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Abstract. Green’s function for the Sturm-Liouville operator with a block-triangular matrix po-
tential growing at infinity is constructed. For this function, a series expansion is obtained and the
Parseval equality is proved.

V. A. Marchenko introduced a notion of generalized spectral function R for a
Sturm-Liouville operator with arbitrary complex valued potential on the semiaxis [9,
10], which was transferred under his scientific supervision to the case of non-selfadjoint
systems [8, 11]. The distribution (the matrix in the case of systems) R acts on the topo-
logical space of test functions. The spectral distribution R determines formulas of ex-
pansion in eigenfunctions and also allows one to solve the inverse problem of spectral
analysis in the non-selfadjoint case. In the case of selfadjoint problems R is generated
by a non-negative measure (either scalar one or matricial in the case systems). We are
interested in clarifying a specific form of spectrum and a spectral matricial distribution
R for some classes of non-selfadjoint systems. While solving in [3] the inverse scatter-
ing problem on semiaxis, in the case of triangular matrix potentials, the Parseval equal-
ity is produced, and thus a form of spectral matrix distribution of V. A. Marchenko type
is found (for the selfadjoint case see [1]). In the work [6] we obtain conditions which
guarantee discreteness of spectrum for a wide class of Sturm-Liouville operators on the
semiaxis with a triangular matrix potential which diagonal blocks are Hermitian matri-
ces. For those potentials, a form of V. A. Marchenko type spectral matricial distribution
is found. Note that this distribution, under presence of multiple poles for the resol-
vent, does not reduce to a matrix measure, even non-selfadjoint one. These results are
applied to transferring the Sturm type oscillation theory from selfadjoint systems [13]
onto systems with a triangular matrix potential [5].
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I. Consider the equation with a block-triangular matrix potential:

l[y ] = −y ′′ +V(x)y = λ y , 0 � x < ∞, (1)

where

V (x) = v(x) · Im +U(x), U(x) =

⎛⎜⎜⎝
U11(x) U12(x) . . . U1r(x)

0 U22(x) . . . U2r(x)
. . . . . . . . . . . . . . . . . . . . . .

0 0 . . . Urr(x)

⎞⎟⎟⎠ , (2)

v(x) is a real scalar function, 0 < v(x) → ∞ monotonically as x → ∞ , v(x) has mono-
tone absolutely continuous derivative, and U(x) is a sufficiently small perturbation, for
example, U(x) · v−1(x) → 0 as x → ∞ , or |U | · v−1 ∈ L∞(R+) . The diagonal blocks
Ukk(x) , k = 1,r are Hermitian matrices of order mk � 1 (in particular, for mk = 1 they

are real scalar functions). Let
r

∑
k=1

mk = m , and let Im be a unit matrix of order m .

Denote by Hm a finite-dimensional Hilbert space of order m . A vector h ∈ Hm

will be written as h = col
(
h1, h2, . . . , hr

)
, where hk , k = 1,r is a vector from Hmk .

Thus, y = col(y1, y2, . . . , yr) , where yk ∈ Hmk .
In the case of

v(x) � Cx2α , C > 0, α > 1, (3)

we suppose that the coefficients of the equation (1) satisfy the relations:∫ ∞

0
|U(t)| · v− 1

2 dt < ∞, (4)∫ ∞

0
v′2(t) · v− 5

2 (t)dt < ∞,

∫ ∞

0
v′′(t) · v− 3

2 (t)dt < ∞. (5)

(Note that spectral properties of a one-dimensional Schrödinger operator with polyno-
mial potential were studied in [4].)

Consider the functions

γ0(x,λ ) =
1

4
√

4v(x)
· exp

(
−
∫ x

0

√
v(u)du

)
, (6)

γ∞(x,λ ) =
1

4
√

4v(x)
· exp

(∫ x

0

√
v(u)du

)
. (7)

It can be easily seen that

γ0(x,λ ) → 0, γ∞(x,λ ) → ∞ as x → ∞.

These solutions form the fundamental system of solutions of the scalar differential
equation

− z′′ +(v(x)+q(x))z = 0, (8)
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where q(x) is defined by

q(x) =
5
16

(
v′(x)
v(x)

)2

− 1
4

v′′(x)
v(x)

. (9)

(cf. [14, 12]).
In this case,

W{γ0,γ∞}= γ0(x,λ ) ·γ ′∞(x,λ )−γ ′0(x,λ ) ·γ∞(x,λ ) = 1 for all x∈ [0,∞). (10)

In the case of v(x) = x2α , 0 < α � 1, suppose that the coefficients of the equa-
tion (1) satisfy the relation ∫ ∞

0
|U(t)| · t−α dt < ∞. (11)

Now define functions γ0(x,λ ) and γ∞(x,λ ) as follows:

γ0(x,λ ) =
1

4
√

4(x2α −λ )
· exp

(
−
∫ x

a

√
u2α −λ du

)
,

γ∞(x,λ ) =
1

4
√

4(x2α −λ )
· exp

(∫ x

a

√
u2α −λ du

)
.

These functions form the fundamental system of solutions of the scalar differential
equation

− z′′ +(x2α −λ +q(x,λ ))z = 0 (12)

as well, where q(x,λ ) is defined similarly as the function q(x) in the formula (9):

q(x,λ ) =
5
16

(
v′(x)

v(x)−λ

)2

− 1
4

v′′(x)
v(x)−λ

.

In this case, the relation (10) holds true.

If
α +1
2α

= n ∈ N , i.e., α =
1

2n−1
, the functions γ0(x,λ ) and γ∞(x,λ ) will

have the following asymptotics as x → ∞ (see [6]; in the monograph [14], by Langer’s
technique, the asymptotics was established in another form, with the use of Henkel’s
functions):

γ0(x,λ ) = c · exp

(
−x1+α

1+α
+

λ
2
· x1−α

1−α
+

n−1

∑
k=2

1 ·3 · . . . · (2k−3)
k!

·
(

λ
2

)k

· x1−(2k−1)α

1−(2k−1)α

)

×x
1·3·...·(2n−3)

n! ·( λ
2 )n− α

2 · (1+o(1)), (13)

γ∞(x,λ ) = c · exp

(
x1+α

1+α
−λ

2
· x1−α

1−α
−

n−1

∑
k=2

1 ·3 · . . . · (2k−3)
k!

·
(

λ
2

)k

· x1−(2k−1)α

1−(2k−1)α

)

×x
−
(

1·3·...·(2n−3)
n! ·( λ

2 )n
+ α

2

)
· (1+o(1)). (14)
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In particular, for α = 1 (n = 1) these expressions have the form1

γ0(x,λ ) = c · x λ−1
2 · exp

(
−x2

2

)
(1+o(1)), (15)

γ∞(x,λ ) = c · x− λ+1
2 · exp

(
x2

2

)
(1+o(1)). (16)

If
α +1
2α

�∈ N , then, setting n =
[

α +1
2α

]
+ 1, where [β ] stands for an integral

part of a number β , we obtain the following asymptotics for the functions γ0(x,λ ) and
γ∞(x,λ ) at infinity:

γ0(x,λ ) = c · x−α
2 exp

(
−x1+α

1+α
+

λ
2
· x1−α

1−α
+

n−1

∑
k=2

1 ·3 · . . . · (2k−3)
k!

·
(

λ
2

)k

· x1−(2k−1)α

1−(2k−1)α

)

×exp

(
−1 ·3 · . . . · (2n−3)

n!
·
(

λ
2

)n

· x−α

α

)
· (1+o

(
x−α)) , (17)

γ∞(x,λ ) = c · x−α
2 exp

(
x1+α

1+α
−λ

2
· x1−α

1−α
−

n−1

∑
k=2

1 ·3 · . . . · (2k−3)
k!

·
(

λ
2

)k

· x1−(2k−1)α

1−(2k−1)α

)

×exp

(
1 ·3 · . . . · (2n−3)

n!
·
(

λ
2

)n

· x−α

α

)
· (1+o

(
x−α)) . (18)

In particular, for α =
1
2

(n = 2) these formulas have the form

γ0(x,λ ) = cx−
1
4 · exp

(
−2

3
x

3
2 + λx

1
2 −

(
λ
2

)2

x−
1
2

)
·
(
1+o

(
x−

1
2

))
, (19)

γ∞(x,λ ) = cx−
1
4 · exp

(
2
3
x

3
2 −λx

1
2 +

(
λ
2

)2

x−
1
2

)
·
(
1+o

(
x−

1
2

))
. (20)

In [6], there were proved both Theorem 1 and Corollaries 1, 2 cited below.

THEOREM 1. Suppose that, for the equation (1), there hold either the condi-
tions (3), (4), (5) for α > 1 , or condition (11) for 0 < α � 1 . Then the equation (1)
has a unique m×m matrix solution Φ(x,λ ) decreasing at infinity and satisfying the
relation

lim
x→∞

Φ(x,λ )
γ0(x,λ )

= Im (21)

such that

lim
x→∞

Φ′(x,λ )
γ ′0(x,λ )

= Im. (22)

1For α = 1 and α =
1
2

, i.e., for v(x) = x2 and v(x) = x , the asymptotics of the functions γ0(x,λ) and

γ∞(x,λ) is known.
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Also, this equation has m×m matrix solution Ψ(x,λ ) growing at infinity and satisfying
the relation

lim
x→∞

Ψ(x,λ )
γ∞(x,λ )

= Im (23)

such that

lim
x→∞

Ψ′(x,λ )
γ ′∞(x,λ )

= Im. (24)

COROLLARY 1. If α = 1 , i.e., the coefficient v(x) = x2 , then, under the condi-
tion (11), the equation (1) has a unique m×m matrix solution Φ(x,λ ) decreasing at
infinity and satisfying the relation

lim
x→∞

Φ(x,λ )
γ0(x,λ )

= Im, (25)

where γ0(x,λ ) = x
λ−1

2 · exp

(
−x2

2

)
, such that

lim
x→∞

Φ′(x,λ )
γ ′0(x,λ )

= Im.

Also, this equation has m×m matrix solution Ψ(x,λ ) growing at infinity and satisfying
the relation

lim
x→∞

Ψ(x,λ )
γ∞(x,λ )

= Im

such that

lim
x→∞

Ψ′(x,λ )
γ ′∞(x,λ )

= Im,

where γ∞(x,λ ) = x−
λ+1

2 · exp

(
x2

2

)
.

COROLLARY 2. If α =
1
2

, i.e., the coefficient v(x) = x , then, under the condi-

tion (11), the equation (1) has a unique m×m matrix solution Φ(x,λ ) decreasing at
infinity and satisfying the relation

lim
x→∞

Φ(x,λ )
γ0(x,λ )

= Im,

where γ0(x,λ ) = x−
1
4 · exp

(
−2

3
x

3
2 + λx

1
2

)
, such that

lim
x→∞

Φ′(x,λ )
γ ′0(x,λ )

= Im.
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Also, this equation has m×m matrix solution Ψ(x,λ ) growing at infinity and satisfying
the relation

lim
x→∞

Ψ(x,λ )
γ∞(x,λ )

= Im

such that

lim
x→∞

Ψ′(x,λ )
γ ′∞(x,λ )

= Im,

where γ∞(x,λ ) = x−
1
4 · exp

(
2
3
x

3
2 −λx

1
2

)
.

II. Let the following boundary condition be given at x = 0:

cosA · y ′(0)− sinA · y(0) = 0, (26)

where A is a block-triangular matrix of a similar structure as the coefficients of the
differential equation,

A =

⎛⎜⎜⎝
A11 A12 . . . A1r

0 A22 . . . A2r

. . . . . . . . . . . . . .
0 0 . . . Arr

⎞⎟⎟⎠ , (27)

and Akk , k = 1,r are Hermitian matrices of order mk � 1,
r

∑
k=1

mk = m .

Together with the problem (1), (26), we consider the separated system

lk [yk] = −y ′′k +
(
v(x)Imk +Ukk(x)

)
yk = λ yk, k = 1,r,

with the boundary conditions

cosAkk · y ′k(0)− sinAkk · yk(0) = 0, k = 1,r. (28)

Denote by L0 the minimal differential operator generated by the differential ex-
pression l [y] and the boundary condition (26), and denote by Lk , k = 1,r the mini-
mal symmetric operators on L2

(
Hmk ,(0,∞)

)
generated by the differential expressions

lk [yk] and the boundary conditions (28). Taking into account the conditions on coeffi-
cients, as well as a sufficient smallness of the perturbations Ukk(x) (Ukk(x) ·v−1(x)→ 0
as x→ ∞ , or |Ukk| ·v−1 ∈ L∞(R+)), we conclude that, for every symmetric operator Lk ,
k = 1,r , there is the case of a limit point at infinity. Hence their self-adjoint extensions2

L̃k are the closures of operators Lk respectively. The operators L̃k are semi-bounded,
and their spectra are discrete.

Denote by L the extension of the operator L0 generated by the requirement on
functions from the domain of the operator L to belong to L2 (Hm,(0,∞)) .

The following theorem is proved in [6].

2A self-adjointness of the general Sturm-Liouville differential equations (with four terms) having matrix
coefficients were studied in [7].
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THEOREM 2. Suppose that, for the equation (1), there hold either the condi-
tions (3), (4), (5) for α > 1 , or the condition (11) for 0 < α � 1 . Then the discrete
spectrum of the operator L is real and coincides with the union of spectra of the self-
adjoint operators L̃k , k = 1,r , i.e.,

σd(L) =
r⋃

k=1

σ
(
L̃k

)
. (29)

Let us number the eigenvalues of the operator L in ascending order and with regard
to their multiplicities:

λ1 � λ2 � . . . � λn � . . .

Along with the equation (1), we will consider the left equation

l̃ [ỹ] = −ỹ′′+ ỹV (x) = λ ỹ, ỹ = (ỹ1 ỹ2 . . . ỹr) . (30)

Matrix solutions of the equation (30) decaying and growing at infinity will be
denoted by Φ̃(x,λ ) and Ψ̃(x,λ ) respectively.

Denote by Y (x,λ ) and Ỹ (x,λ ) the solutions of the equations (1) and (30) respec-
tively, satisfying the initial conditions

Y (0,λ ) = cosA, Y ′(0,λ ) = sinA, Ỹ (0,λ ) = cosA, Ỹ ′(0,λ ) = sinA, λ ∈ C.
(31)

Put

G(x, t,λ ) =

⎧⎪⎨⎪⎩
Y (x,λ )

(
W{Φ̃,Y}

)−1
Φ̃(t,λ ), 0 � x � t

−Φ(x,λ )
(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ ), x � t

. (32)

THEOREM 3. The matrix function G(x,t,λ ) is the Green function of the differen-
tial operator L, i.e.:

1. The function G(x,t,λ ) is continuous for all x,t ∈ [0,∞) .

2. For any fixed t , the function G(x,t,λ ) has a derivative with respect to x such
that it is continuous on both intervals [0,t) and (t,∞) , and at x = t it has the
jump

G′
x(x+0,x,λ )−G′

x(x−0,x,λ ) = −Im. (33)

3. For a fixed t , the function G(x,t,λ ) with respect to x is a matrix solution of
the equation (1) on both intervals [0,t) and (t,∞) , and satisfies the boundary
condition (26). For a fixed x , the function G(x,t,λ ) with respect to t is a matrix
solution of the equation (30) on both intervals [0,x) and (x,∞) , and satisfies the
boundary condition ỹ′(0) · cosA− ỹ(0) · sinA = 0 .
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Proof. The function G(x,t,λ ) is continuous with respect to x on the both intervals
[0,t) and (t,∞) , and the similar is fulfilled with respect to t . To prove the continuity of
the function G(x, t,λ ) for all x,t � 0, it is sufficient to verify that the identity

Y (x,λ )
(
W{Φ̃,Y}

)−1
Φ̃(x,λ )+ Φ(x,λ )

(
W{Ỹ ,Φ}

)−1
Ỹ (x,λ ) ≡ 0 (34)

holds true for all x � 0. By definition of the Wronskian, this identity can be rewritten
in the form

Y (x,λ )
(

Φ̃(x,λ )Y ′(x,λ )− Φ̃′(x,λ )Y (x,λ )
)−1

Φ̃(x,λ )−

−Φ(x,λ )
(
Ỹ ′(x,λ )Φ(x,λ )− Ỹ (x,λ )Φ′(x,λ )

)−1
Ỹ (x,λ ) ≡ 0,

or(
Y ′(x,λ )Y−1(x,λ )−Φ̃−1(x,λ )Φ̃′(x,λ )

)−1 ≡
(
Ỹ−1(x,λ )Ỹ ′(x,λ )−Φ′(x,λ )Φ−1(x,λ )

)−1
,

i.e.,

Y ′(x,λ )Y−1(x,λ )− Φ̃−1(x,λ )Φ̃′(x,λ ) ≡ Ỹ−1(x,λ )Ỹ ′(x,λ )−Φ′(x,λ )Φ−1(x,λ ),

which is equivalent to

Y ′(x,λ )Y−1(x,λ )− Ỹ−1(x,λ )Ỹ ′(x,λ ) ≡ Φ̃−1(x,λ )Φ̃′(x,λ )−Φ′(x,λ )Φ−1(x,λ ),

or to

Ỹ−1(x,λ )
(
Ỹ (x,λ )Y ′(x,λ )− Ỹ ′(x,λ )Y (x,λ )

)
Y−1(x,λ ) ≡

≡−Φ̃−1(x,λ )
(

Φ̃(x,λ )Φ′(x,λ )− Φ̃′(x,λ )Φ−1(x,λ )
)

Φ−1(x,λ ).

But the latter follows from the relation W{Ỹ ,Y} = W{Φ̃,Φ} = 0.
To verify that the jump of the first derivative at t = x equals (−Im) , i.e., that the

equality (33) holds, it suffices to prove the identity

Y ′(x,λ )
(
W{Φ̃,Y}

)−1
Φ̃(x,λ )+ Φ′(x,λ )

(
W{Ỹ ,Φ}

)−1
Ỹ (x,λ ) ≡ Im. (35)

Consider the function

C(x, t,λ ) = Y (x,λ )
(
W{Φ̃,Y}

)−1
Φ̃(t,λ )+ Φ(x,λ )

(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ ),

which presents an analogue of the Cauchy function. This function is a solution of the
equation (1) with respect to x , and it is a solution of the equation (30) with respect to
t . By (34), we have C(x,x,λ ) ≡ 0. But in this case C′′

xx

∣∣
t=x = (V (x)−λ Im)C|t=x ≡ 0,

and, therefore, C′
x(x, t,λ )

∣∣
t=x ≡ Ω1(λ ) , i.e.,

Y ′(x,λ )
(
W{Φ̃,Y}

)−1
Φ̃(x,λ )+ Φ′(x,λ )

(
W{Ỹ ,Φ}

)−1
Ỹ (x,λ ) ≡ Ω1(λ ). (36)
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By showing that Ω1(λ ) = Im , we get the formula (33).
Since the matrix solutions Φ(x,λ ) and Ψ(x,λ ) form the fundamental system of

solutions of the equation (1), we conclude that the matrix solution Y (x,λ ) of the equa-
tion (1) satisfying the initial conditions (31), can be rewritten as

Y (x,λ ) = Φ(x,λ )A(λ )+ Ψ(x,λ )B(λ ),

where A(λ ) = −W{Ψ̃,Y} , B(λ ) = W{Φ̃,Y} , i.e.,

Y (x,λ ) = Ψ(x,λ )W{Φ̃,Y}−Φ(x,λ )W{Ψ̃,Y}. (37)

The matrix solution Ỹ (x,λ ) of the equation (30) admits the representation in the
form

Ỹ (x,λ ) = W̃{Φ̃,Y}Ψ̃(x,λ )−W̃{Ψ̃,Y}Φ̃(x,λ ), (38)

where

W̃{Φ̃,Y} = sinA ·Φ(0,λ )− cosA ·Φ′(0,λ ) = −Ω(0,λ ) = −W{Ỹ ,Φ}. (39)

In the same way we get W̃{Ψ̃,Y} = −W{Ỹ ,Ψ} . Thus,

Ỹ (x,λ ) =W{Ỹ ,Ψ}Φ̃(x,λ )−W{Ỹ ,Φ}Ψ̃(x,λ ). (40)

Substituting (37) and (40) in the formula (36) and taking into account that the
equality (36) holds identically with respect to x , we get

Ω1(λ ) = lim
x→∞

[
Ψ′(x,λ )Φ̃(x,λ )−Φ′(x,λ )Ψ̃(x,λ )

]
.

By Theorem 1 and by Corollaries 1, 2 on the asymptotic behaviour of the functions
Φ(x,λ ) and Ψ(x,λ ) at infinity, we have

Ω1(λ ) = lim
x→∞

[
γ0(x,λ )γ ′∞(x,λ )− γ ′0(x,λ )γ∞(x,λ )

] · Im = W {γ0,γ∞} · Im = Im.

This completes the proof of the formula (33) as well as the proof of Theorem 3. �

In view of the definition (32), the function G(x,t,λ ) is meromorphic with respect
to the parameter λ which poles coincide with the eigenvalues of the operator L .

Consider the operator Rλ defined on L2 (Hm,(0,∞)) by the relation(
Rλ f

)
(x) =

∫ ∞

0
G(x,t,λ ) f (t)dt = (41)

= −
∫ x

0
Φ(x,λ )

(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ ) f (t)dt+

∫ ∞

x
Y (x,λ )

(
W{Φ̃,Y}

)−1
Φ̃(t,λ ) f (t)dt.

THEOREM 4. The operator Rλ is the resolvent of the operator L.
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Proof. One can directly verify that, for any function f (x) ∈ L2 (Hm,(0,∞)) , the
vector function y(x,λ ) = (Rλ f )(x) is a solution of the equation l[y ]−λ y = f when-
ever λ �∈ σ(L) . We will prove that y(x,λ ) ∈ L2 (Hm,(0,∞)) .

By using formulas (37) and (40), we can rewrite the relation (41) in the form(
Rλ f

)
(x) = −

∫ a

0
Φ(x,λ )

(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ ) f (t)dt

−χ1(x,λ )+ χ2(x,λ )− χ3(x,λ )+ χ4(x,λ ),

where a > 0 and

χ1(x,λ ) = Φ(x,λ )
(
W{Ỹ ,Φ}

)−1
W{Ỹ ,Ψ}

∫ x

a
Φ̃(t,λ ) f (t)dt,

χ2(x,λ ) = Φ(x,λ )
∫ x

a
Ψ̃(t,λ ) f (t)dt,

χ3(x,λ ) = Φ(x,λ )W{Ψ̃,Y}
(
W{Φ̃,Y}

)−1∫ ∞

x
Φ̃(t,λ ) f (t)dt,

χ4(x,λ ) = Ψ(x,λ )
∫ ∞

x
Φ̃(t,λ ) f (t)dt.

Let us show that each of these vector functions χ1(x,λ ) , χ2(x,λ ) , χ3(x,λ ) ,
χ4(x,λ ) belongs to L2 (Hm,(a,∞)) . By Theorem 1 and by formulas for γ0(x,λ ) , the
matrix solution Φ(x,λ ) decays rather quickly, therefore, |Φ(x,λ )| ∈ L2(0,∞) . It fol-
lows that χ1(x,λ ) ∈ L2 (Hm,(0,∞)) and χ3(x,λ ) ∈ L2 (Hm,(0,∞)) . First we prove the
assertion for the function χ2(x,λ ) if α > 1 and the coefficients of the equation (1)
satisfy the conditions (3), (4), (5). In this case, we have

|χ2(x,λ )| � |Φ(x,λ )|
∫ x

a

∣∣∣Ψ̃(t,λ )
∣∣∣ | f (t)|dt.

In view of the asymptotic formulas for the matrix solutions Φ(x,λ ) and Ψ(x,λ ) (see
Theorem 1), we obtain that

|χ2(x,λ )| � c1(λ )γ0(x,λ )
∫ x

a
γ∞(t,λ )

∣∣∣ f (t)∣∣∣ dt. (42)

Let us rewrite this relation in the form

|χ2(x,λ )| � c1(λ )γ0(x,λ )γ∞(x,λ )
∫ x

a

γ∞(t,λ )
γ∞(x,λ )

∣∣∣ f (t)∣∣∣ dt.

By using formulas (6) and (7) and by applying the Cauchy-Bunyakovskii inequality, we
obtain

|χ2(x,λ )|� 1
2
c1(λ )

1√
v(x)

(∫ x

a

√
v(x)
v(t)

exp

(
−2

∫ x

t

√
v(u)du

)
dt

) 1
2 (∫ ∞

0

∣∣∣ f (t)∣∣∣2 dt

) 1
2

.
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Since t � x , we get exp

(
−2

∫ x

t

√
v(u)du

)
� 1, and then the latter estimate for

χ2(x,λ ) can be rewritten in the form

|χ2(x,λ )| � c2(λ )
1

4
√

v(x)

(∫ x

a

1√
v(t)

dt

) 1
2

� c2(λ )
1

4
√

v(x)

(∫ ∞

a

1√
v(t)

dt

) 1
2

.

By formula (3), we get

|χ2(x,λ )| � c3(λ )
4
√

v(x)
,

and hence, if α > 1 and coefficients of the equation (1) satisfy the conditions (3), (4), (5),
we have χ2(x,λ ) ∈ L2 (Hm,(a,∞)) . In the case of v(x) = x2α , 0 < α � 1, the assertion
can be proved similarly.

For the function χ4(x,λ ) , we prove our statement in the case of v(x) = x2α , 0 <
α � 1 and coefficients of the equation (1) satisfy the condition (11). As in (42), in this
case we have

|χ4(x,λ )| � c1(λ )γ∞(x,λ )
∫ ∞

x
γ0(t,λ )

∣∣∣ f (t)∣∣∣ dt,

which can be rewritten in the form

|χ4(x,λ )| � c1(λ )γ0(x,λ )γ∞(x,λ )
∫ ∞

x

γ0(t,λ )
γ0(x,λ )

∣∣∣ f (t)∣∣∣ dt.

Let us use the asymptotics of the functions γ0(x,λ ) and γ∞(x,λ ) , for example,

in the case
α +1
2α

= n ∈ N , i.e., α =
1

2n−1
(see (13), (14)). Putting a(α,λ ) =

1 ·3 · . . . · (2n−3)
n!

·
(

λ
2

)n

, we obtain

|χ4(x,λ )| � c2(λ )x−α
∫ ∞

x

γ0(t,λ )
γ0(x,λ )

∣∣∣ f (t)∣∣∣dt

� c2(λ )x−α

(∫ x

a

(
γ0(t,λ )
γ0(x,λ )

)2

dt

) 1
2 (∫ ∞

0

∣∣∣ f (t)∣∣∣2 dt

) 1
2

,

|χ4(x,λ )| � c3(λ )x−α

⎛⎝∫ ∞

x

( t
x

)2a(α ,λ )−α
exp

−2xα+1
((

t
x

)α+1−1
)

1+ α
dt

⎞⎠
1
2

.

Making the change of variables t = xu , we get

|χ4(x,λ )| � c3(λ )x−α+ 1
2

(∫ ∞

1
u2a(α ,λ )−α exp

−2xα+1(uα+1−1)
1+ α

du

) 1
2

.
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Since the inequality exp
−xα+1(uα+1−1)

1+ α
� x−2 holds for all α ∈ (0,1] and u∈ [1,∞)

whenever x is sufficiently large x , we have

|χ4(x,λ )| � c3(λ )x−α− 1
2

(∫ ∞

1
u2a(α ,λ )−α exp

−xα+1(uα+1−1)
1+ α

du

) 1
2

.

This implies that |χ4(x,λ )|� c4(α,λ )x−α− 1
2 , and hence χ4(x,λ )∈L2 (Hm,(a,∞)) .

In the case if 0 < α � 1 and
α +1
2α

�∈ N , and also α > 1, the proof is similar.

Thus, Rλ f ∈ L2 (Hm,(0,∞)) for any function f ∈ L2 (Hm,(0,∞)) . �

Since the resolvent Rλ is a meromorphic function with respect to λ which poles
coincide with the eigenvalues of the operator L , the formulation of Theorem 2 can be
refined.

THEOREM 5. Suppose that, for the equation (1), there either hold the condi-
tions (3), (4), (5) for α > 1 or the condition (11) for 0 < α � 1 . Then the spectrum of
the operator L is real, discrete and coincides with the union of spectra of self-adjoint
operators L̃k , k = 1,r , i.e.,

σ(L) =
r⋃

k=1

σ
(
L̃k

)
.

III. As above, we denote by Y (x,λ ) the matrix solution of the equation (1) sat-
isfying the initial conditions Y (0,λ ) = cosA , Y ′(0,λ ) = sinA , and by Z(x,λ ) the
matrix solution of the equation (1) satisfying the initial conditions Z(0,λ ) = −sinA ,
Z′(0,λ ) = cosA . Then the solutions Φ(x,λ ) , Φ̃(x,λ ) admit the representation in the
form:

Φ(x,λ ) = Z(x,λ )W{Ỹ ,Φ}−Y(x,λ )W{Z̃,Φ}, (43)

Φ̃(x,λ ) = W{Φ̃,Z}Ỹ (x,λ )−W{Φ̃,Y}Z̃(z,λ ). (44)

The Green function (32) can be rewritten as

G(x, t,λ ) = Y (x,λ )
(
W{Φ̃,Y}

)−1
W{Φ̃,Z}Ỹ (t,λ )+ . . . =

= Y (x,λ )W{Z̃,Φ}
(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ )+ . . . .

Here the dots means the entire function with respect to λ . Consider the disk on the
complex plane bounded by the circle CRn of radius Rn with the center at the origin
such that, for a sufficiently large n , there hold conditions |λn|< Rn and λn+1 > Rn . By
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integrating the function
G(x,t,λ )

λ − z
over the contour indicated, we get:

1
2π i

∫
CRn

G(x, t,λ )
λ − z

dλ = G(x,t,λ )

+
n

∑
j=1

Resλ j

{
1

λ − z
Y (x,λ )W{Z̃,Φ}

(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ )

}
.

By letting n tend to infinity, we conclude that

G(x, t,z) = −
∞

∑
j=1

Resλ j

{
1

λ − z
Y (x,λ )W{Z̃,Φ}

(
W{Ỹ ,Φ}

)−1
Ỹ (t,λ )

}
. (45)

If the matrices A(λ ) and C(λ ) are entire functions and the matrix B(λ ) has a pole
of order r j at λ j , then the residue of the matrix A(λ )B(λ )C(λ ) at λ j can be calculated
as follows:

Resλ j
{A(λ )B(λ )C(λ )} =

r j−1

∑
k=0

1
k!

dk

dλ k A(λ )

∣∣∣∣∣
λ=λ j

r j−(k+1)

∑
l=0

Resλ j

{
B(λ )(λ −λ j)k+l

}

× 1
l!

dl

dλ l C(λ )
∣∣∣∣
λ=λ j

.

If A(λ ) = I , we get

Resλ j
{B(λ )C(λ )} =

r j−1

∑
l=0

Resλ j

{
B(λ )(λ −λ j)l

} 1
l!

dl

dλ l C(λ )

∣∣∣∣∣
λ=λ j

. (46)

The formula (45) takes the form

G(x, t,z) = −
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k

(
1

λ − z
Y (x,λ )W{Z̃,Φ}

)∣∣∣∣
λ=λ j

(47)

×
r j−(k+1)

∑
l=0

Resλ j

{(
W{Ỹ ,Φ}

)−1
(λ −λ j)k+l

}
· 1

l!
dl

dλ l Ỹ (t,λ )
∣∣∣∣
λ=λ j

.

As in [1], [2], [3], define the normalizing polynomials by

Nj(t) = e−λ jtResλ j

{
eλ t
(
W{Ỹ ,Φ}

)−1
W{Ỹ ,Ψ}

}
,

or

Nj(t) =
r j−1

∑
k=0

(
r j−(k+1)

∑
l=0

Resλ j

{(
W{Ỹ ,Φ}

)−1
(λ −λ j)l+k

}
1
l!

dl

dλ l
W{Ỹ ,Ψ}

∣∣∣∣
λ=λ j

)
tk

k!
.
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Note that

dk

dtk
(Nj(t))

∣∣∣∣
t=0

=
r j−(k+1)

∑
l=0

Resλ j

{(
W{Ỹ ,Φ}

)−1
(λ −λ j)l+k

}
1
l!

dl

dλ l W{Ỹ ,Ψ}
∣∣∣∣
λ=λ j

,

(48)
or

dk

dtk
(Nj(t))

∣∣∣∣
t=0

= Resλ j

{(
W{Ỹ ,Φ}

)−1
(λ −λ j)kW{Ỹ ,Ψ}

}
.

LEMMA 1. Assume that Ω(λ ) is an entire matrix function and detΩ(λ0) = 0 at
some point λ0 , and that the matrix Ω−1(λ ) has a pole of order r at λ0 . Then

k

∑
l=0

Resλ0

{
Ω−1(λ )(λ −λ0)r−(k+1)+l

} 1
l!

dl

dλ l
Ω(λ )

∣∣∣∣
λ=λ0

= 0, k = 0,1, . . . ,r−1,

or

r−(k+1)

∑
l=0

Resλ0

{
Ω−1(λ )(λ −λ0)k+l

} 1
l!

dl

dλ l Ω(λ )
∣∣∣∣
λ=λ0

= 0, k = 0,1, . . . ,r−1.

(49)

As in [1] and [2] for r = 1, the proof follows from the expansion of the functions
Ω(λ ) and Ω−1(λ ) in a neighborhood at λ0 :

Ω(λ ) =
∞

∑
l=0

1
l!

dl

dλ l Ω(λ )
∣∣∣∣
λ=λ0

· (λ −λ0)l ,

Ω−1(λ ) =
A−r

(λ −λ0)r +
A−(r−1)

(λ −λ0)r−1 + . . .+
A−1

λ −λ0
+A0 + . . . ,

where A−l = Resλ0

{
Ω−1(λ )(λ −λ0)l−1

}
.

REMARK 1. If Ω(λ ) = W{Ỹ ,Φ} and λ j is the pole of multiplicity r j , then the
formula (49) takes the form

r j−(k+1)

∑
l=0

Resλ j

{(
W{Ỹ ,Φ}

)−1
(λ −λ0)k+l

}
1
l!

dl

dλ l W{Ỹ ,Φ}
∣∣∣∣
λ=λ j

= 0,

k = 0,1, . . . ,r−1. (50)
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LEMMA 2. The following relations hold for all k = 0,1, . . . ,r j −13:

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l W{Φ̃,Z}
∣∣∣∣

λ=λ j

= Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)

k
}

,

(51)

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l W{Φ̃,Y}
∣∣∣∣
λ=λ j

= 0, (52)

r j−(k+1)

∑
l=0

1
l!

dl

dλ l W{Ỹ ,Φ}
∣∣∣∣
λ=λ j

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

= 0. (53)

Proof. Due to the formula (48), we get:

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj(t)
∣∣∣∣
t=0

dl

dλ l W{Φ̃,Z}
∣∣∣∣
λ=λ j

=

=
r j−(k+1)

∑
l=0

1
l!

(
r j−(k+l+1)

∑
s=0

Resλ j

{
(W{Ỹ ,Φ})−1(λ−λ j)k+l+s

}
× 1

s!
ds

dλ sW{Ỹ ,Ψ}
∣∣∣∣
λ=λ j

)
dl

dλ l W{Φ̃,Z}
∣∣∣∣
λ=λ j

.

In what follows, we will consider values of the function Nj (t) as well as its deriva-
tives at t = 0, and values of the Wronskians and their derivatives at λ = λ j . Therefore,
in order to simplify the notation, we will not mention the calculation of functions’ val-
ues at a point.

Making the change l + s = m , one can reduce the latter sum to the form

r j−(k+1)

∑
l=0

1
l!

(
r j−(k+1)

∑
m=l

Resλ j

{
(W{Ỹ ,Φ})−1(λ −λ j)

k+m
}

× 1
(m− l)!

dm−l

dλ m−l W{Ỹ ,Ψ}
)

dl

dλ l W{Φ̃,Z}.

Then, making the change of the summation limits, we obtain

r j−(k+1)

∑
m=0

1
m!

Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)

k+m
}( m

∑
l=0

Cl
m

dm−l

dλ m−l W{Ỹ ,Ψ} dl

dλ l W{Φ̃,Z}
)

=
r j−(k+1)

∑
m=0

1
m!

Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)k+m

} dm

dλ m

(
W{Ỹ ,Ψ}W{Φ̃,Z}) . (54)

3The formulas (52), (53) are similar to the formula (25) from [3] while they are proved here in a different
way.
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By using the asymptotics of the matrix solutions Φ(x,λ ) and Ψ(x,λ ) at infinity,
for any λ we have

W{Ỹ ,Ψ}W{Φ̃,Z} = lim
x→∞

(γ ′∞Ỹ − γ∞Ỹ ′)(γ0Z
′ − γ ′0Z) = I + lim

x→∞
(γ0Ỹ

′ − γ ′0Ỹ )(γ ′∞Z− γ∞Z′)

= I + lim
x→∞

(
Ỹ ′Φ− ỸΦ′)(Ψ̃′Z− Ψ̃Z′)= I +W{Ỹ ,Φ}W{Ψ̃,Z}.

(55)

Similarly,
W{Ỹ ,Ψ}W{Φ̃,Y} = W{Ỹ ,Φ}W{Ψ̃,Y}. (56)

In view of (55), the right-hand side of the formula (54) takes the form

Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)k

}
+

+
r j−(k+1)

∑
m=0

1
m!

Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)

k+m
} dm

dλ m

(
W{Ỹ ,Φ}W{Ψ̃,Z}) .

From here, using the formula (46) we obtain that the latter sum equals 0. This
completes the proof of the formula (51). The relations (52) and (53) can be proved
similarly, with the use of the formula (56) instead of (55) by the completion of the
proof. �

THEOREM 6. Let L0 be a minimal differential operator generated by the differen-
tial expression (1) which coefficients satisfy either the conditions (3), (4), (5) for α > 1 ,
or the condition (11) for 0 < α � 1 , as well as the boundary condition (26). Let also
L be the extension of the operator L0 generated by the requirement for functions from
the domain of the operator L to belong to L2 (Hm,(0,∞)) . Then the Green function of
the operator L has the form

G(x, t,z) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k

(
1

λ − z
Φ(x,λ )

)∣∣∣∣∣
λ=λ j

(57)

×
r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l

(
Φ̃(t,λ)

)∣∣∣∣
λ=λ j

.

Proof. Let us transform the formula (47) for the Green function G(x,t,z) . Con-
sider the interior sum and substitute the values of residues in it according to (51):

r j−(k+1)

∑
l=0

Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)

k+l
} 1

l!
dl

dλ l Ỹ (t,λ )
∣∣∣∣
λ=λ j

=

=
r j−(k+1)

∑
l=0

(
r j−(k+l+1)

∑
s=0

1
s!

dk+l+s

dtk+l+s Nj (t)
ds

dλ sW{Φ̃,Z}
)

1
l!

dl

dλ l Ỹ (t,λ ) .
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Making the change l + s = u , we conclude that the latter sum will take the form

r j−(k+1)

∑
l=0

(
r j−(k+1)

∑
u=l

1
(u− l)!

dk+u

dtk+u Nj (t)
du−l

dλ u−l W{Φ̃,Z}
)

1
l!

dl

dλ l Ỹ (t,λ ) .

If we interchange the summation limits, we obtain

r j−(k+1)

∑
u=0

1
u!

dk+u

dtk+u Nj (t)

(
u

∑
l=0

Cl
u

du−l

dλ u−l W{Φ̃,Z} dl

dλ l Ỹ (t,λ)

)
=

=
r j−(k+1)

∑
u=0

1
u!

dk+u

dtk+u
Nj (t)

du

dλ u

(
W{Φ̃,Z}Ỹ (t,λ )

)
. (58)

Using the formula (44) and proving that

r j−(k+1)

∑
u=0

1
u!

dk+u

dtk+u
Nj (t)

du

dλ u

(
W{Φ̃,Y}Z̃ (t,λ)

)
= 0, (59)

we conclude that the right-hand side of the formula (58) takes the form

r j−(k+1)

∑
u=0

1
u!

dk+u

dtk+u
Nj (t)

du

dλ u

(
Φ̃(t,λ )

)
.

By rewriting the left-hand side of (59) as

r j−(k+1)

∑
u=0

1
u!

dk+u

dtk+u Nj (t)
u

∑
s=0

Cs
u

du−s

dλ u−s

(
W{Φ̃,Y}) ds

dλ s Z̃ (t,λ )

and by interchanging the summation limits, we get

r j−(k+1)

∑
s=0

1
s!

(
r j−(k+1)

∑
u=s

1
(u− s)!

dk+u

dtk+u Nj (t)
du−s

dλ u−s

(
W{Φ̃,Y})) ds

dλ s Z̃ (t,λ ) .

Then, making the change u− s = m , we obtain

r j−(k+1)

∑
s=0

1
s!

(
r j−(k+s+1)

∑
m=0

1
m!

dk+s+m

dtk+s+m Nj (t)
dm

dλ m

(
W{Φ̃,Y})) ds

dλ s Z̃ (t,λ ) .

In view of (52), the interior sum equals 0, which implies (59). It follows that

r j−(k+1)

∑
l=0

Resλ j

{(
W{Ỹ ,Φ})−1(λ −λ j)

k+l
} 1

l!
dl

dλ l Ỹ (t,λ )
∣∣∣∣
λ=λ j

=

=
r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l

(
Φ̃(t,λ )

)∣∣∣∣
λ=λ j

,
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and the right-hand side of (47) takes the form

−
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k

(
1

λ − z
Y (x,λ )W{Z̃,Φ}

)∣∣∣∣∣
λ=λ j

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l

(
Φ̃(t,λ )

)∣∣∣∣
λ=λ j

.

Finally, by interchanging the summation limits with respect to k and l and by using the
formulas (43) and (53), we will pass to the formula (57) for the Green function. �

If all the eigenvalues λ j of the operator L are simple, i.e., the poles λ j of the ma-

trix
(
W{Ỹ ,Φ})−1

are simple, then the matrix Nj(t) is constant and can be calculated
by the formula

Nj = Resλ j

{(
W{Ỹ ,Φ})−1

}
W{Ỹ ,Ψ}∣∣λ=λ j

.

It follows that

Resλ j

{(
W{Ỹ ,Φ})−1

}
= Nj W{Φ̃,Z}∣∣λ=λ j

.

Hence in the case if all the eigenvalues of the operator L are simple, the for-
mula (57) can be substantially refined:

G(x, t,z) = −
∞

∑
j=1

1
λ j − z

Y (x,λ j) W{Z̃,Φ}∣∣λ=λ j
Nj W{Φ̃,Z}∣∣λ=λ j

Ỹ (t,λ j)

=
∞

∑
j=1

1
λ j − z

Φ(x,λ j)Nj Φ̃(t,λ j) .

This formula is equivalent to (57) for the Green function that was constructed in [2]
in the case of a potential decaying at infinity and such that its first moment is bounded.

IV. Let S(x) and T (x) be arbitrary matrix functions from L2 (Hm,(0,∞)) . Denote

E (S,λ) =
∞∫

0

S (t)Φ(t,λ )dt, (60)

Ẽ (S,λ) =
∞∫

0

Φ̃(t,λ)S (t)dt. (61)

THEOREM 7. Suppose that, for the problem (1), (26), coefficients either satisfy
the conditions (3), (4), (5) for α > 1 , or the condition (11) for 0 < α � 1 . Then, for
arbitrary matrix functions S(x), T (x) ∈ L2 (Hm,(0,∞)) , there holds the expansion in
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the solutions Φ(x,λ ) and Φ̃(x,λ ) of the equations (1) and (30) respectively:

S (x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k
(E (S,λ))

∣∣∣∣
λ=λ j

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλ l

(
Φ̃(x,λ )

)∣∣∣∣
λ=λ j

,

(62)

S (x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k (Φ(x,λ ))
∣∣∣∣
λ=λ j

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l

(
Ẽ (S,λ)

)∣∣∣∣
λ=λ j

,

(63)

and holds the Parseval equality

∞∫
0

S (x)T (x) dx =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k E (S,λ)|λ=λ j
(64)

×
r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l
Ẽ (T,λ)

∣∣∣∣
λ=λ j

.

Proof. Since (l̃ − zI)
[
Φ̃(x,λ )

]
= (λ − z)Φ̃(x,λ ) , we conclude that Φ̃(x,λ ) =

=
1

λ − z

(
l̃− zI

)[
Φ̃(x,λ )

]
for λ �= z . It follows that

Ẽ (Rz [T ] , λ ) =
∞∫

0

Φ̃(x,λ )Rz [T ] (x)dx =
1

λ − z

∞∫
0

(
l̃− zI

)[
Φ̃(x,λ )

]
Rz [T ] (x)dx.

For a finite function T (x) ∈ L2 (Hm,(0,∞)) , by integrating by parts twice, we get

Ẽ (Rz [T ] , λ ) =
1

λ − z

∞∫
0

Φ̃(x,λ ) (l− zI)Rz [T ] (x)dx

=
1

λ − z

∞∫
0

Φ̃(x,λ )T (x)dx =
1

λ − z
Ẽ (T,λ ) . (65)

Taking into account the formulas (41), (57) and (61), for an arbitrary matrix T (x)∈
∈ L2 (Hm,(0,∞)) we have

(Rz [T ]) (x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k

(
1

λ − z
Φ(x,λ )

)∣∣∣∣
λ=λ j

×
r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l Ẽ (T,λ)
∣∣∣∣
λ=λ j

.
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Introducing the temporary notation ak(λ j) for the summation with respect to l , we can
rewrite the latter formula as

(Rz [T ]) (x) =
∞

∑
j=1

r j−1

∑
k=0

k

∑
s=0

1
s!

1

(λ j − z)k−s+1

ds

dλ s (Φ(x,λ ))
∣∣∣∣
λ=λ j

ak (λ j) .

Interchange the summation limits with respect to k and s :

(Rz [T ])(x) =
∞

∑
j=1

r j−1

∑
s=0

1
s!

ds

dλ s (Φ(x,λ ))
∣∣∣∣
λ=λ j

r j−1

∑
k=s

1

(λ j − z)k−s+1 ak (λ j).

In what follows, we will consider values of the function Φ(x,λ ) as well as its deriva-
tives in λ at λ = λ j , and values of the function Nj(t) and its derivatives at t = 0.
Hence, as above, we simplify the notation of functions by no mentioning the calcula-
tion of functions’ values at a point. Putting k− s = u , we obtain:

(Rz [T ]) (x) =
∞

∑
j=1

r j−1

∑
s=0

1
s!

ds

dλ s (Φ(x,λ ))
r j−(s+1)

∑
u=0

1

(λ j − z)u+1

×
r j−(s+u+1)

∑
l=0

1
l!

ds+u+l

dts+u+l Nj (t)
dl

dλ l
Ẽ (T,λ) .

Interchange the summation limits with respect to u and l :

(Rz [T ])(x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k (Φ(x,λ ))

×
r j−(k+1)

∑
l=0

1
l!

(
r j−(k+l+1)

∑
u=0

1

(λ j − z)u+1

dk+u+l

dtk+u+l Nj (t)

)
dl

dλ l
Ẽ (T,λ ).

By making the change u+ l = p , we get

(Rz [T ])(x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k (Φ(x,λ ))

×
r j−(k+1)

∑
l=0

1
l!

(
r j−(k+1)

∑
p=l

1

(λ j − z)p−l+1

dk+p

dtk+p Nj (t)

)
dl

dλ l Ẽ (T,λ ).

Interchange the summation limits with respect to l and p :

(Rz [T ]) (x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k (Φ(x,λ ))

×
r j−(k+1)

∑
p=0

dk+p

dtk+p Nj (t)

(
p

∑
l=0

1
l!

1

(λ j − z)p−l+1

dl

dλ l Ẽ (T,λ)

)
.
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This yields that

(Rz [T ]) (x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k (Φ(x,λ ))
r j−(k+1)

∑
p=0

1
p!

dk+p

dtk+p Nj (t)
dp

dλ p

(
1

λ − z
Ẽ (T,λ )

)
.

In view of the formula (65), we have

(Rz [T ]) (x) =
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k
(Φ(x,λ ))

∣∣∣∣
λ=λ j

×
r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l

(
Ẽ (Rz [T ] ,λ )

)∣∣∣∣
λ=λ j

.

It follows that

∞∫
0

S (x)(Rz [T ]) (x)dx =

=
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k
(E (S,λ))

∣∣∣∣
λ=λ j

r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλ l

(
Ẽ (Rz [T ] ,λ )

)∣∣∣∣
λ=λ j

.

Thus, for any finite function T (x) ∈ L2 (Hm,(0,∞)) , we get

∞∫
0

S (x) (Rz [T ])(x)dx =
∞∫

0

(
∞

∑
j=1

r j−1

∑
k=0

1
k!

dk

dλ k (E (S,λ))
∣∣∣∣
λ=λ j

×
r j−(k+1)

∑
l=0

1
l!

dk+l

dtk+l Nj (t)
∣∣∣∣
t=0

dl

dλ l

(
Φ̃(x,λ )

)∣∣∣∣
λ=λ j

)
(Rz[T ])(x)dx.

Since the range of the resolvent is dense in L2 (Hm,(0,∞)) , we pass to the formula (62).
In the similar way we can prove the formula (63). Finally, by multiplying the both
sides of the relation (62) by T (x) and by integrating, we obtain the Parseval equal-
ity (64). �
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