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Abstract. Richard Kadison showed that not every commutative von Neumann subalgebra of a
factor von Neumann algebra is equal to its relative double commutant. We prove that every
commutative C*-subalgebra of a centrally prime C*-algebra B equals its relative approximate
double commutant. If B is a von Neumann algebra, there is a related distance formula.

One of the fundamental results in the theory of von Neumann algebras is von Neu-
mann’s classical double commutant theorem, which says that if S = S ∗ ⊆ B(H) , then
S ′′ =W ∗ (S ) . In 1978 [3] the author proved an asymptotic version of von Neumann’s
theorem, the approximate double commutant theorem. For the asymptotic version, we
define the approximate double commutant of S ⊆ B(H) , denoted by Appr(S)′′ , to be
the set of all operators T such that

‖Aλ T −TAλ‖→ 0

for every bounded net {Aλ} in B(H) for which

‖Aλ S−SAλ‖→ 0

for every S ∈ S . More generally, if B is a unital C*-algebra and S ⊆ B , we define
the relative approximate double commutant of S in B , denoted by Appr(S,B)′′ , in
the same way but insisting that the T ’s and the Aλ ’s be in B . The approximate double
commutant theorem in B(H) [3] says that if S = S ∗, then Appr(S )′′ = C∗ (S ) .
Moreover, if we restrict the {Aλ}’s to be nets of unitaries or nets of projections that
asymptotically commute with every element of S , the resulting approximate double
commutant is still C∗ (S ) .

A von Neumann algebra B is hyperreflexive if there is a constant K � 1 such that,
for every T ∈ B(H)

dist (T,B) � K sup
{‖TP−PT‖ : P ∈ B′,P a projection

}
.
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The smallest such K is called the constant of hyperreflexivity for B . The inequality

sup
{‖TP−PT‖ : P ∈ M ′,P a projection

}
� dist (T,M )

is always true. The question of whether every von Neumann algebra is hyperreflexive
is still open and is equivalent to a number of other important problems in von Neumann
algebras (see [6]). It was proved by the author [4] that every unital C*-subalgebra A
of B(H) is approximately hyperreflexive; more precisely, if T ∈ B(H) , then there is a
net {Pλ} of projections such that

‖APλ −PλA‖→ 0

for every A ∈ A , and

dist (T,A ) � 29lim
λ

‖TPλ −PλT‖ .

If we replace the role of B(H) with a factor von Neumann algebra, then the double
commutant theorem fails, even when the subalgebra is commutative. Suppose S is a
subset of a ring R . We define the relative commutant of S in R , the relative double
commutant of S in R , and the relative triple commutant of S in R , respectively, by

(S ,R)′ = {T ∈ R : ∀S ∈ S ,TS = ST} ,

(S ,R)′′ =
{
T ∈ R : ∀A ∈ (S ,R)′ ,TA = AT

}
,

and
(S ,R)′′′ =

{
T ∈ R : ∀A ∈ (S ,R)′′ ,TA = AT

}
.

It is clear from general Galois nonsense that

(S ,R)′′′ = (S ,R)′ .

Following R. Kadison [8] we will say a subring M of a unital ring B is normal if

M = (M ,B)′′ =
(
M ′ ∩B

)′ ∩B.

R. Kadison [8] proved that if M is type I von Neumann subalgebra of a von Neumann
algebra B , then M is normal in B if and only if its center Z (M ) = M ∩M ′ is
normal if and only if Z (M ) is an intersection of masas (maximal abelian selfadjoint
subalgebras) of B . See the paper of B. J. Vowden [14] for more examples. We see
that the part of Kadison’s result concerning abelian C*-subalgebras is true in the C*-
algebraic setting. We prove a general version for rings, which applies to commutative
nonselfadjoint subalgebras of a C*-algebra or von Neumann algebra.

LEMMA 1. Suppose M is a unital abelian subring of a unital ring B . The fol-
lowing are equivalent:

1. M = (M ,B)′′ .
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2. M is an intersection of maximal abelian subrings of B .

3. M is an intersection of subrings of the form (S ,B)′ for subsets S of B .

Proof. First note that every maximal abelian subring E has the property that E =
(E ,B)′ , which implies E = (E ,B)′′ and the implication (2) =⇒ (3) . It is also clear
that if {Si : i ∈ I} is a collection of nonempty subsets of B , then⋃

i∈I

(Si,B)′ ⊆ (∩i∈ISi,B)′ ,

and
(∩i∈ISi,B)′′ ⊆

⋂
i∈I

(Si,B)′′ .

This, and the fact that (S ,B)′′′ = (S ,B)′ always holds, yields (3) =⇒ (1) .
To prove (1) =⇒ (2) , suppose (1) holds, and let W be a maximal abelian subring

of B such that M ⊆W . For each W ∈W \M , by (1) , there is a TW ∈ (M ,B)′ such
that TWW �=WTW . Since the ring generated by M ∪{TW} is abelian, it is contained in
a maximal abelian subring SW , and W /∈ SW . Hence

M = W ∩
⋂

W∈W \M
SW ,

which proves (2) holds. �
If in the statement and proof of the preceding lemma we replace “ring” with “C*-

algebra”, and the ring generated by M ∪{TW} with C∗ (M ∪{TW}) , we obtain the
following result for C*-algebras.

COROLLARY 1. Suppose M is a unital commutative C*-subalgebra of a unital
C*-algebra B . The following are equivalent:

1. M is normal in B .

2. M is an intersection of maximal abelian subalgebras of B .

3. M is an intersection of masas in B .

4. M is an intersection of algebras of the form (S ,B)′ for subsets S of B .

We now know that every masa in a C*-algebra is normal. If M is a masa in a von
Neumann algebra B , then the double commutant theorem holds even with a distance
formula. The proof is a simple adaptation of the proof of Lemma 3.1 in [13].

LEMMA 2. Suppose M is a masa in a von Neumann algebra B and T ∈ B .
Then

dist (T,M ) � sup
{‖UT −TU‖ : U = U∗ ∈ B,U2 = 1

}
= 2sup

{‖TP−PT‖ : P = P∗ = P2 ∈ B
}
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Proof. Let R denote the right-hand side of the inequality, and let D be the closed
ball in B centered at T with radius R . Suppose F is a finite orthogonal set of projec-
tions in M whose sum is 1. Let G(F ) be the set of all sums of the form

∑
P∈F

λPP

with each λP in {−1,1} . Then G(F ) is a finite group of unitaries and each U ∈G(F )
has the form 2Q−1 with Q a finite sum of elements in F . Moreover, if U = 2Q−1,

2‖TQ−QT‖ = ‖TU −UT‖ = ‖T −UTU∗‖ .

It follows that UTU∗ ∈ D for every U ∈ G(F ) . Define

SF =
1

cardG(F ) ∑
U∈G(F)

UTU∗.

Since G(F ) is a group, it easily follows that, for every U0 ∈ G(F ) ,

U0SFU∗
0 = SF .

This implies that SF = ∑
P∈F

PTP ∈ (F ,B)′ = (G(F ) ,B)′ . Choose a subnet
{
SFλ

}
that converges in the weak operator topology to S ∈ D . Then S ∈ (M ,B)′ ∩D . Since
(M ,B)′ = M , we conclude

dist (T,M ) � ‖T −S‖� R. �

We now address the approximate double commutant relative to a C*-algebra. If
S is a subset of a C*-algebra B , we know that Appr(S ,B)′′ must contain the center
Z (B) = B∩B′ . Hence if A is a unital C*-subalgebra of a C*-algebra B , then

C∗ (A ∪Z (B)) ⊆ Appr(A ,B)′′ .

When A is commutative, we will prove that equality holds in certain cases, including
when B is a von Neumann algebra.

The following result is based on S. Macado’s generalization [11] of the Bishop-
Stone-Weierstrass theorem. If K is a compact Hausdorff space and G is a unital closed
subalgebra of C (K) , a subset E of K is called G -antisymmetric if, for every g ∈ G ,
the restriction g|E is real-valued implies g|E is constant. Machados’s theorem [11] says
that if h ∈C (K) , then there is a closed G -antisymmetric set E ⊆ K such that

dist (h,G ) = dist (h|E ,G |E) ,

where G |E = {g|E : g ∈ G } . A beautiful, short, elementary proof of Machado’s theo-
rem was given by T. J. Ransford in [12].

LEMMA 3. Suppose W is a unital C*-subalgebra of a commutative C*-algebra
D , and S = S∗ ∈ D and S /∈ W . Then there are multiplicative linear functionals α,β
on D and nets {Aλ} ,{Bλ} ,{Xλ} and {Yλ} in D such that
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1. 0 � Xλ � Aλ � 1,0 � Yλ � Bλ � 1 ,

2. XλYλ = 0,Aλ Xλ = Xλ , Yλ Bλ = Yλ ,

3. ‖DAλ −α (D)Aλ‖→ 0 and ‖DBλ −β (D)Bλ‖→ 0 for every D ∈ D ,

4. α (A) = β (A) for every A ∈ W ,

5. α (Xλ ) = β (Yλ ) = 1 for every λ ,

6. β (S)−α (S) = 2dist (S,W ) .

Proof. Let K be the maximal ideal space of D and let Γ : D → C (K) be the
Gelfand map, which must be a ∗ -isomorphism since D is a commutative C*-algebra.
Let g = Γ(S) = Γ(S∗) = g . It follows from Machado’s theorem [11] that there is a
Γ(W )-antisymmetric set E ⊆ K such that

dist (S,W ) = dist (g,Γ(W )) = dist (g|E ,Γ(W ) |E) .

Since Γ(W ) is self-adjoint and E is Γ(W ) -antisymmetric, every function in Γ(W ) is
constant. Hence dist (g|E ,Γ(W ) |E) is the distance from g|E to the constant functions.
It is clear that the closest constant function to g|E is

g(β )+g(α)
2

,

where α,β ∈ E, g(β ) = maxx∈E g(x) and g(α) = minx∈E g(x) . Let Λ be the directed
set of all pairs λ = (Uλ ,Vλ ) of disjoint open sets with α ∈Uλ and β ∈Vλ , ordered by
λ1 � λ2 if and only if Uλ2

⊆Uλ1
and Vλ2

⊆ Vλ1
. For each λ ∈ Λ choose continuous

functions rλ ,sλ , tλ ,uλ : K → [0,1] such that

a. rλ (α) = tλ (β ) = 1,

b. 0 � rλ = rλ sλ � sλ � 1,

c. 0 � tλ = tλ uλ � uλ � 1,

d. suppsλ ⊆Uλ and suppuλ ⊆Vλ .

If we choose Aλ ,Bλ ,Xλ ,Yλ ∈A such that Γ(Xλ ) = rλ , Γ(Aλ ) = sλ , Γ(Yλ ) = tλ ,
and Γ(Bλ ) = uλ , then statements (1)-(6) are clear. �

A C*-algebra B is primitive if it has a faithful irreducible representation. A C*-
algebra B is prime if, for every x,y ∈ B , we have

xBy = {0} =⇒ x = 0 or y = 0.

Every primitive C*-algebra is prime, and it was proved by Dixmier [2] that every sepa-
rable prime C*-algebra is primitive. N. Weaver [15] gave an example of a nonseparable
prime C*-algebra that is not primitive.
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We define B to be centrally prime if, whenever x,y∈B, 0 � x,y � 1 and xBy =
{0} , there is an e∈Z (B) such that x � e � 1 and y � 1−e � 1. The centrally prime
algebras include the prime ones, von Neumann algebras, and ∏

i∈I
Bi/∑

i∈I
Bi or a C*-

ultraproduct
α

∏
i∈I

Bi when {Bi : i ∈ I} is a collection of unital primitive C*-algebras

(see the proof of Theorem 4) .
We characterize Appr(A ,B)′′ for every commutativeC*-subalgebra A of a cen-

trally prime C*-algebra B , and we show that there is a distance formula for every com-
mutative unital C*-subalgebra if and only if every masa in B has a distance formula.
In particular, when B is a von Neumann algebra, we obtain a distance formula.

REMARK 1. Here is a useful comment on distance formulas. If B is a unital C*-
algebra and S = S ∗ ⊆B , then (S ,B)′ is a unital C*-algebra, so, by the Russo-Dye
theorem, the closed unit ball of (S ,B)′ is the norm-closed convex hull of the set of
unitary elements in (S ,B)′ . Hence, for any T ∈ B ,

sup
{‖TW −WT‖ : W ∈ (S ,B)′ ,‖W‖ � 1

}
= sup

{‖TU −UT‖ : U ∈ (S ,B)′ ,U is unitary
}

.

A similar result holds in the approximate case. Suppose (Λ,�) is a directed set. Then

∏
λ∈Λ

B is a unital C*-algebra and the set

E =

{
{Wλ} ∈ ∏

λ∈Λ
B : ∀S ∈ S , lim

λ
‖Wλ S−SWλ‖ = 0

}

is a unital C*-algebra and the closed unit ball E1 of E is the closed convex hull of its
unitary group. Hence

sup

{
limsup

λ
‖TWλ −Wλ T‖ : W = {Wλ} ∈ E ,‖W‖ � 1

}

= sup

{
limsup

λ
‖TUλ −UλT‖ : U = {Uλ} ∈ E ,U is unitary

}
.

THEOREM 1. Suppose B is a centrally prime unital C*-algebra and Z (B) ⊆
W ⊆ D are unital commutative C*-subalgebras of B . Suppose S = S∗ ∈ D . Then
there is a net {Wλ} in B such that

1. Wλ is unitary for every λ ,

2. limλ ‖AWλ −Wλ A‖ = 0 for every A ∈ W ,

3. limλ ‖SWλ −WλS‖ = 2dist (S,W ) .
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Moreover, if B is a von Neumann algebra, then there is a net {Pλ} of projections
in B such that

4. limλ ‖APλ −PλA‖ = 0 for every A ∈ W ,

5. limλ ‖SPλ −PλS‖ = dist (S,W ) .

Proof. Let W = C∗ (A ∪Z (B)) , D = C∗ (A ∪Z (B)∪{S}) . Now choose
α,β and nets {Aλ} ,{Bλ} ,{Xλ} and {Yλ} in D as in Lemma 3. We first show that
Xλ BYλ �= {0} ; otherwise, since B is centrally prime, there is an e ∈ Z (B) such
that Xλ � e � 1 and Yλ � 1−e � 1. Hence α (e) = 1 and β (1− e) = 1, or β (e) = 0.
However, e∈W and, by part (4) of Lemma 3, we get α (e)= β (e) . This contradiction
shows that Xλ BYλ �= {0} . Hence there is a Cλ ∈ B such that ‖XλCλYλ‖ = 1. Define
Wλ = XλCλYλ = AλWλ = Wλ Bλ . Lemma 3 implies that, for every D ∈ D ,

‖DWλ −α (D)Wλ‖ = ‖DAλWλ −α (D)AλWλ‖ � ‖[D−α (D)]Aλ‖‖Wλ‖→ 0,

and

‖Wλ D−β (D)Wλ‖ = ‖Wλ Bλ D−β (D)Wλ Bλ‖ � ‖Wλ‖‖Bλ [D−α (D)]‖→ 0.

Since α (A) = β (A) for every A ∈ W , it follows that ‖AWλ −WλA‖ → 0. It also
follows that

lim
λ

‖Wλ S−SWλ‖ = lim
λ

|β (S)−α (S)|‖Wλ‖ = |β (S)−α (S)| = 2dist (S,W ) .

We now appeal to Remark 1 to replace the net {Wλ} with a net of unitaries.
Now suppose B is a von Neumann algebra. Once we get Xλ BYλ �= 0 we know

that there is a partial isometry Vλ in B whose final space is contained in the closure of
ranXλ and whose initial space is contained in (kerYλ )⊥ . Then (3) holds with {Wλ} re-
placed with {Vλ} . Also, V 2

λ = 0 (since XλYλ = 0), so Pλ = 1
2

(
Vλ +V ∗

λ +VλV ∗
λ +V ∗

λ Vλ
)

is a projection. Using the above arguments gives us∥∥DV ∗
λ Vλ −β (D)V ∗

λ Vλ
∥∥ → 0,

∥∥V ∗
λ Vλ D−β (D)V ∗

λ Vλ
∥∥ → 0

and ∥∥DVλV ∗
λ −α (D)VλV ∗

λ
∥∥ → 0,

∥∥VλV ∗
λ D−α (D)VλV ∗

λ
∥∥ → 0,

which implies ∥∥DV ∗
λVλ −V ∗

λVλD+DVλV ∗
λ −VλV ∗

λ D
∥∥ → 0

for every D ∈ B . Thus

lim
λ

‖SPλ −PλS‖ =
1
2

lim
∥∥(α (S)Vλ −Vλ β (S))+

(
β (S)V ∗

λ −V ∗
λ α (S)

)∥∥
= lim

λ

1
2
|β (S)−α (S)|∥∥V ∗

λ −Vλ
∥∥ =

1
2
|β (S)−α (S)| = dist (S,W ) ,

since
∥∥V ∗

λ −Vλ
∥∥ = 1 for every λ . �
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THEOREM 2. Suppose A is a unital commutative C*-subalgebra of a centrally
prime unital C*-algebra B . Then

Appr(A ,B)′′ = C∗ (A ∪Z (B)) .

Hence A is normal if and only if Z (B) ⊆ A .

Proof. It is clear that W = C∗ (A ∪Z (B))⊆Appr(A ,B)′′ . Choose a masa D
of B with A ⊆ D . Then

W ⊆ Appr(A ,B)′′ ⊆ Appr(D ,B)′′ = D .

If we choose S = S∗ ∈ Appr(A ,B)′′ and apply Theorem 1 we see that S ∈ W . Since
Appr(A ,B)′′ is a C*-algebra, we have proved that Appr(A ,B)′′ ⊆ W . �

COROLLARY 2. If B is a centrally prime C*-algebra with trivial center, e.g., a
factor von Neumann algebra or the Calkin algebra, then A = Appr(A ,B)′′ for every
commutative unital C*-subalgebra A of B .

In the von Neumann algebra setting, we get a distance formula. We have not tried
to get the best constant.

THEOREM 3. Suppose A is a unital commutative C*-subalgebra of a von Neu-
mann algebra B and T ∈ B . Then there is a net {Pλ} of projections in B such
that,

1. for every A ∈ A ,
‖APλ −PλA‖→ 0,

and

2.
dist (T,C∗ (A ∪Z (B))) � 10lim

λ
‖TPλ −PλT‖ .

Proof. Let W = C∗ (A ∪Z (B)) . We define the seminorm Δ on B by setting
Δ(V ) to be the supremum of limλ ‖VPλ −PλV‖ taken over all nets {Pλ} of projections
in B for which ‖APλ −PλA‖→ 0 for every A∈A and limλ ‖VPλ −PλV‖ exists. Let
D be a masa in B such that W ⊆ D .

We first assume T = T ∗ . It follows from Lemma 2 that there is an S ∈ D such
that

‖S−T‖ � 2sup
{‖TP−PT‖ : P = P∗ = P2 ∈ D

}
� 2Δ(T ) .

If we apply Theorem 1, we obtain a net {Pλ} of projections in B such that

lim
λ

‖WPλ −PλW‖ = 0
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for every W ∈ W , and such that

lim
λ

‖PλS−SPλ‖ = dist (S,W ) .

It follows that

dist (T,W ) � dist (S,W )+‖S−T‖ � Δ(S)+2Δ(T )
� Δ(S−T )+ Δ(T )+2Δ(T ) � ‖S−T‖+3Δ(T ) � 5Δ(T ) .

whenever T = T ∗.
For the general case,

dist (T,A ) � dist (ReT,A )+dist (ImT,A )

� 5Δ(ReT )+5Δ(ImT ) � 5

[
1
2

Δ(T +T ∗)+
1
2

Δ(T −T ∗)
]

� 5 [Δ(T )+ Δ(T ∗)] = 10Δ(T ) ,

since Δ(T ) = Δ(T ∗) . �
In some cases our results yield information on relative double commutants.

THEOREM 4. Suppose {Bn} is a sequence of primitive C*-algebras and

B = ∏
n�1

Bn/
⊕
∑
n�1

Bn . If A is a separable commutative unital C*-subalgebra of B ,

then
(A ,B)′′ = C∗ (A ∪Z (B)) ,

i.e., C∗ (A ∪Z (B)) is normal.

Proof. We first show that B is centrally prime. Since each Bn is primitive,
we can assume, for each n ∈ N , that there is a Hilbert space Hn such that Bn is
an irreducible unital C*-subalgebra of B(Hn) . Suppose A,B ∈ B , 0 � A,B � 1 and
ABB = 0. We can lift A,B, respectively to a sequences {An} ,{Bn} in ∏

n�1
Bn . Hence,

for every bounded sequence {Tn} ∈ ∏
n�1

Bn , we have

lim
n→∞

‖AnTnBn‖ = 0.

Choose unit vectors en, fn ∈ Hn so that ‖Anen‖ � ‖An‖/2 and ‖Bn fn‖ � ‖Bn‖/2. It
follwos from the irreducibility of Bn and Kadison’s transitivity theorem [9] that there
is a Tn ∈ Bn such that ‖Tn‖ = 1 and TnBn fn = ‖Bn fn‖en . It follows that

0 = lim
n→∞

‖AnTnBn‖ � lim
n→∞

‖AnTnBn fn‖ � lim
1
4
‖An‖‖Bn‖ .

Hence
lim
n→∞

min(‖An‖ ,‖Bn‖)2 � lim
n→∞

‖An‖‖Bn‖ = 0.
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For each n ∈ N we define

Pn =
{

1 if ‖Bn‖ � ‖An‖
0 if ‖An‖ < ‖Bn‖ .

Then {Pn} is in the center of ∏
n�1

Bn and

lim
n→∞

‖PnBn‖ = lim
n→∞

‖(1−Pn)An‖ = 0.

If P is the image of {Pn} in the quotient B , then P is a central projection and PA = P
and (1−P)B = B . Hence B is centrally prime. So it follows that

Appr(A ,B)′′ = C∗ (A ∪Z (B)) .

The proof will be completed with proof of the following claim: If S is a norm-
separable subset of B , then

Appr(S ,B)′′ = (S ,B)′′ .

It is clear from considering constant sequences that the inclusion Appr(S ,B)′′ ⊆
(S ,B)′′ holds for every unital C*-algebra B . To prove the reverse inclusion, sup-
pose T /∈ appr (S ,B)′′ . Then there is and ε > 0 and a net {Aλ} in B such that
‖Aλ S−SAλ‖→ 0 for every S ∈S , and such that ‖Aλ T −TAλ‖� ε for every λ . Let
S0 = {S1,S2, . . .} be a dense subset of S . We can lift each Sn to {Sn ( j)} j�1 ∈ ∏

k�1

Bk

and lift T to {T ( j)} j�1 . It follows that, for every n ∈ N , there is an An ∈ B with
‖An‖ = 1 such that

a. ‖AnSk −SkAn‖ < 1/n for 1 � k � n,

b. ‖AnT −TAn‖ > ε/2.

Note that if B ∈ B lifts to {B( j)} j�1 ∈ ∏
k�1

Bk , then ‖B‖ = limsup j→∞ ‖B( j)‖ .

If we lift each An to {An ( j)} , it follows that we can find an arbitrarily large jn ∈ N

such that ‖An ( jn)Sk ( jn)−Sk ( jn)An ( jn)‖ < 1/n for 1 � k � n and ‖An ( jn)T ( jn)−
T ( jn)An ( jn)‖ > ε/2. Since jn can be chosen to be arbitrarily large, we can choose
{ jn} so that j1 < j2 < · · · . We now define A ∈ B by defining

A( j) =
{

An ( jn) if j = jn for some n � 1
0 otherwise

.

We see that ASk = SkA for all k � 1 and ‖AT −TA‖� ε/2. Hence T /∈ (S ,B)′′ . �
We conclude with some questions.

1. If M is a normal von Neumann subalgebra of a factor von Neumann algebra B ,
is there a constant K � 1 such that, for every T ∈ B,

dist (T,M ) � K sup
{‖TP−PT‖ : P = P2 = P∗ ∈ M ′ ∩B

}
?

When B = B(H) , this question is equivalent to Kadison’s similarity problem.
What about factors not of type I ?
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2. Is there an analog of Theorem 3 for arbitrary C*-subalgebras of a factor von
Neumann algebra?

3. It seems likely that a version of parts (4) and (5) of Theorem 1 might hold under
assumptions weaker than B being a von Neumann algebra. Is it true when B
has real-rank zero? What if we include nuclear and simple? The key is getting the
partial isometries Vλ in the proof of Theorem 1. When does a unital C*-algebra
B have the property that whenever X ,Y,A,B � 0 are in B and AX = X , BY =Y,
AB = 0 and XBY �= {0} , there is a nonzero partial isometry V ∈ B such that
AV = VB = V ?
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