APPROXIMATE DOUBLE COMMUTANTS IN VON NEUMANN ALGEBRAS AND C*-ALGEBRAS

DON HADWIN

Dedicated to Eric Nordgren, a great mathematician and a great friend

(Communicated by D. R. Farenick)

Abstract. Richard Kadison showed that not every commutative von Neumann subalgebra of a factor von Neumann algebra is equal to its relative double commutant. We prove that every commutative C*-subalgebra of a centrally prime C*-algebra \mathscr{B} equals its relative approximate double commutant. If \mathscr{B} is a von Neumann algebra, there is a related distance formula.

One of the fundamental results in the theory of von Neumann algebras is von Neumann's classical *double commutant theorem*, which says that if $\mathscr{S} = \mathscr{S}^* \subseteq B(H)$, then $\mathscr{S}'' = W^*(\mathscr{S})$. In 1978 [3] the author proved an asymptotic version of von Neumann's theorem, the *approximate double commutant theorem*. For the asymptotic version, we define the *approximate double commutant* of $\mathscr{S} \subseteq B(H)$, denoted by Appr(S)'', to be the set of all operators T such that

$$\|A_{\lambda}T - TA_{\lambda}\| \to 0$$

for every bounded net $\{A_{\lambda}\}$ in B(H) for which

$$||A_{\lambda}S - SA_{\lambda}|| \rightarrow 0$$

for every $S \in \mathscr{S}$. More generally, if \mathscr{B} is a unital C*-algebra and $\mathscr{S} \subseteq \mathscr{B}$, we define the *relative approximate double commutant of* S *in* \mathscr{B} , denoted by Appr $(S, \mathscr{B})''$, in the same way but insisting that the T's and the A_{λ} 's be in \mathscr{B} . The approximate double commutant theorem in B(H) [3] says that if $\mathscr{S} = \mathscr{S}^*$, then Appr $(\mathscr{S})'' = C^*(\mathscr{S})$. Moreover, if we restrict the $\{A_{\lambda}\}$'s to be nets of unitaries or nets of projections that asymptotically commute with every element of \mathscr{S} , the resulting approximate double commutant is still $C^*(\mathscr{S})$.

A von Neumann algebra \mathscr{B} is *hyperreflexive* if there is a constant $K \ge 1$ such that, for every $T \in B(H)$

$$dist(T, \mathscr{B}) \leq K \sup \{ \|TP - PT\| : P \in \mathscr{B}', P \text{ a projection} \}.$$

Mathematics subject classification (2010): Primary 46L19; Secondary 46L05.

Keywords and phrases: Double commutant, approximate double commutant, hyperreflexive.

The smallest such K is called the *constant of hyperreflexivity* for \mathcal{B} . The inequality

$$\sup \{ \|TP - PT\| : P \in \mathscr{M}', P \text{ a projection} \} \leq dist (T, \mathscr{M})$$

is always true. The question of whether every von Neumann algebra is hyperreflexive is still open and is equivalent to a number of other important problems in von Neumann algebras (see [6]). It was proved by the author [4] that every unital C*-subalgebra \mathscr{A} of B(H) is approximately hyperreflexive; more precisely, if $T \in B(H)$, then there is a net $\{P_{\lambda}\}$ of projections such that

$$\|AP_{\lambda}-P_{\lambda}A\|\to 0$$

for every $A \in \mathscr{A}$, and

$$dist\left(T,\mathscr{A}\right) \leqslant 29 \lim_{\lambda} \left\|TP_{\lambda} - P_{\lambda}T\right\|.$$

If we replace the role of B(H) with a factor von Neumann algebra, then the double commutant theorem fails, even when the subalgebra is commutative. Suppose \mathscr{S} is a subset of a ring \mathscr{R} . We define the *relative commutant* of \mathscr{S} in \mathscr{R} , the *relative double commutant* of \mathscr{S} in \mathscr{R} , and the *relative triple commutant* of \mathscr{S} in \mathscr{R} , respectively, by

$$(\mathscr{S},\mathscr{R})' = \{T \in \mathscr{R} : \forall S \in \mathscr{S}, TS = ST\},\$$
$$(\mathscr{S},\mathscr{R})'' = \{T \in \mathscr{R} : \forall A \in (\mathscr{S},\mathscr{R})', TA = AT\},\$$

and

$$(\mathscr{S},\mathscr{R})^{\prime\prime\prime} = \left\{ T \in \mathscr{R} : \forall A \in (\mathscr{S},\mathscr{R})^{\prime\prime}, TA = AT \right\}.$$

It is clear from general Galois nonsense that

$$(\mathscr{S},\mathscr{R})^{\prime\prime\prime} = (\mathscr{S},\mathscr{R})^{\prime}.$$

Following R. Kadison [8] we will say a subring \mathcal{M} of a unital ring \mathcal{B} is normal if

$$\mathscr{M} = (\mathscr{M}, \mathscr{B})'' = (\mathscr{M}' \cap \mathscr{B})' \cap \mathscr{B}.$$

R. Kadison [8] proved that if \mathcal{M} is type *I* von Neumann subalgebra of a von Neumann algebra \mathcal{B} , then \mathcal{M} is normal in \mathcal{B} if and only if its center $\mathcal{Z}(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ is normal if and only if $\mathcal{Z}(\mathcal{M})$ is an intersection of masas (maximal abelian selfadjoint subalgebras) of \mathcal{B} . See the paper of B. J. Vowden [14] for more examples. We see that the part of Kadison's result concerning abelian C*-subalgebras is true in the C*-algebraic setting. We prove a general version for rings, which applies to commutative nonselfadjoint subalgebras of a C*-algebra or von Neumann algebra.

LEMMA 1. Suppose \mathcal{M} is a unital abelian subring of a unital ring \mathcal{B} . The following are equivalent:

1. $\mathcal{M} = (\mathcal{M}, \mathcal{B})''$.

2. \mathcal{M} is an intersection of maximal abelian subrings of \mathcal{B} .

3. \mathscr{M} is an intersection of subrings of the form $(\mathscr{S}, \mathscr{B})'$ for subsets \mathscr{S} of \mathscr{B} .

Proof. First note that every maximal abelian subring \mathscr{E} has the property that $\mathscr{E} = (\mathscr{E}, \mathscr{B})'$, which implies $\mathscr{E} = (\mathscr{E}, \mathscr{B})''$ and the implication $(2) \Longrightarrow (3)$. It is also clear that if $\{\mathscr{S}_i : i \in I\}$ is a collection of nonempty subsets of \mathscr{B} , then

$$\bigcup_{i\in I} (\mathscr{S}_i, \mathscr{B})' \subseteq (\cap_{i\in I} \mathscr{S}_i, \mathscr{B})',$$

and

$$(\cap_{i\in I}\mathscr{S}_i,\mathscr{B})''\subseteq \bigcap_{i\in I}(\mathscr{S}_i,\mathscr{B})''$$

This, and the fact that $(\mathscr{S}, \mathscr{B})'' = (\mathscr{S}, \mathscr{B})'$ always holds, yields $(3) \Longrightarrow (1)$.

To prove $(1) \Longrightarrow (2)$, suppose (1) holds, and let \mathscr{W} be a maximal abelian subring of \mathscr{B} such that $\mathscr{M} \subseteq \mathscr{W}$. For each $W \in \mathscr{W} \setminus \mathscr{M}$, by (1), there is a $T_W \in (\mathscr{M}, \mathscr{B})'$ such that $T_W W \neq W T_W$. Since the ring generated by $\mathscr{M} \cup \{T_W\}$ is abelian, it is contained in a maximal abelian subring \mathscr{S}_W , and $W \notin \mathscr{S}_W$. Hence

$$\mathscr{M} = \mathscr{W} \cap \bigcap_{W \in \mathscr{W} \setminus \mathscr{M}} \mathscr{S}_W,$$

which proves (2) holds. \Box

If in the statement and proof of the preceding lemma we replace "ring" with "C*-algebra", and the ring generated by $\mathcal{M} \cup \{T_W\}$ with $C^*(\mathcal{M} \cup \{T_W\})$, we obtain the following result for C*-algebras.

COROLLARY 1. Suppose \mathcal{M} is a unital commutative C*-subalgebra of a unital C*-algebra \mathcal{B} . The following are equivalent:

- 1. \mathcal{M} is normal in \mathcal{B} .
- 2. \mathcal{M} is an intersection of maximal abelian subalgebras of \mathcal{B} .
- 3. \mathcal{M} is an intersection of masas in \mathcal{B} .
- 4. \mathscr{M} is an intersection of algebras of the form $(\mathscr{S}, \mathscr{B})'$ for subsets \mathscr{S} of \mathscr{B} .

We now know that every masa in a C*-algebra is normal. If \mathcal{M} is a masa in a von Neumann algebra \mathcal{B} , then the double commutant theorem holds even with a distance formula. The proof is a simple adaptation of the proof of Lemma 3.1 in [13].

LEMMA 2. Suppose \mathscr{M} is a masa in a von Neumann algebra \mathscr{B} and $T \in \mathscr{B}$. Then

$$dist(T,\mathcal{M}) \leq \sup \left\{ \|UT - TU\| : U = U^* \in \mathcal{B}, U^2 = 1 \right\}$$
$$= 2 \sup \left\{ \|TP - PT\| : P = P^* = P^2 \in \mathcal{B} \right\}$$

Proof. Let *R* denote the right-hand side of the inequality, and let *D* be the closed ball in \mathcal{B} centered at *T* with radius *R*. Suppose \mathcal{F} is a finite orthogonal set of projections in \mathcal{M} whose sum is 1. Let $G(\mathcal{F})$ be the set of all sums of the form

$$\sum_{P\in\mathscr{F}}\lambda_P P$$

with each λ_P in $\{-1,1\}$. Then $G(\mathscr{F})$ is a finite group of unitaries and each $U \in G(\mathscr{F})$ has the form 2Q-1 with Q a finite sum of elements in \mathscr{F} . Moreover, if U = 2Q-1,

$$2 ||TQ - QT|| = ||TU - UT|| = ||T - UTU^*||.$$

It follows that $UTU^* \in D$ for every $U \in G(\mathscr{F})$. Define

$$S_{\mathscr{F}} = \frac{1}{cardG(\mathscr{F})} \sum_{U \in G(F)} UTU^*.$$

Since $G(\mathscr{F})$ is a group, it easily follows that, for every $U_0 \in G(\mathscr{F})$,

$$U_0 S_{\mathscr{F}} U_0^* = S_{\mathscr{F}}$$

This implies that $S_{\mathscr{F}} = \sum_{P \in \mathscr{F}} PTP \in (\mathscr{F}, \mathscr{B})' = (G(\mathscr{F}), \mathscr{B})'$. Choose a subnet $\{S_{\mathscr{F}_{\lambda}}\}$

that converges in the weak operator topology to $S \in D$. Then $S \in (\mathcal{M}, \mathcal{B})' \cap D$. Since $(\mathcal{M}, \mathcal{B})' = \mathcal{M}$, we conclude

$$dist(T, \mathcal{M}) \leq ||T - S|| \leq R.$$

We now address the approximate double commutant relative to a C*-algebra. If \mathscr{S} is a subset of a C*-algebra \mathscr{B} , we know that Appr $(\mathscr{S}, \mathscr{B})''$ must contain the center $\mathscr{Z}(\mathscr{B}) = \mathscr{B} \cap \mathscr{B}'$. Hence if \mathscr{A} is a unital C*-subalgebra of a C*-algebra \mathscr{B} , then

$$C^*(\mathscr{A} \cup \mathscr{Z}(\mathscr{B})) \subseteq \operatorname{Appr}(\mathscr{A}, \mathscr{B})''.$$

When \mathscr{A} is commutative, we will prove that equality holds in certain cases, including when \mathscr{B} is a von Neumann algebra.

The following result is based on S. Macado's generalization [11] of the Bishop-Stone-Weierstrass theorem. If *K* is a compact Hausdorff space and \mathscr{G} is a unital closed subalgebra of C(K), a subset *E* of *K* is called \mathscr{G} -antisymmetric if, for every $g \in \mathscr{G}$, the restriction $g|_E$ is real-valued implies $g|_E$ is constant. Machados's theorem [11] says that if $h \in C(K)$, then there is a closed \mathscr{G} -antisymmetric set $E \subseteq K$ such that

$$dist(h,\mathscr{G}) = dist(h|_E,\mathscr{G}|_E),$$

where $\mathscr{G}|_E = \{g|_E : g \in \mathscr{G}\}$. A beautiful, short, elementary proof of Machado's theorem was given by T. J. Ransford in [12].

LEMMA 3. Suppose \mathcal{W} is a unital C*-subalgebra of a commutative C*-algebra \mathcal{D} , and $S = S^* \in \mathcal{D}$ and $S \notin \mathcal{W}$. Then there are multiplicative linear functionals α, β on \mathcal{D} and nets $\{A_{\lambda}\}, \{B_{\lambda}\}, \{X_{\lambda}\}$ and $\{Y_{\lambda}\}$ in \mathcal{D} such that

- $I. \quad 0 \leq X_{\lambda} \leq A_{\lambda} \leq 1, 0 \leq Y_{\lambda} \leq B_{\lambda} \leq 1,$ $2. \quad X_{\lambda}Y_{\lambda} = 0, A_{\lambda}X_{\lambda} = X_{\lambda}, \quad Y_{\lambda}B_{\lambda} = Y_{\lambda},$
- 3. $\|DA_{\lambda} \alpha(D)A_{\lambda}\| \to 0$ and $\|DB_{\lambda} \beta(D)B_{\lambda}\| \to 0$ for every $D \in \mathcal{D}$,
- 4. $\alpha(A) = \beta(A)$ for every $A \in \mathcal{W}$,
- 5. $\alpha(X_{\lambda}) = \beta(Y_{\lambda}) = 1$ for every λ ,
- 6. $\beta(S) \alpha(S) = 2dist(S, \mathcal{W}).$

Proof. Let *K* be the maximal ideal space of \mathscr{D} and let $\Gamma : \mathscr{D} \to C(K)$ be the Gelfand map, which must be a *-isomorphism since \mathscr{D} is a commutative C*-algebra. Let $g = \Gamma(S) = \Gamma(S^*) = \overline{g}$. It follows from Machado's theorem [11] that there is a $\Gamma(\mathscr{W})$ -antisymmetric set $E \subseteq K$ such that

$$dist(S, \mathscr{W}) = dist(g, \Gamma(\mathscr{W})) = dist(g|_E, \Gamma(\mathscr{W})|_E)$$

Since $\Gamma(\mathcal{W})$ is self-adjoint and *E* is $\Gamma(\mathcal{W})$ -antisymmetric, every function in $\Gamma(\mathcal{W})$ is constant. Hence $dist(g|_E, \Gamma(\mathcal{W})|_E)$ is the distance from $g|_E$ to the constant functions. It is clear that the closest constant function to $g|_E$ is

$$\frac{g(\boldsymbol{\beta})+g(\boldsymbol{\alpha})}{2},$$

where $\alpha, \beta \in E$, $g(\beta) = \max_{x \in E} g(x)$ and $g(\alpha) = \min_{x \in E} g(x)$. Let Λ be the directed set of all pairs $\lambda = (U_{\lambda}, V_{\lambda})$ of disjoint open sets with $\alpha \in U_{\lambda}$ and $\beta \in V_{\lambda}$, ordered by $\lambda_1 \leq \lambda_2$ if and only if $U_{\lambda_2} \subseteq U_{\lambda_1}$ and $V_{\lambda_2} \subseteq V_{\lambda_1}$. For each $\lambda \in \Lambda$ choose continuous functions $r_{\lambda}, s_{\lambda}, t_{\lambda}, u_{\lambda} : K \to [0, 1]$ such that

- a. $r_{\lambda}(\alpha) = t_{\lambda}(\beta) = 1$,
- b. $0 \leqslant r_{\lambda} = r_{\lambda} s_{\lambda} \leqslant s_{\lambda} \leqslant 1$,
- c. $0 \leq t_{\lambda} = t_{\lambda} u_{\lambda} \leq u_{\lambda} \leq 1$,
- d. supp $s_{\lambda} \subseteq U_{\lambda}$ and supp $u_{\lambda} \subseteq V_{\lambda}$.

If we choose $A_{\lambda}, B_{\lambda}, X_{\lambda}, Y_{\lambda} \in \mathscr{A}$ such that $\Gamma(X_{\lambda}) = r_{\lambda}, \Gamma(A_{\lambda}) = s_{\lambda}, \Gamma(Y_{\lambda}) = t_{\lambda}$, and $\Gamma(B_{\lambda}) = u_{\lambda}$, then statements (1)-(6) are clear. \Box

A C*-algebra \mathscr{B} is *primitive* if it has a faithful irreducible representation. A C*algebra \mathscr{B} is *prime* if, for every $x, y \in \mathscr{B}$, we have

$$x\mathscr{B}y = \{0\} \Longrightarrow x = 0 \text{ or } y = 0.$$

Every primitive C*-algebra is prime, and it was proved by Dixmier [2] that every separable prime C*-algebra is primitive. N. Weaver [15] gave an example of a nonseparable prime C*-algebra that is not primitive.

We define \mathscr{B} to be *centrally prime* if, whenever $x, y \in \mathscr{B}$, $0 \le x, y \le 1$ and $x\mathscr{B}y = \{0\}$, there is an $e \in \mathscr{Z}(\mathscr{B})$ such that $x \le e \le 1$ and $y \le 1 - e \le 1$. The centrally prime algebras include the prime ones, von Neumann algebras, and $\prod_{i \in I} \mathscr{B}_i / \sum_{i \in I} \mathscr{B}_i$ or a C*-

ultraproduct $\prod_{i\in I}^{\alpha} \mathscr{B}_i$ when $\{\mathscr{B}_i : i \in I\}$ is a collection of unital primitive C*-algebras (see the proof of Theorem 4).

We characterize Appr $(\mathscr{A}, \mathscr{B})''$ for every commutative C*-subalgebra \mathscr{A} of a centrally prime C*-algebra \mathscr{B} , and we show that there is a distance formula for every commutative unital C*-subalgebra if and only if every masa in \mathscr{B} has a distance formula. In particular, when \mathscr{B} is a von Neumann algebra, we obtain a distance formula.

REMARK 1. Here is a useful comment on distance formulas. If \mathscr{B} is a unital C*algebra and $\mathscr{S} = \mathscr{S}^* \subseteq \mathscr{B}$, then $(\mathscr{S}, \mathscr{B})'$ is a unital C*-algebra, so, by the Russo-Dye theorem, the closed unit ball of $(\mathscr{S}, \mathscr{B})'$ is the norm-closed convex hull of the set of unitary elements in $(\mathscr{S}, \mathscr{B})'$. Hence, for any $T \in \mathscr{B}$,

$$\sup \left\{ \|TW - WT\| : W \in (\mathscr{S}, \mathscr{B})', \|W\| \leq 1 \right\}$$
$$= \sup \left\{ \|TU - UT\| : U \in (\mathscr{S}, \mathscr{B})', U \text{ is unitary} \right\}.$$

A similar result holds in the approximate case. Suppose (Λ, \leq) is a directed set. Then $\prod_{\lambda \in \Lambda} \mathscr{B}$ is a unital C*-algebra and the set

$$\mathscr{E} = \left\{ \{W_{\lambda}\} \in \prod_{\lambda \in \Lambda} \mathscr{B} : \forall S \in \mathscr{S}, \lim_{\lambda} \|W_{\lambda}S - SW_{\lambda}\| = 0 \right\}$$

is a unital C*-algebra and the closed unit ball \mathscr{E}_1 of \mathscr{E} is the closed convex hull of its unitary group. Hence

$$\sup_{\lambda} \left\{ \limsup_{\lambda} \|TW_{\lambda} - W_{\lambda}T\| : W = \{W_{\lambda}\} \in \mathscr{E}, \|W\| \leq 1 \right\}$$
$$= \sup_{\lambda} \left\{ \limsup_{\lambda} \|TU_{\lambda} - U_{\lambda}T\| : U = \{U_{\lambda}\} \in \mathscr{E}, U \text{ is unitary} \right\}.$$

THEOREM 1. Suppose \mathscr{B} is a centrally prime unital C*-algebra and $\mathscr{Z}(\mathscr{B}) \subseteq \mathscr{W} \subseteq \mathscr{D}$ are unital commutative C*-subalgebras of \mathscr{B} . Suppose $S = S^* \in \mathscr{D}$. Then there is a net $\{W_{\lambda}\}$ in \mathscr{B} such that

- 1. W_{λ} is unitary for every λ ,
- 2. $\lim_{\lambda} ||AW_{\lambda} W_{\lambda}A|| = 0$ for every $A \in \mathcal{W}$,
- 3. $\lim_{\lambda} ||SW_{\lambda} W_{\lambda}S|| = 2dist(S, \mathcal{W}).$

Moreover, if \mathscr{B} is a von Neumann algebra, then there is a net $\{P_{\lambda}\}$ of projections in \mathscr{B} such that

- 4. $\lim_{\lambda} ||AP_{\lambda} P_{\lambda}A|| = 0$ for every $A \in \mathcal{W}$,
- 5. $\lim_{\lambda} ||SP_{\lambda} P_{\lambda}S|| = dist(S, \mathcal{W}).$

Proof. Let $\mathcal{W} = C^*(\mathcal{A} \cup \mathcal{Z}(\mathcal{B})), \ \mathcal{D} = C^*(\mathcal{A} \cup \mathcal{Z}(\mathcal{B}) \cup \{S\})$. Now choose α, β and nets $\{A_{\lambda}\}, \{B_{\lambda}\}, \{X_{\lambda}\}$ and $\{Y_{\lambda}\}$ in \mathcal{D} as in Lemma 3. We first show that $X_{\lambda}\mathcal{B}Y_{\lambda} \neq \{0\}$; otherwise, since \mathcal{B} is centrally prime, there is an $e \in \mathcal{Z}(\mathcal{B})$ such that $X_{\lambda} \leq e \leq 1$ and $Y_{\lambda} \leq 1 - e \leq 1$. Hence $\alpha(e) = 1$ and $\beta(1 - e) = 1$, or $\beta(e) = 0$. However, $e \in \mathcal{W}$ and, by part (4) of Lemma 3, we get $\alpha(e) = \beta(e)$. This contradiction shows that $X_{\lambda}\mathcal{B}Y_{\lambda} \neq \{0\}$. Hence there is a $C_{\lambda} \in \mathcal{B}$ such that $||X_{\lambda}C_{\lambda}Y_{\lambda}|| = 1$. Define $W_{\lambda} = X_{\lambda}C_{\lambda}Y_{\lambda} = A_{\lambda}W_{\lambda} = W_{\lambda}B_{\lambda}$. Lemma 3 implies that, for every $D \in \mathcal{D}$,

$$\left\|DW_{\lambda}-\alpha\left(D\right)W_{\lambda}\right\|=\left\|DA_{\lambda}W_{\lambda}-\alpha\left(D\right)A_{\lambda}W_{\lambda}\right\|\leqslant\left\|[D-\alpha\left(D\right)]A_{\lambda}\right\|\left\|W_{\lambda}\right\|\rightarrow0,$$

and

$$\|W_{\lambda}D - \beta(D)W_{\lambda}\| = \|W_{\lambda}B_{\lambda}D - \beta(D)W_{\lambda}B_{\lambda}\| \leq \|W_{\lambda}\| \|B_{\lambda}[D - \alpha(D)]\| \to 0.$$

Since $\alpha(A) = \beta(A)$ for every $A \in \mathcal{W}$, it follows that $||AW_{\lambda} - W_{\lambda}A|| \to 0$. It also follows that

$$\lim_{\lambda} \|W_{\lambda}S - SW_{\lambda}\| = \lim_{\lambda} |\beta(S) - \alpha(S)| \|W_{\lambda}\| = |\beta(S) - \alpha(S)| = 2dist(S, \mathcal{W}).$$

We now appeal to Remark 1 to replace the net $\{W_{\lambda}\}$ with a net of unitaries.

Now suppose \mathscr{B} is a von Neumann algebra. Once we get $X_{\lambda}\mathscr{B}Y_{\lambda} \neq 0$ we know that there is a partial isometry V_{λ} in \mathscr{B} whose final space is contained in the closure of $ranX_{\lambda}$ and whose initial space is contained in $(\ker Y_{\lambda})^{\perp}$. Then (3) holds with $\{W_{\lambda}\}$ replaced with $\{V_{\lambda}\}$. Also, $V_{\lambda}^2 = 0$ (since $X_{\lambda}Y_{\lambda} = 0$), so $P_{\lambda} = \frac{1}{2} (V_{\lambda} + V_{\lambda}^* + V_{\lambda}V_{\lambda}^* + V_{\lambda}^*V_{\lambda})$ is a projection. Using the above arguments gives us

$$\left\| DV_{\lambda}^{*}V_{\lambda} - \beta\left(D\right)V_{\lambda}^{*}V_{\lambda} \right\| \to 0, \left\| V_{\lambda}^{*}V_{\lambda}D - \beta\left(D\right)V_{\lambda}^{*}V_{\lambda} \right\| \to 0$$

and

$$\left\| DV_{\lambda}V_{\lambda}^{*}-\alpha\left(D\right)V_{\lambda}V_{\lambda}^{*}\right\| \rightarrow0, \left\| V_{\lambda}V_{\lambda}^{*}D-\alpha\left(D\right)V_{\lambda}V_{\lambda}^{*}\right\| \rightarrow0,$$

which implies

$$\left\| DV_{\lambda}^{*}V_{\lambda} - V_{\lambda}^{*}V_{\lambda}D + DV_{\lambda}V_{\lambda}^{*} - V_{\lambda}V_{\lambda}^{*}D \right\| \to 0$$

for every $D \in \mathscr{B}$. Thus

$$\begin{split} \lim_{\lambda} \|SP_{\lambda} - P_{\lambda}S\| &= \frac{1}{2} \lim \left\| (\alpha(S)V_{\lambda} - V_{\lambda}\beta(S)) + (\beta(S)V_{\lambda}^{*} - V_{\lambda}^{*}\alpha(S)) \right\| \\ &= \lim_{\lambda} \frac{1}{2} |\beta(S) - \alpha(S)| \left\| V_{\lambda}^{*} - V_{\lambda} \right\| = \frac{1}{2} |\beta(S) - \alpha(S)| = dist(S, \mathcal{W}), \end{split}$$

since $||V_{\lambda}^* - V_{\lambda}|| = 1$ for every λ . \Box

THEOREM 2. Suppose \mathscr{A} is a unital commutative C*-subalgebra of a centrally prime unital C*-algebra \mathscr{B} . Then

Appr
$$(\mathscr{A},\mathscr{B})'' = C^*(\mathscr{A} \cup \mathscr{Z}(\mathscr{B})).$$

Hence \mathscr{A} *is normal if and only if* $\mathscr{Z}(\mathscr{B}) \subseteq \mathscr{A}$ *.*

Proof. It is clear that $\mathscr{W} = C^*(\mathscr{A} \cup \mathscr{Z}(\mathscr{B})) \subseteq \operatorname{Appr}(\mathscr{A}, \mathscr{B})''$. Choose a masa \mathscr{D} of \mathscr{B} with $\mathscr{A} \subseteq \mathscr{D}$. Then

$$\mathscr{W} \subseteq \operatorname{Appr}(\mathscr{A}, \mathscr{B})'' \subseteq \operatorname{Appr}(\mathscr{D}, \mathscr{B})'' = \mathscr{D}.$$

If we choose $S = S^* \in \operatorname{Appr}(\mathscr{A}, \mathscr{B})''$ and apply Theorem 1 we see that $S \in \mathscr{W}$. Since $\operatorname{Appr}(\mathscr{A}, \mathscr{B})''$ is a C*-algebra, we have proved that $\operatorname{Appr}(\mathscr{A}, \mathscr{B})'' \subseteq \mathscr{W}$. \Box

COROLLARY 2. If \mathscr{B} is a centrally prime C*-algebra with trivial center, e.g., a factor von Neumann algebra or the Calkin algebra, then $\mathscr{A} = \operatorname{Appr}(\mathscr{A}, \mathscr{B})''$ for every commutative unital C*-subalgebra \mathscr{A} of \mathscr{B} .

In the von Neumann algebra setting, we get a distance formula. We have not tried to get the best constant.

THEOREM 3. Suppose \mathscr{A} is a unital commutative C*-subalgebra of a von Neumann algebra \mathscr{B} and $T \in \mathscr{B}$. Then there is a net $\{P_{\lambda}\}$ of projections in \mathscr{B} such that,

1. for every $A \in \mathscr{A}$,

$$||AP_{\lambda} - P_{\lambda}A|| \to 0,$$

and

2.

$$dist\left(T,C^{*}\left(\mathscr{A}\cup\mathscr{Z}\left(\mathscr{B}\right)\right)\right)\leqslant10\lim_{\lambda}\left\|TP_{\lambda}-P_{\lambda}T\right\|.$$

Proof. Let $\mathcal{W} = C^* (\mathcal{A} \cup \mathcal{Z} (\mathcal{B}))$. We define the seminorm Δ on \mathcal{B} by setting $\Delta(V)$ to be the supremum of $\lim_{\lambda} ||VP_{\lambda} - P_{\lambda}V||$ taken over all nets $\{P_{\lambda}\}$ of projections in \mathcal{B} for which $||AP_{\lambda} - P_{\lambda}A|| \to 0$ for every $A \in \mathcal{A}$ and $\lim_{\lambda} ||VP_{\lambda} - P_{\lambda}V||$ exists. Let \mathcal{D} be a masa in \mathcal{B} such that $\mathcal{W} \subseteq \mathcal{D}$.

We first assume $T = T^*$. It follows from Lemma 2 that there is an $S \in \mathcal{D}$ such that

$$||S-T|| \leq 2\sup\left\{||TP-PT||: P=P^*=P^2 \in \mathscr{D}\right\} \leq 2\Delta(T).$$

If we apply Theorem 1, we obtain a net $\{P_{\lambda}\}$ of projections in \mathscr{B} such that

$$\lim_{\lambda} \|WP_{\lambda} - P_{\lambda}W\| = 0$$

for every $W \in \mathcal{W}$, and such that

$$\lim_{\lambda} \|P_{\lambda}S - SP_{\lambda}\| = dist \left(S, \mathcal{W}\right).$$

It follows that

$$dist(T, \mathscr{W}) \leq dist(S, \mathscr{W}) + ||S - T|| \leq \Delta(S) + 2\Delta(T)$$

$$\leq \Delta(S - T) + \Delta(T) + 2\Delta(T) \leq ||S - T|| + 3\Delta(T) \leq 5\Delta(T).$$

whenever $T = T^*$.

For the general case,

$$dist(T,\mathscr{A}) \leq dist(\operatorname{Re} T,\mathscr{A}) + dist(\operatorname{Im} T,\mathscr{A})$$
$$\leq 5\Delta(\operatorname{Re} T) + 5\Delta(\operatorname{Im} T) \leq 5\left[\frac{1}{2}\Delta(T+T^*) + \frac{1}{2}\Delta(T-T^*)\right]$$
$$\leq 5\left[\Delta(T) + \Delta(T^*)\right] = 10\Delta(T),$$

since $\Delta(T) = \Delta(T^*)$. \Box

In some cases our results yield information on relative double commutants.

THEOREM 4. Suppose $\{\mathscr{B}_n\}$ is a sequence of primitive C*-algebras and $\mathscr{B} = \prod_{n \ge 1} \mathscr{B}_n / \sum_{n \ge 1}^{\nabla} \mathscr{B}_n$. If \mathscr{A} is a separable commutative unital C*-subalgebra of \mathscr{B} ,

$$(\mathscr{A},\mathscr{B})'' = C^* (\mathscr{A} \cup \mathscr{Z} (\mathscr{B})),$$

i.e., $C^*(\mathscr{A} \cup \mathscr{Z}(\mathscr{B}))$ is normal.

Proof. We first show that \mathscr{B} is centrally prime. Since each \mathscr{B}_n is primitive, we can assume, for each $n \in \mathbb{N}$, that there is a Hilbert space H_n such that \mathscr{B}_n is an irreducible unital C*-subalgebra of $B(H_n)$. Suppose $A, B \in \mathcal{B}, 0 \leq A, B \leq 1$ and $A\mathscr{B}B = 0$. We can lift A, B, respectively to a sequences $\{A_n\}, \{B_n\}$ in $\prod \mathscr{B}_n$. Hence,

for every bounded sequence $\{T_n\} \in \prod_{n \ge 1} \mathscr{B}_n$, we have

$$\lim_{n\to\infty}\|A_nT_nB_n\|=0.$$

Choose unit vectors $e_n, f_n \in H_n$ so that $||A_n e_n|| \ge ||A_n||/2$ and $||B_n f_n|| \ge ||B_n||/2$. It follwos from the irreducibility of \mathscr{B}_n and Kadison's transitivity theorem [9] that there is a $T_n \in \mathscr{B}_n$ such that $||T_n|| = 1$ and $T_n B_n f_n = ||B_n f_n|| e_n$. It follows that

$$0 = \lim_{n \to \infty} \|A_n T_n B_n\| \ge \lim_{n \to \infty} \|A_n T_n B_n f_n\| \ge \lim \frac{1}{4} \|A_n\| \|B_n\|.$$

Hence

$$\lim_{n \to \infty} \min(\|A_n\|, \|B_n\|)^2 \le \lim_{n \to \infty} \|A_n\| \|B_n\| = 0.$$

For each $n \in \mathbb{N}$ we define

$$P_n = \begin{cases} 1 \text{ if } ||B_n|| \leq ||A_n|| \\ 0 \text{ if } ||A_n|| < ||B_n|| \end{cases}.$$

Then $\{P_n\}$ is in the center of $\prod_{n>1} \mathscr{B}_n$ and

$$\lim_{n \to \infty} \|P_n B_n\| = \lim_{n \to \infty} \|(1 - P_n) A_n\| = 0.$$

If *P* is the image of $\{P_n\}$ in the quotient \mathcal{B} , then *P* is a central projection and PA = P and (1 - P)B = B. Hence \mathcal{B} is centrally prime. So it follows that

$$\operatorname{Appr}(\mathscr{A},\mathscr{B})'' = C^*\left(\mathscr{A} \cup \mathscr{Z}(\mathscr{B})\right).$$

The proof will be completed with proof of the following claim: If \mathscr{S} is a norm-separable subset of \mathscr{B} , then

Appr
$$(\mathscr{S},\mathscr{B})'' = (\mathscr{S},\mathscr{B})''.$$

It is clear from considering constant sequences that the inclusion $\operatorname{Appr}(\mathscr{S}, \mathscr{B})'' \subseteq (\mathscr{S}, \mathscr{B})''$ holds for every unital C*-algebra \mathscr{B} . To prove the reverse inclusion, suppose $T \notin appr(\mathscr{S}, \mathscr{B})''$. Then there is and $\varepsilon > 0$ and a net $\{A_{\lambda}\}$ in \mathscr{B} such that $||A_{\lambda}S - SA_{\lambda}|| \to 0$ for every $S \in \mathscr{S}$, and such that $||A_{\lambda}T - TA_{\lambda}|| \ge \varepsilon$ for every λ . Let $\mathscr{S}_0 = \{S_1, S_2, \ldots\}$ be a dense subset of \mathscr{S} . We can lift each S_n to $\{S_n(j)\}_{j \ge 1} \in \prod_{k \ge 1} \mathscr{B}_k$

and lift T to $\{T(j)\}_{j \ge 1}$. It follows that, for every $n \in \mathbb{N}$, there is an $A_n \in \mathscr{B}$ with $||A_n|| = 1$ such that

a. $||A_nS_k - S_kA_n|| < 1/n$ for $1 \le k \le n$,

b.
$$||A_nT - TA_n|| > \varepsilon/2$$
.

Note that if $B \in \mathscr{B}$ lifts to $\{B(j)\}_{j \ge 1} \in \prod_{k \ge 1} \mathscr{B}_k$, then $||B|| = \limsup_{j \to \infty} ||B(j)||$.

If we lift each A_n to $\{A_n(j)\}$, it follows that we can find an arbitrarily large $j_n \in \mathbb{N}$ such that $||A_n(j_n)S_k(j_n) - S_k(j_n)A_n(j_n)|| < 1/n$ for $1 \le k \le n$ and $||A_n(j_n)T(j_n) - T(j_n)A_n(j_n)|| > \varepsilon/2$. Since j_n can be chosen to be arbitrarily large, we can choose $\{j_n\}$ so that $j_1 < j_2 < \cdots$. We now define $A \in \mathscr{B}$ by defining

$$A(j) = \begin{cases} A_n(j_n) \text{ if } j = j_n \text{ for some } n \ge 1\\ 0 & \text{otherwise} \end{cases}$$

We see that $AS_k = S_kA$ for all $k \ge 1$ and $||AT - TA|| \ge \varepsilon/2$. Hence $T \notin (\mathscr{S}, \mathscr{B})''$. \Box

We conclude with some questions.

1. If \mathscr{M} is a normal von Neumann subalgebra of a factor von Neumann algebra \mathscr{B} , is there a constant $K \ge 1$ such that, for every $T \in \mathscr{B}$,

$$dist(T, \mathscr{M}) \leqslant K \sup \left\{ \|TP - PT\| : P = P^2 = P^* \in \mathscr{M}' \cap \mathscr{B} \right\}?$$

When $\mathscr{B} = B(H)$, this question is equivalent to Kadison's similarity problem. What about factors not of type *I*?

- 2. Is there an analog of Theorem 3 for arbitrary C*-subalgebras of a factor von Neumann algebra?
- 3. It seems likely that a version of parts (4) and (5) of Theorem 1 might hold under assumptions weaker than \mathscr{B} being a von Neumann algebra. Is it true when \mathscr{B} has real-rank zero? What if we include nuclear and simple? The key is getting the partial isometries V_{λ} in the proof of Theorem 1. When does a unital C*-algebra \mathscr{B} have the property that whenever $X, Y, A, B \ge 0$ are in \mathscr{B} and AX = X, BY = Y, AB = 0 and $X\mathscr{B}Y \ne \{0\}$, there is a nonzero partial isometry $V \in \mathscr{B}$ such that AV = VB = V?

REFERENCES

- MARIE CHODA, A condition to construct a full II₁-factor with an application to approximate normalcy, Math. Japon. 28 (1983) 383–398.
- [2] J. DIXMIER, Sur les C*-algèbres, Bull. Soc. Math. France 88 (1960) 95–112.
- [3] DON HADWIN, An asymptotic double commutant theorem for C*-algebras, Trans. Amer. Math. Soc. 244 (1978) 273–297.
- [4] DON HADWIN, Approximately hyperreflexive algebras, J. Operator Theory 28 (1992) 51-64.
- [5] DON HADWIN, Continuity modulo sets of measure zero, Math. Balkanica (N.S.) 3 (1989) 430-433.
- [6] DON HADWIN, VERN I. PAULSEN, Two reformulations of Kadison's similarity problem, J. Operator Theory 55 (2006) 3–16.
- [7] PAUL JOLISSAINT, Operator algebras related to Thompson's group F., J. Aust. Math. Soc. 79 (2005) 231–241.
- [8] RICHARD V. KADISON, Normalcy in operator algebras, Duke Math. J. 29 (1962) 459-464.
- [9] RICHARD V. KADISON AND J. R. RINGROSE, Fundamentals of the theory of operator algebras, Vol. II, New York: Harcourt, 1986.
- [10] G. G. KASPAROV, The operator K-functor and extensions of C*-algebras, Math. USSR-Isv. 16 (1981) 513–572.
- [11] SILVIO MACHADO, On Bishop's generalization of the Weierstrass-Stone theorem, Indag. Math. 39 (1977) 218–224.
- [12] T. J. RANSFORD, A short elementary proof of the Bishop-Stone-Weierstrass theorem, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 2, 309–311.
- [13] SHLOMO ROSENOER, Distance estimates for von Neumann algebras, Proc. Amer. Math. Soc. 86 (1982) 248–252.
- [14] B. J. VOWDEN, Normalcy in von Neumann algebras, Proc. London Math. Soc. (3) 27 (1973) 88–100.
- [15] NIK WEAVER, A prime C*-algebra that is not primitive, J. Funct. Anal. 203 (2003) 356–361.

(Received December 1, 2011)

Don Hadwin Mathematics Department University of New Hampshire e-mail: don@unh.edu http://www.math.unh.edu/\char126\relaxdon