, including
some for nonselfadjoint commutative subalgebras, using C*-algebraic versions of the Stone-
Weierstrass and Bishop-Stone-Weierstrass theorems.

1. Introduction

We extend results in [14] on approximate double commutants of C*-subalgebras
of C*-algebras. We also obtain some results for non-selfadjoint subalgebras. A key
ingredient in the proof of the main result in [14] was S. Machado’s version [18] of the
Bishop-Stone-Weierstrass theorem [4]. In this paper we use Machado’s vector version
of his theorem [18], the factor state version of the Stone-Weierstrass theorem for C*-
algebras of R. Longo [17], S. Popa [19], S. Teleman [22], and the first author’s version
of the Bishop-Stone-Weierstrass theorem for C*-algebras [13].

The classical double commutant theorem of von Neumann [25] is a key result in
the theory of von Neumann algebras. The first author [11] proved an asymptotic version
of von Neumann’s result for unital C*-algebras, and later [12] proved a metric version
with an analogue of Arveson’s distance formula.

It was shown by R. Kadison [15] that inside a factor von Neumann algebra von
Neumann’s double commutant theorem fails, even for commutative subalgebras. How-
ever, the author [14] showed that, for commutative unital C*-subalgebras of a factor
von Neumann algebra, the asymptotic version holds.

Suppose S is a subset of a ring R . We define the relative commutant of S in
R , the relative double commutant of S in R , respectively, by

(S ,R)′ = {T ∈ R : ∀S ∈ S ,TS = ST} ,

(S ,R)′′ =
{
T ∈ R : ∀A ∈ (S ,R)′ ,TA = AT

}
.

If B is a unital C*-algebra and S ⊆ B , we define the relative approximate double
commutant of S in B , denoted by Appr(S ,B)′′ as the set of all T ∈ B such that

‖TAλ −AλT‖→ 0
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for every bounded net {Aλ} in B for which

‖SAλ −AλS‖→ 0

for every S ∈ S . The approximate double commutant theorem [11] in B(H) says that
if S = S ∗, then Appr(S )′′ =C∗ (S ) . Moreover, if we restrict the {Aλ} ’s to be nets
of unitaries or nets of projections that asymptotically commute with every element of
S , the resulting approximate double commutant is still C∗ (S ) .

It is clear that the center Z (B) of B is always contained in Appr(S ,B)′′

and that Appr(S ,B)′′ is a norm closed unital algebra. Thus Appr(S ,B)′′ always
contains the norm closed unital algebra generated by S ∪Z (B) . If S = S ∗ , then
Appr(S ,B)′′ is a C*-algebra and must contain C∗ (S ∪Z (B)) . In [15] R. Kadison
calls a subalgebra A of B normal if A = (A ,B)′′ . We say that A is approximately
normal if A = Appr (A ,B)′′ .

We say that A is metric-normal in B if there is a constant K < ∞ such that, for
every T ∈ B ,

dist (T,A ) � K sup
{‖TU −UT‖ : U ∈ (A ,B)′ , U unitary

}
.

The smallest such K is the constant of metric-normality Kn (A ,B) of A in B . We
say that A is approximately metric-normal in B if there is a K < ∞ such that, for
every T ∈ B there is a net {Uλ} of unitaries in B such that, for every A ∈ A ,
‖AUλ −UλA‖→ 0, and such that

dist (T,A ) � K lim
λ

‖TUλ −UλT‖ .

The smallest such K is the constant of approximate metric normality Kan (A ,B) .
Here is a summary of the results in this paper. In Section 2 we discuss a version of

relative injectivity, summarize known results and prove a few new ones. We relate the
forms of injectivity to the metric versions of normalilty and approximate normality. We
also develop a number of useful basic results about the various versions of normality.
We prove (Theorem 14) that if A is a unital AH C*-subalgebra A of a von Neumann
algebra B , then C∗ (A ∪Z (B)) is metric approximately normal in B , and we prove
(Theorem 15) that every unital AF C*-subalgebra of a primitive C*-algebra is metric
approximately normal.

In Section 3, following ideas of Akemann and Pedersen [1], we prove (Theorem
17) that surjective unital ∗ -homomormisms send the approximate double commutant of
a set into the approximate double commutant of the image of the set. This result is a key
ingredient to our results in Sections 4 and 5 where we prove general results (Theorem 21
and Theorem) that involve C*-algebraic versions of the Stone-Weierstrass or Bishop-
Stone-Weierstrass theorems. We conclude in Section 6 with a list of open problems.

2. Metric results

If A is a unital C*-subalgebra of a C*-algebra B , then F (A ,B) is the con-
vex hull of the maps AdU : B → B defined by Adu (T ) = U∗TU , with a unitary
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U ∈ (A ,B)′ . We say that a unital C*-subalgebra A is strongly injective in a uni-
tal C*-algebra B if there is a conditional expectation E : B → A , a faithful unital
representation π : B → B(H) for some Hilbert space H , and a net {ϕλ} in F (A ,B)
such that, for every T ∈ B ,

π (ϕλ (T )) → π (E (T ))

in the weak operator topology. It is clear that if A is strongly injective in B , then A
contains the center Z (B) of B . If A and B are von Neumann algebras, we say
that A is weak* injective in B if E and the net {ϕλ} and be chosen so that, for every
T ∈ B ,

ϕλ (T ) → E (T )

in the weak*-topology on B , i.e., we can choose π to be the identity representation on
B .

PROPOSITION 1. Suppose B ⊆ B(H) is a unital C*-algebra. Then

1. If π : B → B(M) is a faithful unital ∗ -homomorphism for some Hilbert space
M , and E : B → A is a conditional expectation and there is a net {ψλ} in
F
(
π (A ) ,π (B)′′

)
such that, for every T ∈ B , {ψλ (π (T ))} converges in the

weak operator topology to an element π (E (T )) of π (A ) , then A is strongly
injective in B .

2. [10, Theorem C]If B is a von Neumann algebra, then Z (B) is weak* injective
in B .

3. [20] If B is a von Neumann algebra and A is a normal von Neumann subalge-
bra of B such that (A ,B)′ is hyperfinite (e.g., A is a masa in B ), then A is
weak* injective in B .

4. If B is a primitive C*-algebra, then Z (B) = C1 is strongly injective in B .

5. If A = ∑⊕
1� j�m A j is a unital C*-subalgebra of B and, for i = 1, . . . ,m, P1 =

1⊕0⊕·· ·⊕0 , P2 = 0⊕1⊕·· ·⊕0 , . . . , Pm = 0⊕·· ·⊕0⊕1, then A is strongly
injective (resp., normal, approximately normal) in B if Ai is strongly injective
(resp., normal,approximately normal) in PiBPi for 1 � i � m.

6. If Ai is strongly injective in Bi for i = 1,2 , then A1⊗min A2 is strongly injective
in B1 ⊗min B2 .

7. If A is strongly injective in B and W is any unital C*-algebra, then W ⊗min A
is strongly injective in W ⊗min B .

8. if B = Mk (D) = Mk (C)⊗D for k ∈ N and A = Mk (E ) = Mk (C)⊗E and
E is strongly injective (resp., normal) in D , then A is strongly injective (resp.,
normal) in B .
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Proof. (1) . Suppose U ∈ π (B)′′ is unitary. It follows that there is an A = A∗ ∈
π (B)′′ such that U = eiA . It follows from the Kaplansky density theorem that there is
a bounded net {Am} in B such that π (Am) → A in the strong operator topology, and
it follows, that if Um = eiAm , then π (Um) →U in the ∗ -strong operator topology, and
thus π (AdUm (B)) → AdU (π (B)) in the strong operator topology. It follows that the
point-weak-operator closure of {π ◦ϕ : ϕ ∈ F (A ,B)} contains every ψλ ◦ π , and
thus contains π ◦E .It follows that A is strongly injective in B .

(4) . This follows from (1) and (2) .
(5) is obvious.
(6) . Suppose, for i ∈ {1,2} , πi : Bi → B(Hi) is a faithful representation, Ei :

Bi → Ai is a conditional expectation and
{

ϕλ ,i

}
is a net in F (Ai,Bi) such that

πi
(
ϕλ ,i (T )

)→ πi (Ei (T ))

in the weak operator topology. Then E (T1⊗T2) = E1 (T1)⊗E2 (T2) defines a con-
ditional expectation E : B1 ⊗min B2 → A1 ⊗min A2 . Also π (T1⊗T2) = π1 (T1)⊗
π2 (T2) ∈ B(H1⊗H2) defines a faithful representation of B1 ⊗min B2 . Moreover, if
Uk,i ∈ (Ai,Bi)′ is unitary for i = 1,2 and 1 � k � m and if 0 � s1,t1, . . . ,sm,tm and
∑m

k=1 sk = ∑m
k=1 tk = 1, then Wk,r = Uk,1⊗Ur,2 ∈ (A1⊗min A2,B1 ⊗min B2)

′ and

m

∑
k,r=1

sktrWk,r (T1 ⊗T2)W ∗
k,r =

(
m

∑
k=1

skUk,1T1U
∗
k,1

)
⊗
(

m

∑
r=1

trUr,2T2U
∗
r,2

)
.

Thus
ϕλ (T1⊗T2) = ϕλ ,1 (T1)⊗ϕλ ,2 (T2)

defines an element ϕλ ∈ F (A1⊗min A2,B1 ⊗min B2) . Moreover,

π (ϕλ (T1⊗T2)) = π1
(
ϕλ ,1 (T1)

)⊗π2
(
ϕλ ,2 (T2)

)→ π (E (T1⊗T2))

in the weak operator topology on B(H1⊗H2) . Hence A1⊗min A2 is strongly injective
in B1 ⊗min B2 .

(7) and (8) follow from (6) . �
Suppose A is a unital C*-subalgebra of a unital C*-algebra B . We define two

seminorms on B as follows:

dn (T,A ,B) = sup
{‖WT −TW‖ : W ∈ (A ,B)′ ,‖W‖ � 1

}
,

and
dan (T,A ,B) = sup

{Wλ }
limsup

λ
‖Wλ T −TWλ‖

taken over all nets {Wλ} of contractions in B for which ‖AWλ −WλA‖→ 0 for every
A ∈ A .

The following lemma is obvious and the proof is omitted.

LEMMA 2. Suppose A is a unital norm closed subalgebra of a unital C*-algebra
B and T ∈ B . Then
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1. dn (T,A ,B) and dan (T,A ,B) are seminorms on B ,

2. dn (T ∗,A ,B) = dn (T,A ,B) and dan (T ∗,A ,B) = dan (T,A ,B) ,

3. dn (T,A ,B) � dan (T,A ,B) � 2dist (T,A ) � 2‖T‖
4. dn (T,A ,B) = 0 if and only if T ∈ (A ,B)′′

5. dan (T,A ,B) = 0 if and only if T ∈ Appr (A ,B)′′

We define Kn (A ,B) and Kan (A ,B) by

Kn (A ,B) = sup{dist (T,A ) : T ∈ B,dn (T,A ,B) � 1} ,

Kan (A ,B) = sup{dist (T,A ) : T ∈ B,dan (T,A ,B) � 1} .

Clearly Kn (A ,B) is the smallest M � 0 such that, for every T ∈ B , we have
dist (T,A ) � Mdn (T,A ,B) and Kan (A ,B) is the smallest N � 0 such that, for
every T ∈B , we have dist (T,A ) � Ndan (T,A ,B) . We say that A is metric normal
in A if Kn (A ,B) < ∞ and A is metric approximately normal if Kan (A ,B) < ∞ . It
is also clear that Kan (A ,B) � Kn (A ,B) , so metric normality implies metric approx-
imate normality.

The following proposition shows the relationship between strong injectivity and
metric normality.

PROPOSITION 3. Suppose A1 ⊆ A2 ⊆ ·· · ⊆ Am is are unital inclusions of C*-
algebras and Ak is weakly injective in Ak+1 for 1 � k < m. Then

Kn (A1,Am) � 1.

Proof. For each k , 2 � k � m choose a net
{

ϕλ ,k

}
in F (Ak−1,Ak) , a conditional

expectation Ek : Ak → Ak−1 and a faithful representation πk : Ak → B(Hk) such that

πk
(
ϕλ ,k (T )

)→ πk (Ek (T ))

in the weak operator topology for every T ∈ Ak . It is clear that

F (Ak−1,Ak) ⊆ F (A1,Am)

for 2 � k � m . Morover, if U is unitary and U ∈ (A1,Am)′ , then

‖T −UTU∗‖ = ‖TU −UT‖ � dn (T,A1,Am)

for all T ∈ Am . Suppose T ∈ Am , and let B denote the closed ball in Am cen-
tered at T with radius dn (T,A1,Am) . Let Wm denote the set of all A ∈ Am such
that πm (A) is in the weak-operator closure of the convex hull of {πm(UTU∗) : U ∈
(A1,Am)′, U is unitary} . Clearly Wm is convex and closed under conjugation by uni-
taries in (A1,Am)′ , and, since πm is an isometry, Wm ⊆B . It follows that Em (T )∈Wm .
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Next we let Wm−1 denote the set of all A ∈ Am such that πm−1 (A) is in the weak-
operator closure of the convex hull of {πm−1(UEm(T )U∗) :U ∈ (A1,Am)′, U is unitary} .
Clearly Wm−1 is convex and closed under conjugation by unitaries in (A1,Am)′ , and,
since πm−1 is an isometry, Wm−1 ⊆ B , and it follows that Em−1 (Em (T )) ∈ Wm−1 ⊆ B .
Proceeding inductively, we see that

E2 (E3 (· · ·Em (T ))) ∈ B∩A1,

from which it follows that

dist (T,A1) � dn (T,A1,Am) .

Hence Kn (A1,Am) � 1. �
The following corollaries follow from Proposition 1 and Proposition 3.

COROLLARY 4. If B is a von Neumann algebra and A is a normal von Neu-
mann subalgebra such that (A ,B)′ is hyperfinite, then A is metric normal in B and
Kn (Mk (A ) ,Mk (B)) � 1 for every k ∈ N .

COROLLARY 5. If A is a maximal abelian selfadjoint subalgebra of a von Neu-
mann algebra B , then Kn (Mk (A ) ,Mk (B)) � 1 for every k ∈ N .

COROLLARY 6. If A is a maximal abelian selfadjoint subalgebra of a von Neu-
mann algebra B , and W is any von Neumann algebra, then Kn (W ⊗A ,W ⊗B)� 1,
where ⊗ denotes the spatial tensor product.

COROLLARY 7. If B is a hyperfinite von Neumann algebra, then every normal
von Neumann subalgebra A of B is metric normal and

Kn (A ,B) � 1.

Without injectivity, this is the best analogue of Proposition 3.

LEMMA 8. If A ⊆ D ⊆ B are unital C*-algebras, then

Kn (A ,B) � Kn (D ,B)+Kn (A ,D)(2Kn (D ,B)+1) ,

and
Kan (A ,B) � Kan (D ,B)+Kan (A ,D) (2Kan (D ,B)+1) .

Proof. We present the proof for Kn ; the proof for Kan is similar. Suppose T ∈ B
and ε > 0. Then

dist (T,D) < [Kn (D ,B)+ ε]dn (T,D ,B) .

Hence there is a D ∈ D such that

‖T −D‖ � [Kn (D ,B)+ ε]dn (T,D ,B) .
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Similarly, there is an A ∈ A such that

‖D−A‖� [Kn (A ,D)+ ε]dn (D,A ,D) .

Hence

‖T −A‖ � ‖T −D‖+‖D−A‖
� [Kn (D ,B)+ ε]dn (T,D ,B)+ [Kn (A ,D)+ ε]dn (D,A ,D) .

However,
dn (T,D ,B) � dn (T,A ,B) ,

and

dn (D,A ,D) � dn (D,A ,B) � 2‖T −D‖+dn (T,A ,B)
� 2 [Kn (D ,B)+ ε]dn (T,D ,B)+dn (T,A ,B)
� (2 [Kn (D ,B)+ ε]+1)dn (T,A ,B)

Hence

dist (T,A ) � ‖T −A‖
� [Kn (D ,B)+ ε]dn (T,A ,B)

+ [Kn (A ,D)+ ε] (2 [Kn (D ,B)+ ε]+1)dn (T,A ,B) .

Letting ε → 0+ , we see

dist (T,A ) � [Kn (D ,B)+Kn (A ,D) (2Kn (D ,B)+1)]dn (T,A ,B) .

It follows that

Kn (A ,B) � Kn (D ,B)+Kn (A ,D) (2Kn (D ,B)+1) �

We now consider the metric approximate normality for direct limits.

LEMMA 9. Suppose A is a unital C*-subalgebra of a unital C*-algebra B and
{Ai : i ∈ I} is an increasingly directed family of C*-subalgebras of A . If A is the
norm closure of ∪i∈IAi , then

Kan (A ,B) � liminf
i

Kan (Ai,B) .

Proof. Suppose T ∈ B , F ⊆ A is finite, ε > 0, and let λ = (F,ε) . Then

dist (T,A ) = lim
i

dist (T,Ai)

� sup
i

Kan (T,Ai) liminf
i

dn (T,Ai,B) .
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We can choose i0 sufficiently large so that there is a map α : F → Ai0 such that

‖A−α (A)‖ < ε/2

for every A ∈ F and so that

liminf
i

dan (T,Ai,B) � dan
(
T,Ai0 ,B

)
+ ε.

We can choose a unitary Uλ in B so that

‖Uλ α (A)−α (A)Uλ‖ < ε/3

for every A ∈ F and so that

dan
(
T,Ai0 ,B

)
� ‖Uλ T −TUλ‖+ ε.

It follows that

dist (T,A ) � [‖Uλ T −TUλ‖+2ε]sup
i

Kan (Ai,B) .

and
‖Uλ A−AUλ‖ � ε.

If we let Λ be the set of all pairs λ = (F,ε) directed by (⊆,�) , we see that {Uλ} is a
net such that

‖AUλ −UλA‖→ 0

for every A ∈ A and such that

dist (T,A ) �
[
lim

λ
‖Uλ T −TUλ‖

]
sup

i
Kan (Ai,B) � dan (T,A ,B) sup

i
Kan (Ai,B) .

Hence Kan (A ,B) � supi Kan (Ai,B) , and since the same holds for when we restrict to
the set {Ai : i � j} for some j, we can replace supi Kan (Ai,B) with liminfi Kan (Ai,B) .

�
We now want to extend a key result in [14]. Recall from [14] that a unital C*-

algebra B is centrally prime if, whenever 0 � x,y � 1 are in B and xBy = {0} , then
there is an e ∈ Z (B) such that x � e � 1 and y � 1− e .

The following result is a generalization of [14, Theorem 1], in which W = C .
That result required S. Machado’s metric version [18] of the Bishop-Stone-Weierstrass
theorem [4]. Here we require Machado’s vector version of his result [18] (See [20] for
an beautiful elementary proof.)

PROPOSITION 10. Suppose A ⊆ D are unital commutative C*-algebras, W is
a unital C*-algebra, B is a centrally prime unital C*-algebra such that

1. A ⊗W ⊆ D ⊗W ⊆ B⊗minW ,



APPROXIMATE DOUBLE COMMUTANTS AND DISTANCE FORMULAS 537

2. Z (B⊗minW ) ⊆ A ⊗W .

Then, for every T ∈ D ⊗W ,

dist (T,A ⊗W ) � dan (T,A ⊗W ,B⊗min W ) .

Proof. We can view D =C (X) for some compact Hausdorff space X and we can
view D ⊗W as C (X ,W ) , the C*-algebra of continuous functions from X to W . We
can write T = f ∈ C (X ,W ) . It follows that A ⊗W is a C*-subalgebra of C (X ,W )
that is an A -module. It follows from Machado’s theorem [18], that there is a closed
A -antisymmetric subset E ⊆ X such that

dist ( f ,A ⊗W ) = dist ( f |E ,(A ⊗W ) |E) .

However, since A = A ∗ and E is A -antisymmetric, we see that every function in
A is constant on E . Hence, if u ∈ A and w ∈ W we have, for every x ∈ X that
(u⊗w)(x) = u(x)w . Hence, every function in A ⊗W is constant on E . Thus

dist ( f |E ,(A ⊗W ) |E) = inf{‖ f |E −h‖ : h : E → W , h is constant}
= inf

w∈W
sup
x∈E

‖ f (x)−w‖ .

Since E is compact, we can choose α,β ∈ E such that

‖ f (α)− f (β )‖ = sup
x,y∈E

‖ f (x)− f (y)‖ .

If we let w = f (β ) , we see that

dist ( f |E ,(A ⊗W ) |E) � sup
x∈E

‖ f (x)− f (β )‖ = ‖ f (α)− f (β )‖ .

Hence,
dist ( f ,A ⊗W ) � ‖ f (β )− f (α)‖ .

If f (α) = f (β ) , then T = f ∈ A ⊗W and the desired inequality holds. Hence
we can assume α �= β . Let Λ be the set of pairs (U,V ) , we U and V are disjoint open
subsets of X such that α ∈U and β ∈ V . Suppose λ = (U,V) ∈ Λ . We can define
gλ ,hλ ,rλ ,sλ ∈C (X) such that

1. 0 � gλ ,hλ ,rλ ,sλ � 1

2. gλ (α) = hλ (α) = 1, gλ hλ = hλ , gλ |X\Uλ
= 0

3. rλ (β ) = sλ (β ) = 1, rλ sλ = sλ , rλ |X\V = 0.

We then have, for every F ∈C (X ,W )

4. hλ F = Fhλ and ‖hλ F − (1⊗F (α))hλ‖→ 0
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5. sλ F = Fsλ and ‖sλ F − (1⊗F (β ))sλ‖→ 0.

Claim: hλ (B⊗1)sλ = (hλBsλ )⊗1 �= {0} . Since B is centrally prime, hλ Bsλ
= {0} implies that there is an e∈Z (B)⊆A such that hλ � e � 1 and sλ � 1−e � 1.
Thus 1 � e(α) and 0 � e(β ) , which contradicts e(α) = e(β ) . This proves the claim.

For each λ ∈ Λ we can choose Qλ ∈ hλ Bsλ ⊗1 with ‖Qλ‖ = 1. We then have,
for every F ∈C (X ,W )

‖[FQλ −QλF ]− [(1⊗F (α))Qλ −Qλ (1⊗F (β ))]‖→ 0,

so
|‖FQλ −Qλ F‖−‖(1⊗F (α))Qλ −Qλ (1⊗F (β ))‖| → 0.

However,

(1⊗F (α))Qλ = Qλ ⊗F (α) , and Qλ (1⊗F (β )) = Qλ ⊗F (β ) .

Hence, ‖FQλ −QλF‖→ 0 for every F ∈ A ⊗W and

lim
λ

‖ fQλ −Qλ f‖ = lim
λ

‖Qλ ⊗ ( f (β )− f (α))‖ = ‖ f (β )− f (α)‖
� dist ( f ,A ⊗W ) . �

COROLLARY 11. Suppose A is a commutative unital C*-subalgebra of a cen-
trally prime unital C*-algebra B such that Z (B) ⊆ A and W is any unital C*-
algebra. Then A ⊗W is approximately normal in B⊗min W .

Proof. Suppose D ⊆B is a masa in B that contains A . It follows that (D ⊗W ,
B⊗min W )′ = D ⊗Z (W ) , and (D ⊗W ,B⊗min W )′′ = D ⊗W . Hence D ⊗W is
normal in B⊗min W . Hence, if T ∈ Appr (A ⊗W ,B⊗min W )′′ , then T ∈ D ⊗W ,
and it follows from Proposition 10 that T ∈ A ⊗W . �

COROLLARY 12. Suppose A is a commutative unital C*-subalgebra of a von
Neumann algebra B and Z (B) ⊆ A , and W is any unital C*-algebra. Then
A ⊗min W is metric approximately normal in B⊗min W and

Kan (A ⊗min W ,B⊗min W ) � 4.

Proof. Let D be a masa in B that contains A . It follows from Proposition 1 that
D is weak*-injective in B , and that D ⊗W is strongly injective in B⊗min W . Sup-
pose T ∈ B⊗min W . We can assume that B ⊆ B (H) is a von Neumann algebra and
W ⊆ B(M) and B⊗min W is the spatial tensor product of B and W in B(H⊗M) .
Then there is a net {ϕλ} in F (D ,B) such that E (S) = w∗ - limλ ϕλ (S) is a condi-
tional expectation from B to D . Then E⊗1 : B⊗min W → D⊗W defined, for every
R in B⊗W , by

(E ⊗1)(R) = w∗- lim
λ

(ϕλ ⊗1)(R)
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is a conditional expectation and each

ϕλ ⊗1 ∈ F (D ⊗W ,B⊗min W ) ⊆ F (A ⊗W ,B⊗min W ) .

Hence T1 = (E ⊗1)(T ) ∈ B , where B is the closed ball in B⊗min W centered at T
with radius dn (T,A ⊗W ,B⊗min W ) . However, Theorem 10 implies that

dist (T1,A ⊗W ) � dan (T1,A ⊗W ,B⊗min W )
� dan (T,A ⊗W ,B⊗min W )+2‖T −T1‖
� dan (T,A ⊗W ,B⊗min W )+2dn (T,A ⊗W ,B⊗min W )
� 3dan (T,A ⊗W ,B⊗min W ) .

Hence

dist (T,A ⊗W ) � dist (T1,A ⊗W )+‖T −T1‖
� 4dan (T,A ⊗W ,B⊗min W ) . �

THEOREM 13. If B is a unital centrally prime C*-algebra and Z (B) ⊆ A is
a unital C*-subalgebra that is isomorphic to a finite direct sum of tensor products of
algebras of the form D ⊗Mk (C) , with D commutative, then A is approximately
normal in B . Moreover, if B is a von Neumann algebra, then Kan (A ,B) � 4.

Proof. Write A = A1⊕·· ·⊕An where each Ak is isomorphic to Dk ⊗Msk (C)
for some sk in N , and let P1 = 1⊕0⊕·· ·⊕0,P2 = 0⊕1⊕·· ·⊕0, . . . ,Pn = 0⊕·· ·⊕
0⊕1. It follows from Proposition 1 that ∑n

j=1 PjBPj is strongly injective in B . Since
Dk ⊗Msk (C) ⊆ PkBPk we can write

PkBPk = Bk ⊗Msk (C)

with Dk ⊆ Bk . Since B is centrally prime, so is each PkBPk , and thus so does each
Bk . Since Z (B) ⊆ D , we know that

Z
(
Bk ⊗Msk (C)

)
= Z (Bk)⊗1 ⊆ Dk ⊗Msk (C) ,

which implies Z (Bk) ⊆ Dk for 1 � k � n . Since, by [14], Dk is normal in Bk , we
know that PkA Pk = Dk⊗Msk (C) is normal in Bk ⊗Msk (C) = PkBPk for 1 � k � n .
Hence by Proposition 1, A is normal in B . If B is a von Neumann algebra and if,
for each k , Ek is a masa in Bk containing Dk for 1 � k � n , then

⊕
∑

1�k�n

Ek ⊗Msk (C)

is weak* injective in B . It follows from Theorem 10 that, for every S = S1⊕·· ·⊕Sn ∈
∑⊕

1�k�n Ek ⊗Msk (C)

dist (S,A ) � max
1�k�n

dist
(
Sk,Ak ⊗Msk (C)

)
� max

1�k�n
dan
(
Sk,Ak⊗M sk (C) ,Bk ⊗Msk (C)

)
� dan (S,A ,B) .
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If T ∈ B , it follows that there is an S ∈ ∑⊕
1�k�n Ek ⊗Msk (C) such that

‖T −S‖� dan (T,A ,B) .

It follows that

dist (T,A ) � dist (S,A )+‖S−T‖
� dan (S−T,A ,B)+2dan (T,A ,B)
� 2‖S−T‖+2dan (T,A ,B) � 4dan (T,A ,B) . �

THEOREM 14. If A is a unital AH C*-subalgebra of a von Neumann algebra
B , then

Kan (A ,B) � 4.

Proof. This follows from Theorem 13 and Lemma 9. �

THEOREM 15. If B is a primitive unital C*-algebra and A is a unital AF C*-
subalgebra of B , then

Kan (A ,B) � 1.

Proof. Suppose A = M s1 (C)⊕·· ·⊕Msk (C) and let P1 = 1⊕0⊕·· ·⊕0, P2 =
0⊕1⊕·· ·⊕0 , . . . ,Pk = 0⊕·· ·⊕0⊕1. Then ∑1�i�k PiBPi is strongly injective in B
and we can write PiBPi = Msi (Bi) for 1 � i � k. Since B is primitive, it follows
that each Bi is primitive, and thus C is strongly injective in Bi for 1 � i � k . Hence
by Proposition 1, Msi (C) is strongly injective in Msi (Bi) for 1 � i � k . Whence,
by Proposition 1, A is strongly injective in ∑1�i�k PiBPi . Hence, by Proposition 3,
Kn (A ,B) � 1. The general case easily follows from Lemma 9. �

The reason we can get better metric results (AH instead of AF) for von Neumann
algebras than primitive C*-algebras is that we know that every masa is strongly injec-
tive, or that Kan (A ,B) < ∞ when A is a masa in a von Neumann algebra B .

Suppose I is an infinite set and {Bi : i ∈ I} is a family of unital C*-algebras and,
for each i ∈ I , Ai is a unital C*-subalgebra of Bi . Suppose α is a nontrivial ultrafilter

on I and π : ∏
i∈I

Bi → ∏
i∈I

Bi/∑⊕
i∈I Bi and ρ : ∏

i∈I
Bi →

α

∏Bi are the quotient maps,

where
α

∏Bi is the C*-ultraproduct of the Bi ’s with respect to the ultrafilter α . Let
A = ∏

i∈I
Ai .

PROPOSITION 16. The following are true.

1. Kan

(
π (A ) ,∏

i∈I
Bi/∑i∈I Bi

)
� supi∈I Kan (Ai,Bi)
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2. Kn

(
π (A ) ,∏

i∈I
Bi/∑i∈I Bi

)
� supi∈I Kn (Ai,Bi) .

3. Kan

(
ρ (A ) ,

α

∏Bi

)
� limi→α Kan (Ai,Bi)

4. Kn

(
ρ (A ) ,

α

∏Bi

)
� limi→α Kn (Ai,Bi)

5. If each Ai is a masa in a von Neumann algebra Bi , then

Kn

(
π (A ) ,∏

i∈I
Bi/∑

i∈I

Bi

)
� 1 and Kn

(
ρ (A ) ,

α

∏Bi

)
� 1.

6. If each Bi is primitive or a von Neumann algebra, then

Z

( α

∏Bi

)
=

α

∏Z (Bi) and

Z

(
∏
i∈I

Bi/∑
i∈I

Bi

)
= π

(
∏
i∈I

Z (Bi)

)

7. If, for each i ∈ I , Bi = B(Hi) for some Hilbert space Hi , then

Kan

(
π (A ) ,∏

i∈I
Bi/∑

i∈I
Bi

)
� 29 and Kan

(
ρ (A ) ,

α

∏Bi

)
� 29.

8. If each Bi is a von Neumann algebra and D is a unital commutative C*-
subalgebra of ∏

i∈I
Bi , then

Kan

(
C∗
(

π (D)∪Z

(
∏
i∈I

Bi/∑
i∈I

Bi

))
,∏

i∈I
Bi/∑

i∈I
Bi

)
� 4 and

Kan

(
C∗
(

ρ (D)∪Z

( α

∏Bi

))
,

α

∏Bi

)
� 4,

9. If D ⊆ ∏
i∈I

Bi is norm separable and I = N , then

Kn

(
C∗
(

π (D)∪Z

(
∏
i∈I

Bi/∑
i∈I

Bi

))
,∏
i∈I

Bi/∑
i∈I

Bi

)

= Kan

(
C∗
(

π (D)∪Z

(
∏
i∈I

Bi/∑
i∈I

Bi

))
,∏

i∈I
Bi/∑

i∈I

Bi

)
and
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Kn

(
C∗
(

ρ (D)∪Z

( α

∏Bi

))
,

α

∏Bi

)

= Kan

(
C∗
(

ρ (D)∪Z

( α

∏Bi

))
,

α

∏Bi

)
.

Proof. (1) Let Δ = supi∈I Kan (Ai,Bi) . If Δ = ∞ , there is nothing to prove, so
we can assume that 0 < Δ < ∞ . Suppose T = π ({Ti}) ∈ ∏

i∈I
Bi/∑i∈I Bi and, for

1 � k � m, Ak =
{
Ak,i
} ∈ A and suppose ε > 0. Then, for each i ∈ I,

dist (Ti,Ai) � Kan (Ai,Bi)dan (Ti,Ai,Bi) � Δdan (Ti,Ai,Bi) .

Hence there is a unitary Ui ∈ Bi such that∥∥UiAk,i −Ak,iUi
∥∥< ε

for 1 � k � m and such that

dist (Ti,Ai) < Δ(‖UiTi −TiUi‖+ ε) .

Hence, for each i ∈ I there is a Ci ∈ Ai such that

‖Ti−Ci‖ < Δ(‖UiTi −TiUi‖+ ε)

Then U = {Ui} ∈ ∏
i∈I

Bi is a unitary and C = {Ci} ∈ A . Moreover

dist (T,π (A )) � ‖T −π (C)‖ = limsup
i→∞

‖Ti−Ci‖

� limsup
i→∞

Δ(‖UiTi −TiUi‖+ ε) = Δ [‖π (U)T −Tπ (U)‖+ ε] ,

and, for 1 � k � m,

‖π (U)Ak −Akπ (U)‖ = limsup
i→∞

∥∥UiAk,i −Ak,iUi
∥∥� ε.

If we let Λ be the set of all pairs λ = (F ,ε) with ε > 0 and F = {A1, . . . ,Am} a
finite subset of π (A ) and we let Vλ = π (U) constructed above, then {Vλ} is a net of
unitary elements of ∏

i∈I
Bi/∑i∈I Bi such that, for every A ∈ π (A )

‖Vλ A−AVλ‖→ 0,

and such that

dist (T,π (A )) � Δ limsup‖TVλ −VλT‖ � Δdan

(
T,π (A ) ,∏

i∈I
Bi/∑

i∈I

Bi

)
.
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Hence Kan

(
π (A ) ,∏

i∈I
Bi/∑i∈I Bi

)
� Δ .

(2) . Now we let Δ = supi∈I Kn (Ai,Bi) . Suppose T = π ({Ti}) ∈ ∏
i∈I

Bi/∑i∈I Bi

and ε > 0. As in the proof of (1) , for each i∈ I , we can choose a unitary Ui ∈ (Ai,Bi)′

and a Ci ∈ Ai such that

‖Ci −Ti‖ � Δ [‖UiTi −TiUi‖+ ε] .

Hence U = π ({Ui}) is a unitary in

(
π (A ) ,∏

i∈I
Bi/∑i∈I Bi

)′
and

dist (T,π (A )) � limsup
i→∞

‖Ti −Ci‖ � Δ‖UT −TU‖

� Δdn

(
T,π (A ) ,∏

i∈I
Bi/∑

i∈I

Bi

)
.

(3) and (4) . The proofs are almost the same as those of (1) and (2) .
(5) . This follows from (2) and (4) .
(6) . This follows from (2) and (4) and the fact that Z (B) is weakly injective

when B is primitive or a von Neumann algebra, which implies Kn (Z (B) ,B) = 1.
(7) . This follows from (1) and (3) and the fact from [12] that Kan (C ,B(H)) �

29 for every Hilbert space H and every unital C*-subalgebra C ⊆ B(H) .
(8) We can find, for each i ∈ I , a masa Ai in Bi so that A =∏

i∈I
Ai contains D .

We know from (5) that

Kn

(
π (A ) ,∏

i∈I
Bi/∑

i∈I
Bi

)
� 1 and Kn

(
ρ (A ) ,

α

∏Bi

)
� 1.

Suppose T = π({Ai})∈ π(A ) with A = {Ai} ∈A and suppose ε > 0. We know from

(5) that Z

(
∏
i∈I

Bi/∑i∈I Bi

)
= π

(
∏
i∈I

Z (Bi)

)
, so π

(
C∗
(

D ∪∏
i∈I

Z (Bi)∪∑⊕Ai

))

=C∗
(

π (D)∪Z

(
∏
i∈I

Bi/∑i∈I Bi

))
and thus E =def C∗

(
D ∪∏

i∈I
Z (Bi)∪∑⊕Ai

)

⊆ A . It is clear that dist

(
T,C∗

(
π (D)∪Z

(
∏
i∈I

Bi/∑i∈I Bi

)))
is the same as

dist (A,E ) . However, it follows from Proposition 10 (with W = C) that there is a net
{Uλ} of unitary elements of ∏

i∈I
Bi such that

‖Uλ S−SUλ‖→ 0

for every S ∈ E and such that

dist (A,E ) � lim
λ

‖Uλ A−AUλ‖ .
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If J ⊆ I and S = {Si} ∈ ∏
i∈I

Bi , we define PJS = {S′i} ∈ ∏
i∈I

Bi , where

S
′
i =
{

Si if i ∈ J
0 if i /∈ J

.

Since A ∈ A , it follows, for every finite subset J ⊆ I , that PJA ∈ ∑i∈I Ai ⊆ E . Hence,
for every finite J ⊆ I , we have

lim‖Uλ A−AUλ‖ = lim
∥∥Uλ PI\JA−PI\JAUλ

∥∥ .

Suppose F ⊆ D is finite and ε > 0. We write Uλ = {Uλ (i)} and, for each D ∈ F ,
we write D = {Di} . It follows that the set I(F,ε) of i ∈ I for which there is a unitary
Wi ∈ Bi with

max
D∈F

‖WiDi −DiWi‖ < ε and

dist (A,E ) � ‖WiAi−AiWi‖+ ε
must be infinite. Hence we can choose a unitary W(F,ε) =

{
W(F,ε) (i)

}
so that

W(F,ε) (i) =
{

Wi if i ∈ I(F,ε)
1 otherwise

.

It follows that
max
D∈F

∥∥DW(F,ε)−W(F,ε)D
∥∥< ε

and

dist (A,E ) �
∥∥π
(
W(F,ε)A−AW(F,ε)

)∥∥=
∥∥π
(
W(F,ε)

)
T −Tπ

(
W(F,ε)

)∥∥ .

It follows that
{

π
(
W(F,ε)

)}
is a net of unitary elements of ∏

i∈I
Bi/∑i∈I Bi such that

∥∥π
(
W(F,ε)

)
S−Sπ

(
W(F,ε)

)∥∥→ 0

for every S ∈ π (D) and such that

dist

(
T,C∗

(
π (D)∪Z

(
∏
i∈I

Bi/∑
i∈I

Bi

)))

=dist (A,E ) � limsup
(F,ε)

∥∥π
(
W(F,ε)

)
T −Tπ

(
W(F,ε)

)∥∥
�dan

(
T,C∗

(
π (D)∪Z

(
∏
i∈I

Bi/∑
i∈I

Bi

))
,∏

i∈I
Bi/∑

i∈I
Bi

)
.

The fact that Kn (A ) � 1 (by part (5)) implies, reasoning as in the proof of Lemma 8,
we see that

Kan

(
C∗
(

π (D)∪Z

(
∏
i∈I

Bi/∑
i∈I

Bi

)))
� 4.

The argument for ultraproducts is the same except for considering finite subsets J ⊆ I
we consider subsets J not in the ultrafilter α , which shows that I(F,ε) ∈ α .

(9) . This follows using arguments in the proof of [14, Theorem 4]. �
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3. Representations

In [1] C. Akemann and G. Pedersen showed that central sequences from a quotient
B/J can be lifted to a central sequence in B . The ideas in their proof can be used
here. Recall from [1] and [2] that if J is a closed ideal in a unital C*-algebra B there
is a quasicentral approximate unit, i.e., a net {eλ}λ∈Λ in J such that

1. 0 � eλ � 1 for every λ ∈ Λ ,

2. ‖(1− eλ )x‖+‖x(1− eλ )‖→ 0 for every x ∈ J ,

3. ‖beλ − eλ b‖→ 0 for every b ∈ B .

It is well-known [1] that if π : B → B/J is the quotient homomorphism, then
‖(1− eλ)b‖→ ‖π (b)‖ for every b ∈ B .

THEOREM 17. Suppose B and E are unital C*-algebras and π : B → E is a
unital surjective ∗ -homomorphism. If S ⊆ B , then

π
(
Appr (S ,B)′′

)⊆ Appr (π (S) ,E )′′ .

Proof. Let {eλ}λ∈Λ be a quasicentral approximate unit for kerπ . Then, for every
x,y ∈ B ,

‖(1− eλ)x‖→ ‖π (x)‖ ,

and
‖[(1− eλ)x]y− y [(1− eλ)x]‖→ ‖π (x)π (y)−π (y)π (x)‖ .

The second follows from the first statement and

‖y(1− eλ )− (1− eλ)y‖→ 0.

Suppose x ∈ B and π (x) /∈ Appr (π (S) ,E )′′ . Then there is an ε > 0 such that for
every finite subset F of S and every η > 0 there is a y ∈ B such that

‖π (y)‖ < 1

‖π (y)π (w)−π (w)π (y)‖ < η

for every w ∈ S and
‖π (y)π (x)−π (x)π (y)‖ > ε .

It follows from the above remarks that there is a λ ∈ Λ such that if y(F ,η) = (1− eλ )y ,
then ∥∥y(F ,η)

∥∥< 1,∥∥y(F ,η)w−wy(F ,η)
∥∥< η

for every w ∈ S , and ∥∥y(F ,η)x− xy(F ,η)
∥∥> ε.
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Then
{
y(F ,η)

}
is a bounded net such that

∥∥y(F ,η)w−wy(F ,η)
∥∥→ 0 for every w ∈ S

and such that
∥∥y(F ,η)x− xy(F ,η)

∥∥� 0. Hence x /∈ Appr (S ,B)′′ . �
It is easy to show that a direct product of unital centrally prime C*-algebras is

centrally prime. The following result shows that the same is not true for subdirect
products. This gives a way to construct examples of commutative unital C*-subalgebras
of a C*-algebra B for which Appr (A ,B)′′ is much larger than C∗ (A ∪Z (B)) .
Note that in the following lemma the algebra A is not assumed to be selfadjoint.

LEMMA 18. Suppose B1 , B2, . . . ,Bn are unital C*-algebras and B ⊆ B1 ⊕
B2⊕·· ·⊕Bn is a unital C*-algebra such that the coordinate projection π j : B → B j

is surjective for j = 1,2, . . . ,n. Then, for every unital norm closed subalgebra A of
B , we have

Appr (A ,B)′′ =
[
Appr (π1 (A ) ,B1)

′′ ⊕ · · ·⊕Appr (πn (A ) ,Bn)′′
]∩B.

Proof. It follows from Theorem 17 and the surjectivity of π j that

π j
(
Appr (A ,B)′′

)⊆ Appr (π j (A ) ,B j)
′′

for j = 1,2, . . . ,n . Hence

Appr (A ,B)′′ ⊆ [Appr (π1 (A ) ,B1)
′′ ⊕ · · ·⊕Appr (πn (A ) ,Bn)

′′]∩B.

Next suppose b j ∈ Appr (π j (A ) ,B j)
′′ for j = 1,2, . . . ,n and b = b1⊕b2⊕·· ·⊕bn ∈

B . Suppose
{
xλ = xλ ,1⊕ xλ ,2⊕·· ·⊕ xλ ,n

}
is a bounded net in B such that, for every

a = π1 (a)⊕π2 (a)⊕·· ·⊕πn (a) ∈ A ,

‖axλ − xλ a‖→ 0.

Then ∥∥π j (a)xλ , j − xλ , jπ j (a)
∥∥→ 0 for 1 � j � n.

Hence, for 1 � j � n ,
{
xλ , j
}

is a bounded net in B j such that, for every c ∈ π (A j)∥∥xλ , jc− cxλ , j

∥∥→ 0.

Hence

‖xλ b−bxλ‖ =
∥∥(b1xλ ,1− xλ ,1b1

)⊕·· ·⊕ (bnxλ ,n− xλ ,nbn
)∥∥→ 0.

Hence b ∈ Appr (A ,B)′′ . �

COROLLARY 19. Suppose B1 , B2, . . . ,Bn are unital centrally prime C*-algeb-
ras and B ⊆ B1⊕·· ·⊕Bn is a unital C*-algebra such that the coordinate projection
π j : B → B j is surjective for j = 1,2, . . . ,n. Then, for every unital commutative C*-
subalgebra A of B , we have

Appr (A ,B)′′ = [C∗ (π1 (A )∪Z (B1))⊕·· ·⊕C∗ (πn (A )∪Z (Bn))]∩B
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EXAMPLE 20. Let S be the unilateral shift operator on �2 , and let B =C∗ (S∗ ⊕S) .
It follows that K

(
�2
)⊕K

(
�2
) ⊆ B �= C∗ (S ∗)⊕C∗ (S) and Z (B) = C1 ⊆ A .

If 0 �= A = A∗ ∈ K
(
�2
)

and A = C∗ (A⊕A) , then A a unital commutative C*-
subalgebra of B , Z (B) ⊆ A , but

Appr (A ,B)′′ = C∗ (A)⊕C∗ (A) ,

which is much larger than A .

4. C*-algebraic Stone-Weierstrass and continuous fields

Here is our main result in this section. The proof is based on the factor state version
of the Stone-Weierstrass theorem of Longo [17], Popa [19], (and Teleman [22]).

THEOREM 21. Suppose B is a unital separable C*-algebra and A is a unital
C*-subalgebra of B with Z (B)⊆A . Suppose also {Ji : i ∈ I} is a family of closed
two-sided ideals of B such that

1. If i �= j are in I , then

(A ∩Ji)+ (A ∩J j) = A

2. A /(A ∩Ji) is approximately normal in B/Ji for each i ∈ I .

3. If J is a primitive ideal in B , then there is an i ∈ I such that J ⊆ Ji .

Then A is approximately normal in B .

Proof. Assume via contradiction that T ∈ Appr (A ,B)′′ and T /∈ A . It follows
from the factor state Stone-Weierstrass theorem [17], [19], that there are factor states
α �= β on C∗ (A ∪{T}) such that α (A) = β (A) for every A ∈ A . We can choose
S ∈ C∗ (A ∪{T}) so that α (S) �= β (S) . Since Appr (A ,B)′′ is a C*-algebra con-
taining A ∪{T} , we see that S ∈ Appr (A ,B) . It follows from Longo’s extension
theorem [17] that we can extend α and β to factor states on B . Let (πα ,Hα ,eα ) and(
πβ ,Hβ ,eβ

)
be the GNS representations for α and β , respectively. Since α and β are

factor states, πα (B)′′ and πβ (B)′′ are factor von Neumann algebras; whence kerπα
and kerπβ are prime ideals, which by [8] are primitive. Hence there are i, j ∈ I such
that Ji ⊆ kerπα and J j ⊆ kerπβ .

Case 1. i = j. Define ρi : B → B/Ji to be the quotient homomorphism. It fol-
lows that ρi

(
Appr (A ,B)′′

) ⊆ Appr (ρi (A ) ,ρi (B)) = ρi (A ) since ρi (A ) =
A /

(
A ∩J i

)
is approximately normal in ρi (B) . It follows that ρi (S) ∈ ρi (A ) ,

so there is an A ∈A such that S−A∈ kerρi = Ji . But Ji ⊆ kerπα and Ji = J j ⊆
kerπβ . Hence πα (S) = πα (A) and πβ (S) = πβ (A) , which implies α (S) = α (A) =
β (A) = β (S) , a contradiction. Hence this case is impossible.
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Case 2. i �= j . It follows from assumption (2) that (ρi⊕ρ j)(A ) = ρi (A )⊕
ρ j (A ) . It follows that (ρi⊕ρ j)(B) = ρi (B)⊕ρ j (B) , and we know from Theorem
17 that

(ρi⊕ρ j)(S) ∈ (ρi ⊕ρ j)
(
Appr (A ,B)′′

)
⊆Appr (ρi (A )⊕ρ j (A ) ,ρi (B)⊕ρ j (B))

=Appr (ρi (A ) ,ρi (B))′′ ⊕Appr (ρ j (A ) ,ρ j (B))′′

=ρi (A )⊕ρ j (A ) = (ρi⊕ρ j)(A ) .

Hence there is an A ∈ A such that

S−A ∈ kerρi∩kerρ j ⊆ kerπα ∩kerπβ .

Hence,
α (S) = α (A) = β (A) = β (S) ,

which is also a contradiction.
Since Cases 1 and 2 are both impossible, our assumption that A is not approxi-

mately normal must be false. This completes the proof. �

COROLLARY 22. If in Theorem 21 we replace condition (3) with any one of

1. A is commutative, Z (B/Ji) ⊆ A /(A ∩Ji) and B/Ji is centrally prime
for every i ∈ I ,

2. A = C ∗ (A0∪Z (B)) where A0 is an AF algebra and each Ji is a primitive
ideal,

3. A = C ∗ (A0∪Z (B)) where A0 is an AH algebra and each B/Ji is a von
Neumann algebra,

4. Z (B) ⊆ A and each B/Ji is finite-dimensional

then A is approximately normal in B .

COROLLARY 23. Suppose D is a separable unital commutative C*-algebra and
W is a unital C*-algebra, and A0 is a C*-subalgebra of B = D ⊗W . If any one of
the following holds,

1. A0 is commutative and W is centrally prime,

2. A0 is AF and W is primitive,

3. A0 is AH and W is a von Neumann algebra,

then
Appr (A0,B)′′ = C∗ (A0∪Z (B)) .
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5. C*-algebraic Bishop-Stone-Weierstrass and nonselfadjoint subalgebras

In this section we prove a modest result that applies to commutative nonselfad-
joint subalgebras. The proof relies on the first author’s version of the Bishop-Stone-
Weierstrass theorem for C*-algebras [13]. Suppose A is a unital closed (not necessar-
ily selfadjoint) subalgebra of a unital C*-algebra B . A set E of states on B is called
A -antisymmetric if whenever a ∈ A and a|E is real (i.e., ϕ (a) ∈ R for all ϕ in E ),
we have a|E is constant. Here is the first author’s Bishop-Stone-Weierstrass theorem
for C*-algebras [13].

THEOREM 24. [13] Suppose A is a separable commutative unital closed subal-
gebra of a unital C*-algebra B and b ∈ B and suppose for every A -antisymmetric
set of pure states on B there is an a ∈ A such that b|E = a|E . Then b ∈ A .

THEOREM 25. Suppose B is a unital separable C*-algebra A is a unital com-
mutative norm-closed subalgebra of B with Z (B) ⊆ A . Suppose also {Ji : i ∈ I}
is a family of closed two-sided ideals of B such that

1. If i �= j are in I , then

(Z (B)∩Ji)+ (Z (B)∩J j) = Z (B)

2. A /(A ∩Ji) is approximately normal in B/Ji for each i ∈ I .

3. If J is a primitive ideal in B , then there is an i ∈ I such that Ji ⊆ J .

Then A is approximately normal in B .

Proof. Suppose E is an A -antisymmetric set of pure states on B . Since Z (B)
= Z (B)∗ ⊆A , it follows that each element of Z (B) is constant on E . Suppose, for
k = 1,2, that αk ∈ E with GNS representation πk and, by (3) , choose ik ∈ I so that
Jik ⊆ kerπk . If i1 �= i2 , it follows from that there is an x ∈ Z (B) such that x−1 ∈
Ji1 and x ∈ Ji2 , which implies π1 (x) = 1 and π2 (x) = 0, contradicting α1 (x) =
α2 (x) . Hence there is an i ∈ I such that, for every α ∈ E with GNS representation
π , we have Ji ⊆ kerπ . Let ρ : B → B/Ji be the quotient map. We know from
Theorem 17 that ρ (T ) ∈ Appr (ρ (A ) ,ρ (B))′′ . However, it follows from (2) that
Appr (ρ (A ) ,ρ (B))′′ = ρ (A ) . Hence there is an A ∈ A such that T −A ∈ kerρ =
Ji . Hence, for every α ∈ E , α (T ) = α (A) . It follows from Theorem 24 that T ∈
A . �

One example of an algebra B with a family of ideals satisfying (1) and (3)
in Theorem 25 is by letting B = C (X)⊗W = C (X ,W ) for some unital C*-algebra
W and some compact Hausdorff space X , and, for each i ∈ X , letting Ji = { f ∈
C(X ,W ) : f (i) = 0} . The trick is guaranteeing condition (2) .

In [23] T. Rolf Turner proved that if T is an algebraic operator on a Hilbert space
H , then ({T} ,B(H))′′ = {p(T ) : p ∈ C [z]} . This leads to the first statement in the
following lemma.
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LEMMA 26. Suppose n ∈ N . Then

1. If T ∈ Mn (C) , then the algebra of polynomials in T is normal.

2. If n � 2, the following are equivalent:

(a) n ∈ {2,3} .

(b) Every unital commutative subalgebra of Mn (C) is normal.

Proof. (1) . This follows from Turner’s result [14].
(2) . (a) =⇒ (b) . First suppose n = 2. It follows from Wedderburn’s theorem that

any commutative algebra A ⊆ M2 (C) is upper triangular with respect to some basis
for C

2 ; whence dimA is at most 2. This means that there is a T ∈ M2 (C) such that
A is the set of polynomials in T ; whence, by (1) above, A is normal..

Next suppose n = 3 and A is a commutative unital subalgebra of M3 (C) . If A
contains a nontrivial idempotent, then A is the direct sum of a subalgebra of M2 (C)
and M1 (C) , and the desired conclusion follows from the case n = 2. If A contains no
nontrivial idempotents, then every element of A is the sum of a nilpotent and a scalar
multiple of the identity. Since the algebra generated by a 3×3 nilpotent of order 3 is
maximal abelian, the desired conclusion follows from (1) above whenever A contains
a nilpotent of order 3. If the subalgebra N of nilpotents in A has dimension 1 then
the desired conclusion follows from (1) . Since N is commutative and is unitarily
equivalent to a subalgebra of the strictly upper-triangular 3×3 matrices, we conclude
that dimN = 2. Moreover, every nonzero element of N is a nilpotent of order 2,
and therefore has rank 1. A linear space of rank-one operators must have all have the
form e⊗ x with e fixed or with x fixed and 〈e,x〉 = 0 (see, for example, [14, Lemma
4.2]). Here

(e⊗ x)(h) = 〈h,x〉e.
Hence N is unitarily equivalent to

N1 =

⎧⎨
⎩
⎛
⎝a b c

0 a 0
0 0 a

⎞
⎠ : a,b,c ∈ C

⎫⎬
⎭

or

N2 =

⎧⎨
⎩
⎛
⎝a 0 c

0 a b
0 0 a

⎞
⎠ : a,b,c ∈ C

⎫⎬
⎭ ,

and it is easily shown that N ′
j = N j for j = 1,2. Hence N is normal. �

The algebra A of 4× 4 matrices of the form

(
α, I2 A

0 αI2

)
, where α ∈ C and

A∈M2 (C) and trace(A) = 0, is commutative and not normal, since (A ,M4 (C))′′ is
the set of 4×4 matrices of the same form without the restriction trace(A) = 0.

The following result is an immediate consequence of Theorem 25 and Lemma 26.



APPROXIMATE DOUBLE COMMUTANTS AND DISTANCE FORMULAS 551

THEOREM 27. Suppose K is a compact metric space and B = C (K)⊗Mn (C) .
Then

1. If T ∈ B , then the norm closed algebra A generated by {T}∪Z (B) is ap-
proximately normal, i.e.,

Appr ({T} ,B)′′ = A .

2. If n = 2 or n = 3 , then every unital commutative closed subalgebra A of B that
contains Z (B) is approximately normal, i.e., if S ⊆ B is a commuting family,
then Appr (S ,B)′′ is the norm closed algebra generated by S ∪Z (B) .

6. Questions and comments

We conclude with a list of questions and comments.

1. If B is any unital C*-algebra, it is clear that Z (B) is normal. When is Z (B)
metric normal or metric approximately normal? It is clear that for T ∈ B , the
inner derivation δT on B defined by δT (S) = TS− ST extends to a weak*-
continuous operator on B## , and since the closed unit ball of B is weak*-dense
in the closed unit ball of B## , it follows that

‖δT ‖ = ‖δT |B##‖ = 2dist
(
T,Z

(
B##)) .

On the other hand ‖δT‖ is clearly equal to dn (T,Z (B) ,B) . Hence, for every
T ∈ B ,

dist (T,Z (B)) � 2Kn (Z (B) ,B)dist
(
T,Z

(
B##)) .

The same argument applies if we replace B## with π (B)′′ , where π : B →
B(H) is a faithful representation. This makes it easy to see that if B is primitive,
there is a faithful irreducible representation π , so

dn (T,Z (B) ,B) =
∥∥∥δπ(T )|π(B)′′

∥∥∥= 2dist
(
π (T ) ,Z

(
π (B)′′

))
= 2dist (π (T ) ,C1) = 2dist (T,Z (B)) ,

which implies Kn (Z (B) ,B) = 1/2. It is not hard to show that Z (B) is met-
ric normal when B has a finite separating family of irreducible representations.
However, it is also true for M2 (C (X)) when X is compact Hausdorff space.

2. For which unital C*-algebras is every masa metric normal or metric approxi-
mately normal? In these algebras we know that every commutative unital C*-
algebra containing the center is metric approximately normal. Morover, if, for
a centrally prime algebra B there is an upper bound for the Kan (A ,PBP) for
all masas A ⊆PBP with P a projection in B , then it follows that every AH
C*-subalgebra of B containing Z (B) is metric approximately normal.
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3. It was shown in Proposition 16 that, if each Bi is a von Neumann algebra, then
any commutative C*-subalgebra A containing the center of ∏

i∈I
Bi/∑i∈I Bi that

lifts to a commutative C*-subalgebra of ∏
i∈I

Bi , is metric approximately normal.

What about those commutative C*-algebras A that do not lift? We see that the
general problem almost reduces to masas that do not lift.

Interesting special cases are when A is the C*-algebra generated by a single
normal element or two unitary elements or three selfadjoint elements and I = N .
It was shownn by H. Lin [16] that when each Bi is finite-dimensional, then every
normal element in ∏

i∈I
Bi/∑i∈I Bi lifts to a normal element in ∏

i∈I
Bi . P. Friis and

M. Rørdam [9] gave a simple proof of Lin’s result when each Bi is a finite von
Neumann algebra. If I is infinite and Bi is an infinite von Neumann algebra for
infinitely many i ∈ I , then there is a normal element T in ∏

i∈I
Bi/∑i∈I Bi that

does not lift to a normal element of ∏
i∈I

Bi . Indeed, if S is a nonunitary isometry

and

Tn =

[
Sn (S∗)n +

n

∑
k=1

k
n
SK (1−SS∗) (S∗)k

]
S,

then ‖TnT ∗
n −T ∗

n Tn‖ � 2/n and the distance from Tn to the normal operators

is 1 . Is C∗
(
{T}∪Z

(
∏
i∈I

Bi/∑i∈I Bi

))
normal or approximately normal?

What is a masa in ∏
i∈I

Bi/∑i∈I Bi that contains T ? There is a similar example

(see [7]) when I = N and Bn = Mn (C) for each n . There is a commuting
family {T1,T2,T3} of selfadjoint operators in ∏

i∈I
Bi/∑i∈I Bi that does not lift to

commuting selfadjoints in ∏
i∈I

Bi . There is also [24] a commuting pair U,V of

unitaries ∏
i∈I

Bi/∑i∈I Bi that do not lift to commuting unitaries in ∏
i∈I

Bi . Are

the associated C*-algebras genereated by these families and the center normal or
approximately normal? What are the masas in ∏

i∈I
Bi/∑i∈I Bi in this case?

4. Let F3 denote the free group with 3 generators u,v,w . Is C∗ (u,v) approximately
normal in C∗ (F3)? In C∗

r (F3)? In LF3 ?
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