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Abstract. The question whether every operator on H has an hyperinvariant subspace is one of
the most difficult problems in operator theory. The purpose of this paper is to make a beginning
on the hyperinvariant subspace problems for another class of operators closely related to the
normal operators namely, the class of k -quasi-class A operators. A necessary and sufficient
condition for the hypercyclicity of the adjoint of a quasi-class A operator is also presented.

1. Introduction and Preliminaries

Let B(H) be the algebra of all bounded linear operators acting on infinite di-
mensional separable complex Hilbert space H . Let T be an operator in B(H) . An
operator is said to be positive (denoted T � 0) if (Tx,x) � 0 for all x ∈ H . The op-
erator T is said to be a p− hyponormal operator if and only if (T ∗T )p � (TT ∗)p

for a positive number p . In [30] is defined the class of log-hyponormal operators as
follows: T is a log-hyponormal operator if it is invertible and satisfies the follow-
ing relation logT ∗T � logTT ∗ . Class of p-hyponormal operators and class of log-
hyponormal operators were defined as extension class of hyponormal operators, i.e,
T ∗T � TT ∗ . It is well known that every p -hyponormal operator is a q - hyponormal
operator for p � q > 0, by the Löwner-Heinz theorem “A � B � 0 ensures Aα � Bα

for any α ∈ [0,1]”, and every invertible p -hyponormal operator is a log-hyponormal
operator since log is an operator monotone function. An operator T is paranormal if

||Tx||2 � ||T 2x||||x||

for all x ∈ H . Let T be an operator whose polar decomposition T = U |T | , where

|T | = (T ∗T )
1
2 and U is a partial isometry with kerU = ker(|T |) = kerT . Associated

with T is a related operator |T | 1
2U |T | 1

2 called the Aluthge transform of T denoted by
T̂ [2]. For every T ∈ B(H) the sequence {T̂ (n)} of Aluthge iterates of T is defined
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by T̂ 0 = T and T̂ n+1 = ̂̂T (n) for every nonnegative integer n . Aluthge an Wang [3]
introduced ω -hyponormal operators defined as follows: An operator T is said to be
ω -hyponormal if |T̂ | � |T | � |T̂ ∗| . An operator T such that |T 2| � |T |2 is called of
class A . In [9] authors, Furuta, Ito, Yamazaki introduced the class A operators which
includes the class of log-hyponormal operators (see Theorem 2, in [9]) and is included
in the class of paranormal operators (see Theorem 1 in [9]). I. Jean and I. Kim [18]
introduced quasi-class A operators which includes class A operators. An operator T is
said to be quasi-class A if

T ∗(|T 2|− |T |2)T � 0.

As a further generalization of both class A operators and quasi-class A operators F.
Gao and X. Fang [14] introduced the notion of k -quasi-class A operators. An operator
T is called k -quasi-class A if

T ∗k(|T 2|− |T |2)Tk � 0

where k is a natural number. It is clear that

hyponormal⊆ p−hyponormal⊆ classAoperators

⊆ quasi-classAoperators⊆ k−quasi-classAoperators.

EXAMPLE 1.1. Given a bounded sequence of positive numbers {αi}∞
i=0 , and let

T be the unilateral weighted shift operator on l2 with the canonical orthonormal basis
{en}∞

i=0 defined by Ten = αnen+1 for all n � 0, that is,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

α0 0
α1 0

α2
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Straightforward calculations show that T is a k -quasi-class A operator if and only if
αk � αk+1 � αk+2 · · · . So if αk+1 � αk+2 � αk+3 · · · and αk > αk+1 , then T is a (k+
1)-quasi-class A operator, but is not a k -quasi-class A operator. Thus the following
inclusions are strict:

hyponormal operator ⊂ p−hyponormaloperator ⊂ classAoperator

⊂ quasi-classAoperator⊂ k−quasi-classAoperator.

An operator T ∈ B(H) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any analytic function f : G → H such that
(T −z) f (z)≡ 0 on G , we have f (z)≡ 0 on G . For T ∈ B(H) and x∈H , the set ρT (x)
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is defined to consist of elements z0 ∈ C such that there exists an analytic function f (z)
defined in a neighborhood of z0 , with values in H , which verifies (T − z) f (z) = x , and
it is called the local resolvent set of T at x . We denote the complement of ρT (x) by
σT (x) , called the local spectrum of T at x , and define the local spectral subspace of
T , HT (F) = {x ∈ H : σT (x) ⊂ F} for each subset F of C . An operator T ∈ B(H) is
said to have Bishop’s property (β ) if for every open subset G of C and every sequence
fn : G→H of H -valued analytic functions such that (T − z) fn(z) converges uniformly
to 0 in norm on compact subsets of G , fn(z) converges uniformly to 0 in norm on
compact subsets of G . An operator T ∈ B(H) is said to have Dunford’s property (C)
if HT (F) is closed for each closed subset F of C . It is well known that

Bishop’s property (β ) ⇒ Dunford’s property(C) ⇒ SVEP.

For more details about Bishop’s property (β ). The interested reader is referred to [23,
24] for more details.

A closed subspace of H is said to be hyperinvariant for T if it is invariant under
every operator in the commutant {T}′

of T . The question whether every operator on
H has an hyperinvariant subspace is one of the most difficult problems in operator the-
ory. Our principal objective in the present paper is to derive the existence of nontrivial
hyperinvariant subspace of k -quasi-class A operators. It is known that Every operator
which commutes with a (nonzero) compact operator has a (proper closed) hyperinvari-
ant subspace [29]. In [17] it is shown that every non scalar n -normal operators has
nontrivial hyperinvariant subspace (cf. also [26, p.76] and [20]). The corresponding
problem for subnormal operators remains unsolved (cf.[20]). (Recall that an n -normal
operator may be defined as an n×n operator matrix with entries are mutually commut-
ing normal operators, and a subnormal operator is the restriction of a normal operator
to an invariant subspace.) But, in [12] the authors study the hyperinvariant subspace
problem for subnormal operators. They showed that every normalized subnormal op-
erator such that either {S∗nSn} 1

n does not converge in the SOT to the identity operator

or {SnS∗n} 1
n does not converge in the SOT to zero has a nontrivial hyperinvariant sub-

space. The purpose of this paper is to make a beginning on the hyperinvariant subspace
problem for another class of operators closely related to the normal operators namely,
the class of k -quasi-class A operators.

2. Main Results

In the sequel we need the following lemmas.

LEMMA 2.1. [14] Let T ∈ B(H) be k -quasi-class A operator, the range of T k

be not dense and

T =
(

T1 T2

0 T3

)
on H = [ran Tk]⊕N(T ∗k).

Then T1 is a class A operator, T k
3 = 0 and σ(T ) = σ(T1)∪{0} .
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LEMMA 2.2. [14] Let M be a closed T -invariant subspace of H . Then the
restriction T∣∣M of a k -quasi-class A operator T to M is a k -quasi-class A operator.

THEOREM 2.1. Every k -quasi-class A operator has Bishop’s property (β ) .

Proof. If the range of Tk is dense, then T is a class A operator. Hence, T has
Bishop’s property (β ) by [19]. So, we assume that the range of Tk is not dense. Let
(T − z) fn(z) → 0 uniformly on every compact subset of D for analytic functions fn(z)
on D . Then we can write(

T1 − z T2

0 T3− z

)(
fn1(z)
fn2(z)

)
=

(
(T1− z) fn1(z)+T2 fn2(z)

(T3− z) fn2(z)

)
→ 0.

Since T3 is nilpotent, T3 has Bishop’s property (β ) . Hence fn2(z) → 0 uniformly on
every compact subset of D . Then (T1 − z) fn1(z) → 0. Since T1 is a class A operator,
T1 has Bishop’s property (β ) by [19]. Hence fn1(z) → 0 uniformly on every compact
subset of D . Thus T has Bishop’s property (β ) . �

For k > 1, a nilpotent operator is k -quasi-class A . This shows that operators in
this class need not be normaloid. But a quasi-class A operator is normaloid as we will
show in the following theorem. For this we need the following lemma.

LEMMA 2.3. If T is k -quasi-class A, then r(T ) � ||Tn||
||Tn−1|| for every positive in-

teger n � k+1 .

Proof. Since

||Tk+n||
||Tk+n−1|| � ||Tk+n−1||

||Tk+n−2|| � ... � ||Tk+1||
||Tk|| ,

||Tk+n||
||Tk+n−1|| �

( ||Tk+1||
||Tk||

)n

.

Thus

||Tn|| �
( ||Tk+1||

||Tk||
)n−k

or

||Tn|| 1
n �

( ||Tk+1||
||Tk||

)1− k
n

.

Letting n → ∞ , we get

r(T ) � ||Tk+1||
||Tk|| . (2.1)

Similarly

r(T ) � ||Tk+2||
||Tk+1|| .
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In general,

r(T ) � ||Tn||
||Tn−1||

for every positive integer n � k+1. �

THEOREM 2.2. Every quasi-class A operator is normaloid, that is, ||T || = r(T )
(the spectral radius of T ).

Proof. It suffices to take k = 1 in (2.1). �

Recall that an operator X ∈ B(H,K) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S ∈ B(H) is said to be a quasiaffine transform of T ∈
B(K) if there is a quasiaffinity X ∈B(H,K) such that XS = TX . Furthermore, S and T
are quasisimilar if there are quasiaffinities X and Y such that XS = TX and SY =YT .

Now we will show that a k -quasi-class A operator with certain conditions has a
nontrivial hyperinvariant subspace.

THEOREM 2.3. Let T ∈B(H) be a k -quasi-class A operator such that T �= zI for
all z ∈ C . If S is a decomposable quasiaffine transform of T , then T has a nontrivial
hyperinvariant subspace.

Proof. If S is a decomposable quasiaffine transform of T , then there exists a
quasiaffinity X such that XS = TX , where S is decomposable. Assume that T has
no nontrivial hyperinvariant subspace. Then σp(T ) = /0 and HT (F) = {0} for each
closed set F proper in σ(T ) [21, Lemma 3.6.1]. Let {U,V} be an open cover of C
such that σ(T )\U �= /0 and σ(T )\V �= /0 . Now if x ∈HS(U) , then σS(x) ⊂U . Hence
there exists an analytic H -valued function f defined on C\U such that (S−z) f (z)≡ x
for all z ∈ C\U . So (T − z)X f (z) = X(S− z) f (z) = Xx . Therefore, C\U ⊂ ρT (Xx) .
This implies that Xx ∈ HT (U) , that is, XHS(V ) ⊂ HT (V ) . Since S is decomposable,

XH = XHS(U)+XHS(V ) ⊆ HT (U)+HT (V ) = {0}.

This is a contradiction. Hence T has a nontrivial hyperinvariant subspace. �

Note that Theorem 2.3 should be compared with the Theorem 4.5 on p. 56 of the
Colojoara-Foias Book [7].

COROLLARY 2.1. Let T ∈ B(H) be a class A operator such that T �= zI for all
z ∈ C . If S is a decomposable quasiaffine transform of T , then T has a nontrivial
hyperinvariant subspace.

THEOREM 2.4. Let T ∈B(H) be a k -quasi-class A operator such that T �= zI for

all z ∈ C . If limn→∞ ||Tnx|| 1
n < ||T || for some nonzero x ∈ H , then T has a nontrivial

hyperinvariant subspace.
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Proof. Assume that limn→∞ ||Tnx|| 1
n < ||T || for some nonzero x ∈ H . Since T is

a k -quasi-class A operator,

||Tnx||2 � ||Tn+1x||||Tn−1x||

for every positive integer n and every x ∈ H from [14]. Hence, [5, Proposition 4.6]and
[5, Remark] imply that T has a nontrivial hyperinvariant subspace. �

COROLLARY 2.2. Let T ∈ B(H) be a class A operator such that T �= zI for all

z ∈ C . If limn→∞ ||Tnx|| 1
n < ||T || for some nonzero x ∈ H , then T has a nontrivial

hyperinvariant subspace.

THEOREM 2.5. Let

T =
(

T1 T2

0 T3

)
∈ B(H⊕H).

If T has Bishop’s property β and there exists a non zero x ∈ H⊕H such that σT (x) �
σ(T ) . Then T has a nontrivial hyperinvariant subspace.

Proof. Assume that

M = {y ∈ H⊕H : σT (y) ⊆ σT (x)},

that is, M = HT (σT (x)) . Since T has Bishop’s property β , hence T has Dunford’s
property (C). It follows from [7] that M is a T -hyperinvariant subspace. Since x ∈
M , we have M �= {0} . Now, set M = H ⊕H . Since T has the single extension
property, we get σ(T ) =

⋃{σT (y) : y ∈ H ⊕H} ⊆ σT (x) � σ(T ) from [22]. This is a
contradiction. Hence M is a nontrivial T -hyperinvariant subspace. �

Since a k -quasi-class A operator has Bishop’s property β by Theorem 2.1, by
applying Lemma 2.1 and Theorem 2.5 we get the following corollary.

COROLLARY 2.3. Let

T =
(

T1 T2

0 T3

)
∈ B(H⊕H).

be k -quasi-class A. If there exists a non zero x ∈H⊕H such that σT (x) � σ(T ) , then
T has a nontrivial hyperinvariant subspace.

Let T ∈ B(H) and x ∈ H . Then {Tnx}∞
n=0 is called the orbit of x under T , and is

denoted by O(x,T ) . If O(x,T ) is dense in H , then x is called a hypercyclic vector for
T

Now we are ready to prove a necessary and sufficient condition for the hyper-
cyclicity of the adjoint of a quasi-class A operator. Recall that if T is an invertible
quasi-class A operator, then T and T−1 are class A operators [14, 15].
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THEOREM 2.6. Let T ∈ B(H) be a quasi-class A operator. Then T ∗ is hyper-
cyclic if and only if σT (x)∩D �= /0 and σT (x)∩ (C \D) �= /0 for all nonzero x ∈ H ,
where D = {z ∈ C : |z| < 1} .

Proof. Assume that T ∗ is hypercyclic. By [13, Proposition 2.3], it suffices to
show that σ(T ) meets both D and C \D . Let S = T |M for some closed T -invariant
subspace M and let x be a hypercyclic vector for T ∗ . Since (S∗)nPx = P(T ∗)nx for
each nonnegative integer n where P is the orthogonal projection of H onto M , we
have

{(S∗)n(Px)}∞
n=0 = P({(T ∗)nx}∞

n=0) = P(H) = M.

Thus Px is hypercyclic for S∗ . Since S is quasi-class A and normaloid by Theorem
2.2 and Lemma 2.2, r(S) = ||S|| = ||S∗|| > 1 [25]. Hence σ(T )∩ (C \D) �= /0 . Now
we have to prove that σ(S)∩D �= /0 . For this, assume that σ(S) ⊂ C\D . Since S−1 is
a class A operator [14] and σ(S−1) ⊂ D , we have, ||S−1|| = r(S−1) � 1. Since S∗ is
hypercyclic and invertible, (S∗)−1 is hypercyclic [25]. Hence ||S−1|| = ||(S∗)−1|| > 1
[25]. This is a contradiction, and so σ(S)∩D �= /0 . For the converse, assume that
σT (x)∩D �= /0 and σT (x)∩ (C\D) �= /0 for all nonzero x ∈ H . Then HT (C\D) = {0}
and HT (D) = {0} . Since T has property (β ) Theorem 2.1, T ∗ has the property (δ ) .
Thus both HT ∗(C\D) and HT ∗(D) are dense in H by [22, Proposition 2.5.14]. Hence
T ∗ is hypercyclic by [13, Theorem 3.2]. �

COROLLARY 2.4. Let T ∈ B(H) be a class A operator. Then T ∗ is hypercyclic
if and only if σT (x)∩D �= /0 and σT (x)∩ (C \D) �= /0 for all nonzero x ∈ H , where
D = {z ∈ C : |z| < 1} .
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