COMMUTING OF BLOCK DUAL TOEPLITZ OPERATORS

Bo Zhang and Yufeng Lu

(Communicated by V. V. Peller)

Abstract

In this paper, we characterize the commuting (semi-commuting) and the essentially commuting (semi-commuting) of block dual Toeplitz operators.

1. Introduction

Let $d A$ denote Lebesgue area measure on the unit disk \mathbb{D}, normalized so that the measure of \mathbb{D} equals 1 . The scalar valued Bergman space $L_{a}^{2}(\mathbb{D})$ is the Hilbert space consisting of all analytic functions on \mathbb{D} that are also in $L^{2}(\mathbb{D}, d A)$. The scalar valued Bergman space $L_{a}^{2}(\mathbb{D})$ is a Hilbert space with the inner product given by $\langle f, g\rangle=$ $\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z)$, for $f, g \in L_{a}^{2}(\mathbb{D})$. Let P_{0} denote the orthogonal projection of $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$. For a function $f \in L^{\infty}(\mathbb{D})$, the Toeplitz operator $T_{f}: L_{a}^{2}(\mathbb{D}) \rightarrow$ $L_{a}^{2}(\mathbb{D})$ and the Hankel operator $H_{f}: L_{a}^{2}(\mathbb{D}) \rightarrow\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ are respectively defined by

$$
T_{f}(g)=P_{0}(f g), \quad H_{f}(g)=\left(I-P_{0}\right)(f g), \quad g \in L_{a}^{2}(\mathbb{D})
$$

T_{f} and H_{f} are clearly bounded linear operators for every function $f \in L^{\infty}(\mathbb{D})$. We can also define the dual Toeplitz operator $S_{f}:\left(L_{a}^{2}(\mathbb{D})\right)^{\perp} \rightarrow\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}, S_{f} g=\left(I-P_{0}\right)(f g)$, $g \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$. Clearly, S_{f} is a bounded linear operator on $\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ for every function $f \in L^{\infty}(\mathbb{D})$.

For a measurable function $f: \mathbb{D} \rightarrow \mathbb{C}^{n}$ with $\int_{\mathbb{D}}\|f(z)\|_{\mathbb{C}^{n}}^{2} d A(z)<\infty$, we say that $f \in L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. The space $L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is a Hilbert space with the inner product given by $\langle f, g\rangle=\int_{\mathbb{D}}\langle f(z), g(z)\rangle_{\mathbb{C}^{n}} d A(z)$. The vector valued Bergman space $L_{a}^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ is the Hilbert space consisting of all analytic $\mathbb{C}^{n}-$ valued functions on \mathbb{D} that are also in $L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. Let $M_{n \times n}$ be the set of $n \times n$ complex matrices, $L_{n \times n}^{\infty}(\mathbb{D})$ denote the space of $M_{n \times n}$-valued essentially bounded Lebesgue measurable functions on \mathbb{D} and $H_{n \times n}^{\infty}(\mathbb{D})$ denote the space of $M_{n \times n}$-valued bounded analytic functions on \mathbb{D}.

[^0]For $F=\left(f_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$, the block Toeplitz operator T_{F} and the block Hankel operator H_{F} on $L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, the block dual Toeplitz operator S_{F} on $\left(L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)\right)^{\perp}$ with symbol F are defined respectively, as follows:

$$
T_{F}=\left(\begin{array}{cccc}
T_{f_{11}} & T_{f_{12}} & \cdots & T_{f_{1 n}} \\
T_{f_{21}} & T_{f_{22}} & \cdots & T_{f_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
T_{f_{n 1}} & T_{f_{n 2}} & \cdots & T_{f_{n n}}
\end{array}\right), H_{F}=\left(\begin{array}{cccc}
H_{f_{11}} & H_{f_{12}} & \cdots & H_{f_{1 n}} \\
H_{f_{21}} & H_{f_{22}} & \cdots & H_{f_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
H_{f_{n 1}} & H_{f_{n 2}} & \cdots & H_{f_{n n}}
\end{array}\right) \text { and } S_{F}=\left(\begin{array}{cccc}
S_{f_{11}} & S_{f_{12}} & \cdots & S_{f_{1 n}} \\
S_{f_{21}} & S_{f_{22}} & \cdots & S_{f_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
S_{f_{n 1}} & S_{f_{n 2}} & \cdots & S_{f_{n n}}
\end{array}\right)
$$

where each $T_{f_{i j}}(1 \leqslant i, j \leqslant n)$ is a Toeplitz operator on $L_{a}^{2}(\mathbb{D})$, each $H_{f_{i j}}(1 \leqslant i, j \leqslant n)$ is a Hankel operator on $L_{a}^{2}(\mathbb{D})$ and each $S_{f_{i j}}(1 \leqslant i, j \leqslant n)$ is a dual Toeplitz operator on $\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$. Let P be the orthogonal projection from $L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ onto $L_{a}^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$. It is easy to see that $T_{F} u=P(F u)$ and $S_{F} v=(I-P)(F v)$, where $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)^{T}$, $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right)^{T}$ and $u_{i} \in L_{a}^{2}(\mathbb{D}), v_{i} \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$. Clearly, T_{F} and S_{F} are bounded linear operators for every function $F=\left(f_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$.

The problem on commuting (dual) Toeplitz operators has attracted special attention over the years, particularly in view of the implications that commutativity has for the study of the associated structural and spectral theories. In the setting of the Hardy space over the unit disk, the celebrated theorem of Brown and Halmos [4] gives concrete necessary and sufficient conditions on the symbols to guarantee commutativity and Gorkin and Zheng [5] completely characterized the essentially commuting Toeplitz operators.

In the case of the Bergman space of the unit disk, the first complete result was obtained by S. Axler and Željko. Čučković [2], who characterized commuting Toeplitz operators with harmonic symbols. K. Stroethoff later extended that result to essentially commuting Toeplitz operators in [9], and S. Axler, Željko. Čučković and N. V. Rao [3] subsequently proved that if two Toeplitz operators commute and the symbol of one of them is nonconstant analytic, then the other one must be analytic.

Recently, many mathematicians have paid more attention to dual Toeplitz operators.

On the unit disk, commutativity of dual Toeplitz operators were studied by K. Stroethoff and D. Zheng in [11]. On the vector valued Bergman space, Kerr [7] gave a necessary and sufficient condition for the boundedness of the Toeplitz product $T_{F} T_{G^{*}}$ on $L_{a}^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$, and Lu , Zhang and Shi [8] gave some necessary and sufficient conditions for the product of two block dual Toeplitz operators still to be a block dual Toeplitz operator. Because two matrix-valued functions may not be commuting, the commuting problems of block (dual) Toeplitz operators are much more complicated and interesting. On the vector valued Hardy space $H^{2}\left(\mathbb{C}^{n}\right)$, Gu and Zheng [6] gave necessary and sufficient conditions for two block Toeplitz operators commuting or essentially commuting. In this paper, we investigate when two block dual Toeplitz operators on the vector Bergman space commute or essentially commute and give some necessary and sufficient conditions.

2. Preliminaries

On the vector valued Bergman space, it is easy to check that

$$
T_{F G}=T_{F} T_{G}+H_{F^{*}}^{*} H_{G}
$$

and

$$
\begin{equation*}
S_{F G}=S_{F} S_{G}+H_{F} H_{G^{*}}^{*} \tag{2.1}
\end{equation*}
$$

If we write $f=f_{+}+f_{-}$for each $f \in L^{2}(\mathbb{D})$ where $f_{+} \in L_{a}^{2}(\mathbb{D})$ and $f_{-} \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$, then $F=\left(f_{i j}\right)_{n \times n}$ can also be written as $F=F_{+}+F_{-}$with $F_{+}=\left(\left(f_{i j}\right)_{+}\right)_{n \times n}$ and $F_{-}=\left(\left(f_{i j}\right)_{-}\right)_{n \times n}$. For $A=\left(a_{i j}\right) \in M_{n \times n}$, we define

$$
\|A\|_{\infty}=\sup _{1 \leqslant i, j \leqslant n}\left|a_{i j}\right|
$$

Let $\left(M_{n \times n}\right)_{1}$ denote the closed unit ball of $M_{n \times n}$ in the above norm. Let \mathscr{P}_{n} be the set of $n \times n$ permutation matrices and $E_{j}=\left(a_{i k}\right)_{n \times n}$, where $a_{j j}=1$ and $a_{i k}=0(i \neq$ j or $k \neq j$). Note that for a $n \times n$ matrix $B, B E_{j}$ and B have the same j-th column and all other columns of $B E_{j}$ equal to zero.

The Bergman space $L_{a}^{2}(\mathbb{D})$ has reproducing kernels K_{w} given by

$$
K_{w}(z)=\frac{1}{(1-\bar{w} z)^{2}}, \quad z, w \in \mathbb{D}
$$

For every $h \in L_{a}^{2}(\mathbb{D})$, we have $\left\langle h, K_{w}\right\rangle=h(w), w \in \mathbb{D}$. In particular, $\left\|K_{w}\right\|_{2}=\left\langle K_{w}, K_{w}\right\rangle^{\frac{1}{2}}$ $=\left(1-|w|^{2}\right)^{-1}$. The functions

$$
k_{w}(z)=\frac{1-|w|^{2}}{(1-\bar{w} z)^{2}}
$$

are the normalized reproducing kernels for $L_{a}^{2}(\mathbb{D})$.
For $w \in \mathbb{D}$, the fractional linear transformation φ_{w}, defined by

$$
\varphi_{w}(z)=\frac{w-z}{1-\bar{w} z}, \quad z \in \mathbb{D}
$$

is an automorphism of the unit disk. In fact, $\varphi_{w}^{-1}=\varphi_{w}$. The real Jacobian for the change of variable $\zeta=\varphi_{w}(z)$ is equal to $\left|\varphi_{w}^{\prime}(z)\right|^{2}=\left(1-|w|^{2}\right)^{2} /|1-\bar{w} z|^{4}$. Thus we have the change-of-variable formula

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(\varphi_{w}(z)\right) d A(z)=\int_{\mathbb{D}} h(z) \frac{\left(1-|w|^{2}\right)^{2}}{|1-\bar{w} z|^{4}} d A(z)=\int_{\mathbb{D}} h(z)\left|k_{w}(z)\right|^{2} d A(z) \tag{2.2}
\end{equation*}
$$

where h is a positive measurable or integrable function on \mathbb{D}.
For $f, g \in L^{2}(\mathbb{D})$, define the rank 1 operator $f \otimes g: L^{2}(\mathbb{D}) \rightarrow L^{2}(\mathbb{D})$ by

$$
(f \otimes g) h=\langle h, g\rangle f
$$

for $h \in L^{2}(\mathbb{D})$.
Also for $F=\left(f_{i j}\right)_{n \times n}, G=\left(g_{i j}\right)_{n \times n} \in M_{n \times n}\left(L^{2}(\mathbb{D})\right)$, define the operator $F \otimes G$: $L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right) \rightarrow L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ by

$$
(F \otimes G) h=\left(\begin{array}{cccc}
\sum_{k=1}^{n} f_{1 k} \otimes g_{k 1} & \sum_{k=1}^{n} f_{1 k} \otimes g_{k 2} & \cdots & \sum_{k=1}^{n} f_{1 k} \otimes g_{k n} \\
\sum_{k=1}^{n} f_{2 k} \otimes g_{k 1} & \sum_{k=1}^{n} f_{2 k} \otimes g_{k 2} & \cdots & \sum_{k=1}^{n} f_{2 k} \otimes g_{k n} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{k=1}^{n} f_{n k} \otimes g_{k 1} & \sum_{k=1}^{n} f_{n k} \otimes g_{k 2} & \cdots & \sum_{k=1}^{n} f_{n k} \otimes g_{k n}
\end{array}\right) h
$$

for $h \in L^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$.
Given a linear operator T on $\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ and $w \in \mathbb{D}$, we define the operator $S_{w}(T)$ by

$$
S_{w}(T)=T-S_{\varphi_{w}} T S_{\bar{\varphi}_{w}}
$$

Note that

$$
S_{w}^{2}(T)=S_{w}\left(S_{w}(T)\right)=T-2 S_{\varphi_{w}} T S_{\bar{\varphi}_{w}}+S_{\varphi_{w}}^{2} T S_{\bar{\varphi}_{w}}^{2}
$$

From the proof of Proposition 4.8 in [10], we have

$$
\left(H_{f} k_{w}\right) \otimes\left(H_{\bar{g}} k_{w}\right)=H_{f}\left(k_{w} \otimes k_{w}\right) H_{\bar{g}}^{*}=S_{w}^{2}\left(H_{f} H_{\bar{g}}^{*}\right)
$$

Let T be a linear operator on $\left(L_{a}^{2}(\mathbb{D})\right)^{\perp} \otimes \mathbb{C}^{n}$, we can also define the operator $S_{W}(T)=$ $T-S_{\psi_{w}} T S_{\bar{\Psi}_{w}}$, where

$$
S_{\psi_{w}}=\left(\begin{array}{cccc}
S_{\varphi_{w}} & 0 & \cdots & 0 \\
0 & S_{\varphi_{w}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & S_{\varphi_{w}}
\end{array}\right)_{n \times n}
$$

It follows that

$$
S_{W}^{2}(T)=T-2 S_{\psi_{w}} T S_{\bar{\Psi}_{w}}+S_{\psi_{w}}^{2} T S_{\bar{\psi}_{w}}^{2}
$$

3. Commuting block dual Toeplitz operators

Stroethoff and Zheng [11] showed that the semi-commutator $S_{f} S_{g}-S_{f g}$ is zero exactly when either f or \bar{g} is analytic for the scalar functions f and g, and they also characterized when the commutator $S_{f} S_{g}-S_{g} S_{f}$ is zero. In this section, we will characterize when the semi-commutator $\left(S_{F}, S_{G}\right]=S_{F} S_{G}-S_{F G}$ or the commutator $\left[S_{F}, S_{G}\right]=S_{F} S_{G}-S_{G} S_{F}$ is zero for block dual Toeplitz operators with matrix symbols F and G.

THEOREM 3.1. Let $F=\left(f_{i j}\right)_{n \times n}, G=\left(g_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$. Then:
(i) $\left(S_{F}, S_{G}\right]=0$ if and only if $F_{-} \otimes \bar{G}_{-}=0$;
(ii) $\left(S_{F}, S_{G}\right]=0$ if and only if there exist matrix $A_{j} \in\left(M_{n \times n}\right)_{1}$ and $R_{j} \in \mathscr{P}_{n}$ for each $j=1, \cdots, n$, such that

$$
\left(R_{j}-A_{j}\right) F^{T} \in H_{n \times n}^{\infty}(\mathbb{D}) \quad \text { and } \quad A_{j}^{*} \bar{G} E_{j} \in H_{n \times n}^{\infty}(\mathbb{D}), \quad j=1, \cdots, n
$$

Proof. (i) If $\left(S_{F}, S_{G}\right]=0$, that is $S_{F} S_{G}=S_{F G}$, applying (2.1), then we have $H_{F} H_{G^{*}}^{*}=$ 0. It is easy to check that $S_{W}^{2}\left(H_{F} H_{G^{*}}^{*}\right)=\left(\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right)_{n \times n}$. Therefore, $\sum_{k=1}^{n}\left(H_{f_{i k}} 1\right) \otimes\left(H_{\bar{g}_{k j}} 1\right)=0$, that is $F_{-} \otimes \bar{G}_{-}=0$.

Conversely, suppose $F_{-} \otimes \bar{G}_{-}=0$. Claim 1: $S_{F} S_{G}$ is a dual Toeplitz operator.
We use induction to prove Claim 1. If $H_{f_{11}} 1 \otimes H_{\bar{g}_{11}} 1=0$, then f_{11} or \bar{g}_{11} is analytic on \mathbb{D}. Therefore, the result is true for 1 .

Now assume the result is true for $n-1$. That is, if $\sum_{k=1}^{n-1}\left(H_{f_{i k}} 1\right) \otimes\left(H_{\bar{g}_{k j}} 1\right)=0$, then $\sum_{k=1}^{n-1} S_{f_{i k}} S_{g_{k j}}$ is a dual Toeplitz operator.

In the following, we prove that the result is true for n.
If $\sum_{k=1}^{n}\left(H_{f_{i k}} 1\right) \otimes\left(H_{\bar{g}_{k j}} 1\right)=0$, then we get

$$
\begin{equation*}
\left\langle u, H_{\bar{g}_{1 j}} 1\right\rangle H_{f_{i 1}} 1+\left\langle u, H_{\bar{g}_{2 j}} 1\right\rangle H_{f_{i 2}} 1+\cdots+\left\langle u, H_{\bar{g}_{n j}} 1\right\rangle H_{f_{i n}} 1=0 \tag{3.1}
\end{equation*}
$$

for all $u \in\left(L_{a}^{2}\right)^{\perp}$. Let $Q_{j}=V\left\{H_{\bar{g}_{k j}} 1 ; 1 \leqslant k \leqslant n-1\right\}$. For every $u \in Q_{j}^{\perp}$, we have $\left\langle u, H_{\bar{g}_{n j}} 1\right\rangle H_{f_{i n}} 1=0$. It follows that $H_{f_{i n}} 1=0$ (Case 1) or $\left\langle u, H_{\bar{g}_{n j}} 1\right\rangle=0$ (Case 2).

Case 1. If $H_{f_{i n}} 1=0$, then $f_{\text {in }}$ is analytic on \mathbb{D} and $\sum_{k=1}^{n-1}\left(H_{f_{i k}} 1\right) \otimes\left(H_{\bar{g}_{k j}} 1\right)=0$. By the induction hypothesis, we obtain that $\sum_{k=1}^{n-1} S_{f_{i k}} S_{g_{k j}}$ is a dual Toeplitz operator. Since $\sum_{k=1}^{n} S_{f_{i k}} S_{g_{k j}}=\sum_{k=1}^{n-1} S_{f_{i k}} S_{g_{k j}}+S_{f_{i n}} S_{g_{n j}}$ and $f_{i n}$ is analytic, we can conclude that $\sum_{k=1}^{n} S_{f_{i k}} S_{g_{k j}}$ is also a dual Toeplitz operator.

Case 2. If $\left\langle u, H_{\bar{g}_{n j}} 1\right\rangle=0$ for each $u \in Q_{j}^{\perp}$, then $H_{\bar{g}_{n j}} 1 \in Q_{j}$. So we get that there exist $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n-1} \in \mathbb{C}$ such that

$$
H_{\bar{g}_{n j}} 1=\sum_{i=1}^{n-1} \lambda_{i} H_{\bar{g}_{i j}} 1
$$

So $\bar{g}_{n j}-\lambda_{1} \bar{g}_{1 j}-\lambda_{2} \bar{g}_{2 j}-\cdots-\lambda_{n-1} \bar{g}_{(n-1) j}$ is an analytic function, denoted by h. Replacing $g_{n j}$ by $\bar{\lambda}_{1} g_{1 j}+\bar{\lambda}_{2} g_{2 j}+\cdots+\bar{\lambda}_{n-1} g_{(n-1) j}+\bar{h}$ in (3.1), we get

$$
\sum_{k=1}^{n-1}\left\langle u, H_{\bar{g}_{k j}} 1\right\rangle H_{f_{i k}} 1+\left\langle u, \sum_{k=1}^{n-1} \lambda_{k} H_{\bar{g}_{k j}} 1\right\rangle H_{f_{i n}} 1=0
$$

Thus

$$
\left\langle u, H_{\bar{g}_{1 j}} 1\right\rangle H_{f_{i 1}+\bar{\lambda}_{1} f_{i n}} 1+\left\langle u, H_{\bar{g}_{2 j}} 1\right\rangle H_{f_{i 2}+\bar{\lambda}_{2} f_{i n}} 1+\cdots+\left\langle u, H_{\bar{g}_{(n-1) j}} 1\right\rangle H_{f_{i(n-1)}+\bar{\lambda}_{n-1} f_{i n}} 1=0 .
$$

It is equal to

$$
\sum_{k=1}^{n-1}\left(H_{f_{i k}+\bar{\lambda}_{k} f_{i n}} 1\right) \otimes\left(H_{\bar{g}_{k j}} 1\right)=0
$$

By the induction hypothesis, we get $\sum_{k=1}^{n-1} S_{\left(f_{i k}+\bar{\lambda}_{k} f_{i n}\right)} S_{g_{k j}}$ is a dual Toeplitz operator. Note that

$$
\begin{aligned}
\sum_{k=1}^{n} S_{f_{i k}} S_{g_{k j}} & =\sum_{k=1}^{n-1} S_{f_{i k}} S_{g_{k j}}+S_{f_{i n}} S_{g_{n j}} \\
& =\sum_{k=1}^{n-1} S_{f_{i k}} S_{g_{k j}}+S_{f_{i n}} S_{\bar{\lambda}_{1} g_{1 j}+\bar{\lambda}_{2 g_{2 j}}+\cdots+\bar{\lambda}_{n-1} g_{(n-1) j}+\bar{h}} \\
& =\sum_{k=1}^{n-1} S_{f_{i k}} S_{g_{k j}}+\sum_{k=1}^{n-1} \bar{\lambda}_{k} S_{f_{i n}} S_{g_{k j}}+S_{f_{i n} \bar{h}}
\end{aligned}
$$

where the last equality follows from that h is an analytic function. So $\sum_{k=1}^{n} S_{f_{i k}} S_{g_{k j}}$ is also a dual Toeplitz operator. By the arbitrary of i and j, we conclude that $S_{F} S_{G}$ is a dual Toeplitz operator. Claim 1 is proved.

If $S_{F} S_{G}$ is a dual Toeplitz operator, then there exists an $H=\left(h_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$, such that $S_{F} S_{G}=S_{H}$. Applying (2.1), we have $S_{F G-H}=H_{F} H_{G^{*}}^{*}$. It is easy to check that $S_{W}^{2}\left(H_{F} H_{G^{*}}^{*}\right)=\left(\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right)_{n \times n}$. Thus

$$
S_{\left(1-\left|\varphi_{w}\right|^{2}\right)^{2}\left(\sum_{k=1}^{n} f_{i k} g_{k j}-h_{i j}\right)}=\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)
$$

In particular, $S_{\left(1-|z|^{2}\right)^{2}\left(\sum_{k=1}^{n} f_{i k} g_{k j}-h_{i j}\right)}=\sum_{k=1}^{n}\left(H_{f_{i k}} 1\right) \otimes\left(H_{\bar{g}_{k j}} 1\right)$.
Since $\operatorname{rank}\left(S_{\left(1-|z|^{2}\right)^{2}\left(\sum_{k=1}^{n} f_{i k} g_{k j}-h_{i j}\right)}\right) \leqslant n$, there exist not all zero complex numbers $a_{1}, a_{2}, \cdots, a_{n+1}$, such that

$$
S_{\left(1-|z|^{2}\right)^{2}\left(\sum_{k=1}^{n} f_{i k} g_{k j}-h_{i j}\right)}\left(a_{1} \bar{z}+a_{2} \bar{z}^{2}+\cdots+a_{n+1} \bar{z}^{n+1}\right)=0
$$

Combining the above equality with facts that $\varphi=\left(1-|z|^{2}\right)^{2}\left(\sum_{k=1}^{n} f_{i k} g_{k j}-h_{i j}\right)\left(a_{1} \bar{z}+\right.$ $\left.a_{2} \bar{z}^{2}+\cdots+a_{n+1} \bar{z}^{n+1}\right)$ is analytic and $\lim _{|z| \rightarrow 1-} \varphi(z)=0$, we get $\varphi(z)=0$ for all $z \in \mathbb{D}$.

Thus $\sum_{k=1}^{n} f_{i k} g_{k j}=h_{i j}$ with the exception of at most $n+1$ points. Therefore, $S_{F} S_{G}=$ $S_{F G}$.
(ii) From the proof of (i), we have if $S_{F} S_{G}=S_{F G}$, then $\left(\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right)_{n \times n}$ $=0$. For each $j=1, \cdots, n$, by Proposition 4 in [6], there exist matrix $A_{j} \in\left(M_{n \times n}\right)_{1}$ and permutation matrix R_{j} such that

$$
\left(R_{j}-A_{j}\right)\left[H_{f_{i 1}} 1, \cdots, H_{f_{i n}} 1\right]^{T}=0, i=1, \cdots, n
$$

and

$$
A_{j}^{*}\left[H_{\bar{g}_{1 j}} 1, \cdots, H_{\bar{g}_{n j}} 1\right]^{T}=0
$$

Since $\left(R_{j}-A_{j}\right)\left(I-P_{0}\right)=\left(I-P_{0}\right)\left(R_{j}-A_{j}\right)$, we have

$$
\left(R_{j}-A_{j}\right)\left[f_{i 1}, \cdots, f_{i n}\right]^{T} \in H_{n \times 1}^{\infty}(\mathbb{D}), i=1, \cdots, n
$$

and

$$
A_{j}^{*}\left[\bar{g}_{1 j}, \cdots, \bar{g}_{n j}\right]^{T} \in H_{n \times 1}^{\infty}(\mathbb{D})
$$

So we get

$$
\left(R_{j}-A_{j}\right) F^{T} \in H_{n \times n}^{\infty}(\mathbb{D}) \quad \text { and } \quad A_{j}^{*} \bar{G} E_{j} \in H_{n \times n}^{\infty}(\mathbb{D})
$$

Next, we prove the sufficiency. For $A_{j} \in\left(M_{n \times n}\right)_{1}$ and permutation matrix R_{j}. Let

$$
x_{i}=\left(x_{i 1}, \cdots, x_{i n}\right)^{T}=\left(R_{j}-A_{j}\right) f_{i \sigma} \quad \text { and } \quad y=\left(y_{1}, \cdots, y_{n}\right)^{T}=A_{j}^{*} g_{\sigma}
$$

where σ is permutation and $f_{i \sigma}=\left(f_{i \sigma(1)}, \cdots, f_{i \sigma(n)}\right)$, then we have $\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)=H_{x_{i 1}}^{*} H_{\bar{g}_{i j}}+\cdots+H_{x_{i n}}^{*} H_{\bar{g}_{n j}}+H_{f_{i 1}}^{*} H_{y_{1}}+\cdots+H_{f_{i n}}^{*} H_{y_{n}}, i=1, \cdots, n$, where $j=1, \cdots, n$. Since $x_{i k}, y_{k} \in H^{\infty}(\mathbb{D}), 1 \leqslant k \leqslant n, \sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)=0$ for $1 \leqslant i, j \leqslant n$. It is easy to check that $S_{W}^{2}\left(H_{F} H_{G^{*}}^{*}\right)=\left(\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right)_{n \times n}$. Therefore, we have $H_{F} H_{G^{*}}^{*}=0$. That is $S_{F} S_{G}=S_{F G}$.

So we complete the proof.
In the following, we study the commutator $\left[S_{F}, S_{G}\right]=S_{F} S_{G}-S_{G} S_{F}$ by reducing it to the semi-commutator case. Let

$$
B=\left(\begin{array}{cc}
G & F \\
0 & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
F & 0 \\
-G & 0
\end{array}\right)
$$

A simple calculation gives that

$$
S_{B} S_{C}=\left(\begin{array}{cc}
S_{G} & S_{F} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
S_{F} & 0 \\
-S_{G} & 0
\end{array}\right)=\left(\begin{array}{cc}
S_{G} S_{F}-S_{F} S_{G} & 0 \\
0 & 0
\end{array}\right)
$$

Combining this with (2.1), we see that $S_{F} S_{G}=S_{G} S_{F}$ if and only if $S_{B C}=H_{B} H_{C^{*}}^{*}$. By Theorem 3.1, we have $B C=0$, that is $G F-F G=0$ and $H_{B} H_{C^{*}}^{*}=0$. This leads to the following result.

THEOREM 3.2. Let $F=\left(f_{i j}\right)_{n \times n}, G=\left(g_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$. Then:
(i) $\left[S_{F}, S_{G}\right]=0$ if and only if $F G=G F$ and $F_{-} \otimes \bar{G}_{-}-G_{-} \otimes \bar{F}_{-}=0$.
(ii) $\left[S_{F}, S_{G}\right]=0$ if and only if $F G=G F$ and there exist matrix $A_{j} \in\left(M_{2 n \times 2 n}\right)_{1}$ and $R_{j} \in \mathscr{P}_{2 n}$ for each $j=1, \cdots, n$, such that

$$
\left(R_{j}-A_{j}\right)\binom{G^{T}}{F^{T}} \in H_{2 n \times n}^{\infty}(\mathbb{D}) \quad \text { and } \quad A_{j}^{*}\binom{\bar{F}}{-\bar{G}} E_{j} \in H_{2 n \times n}^{\infty}(\mathbb{D}), \quad j=1, \cdots, n
$$

An operator A is said to be normal if $A A^{*}-A^{*} A=0$. Taking $G=F^{*}$ in Theorem 3.2 and noting that $S_{F}^{*}=S_{F^{*}}$, we have the following characterization of normal block Toeplitz operators.

Corollary 3.1. Let $F \in L_{n \times n}^{\infty}(\mathbb{D})$. Then:
(i) T_{F} is normal if and only if $F F^{*}=F^{*} F$ and $F_{-} \otimes F_{-}^{T}-F_{-}^{*} \otimes \bar{F}_{-}=0$.
(ii) T_{F} is normal if and only if $F F^{*}=F^{*} F$ and there exist matrix $A_{j} \in\left(M_{2 n \times 2 n}\right)_{1}$ and $R_{j} \in \mathscr{P}_{2 n}$ for each $j=1, \cdots, n$, such that

$$
\left(R_{j}-A_{j}\right)\binom{\bar{F}}{F^{T}} \in H_{2 n \times n}^{\infty}(\mathbb{D}) \quad \text { and } \quad A_{j}^{*}\binom{\bar{F}}{-F^{T}} E_{j} \in H_{2 n \times n}^{\infty}(\mathbb{D}), \quad j=1, \cdots, n
$$

4. Essentially commuting block dual Toeplitz operators

Stroethoff and Zheng [11] proved that the commutator $\left[S_{f}, S_{g}\right.$] is compact if and only if $\left\|\left(H_{g} k_{w}\right) \otimes\left(H_{f} k_{w}\right)-\left(H_{f} k_{w}\right) \otimes\left(H_{\bar{g}} k_{w}\right)\right\| \rightarrow 0$ as $|w| \rightarrow 1-$, where f and g be bounded measurable functions on \mathbb{D}. For block dual Toeplitz operators, we will give a necessary and a sufficient condition for the semi-commutator $\left(S_{F}, S_{G}\right]=S_{F} S_{G}-S_{F G}$ and the commutator $\left[S_{F}, S_{G}\right]=S_{F} S_{G}-S_{G} S_{F}$ to be compact, analogous to the result of Stroethoff and Zheng.

For $F=\left(f_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$, we define

$$
H_{F} k_{w}=\left(\begin{array}{cccc}
H_{f_{11}} k_{w} & H_{f_{12}} k_{w} & \cdots & H_{f_{1 n}} k_{w} \\
H_{f_{21}} k_{w} & H_{f_{22}} k_{w} & \cdots & H_{f_{2 n}} k_{w} \\
\vdots & \vdots & \ddots & \vdots \\
H_{f_{n 1}} k_{w} & H_{f_{n 2}} k_{w} & \cdots & H_{f_{n n}} k_{w}
\end{array}\right)
$$

then we get our main result.
THEOREM 4.1. Let $F=\left(f_{i j}\right)_{n \times n}, G=\left(g_{i j}\right)_{n \times n} \in L_{n \times n}^{\infty}(\mathbb{D})$.
(i) If $\left(S_{F}, S_{G}\right]$ is compact, then $\left\|\left(H_{F} k_{w}\right) \otimes\left(H_{\bar{G}} k_{w}\right)\right\| \rightarrow 0$, as $|w| \rightarrow 1-$.
(ii) If $\left\|\left(H_{F(z)} k_{w}(z)\right) \overline{\left(H_{\overline{G(\zeta)}} k_{w}(\zeta)\right)^{T}}\right\| \rightarrow 0$, as $|w| \rightarrow 1-$, then $\left(S_{F}, S_{G}\right]$ is compact.

Theorem 4.2. Let $F, G \in L_{n \times n}^{\infty}(\mathbb{D})$.
(i) If $\left[S_{F}, S_{G}\right]$ is compact, then $F G=G F$ and $\left\|\left(H_{F} k_{w}\right) \otimes\left(H_{\bar{G}} k_{w}\right)-\left(H_{G} k_{w}\right) \otimes\left(H_{\bar{F}} k_{w}\right)\right\|$ $\rightarrow 0$ as $|w| \rightarrow 1-$.
(ii) If $\left\|\left(H_{F(z)} k_{w}(z)\right) \overline{\left(H_{\overline{G(\zeta)}} k_{w}(\zeta)\right)^{T}}-\left(H_{G(\zeta)} k_{w}(\zeta)\right) \overline{\left(H_{\overline{F(z)}} k_{w}(z)\right)^{T}}\right\| \rightarrow 0$, as $|w| \rightarrow 1-$, then $\left[S_{F}, S_{G}\right]$ is compact and $F G=G F$.

To prove the main theorems we will make use of the following lemmas.
Lemma 4.1. If $f_{k}, g_{k} \in L^{2}(\mathbb{D}), k=1,2, \cdots, n$, then

$$
\left\|\sum_{k=1}^{n} f_{k} \otimes g_{k}\right\| \leqslant\left\|\sum_{k=1}^{n} \bar{g}_{k}(\zeta) f_{k}(z)\right\|
$$

Proof. Let $u \in L^{2}(\mathbb{D})$. Then it is easy to check that

$$
\begin{aligned}
\left\|\sum_{k=1}^{n}\left(f_{k} \otimes g_{k}\right) u\right\|_{2}^{2} & =\int_{\mathbb{D}}\left|\sum_{k=1}^{n}\left\langle u, g_{k}\right\rangle f_{k}(z)\right|^{2} d A(z) \\
& =\int_{\mathbb{D}}\left|\sum_{k=1}^{n} \int_{\mathbb{D}} u(\zeta) \bar{g}_{k}(\zeta) f_{k}(z) d A(\zeta)\right|^{2} d A(z) \\
& =\int_{\mathbb{D}}\left|\int_{\mathbb{D}} u(\zeta)\left(\sum_{k=1}^{n} \bar{g}_{k}(\zeta) f_{k}(z)\right) d A(\zeta)\right|^{2} d A(z)
\end{aligned}
$$

Applying Hölder's inequality we have

$$
\left|\int_{\mathbb{D}} u(\zeta)\left(\sum_{k=1}^{n} \bar{g}_{k}(\zeta) f_{k}(z)\right) d A(\zeta)\right|^{2} \leqslant \int_{\mathbb{D}}|u(\zeta)|^{2} d A(\zeta) \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \bar{g}_{k}(\zeta) f_{k}(z)\right|^{2} d A(\zeta)
$$

Thus

$$
\begin{aligned}
\left\|\sum_{k=1}^{n}\left(f_{k} \otimes g_{k}\right) u\right\|_{2} & \leqslant\|u\|_{2}\left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \bar{g}_{k}(\zeta) f_{k}(z)\right|^{2} d A(\zeta) d A(z)\right)^{1 / 2} \\
& =\|u\|_{2} \cdot\left\|\sum_{k=1}^{n} \bar{g}_{k}(\zeta) f_{k}(z)\right\|
\end{aligned}
$$

So we get the desired result.
In the following we write P_{1} for the integral operator on $L^{2}(\mathbb{D}, d A)$ with kernel $1 /|1-\bar{w} z|^{2}$. It is well-known that P_{1} is L^{p}-bounded for $1<p<\infty$ (see [1] or [12]).

Lemma 4.2. Let $\varepsilon>0$ and $\delta=(2+\varepsilon) /(1+\varepsilon)$. Then

$$
\begin{aligned}
& \left|\sum_{k=1}^{n}\left(H_{\bar{g}_{k}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{k}}^{*} v\right)^{\prime}(w)}\right| \\
\leqslant & n^{\frac{1}{\delta}} C_{\varepsilon} \sup _{1 \leqslant k \leqslant n}\left\|g_{k}\right\|_{\infty}^{\frac{1}{\delta}} \sup _{1 \leqslant k \leqslant n}\left\|f_{k}\right\|_{\infty}^{\frac{1}{\delta}} \frac{4}{\left(1-|w|^{2}\right)^{2}} P_{1}\left[|u|^{\delta}\right](w)^{1 / \delta} P_{1}\left[|v|^{\delta}\right](w)^{1 / \delta} \\
& \times\left\|\sum_{k=1}^{n}\left(H_{f_{k}(z)} k_{w}(z)\right) \overline{\left(H_{\overline{g_{k}(\zeta)}} k_{w}(\zeta)\right)}\right\|^{\frac{1}{2+\varepsilon}}
\end{aligned}
$$

where $w \in \mathbb{D}, C_{\varepsilon} \in \mathbb{C}, f_{k}, g_{k} \in L^{\infty}(\mathbb{D}, d A)$ and $u, v \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ with $k=1,2, \cdots, n$.

Proof. Note that for every function $u \in L_{a}^{2}(\mathbb{D})$, the derivative $u^{\prime}(w)=\left\langle u, K_{w}^{\prime}\right\rangle$. So

$$
\begin{aligned}
\left|\sum_{k=1}^{n}\left(H_{\bar{g}_{k}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{k}}^{*} v\right)^{\prime}(w)}\right| & =\left|\sum_{k=1}^{n}\left\langle H_{\bar{g}_{k}}^{*} u, K_{w}^{\prime}\right\rangle\left\langle K_{w}^{\prime}, H_{f_{k}}^{*} v\right\rangle\right| \\
& =\left\lvert\, \sum_{k=1}^{n} \int_{\mathbb{D}} \frac{u(z) \overline{\overline{g_{k}(z)}}}{(1-\bar{z} w)^{3}} d A(z) \overline{\left.\int_{\mathbb{D}} \frac{v(\zeta) \overline{\zeta f_{k}(\zeta)}}{(1-\bar{\zeta} w)^{3}} d A(\zeta) \right\rvert\,}\right.
\end{aligned}
$$

Letting $G_{k, w}$ denote $P_{0}\left(g_{k} \circ \varphi_{w}\right) \circ \varphi_{w}$ and $\widetilde{G}_{k, w}$ denote $P_{0}\left(f_{k} \circ \varphi_{w}\right) \circ \varphi_{w}, 1 \leqslant k \leqslant n$, the functions $z \rightarrow z G_{k, w}(z) /(1-\bar{w} z)^{3}$ and $\zeta \rightarrow \zeta \widetilde{G}_{k, w}(\zeta) /(1-\bar{w} \zeta)^{3}$ are in $L_{a}^{2}(\mathbb{D})$. Since $u, v \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ we have

$$
\int_{\mathbb{D}} \frac{u(z) \overline{z G_{k, w}(z)}}{(1-\bar{z} w)^{3}} d A(z)=0 \quad \text { and } \quad \int_{\mathbb{D}} \frac{v(\zeta) \overline{\zeta \widetilde{G}_{k, w}(\zeta)}}{(1-\bar{\zeta} w)^{3}} d A(\zeta)=0
$$

Thus

$$
\begin{aligned}
& \mid \sum_{k=1}^{n}\left(H_{\bar{g}_{k}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{k}}^{*} v\right)^{\prime}(w) \mid} \\
= & \left|\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{u(z) \bar{z}}{(1-\bar{z} w)^{3}} \frac{\overline{v(\zeta)} \zeta}{(1-\zeta \bar{w})^{3}}\left[\sum_{k=1}^{n} \overline{\left(\overline{g_{k}(z)}-G_{k, w}(z)\right)}\left(f_{k}(\zeta)-\widetilde{G}_{k, w}(\zeta)\right)\right] d A(\zeta) d A(z)\right| \\
\leqslant & \left(\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{|u(z)|^{\delta}}{|1-\bar{z} w|^{4-\delta}} \frac{|v(\zeta)|^{\delta}}{|1-\bar{\zeta} w|^{4-\delta}} d A(\zeta) d A(z)\right)^{\frac{1}{\delta}} \\
& \times\left(\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left|\sum_{k=1}^{n} \frac{\left.\overline{g_{k}(z)}-G_{k, w}(z)\right)}{}\left(f_{k}(\zeta)-\widetilde{G}_{k, w}(\zeta)\right)\right|^{2+\varepsilon}}{\left(1-\left.\bar{z} w\right|^{4}|1-\bar{\zeta} w|^{4}\right.} d A(\zeta) d A(z)\right)^{\frac{1}{2+\varepsilon}} \\
= & \frac{1}{\left(1-|w|^{2}\right)^{2}}\left(\int_{\mathbb{D}} \frac{|u(z)|^{\delta}}{|1-\bar{z} w|^{2}} \frac{\left(1-|w|^{2}\right)^{\varepsilon /(1+\varepsilon)}}{|1-\bar{z} w|^{\varepsilon /(1+\varepsilon)}} d A(z)\right)^{\frac{1}{\delta}}\left(\int_{\mathbb{D}} \frac{|v(\zeta)|^{\delta}}{|1-\bar{\zeta} w|^{2}} \frac{\left(1-|w|^{2}\right)^{\varepsilon /(1+\varepsilon)}}{|1-\bar{\zeta} w|^{\varepsilon /(1+\varepsilon)}} d A(\zeta)\right)^{\frac{1}{\delta}} \\
& \times\left(\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{4} \left\lvert\, \sum_{k=1}^{n} \frac{\left(\overline{g_{k}(z)}-G_{k, w}(z)\right)}{}\left(f_{k}(\zeta)-\left.\widetilde{G}_{k, w}(\zeta)\right|^{2+\varepsilon}\right.\right.}{|1-\bar{z} w|^{4}|1-\bar{\zeta} w|^{4}} d A(\zeta) d A(z)\right)^{\frac{1}{2+\varepsilon}} .
\end{aligned}
$$

Since $\left(1-|w|^{2}\right) /|1-\bar{z} w|<2,\left(1-|w|^{2}\right) /|1-\bar{\zeta} w|<2$ and $2^{\varepsilon /(1+\varepsilon)}<2$, we get

$$
\begin{align*}
& \left|\sum_{k=1}^{n}\left(H_{\bar{g}_{k}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{k}}^{*} v\right)^{\prime}(w)}\right| \\
\leqslant & \frac{4}{\left(1-|w|^{2}\right)^{2}} P_{1}\left[|u|^{\delta}\right](w)^{1 / \delta} P_{1}\left[|v|^{\delta}\right](w)^{1 / \delta} \\
& \times\left(\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{4}\left|\sum_{k=1}^{n} \overline{\left(\overline{g_{k}(z)}-G_{k, w}(z)\right)}\left(f_{k}(\zeta)-\widetilde{G}_{k, w}(\zeta)\right)\right|^{2+\varepsilon}}{|1-\bar{z} w|^{4}|1-\bar{\zeta} w|^{4}} d A(\zeta) d A(z)\right)^{\frac{1}{2+\varepsilon}} \tag{4.1}
\end{align*}
$$

By the change-of-variable formula (2.2), we have

$$
\begin{align*}
& \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{4}\left|\sum_{k=1}^{n} \overline{\left(\overline{g_{k}(z)}-G_{k, w}(z)\right)}\left(f_{k}(\zeta)-\widetilde{G}_{k, w}(\zeta)\right)\right|^{2+\varepsilon}}{|1-\bar{z} w|^{4}|1-\bar{\zeta} w|^{4}} d A(\zeta) d A(z) \\
= & \int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(\bar{g}_{k} \circ \varphi_{w}(z)-P_{0}\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)\right)}\left(f_{k} \circ \varphi_{w}(\zeta)-P_{0}\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right)\right|^{2+\varepsilon} d A(\zeta) d A(z) \\
= & \int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2+\varepsilon} d A(\zeta) d A(z) . \tag{4.2}
\end{align*}
$$

Using (2.2), it is easy to check that

$$
\begin{align*}
& \left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2} d A(\zeta) d A(z)\right)^{1 / 2} \\
= & \left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{H_{\bar{g}_{k}} k_{w}(\zeta)} H_{f_{k}} k_{w}(z)\right|^{2} d A(\zeta) d A(z)\right)^{1 / 2} \tag{4.3}\\
= & \left\|\sum_{k=1}^{n}\left(H_{f_{k}(z)} k_{w}(z)\right) \overline{\left(H_{\overline{g_{k}(\zeta)}} k_{w}(\zeta)\right)}\right\|
\end{align*}
$$

Applying Hölder's inequality and (4.3), we get

$$
\begin{align*}
& \int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2+\varepsilon} d A(\zeta) d A(z) \\
\leqslant & \left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2} d A(\zeta) d A(z)\right)^{1 / 2} \\
& \times\left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2(1+\varepsilon)} d A(\zeta) d A(z)\right)^{1 / 2} \tag{4.4}\\
\leqslant & \left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2(1+\varepsilon)} d A(\zeta) d A(z)\right)^{1 / 2} \\
& \times\left\|\sum_{k=1}^{n}\left(H_{f_{k}(z)} k_{w}(z)\right) \overline{\left(H_{\overline{g_{k}(\zeta)}} k_{w}(\zeta)\right)}\right\| .
\end{align*}
$$

Since P_{0} is $L^{2+2 \varepsilon}$-bounded, there exist constants $C_{k, \varepsilon}>0,1 \leqslant k \leqslant n$, such that

$$
\begin{aligned}
& \left(\int_{\mathbb{D}} \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right|^{2(1+\varepsilon)} d A(\zeta) d A(z)\right)^{\frac{1}{2+2 \varepsilon}} \\
= & \left\|\sum_{k=1}^{n} \overline{\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)}\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right\|_{L^{2(1+\varepsilon)}\left(\mathbb{D}^{2}, d A(\zeta) d A(z)\right)} \\
\leqslant & \sum_{k=1}^{n}\left\|\left(I-P_{0}\right)\left(\bar{g}_{k} \circ \varphi_{w}(z)\right)\right\|_{L^{2(1+\varepsilon)}(\mathbb{D}, d A(z))}\left\|\left(I-P_{0}\right)\left(f_{k} \circ \varphi_{w}(\zeta)\right)\right\|_{L^{2(1+\varepsilon)}(\mathbb{D}, d A(\zeta))}
\end{aligned}
$$

$$
\begin{align*}
& \leqslant \sum_{k=1}^{n} C_{k, \varepsilon}\left\|g_{k}\right\|_{\infty}\left\|f_{k}\right\|_{\infty} \tag{4.5}\\
& \leqslant n C_{\varepsilon}^{\prime} \sup _{1 \leqslant k \leqslant n}\left\|g_{k}\right\|_{\infty} \sup _{1 \leqslant k \leqslant n}\left\|f_{k}\right\|_{\infty}
\end{align*}
$$

where $C_{\varepsilon}^{\prime}=\max \left\{C_{k, \varepsilon}, 1 \leqslant k \leqslant n\right\}$.
From (4.1), (4.3), (4.4) and (4.5), we conclude that there exists a constant C_{ε}, such that

$$
\begin{aligned}
& \quad \mid \sum_{k=1}^{n}\left(H_{\overline{g_{k}}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{k}}^{*} v\right)^{\prime}(w) \mid} \\
& \leqslant n^{\frac{1}{\delta}} C_{\varepsilon} \sup _{1 \leqslant k \leqslant n}\left\|g_{k}\right\| \|_{1 \frac{1}{\delta}}^{\sup _{1 \leqslant k \leqslant n}\left\|f_{k}\right\|^{\frac{1}{\delta}} \frac{4}{\left(1-|w|^{2}\right)^{2}} P_{1}\left[|u|^{\delta}\right](w)^{1 / \delta} P_{1}\left[|v|^{\delta}\right](w)^{1 / \delta}} \\
& \quad \times \| \sum_{k=1}^{n}\left(H_{f_{k}(z)} k_{w}(z) \overline{\left(H_{\overline{g_{k}(\zeta)}} k_{w}(\zeta)\right)} \|^{1 /(2+\varepsilon)} .\right.
\end{aligned}
$$

Proof of Theorem 4.1. (i) If (S_{F}, S_{G}] is compact, then $H_{F} H_{G^{*}}^{*}$ is compact by (2.1). It is obvious that $H_{F} H_{G^{*}}^{*}$ is compact if and only if each entry of $\left(\sum_{k=1}^{n} H_{f_{i k}} H_{\overline{\bar{B}_{k j}}}^{*}\right)_{i j}$ is compact. Then Lemma 6.2 in [10] implies that $\left\|\sum_{k=1}^{n} H_{f_{i k}} H_{\overline{k_{k j}}}^{*}-S_{\varphi_{w}}\left(\sum_{k=1}^{n} H_{f_{i k}} H_{\overline{\bar{b}_{k j}}}^{*}\right) S_{\overline{\varphi_{w}}}\right\| \rightarrow 0$ as $|w| \rightarrow 1-$. From Proposition 4.1 in [10], we know that $k_{w} \otimes k_{w}=I-2 T_{\varphi_{w}} T_{\bar{\varphi}_{w}}+$ $T_{\varphi_{w}}^{2} T_{\bar{\varphi}_{w}}^{2}$. Using identities (4.6) and (4.7) in [10], we have

$$
\begin{aligned}
& \left\|\sum_{k=1}^{n}\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\overline{\bar{z}}_{k j}} k_{w}\right)\right\| \\
& =\left\|\sum_{k=1}^{n} H_{f_{i k}}\left(k_{w} \otimes k_{w}\right) H_{\bar{B}_{k j}}^{*}\right\| \\
& =\left\|\sum_{k=1}^{n}\left(H_{f_{i k}} H_{\bar{g}_{k j}}^{*}-2 H_{f_{i k}} T_{\varphi_{w}} T_{\bar{\varphi}_{w}} H_{\overline{\xi_{k j}}}^{*}+H_{f_{i k}} T_{\varphi_{w}}^{2} T_{\bar{\varphi}_{w}}^{2} H_{\bar{g}_{k j}}^{*}\right)\right\| \\
& =\left\|\sum_{k=1}^{n}\left(H_{f_{i k}} H_{\bar{z}_{k j}}^{*}-2 S_{\varphi_{w}} H_{f_{i k}} H_{\bar{g}_{k j}}^{*} S_{\overline{\bar{\varphi}}_{w}}+S_{\varphi_{w}}^{2} H_{f_{i k}} H_{\bar{k}_{k j}}^{*} S_{\bar{\varphi}_{w}}^{2}\right)\right\| \\
& \leqslant\left\|\sum_{k=1}^{n}\left(H_{f_{i k}} H_{\overline{\bar{g}_{k j}}}^{*}-S_{\varphi_{w}} H_{f_{i k}} H_{\overline{\bar{g}_{k j}}}^{*} S_{\bar{\varphi}_{w}}\right)\right\|+\left\|\sum_{k=1}^{n} S_{\varphi_{\varphi_{w}}}\left(H_{f_{i k}} H_{\overline{g_{k j}}}^{*}-S_{\varphi_{w}} H_{f_{i k}} H_{\overline{\bar{b}}_{k j}}^{*} S_{\bar{\varphi}_{w}}\right) S_{\bar{\varphi}_{w}}\right\| \\
& \leqslant 2\left\|\sum_{k=1}^{n}\left(H_{f_{i k}} H_{\bar{g}_{k j}}^{*}-S_{\varphi_{w}} H_{f_{i k}} H_{\bar{g}_{k j}}^{*} S_{\bar{\varphi}_{w}}\right)\right\| \\
& \leqslant 2\left\|\sum_{k=1}^{n} H_{f_{i k}} H_{\overline{g_{k j}}}^{*}-S_{\varphi_{w}}\left(\sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*}\right) S_{\bar{\varphi}_{w}}\right\| .
\end{aligned}
$$

Thus $\lim _{|w| \rightarrow 1-}\left\|\sum_{k=1}^{n}\left(H_{f_{i} k_{w}}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right\|=0$ for any $1 \leqslant i, j \leqslant n$. Therefore $\|\left(H_{F} k_{w}\right) \otimes$ $\left(H_{\bar{G}} k_{w}\right) \| \rightarrow 0$ as $|w| \rightarrow 1-$. We get the conclusion.
(ii) If $\|\left(H_{F(z)} k_{w}(z) \overline{\left(H_{\overline{G(\zeta)}} k_{w}(\zeta)\right)^{T}} \| \rightarrow 0\right.$ as $|w| \rightarrow 1-$, then for each $1 \leqslant i, j \leqslant n$, we have $\left\|\sum_{k=1}^{n}\left(H_{f_{i k}(z)} k_{w}(z)\right) \overline{\left(H_{\bar{g}_{k j}(\zeta)} k_{w}(\zeta)\right)}\right\| \rightarrow 0$ as $|w| \rightarrow 1-$. In the following, we only need to prove $\sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*}$ is a compact operator, for each $1 \leqslant i, j \leqslant n$.

For $u, v \in C_{c}(\mathbb{D}) \cap\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$, as Theorem 6.3 in [10] we have

$$
\left\langle\sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*} u, v\right\rangle=\sum_{k=1}^{n}\left\langle H_{\bar{g}_{k j}}^{*} u, H_{f_{i k}}^{*} v\right\rangle=I+I I+I I I
$$

where

$$
\begin{gathered}
I=3\left(\sum_{k=1}^{n} \int_{\mathbb{D}}\left(1-|w|^{2}\right)^{2}\left(H_{\bar{g}_{k j}}^{*} u\right)(w) \overline{\left(H_{f_{i k}}^{*} v\right)(w)} d A(w)\right), \\
I I=\frac{1}{2}\left(\sum_{k=1}^{n} \int_{\mathbb{D}}\left(1-|w|^{2}\right)^{2}\left(H_{\bar{g}_{k j}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{i k}}^{*} v\right)^{\prime}(w)} d A(w)\right), \\
I I I=\frac{1}{3}\left(\sum_{k=1}^{n} \int_{\mathbb{D}}\left(1-|w|^{2}\right)^{3}\left(H_{\bar{g}_{k j}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{i k}}^{*} v\right)^{\prime}(w)} d A(w)\right) .
\end{gathered}
$$

For $0<s<1$ we write $I=I_{s}+I_{s}^{\prime}, I I=I I_{s}+I I_{s}^{\prime}$ and $I I I=I I I_{s}+I I I_{s}^{\prime}$, where

$$
\begin{aligned}
I_{s} & =3\left(\sum_{k=1}^{n} \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left(H_{\bar{g}_{k j}}^{*} u\right)(w) \overline{\left(H_{f_{i k}}^{*} v\right)(w)} d A(w)\right), \\
I I_{s} & =\frac{1}{2}\left(\sum_{k=1}^{n} \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left(H_{\bar{g}_{k j}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{i k}}^{*} v\right)^{\prime}(w)} d A(w)\right), \\
I I I_{s} & =\frac{1}{3}\left(\sum_{k=1}^{n} \int_{s<|w|<1}\left(1-|w|^{2}\right)^{3}\left(H_{\bar{g}_{k j}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{i k}}^{*} v\right)^{\prime}(w)} d A(w)\right) .
\end{aligned}
$$

It is easy to see that there exist compact operators $K_{s}^{I}, K_{s}^{I I}$ and $K_{s}^{I I I}$ on $\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ such that $\left\langle K_{s}^{I} u, v\right\rangle=I_{s}^{\prime},\left\langle K_{s}^{I I} u, v\right\rangle=I I_{s}^{\prime}$ and $\left\langle K_{s}^{I I I} u, v\right\rangle=I I I_{s}^{\prime}$. Observing that the operator $K_{s}=K_{s}^{I}+K_{s}^{I I}+K_{s}^{I I I}$ is compact, and $\left\langle\left(\sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*}-K_{s}\right) u, v\right\rangle=I_{s}+I I_{s}+I I I_{s}$, we will estimate each of the terms $I_{s}, I I_{s}$ and $I I I_{s}$. Note that

$$
\begin{aligned}
I_{s} & =3\left(\sum_{k=1}^{n} \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left(H_{\bar{g}_{k j}}^{*} u\right)(w) \overline{\left(H_{f_{i k}}^{*} v\right)(w)} d A(w)\right) \\
& =3 \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left(\sum_{k=1}^{n}\left(H_{\bar{g}_{k j}}^{*} u\right)(w) \overline{\left(H_{f_{i k}}^{*} v\right)(w)}\right) d A(w) \\
& =3 \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left(\sum_{k=1}^{n}\left\langle H_{\bar{g}_{k j}}^{*} u, K_{w}\right\rangle \overline{\left\langle H_{f_{i k}}^{*} v, K_{w}\right\rangle}\right) d A(w) \\
& =3 \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left(\sum_{k=1}^{n}\left\langle u, H_{\bar{g}_{k j}} K_{w}\right\rangle\left\langle H_{f_{i k}} K_{w}, v\right\rangle\right) d A(w) \\
& =3 \int_{s<|w|<1}\left\langle\sum_{k=1}^{n}\left(\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right) u, v\right\rangle d A(w) .
\end{aligned}
$$

It follows that

$$
\left|I_{s}\right| \leqslant 3 \sup _{s<|w|<1}\left\|\sum_{k=1}^{n}\left(\left(H_{f_{i k}} k_{w}\right) \otimes\left(H_{\bar{g}_{k j}} k_{w}\right)\right)\right\| \cdot\|u\|_{2}\|v\|_{2}
$$

Using Lemma 4.2 we have

$$
\begin{aligned}
\left|I I_{s}\right| \leqslant & \frac{1}{2} \int_{s<|w|<1}\left(1-|w|^{2}\right)^{2}\left|\sum_{k=1}^{n}\left(H_{\bar{g}_{k j}}^{*} u\right)^{\prime}(w) \overline{\left(H_{f_{i k}}^{*} v\right)^{\prime}(w)}\right| d A(w) \\
\leqslant & \frac{n^{\frac{1}{\delta}}}{2} C_{\varepsilon} \sup _{1 \leqslant k \leqslant n}\left\|g_{k j}\right\|_{\infty}^{\frac{1}{\delta}} \sup _{1 \leqslant k \leqslant n}\left\|f_{i k}\right\|^{\frac{1}{\infty}} \int_{s<|w|<1} P_{1}\left[|u|^{\delta}\right](w)^{1 / \delta} P_{1}\left[|v|^{\delta}\right](w)^{1 / \delta} d A(w) \\
& \times \sup _{s<|w|<1} \| \sum_{k=1}^{n}\left(H_{f_{i k}(z)} k_{w}(z) \overline{\left(H_{\bar{g}_{k j}(\zeta)} k_{w}(\zeta)\right)} \|^{1 /(2+\varepsilon)} .\right.
\end{aligned}
$$

Since $p=2 / \delta>1$ and P_{1} is L^{p}-bounded, there exists a constant C such that

$$
\int_{s<|w|<1} P_{1}\left[|u|^{\delta}\right](w)^{2 / \delta} d A(w) \leqslant C \int_{s<|w|<1}\left[|u|^{\delta}(w)\right]^{2 / \delta} d A(w)=C\|u\|_{2}^{2}
$$

By the Cauchy-Schwarz inequality,

$$
\int_{s<|w|<1} P_{1}\left[|u|^{\delta}\right](w)^{1 / \delta} P_{1}\left[|v|^{\delta}\right](w)^{1 / \delta} d A(w) \leqslant C\|u\|_{2}\|v\|_{2}
$$

Thus

$$
\begin{aligned}
\left|I I_{s}\right| \leqslant & \frac{C n^{\frac{1}{\delta}}}{2} C_{\varepsilon} \sup _{1 \leqslant k \leqslant n}\left\|g_{k j}\right\|_{\infty}^{\frac{1}{\delta}} \sup _{1 \leqslant k \leqslant n}\left\|f_{i k}\right\|_{\infty}^{\frac{1}{\delta}} \\
& \times \sup _{s<|w|<1}\left\|\sum_{k=1}^{n}\left(H_{f_{i k}(z)} k_{w}(z)\right) \overline{\left(H_{\bar{g}_{k j}(\zeta)} k_{w}(\zeta)\right)}\right\|^{1 /(2+\varepsilon)}\|u\|_{2}\|v\|_{2}
\end{aligned}
$$

Term $I I I_{s}$ is estimated similar to $I I_{s}$. From the estimates of the three terms $I_{s}, I I_{s}$ and $I I I_{s}$, we obtain

$$
\left|\left\langle\left(\sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*}-K_{s}\right) u, v\right\rangle\right| \leqslant C^{\prime} \sup _{s<|w|<1} \| \sum_{k=1}^{n}\left(H_{f_{i k}(z)} k_{w}(z) \overline{\left(H_{\bar{g}_{k j}(\zeta)} k_{w}(\zeta)\right)}\left\|^{1 /(2+\varepsilon)}\right\| u\left\|_{2}\right\| v \|_{2}\right.
$$

for some constant $C^{\prime}>0$, combining with Lemma 4.1, we conclude that

$$
\left\|\sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*}-K_{s}\right\| \leqslant C^{\prime} \sup _{s<|w|<1}\left\|\sum_{k=1}^{n}\left(H_{f_{i k}(z)} k_{w}(z)\right) \overline{\left(H_{\bar{g}_{k j}(\zeta)} k_{w}(\zeta)\right)}\right\|^{1 /(2+\varepsilon)}
$$

So if $\left\|\sum_{k=1}^{n}\left(H_{f_{i k}(z)} k_{w}(z)\right) \overline{\left(H_{\bar{g}_{k j}(\zeta)} k_{w}(\zeta)\right)}\right\| \rightarrow 0$ as $|w| \rightarrow 1-$, then it follows from the above inequality that $K_{s} \rightarrow \sum_{k=1}^{n} H_{f_{i k}} H_{\bar{g}_{k j}}^{*}$ in operator norm. Since each of the operators
K_{s} is compact, we conclude that the operator $\sum_{k=1}^{n} H_{f_{i k}} H_{\overline{g_{k j}}}^{*}$ is compact. This completes the proof.

By Theorem 4.1, it is easy to prove Theorem 4.2.
Proof of Theorem 4.2. Let

$$
B=\left(\begin{array}{cc}
G & F \\
0 & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
F & 0 \\
-G & 0
\end{array}\right)
$$

Then $S_{F} S_{G}-S_{G} S_{F}$ is compact if and only if $S_{B} S_{C}$ is compact.
If $S_{B} S_{C}$ is compact, then (2.1) implies that the operator $S_{B C}-H_{B} H_{C^{*}}^{*}=S_{B} S_{C}$ is compact. Let $u_{w, s}$ be defined as in Corollary 6.2 in [11] and $B=\left(b_{i j}\right)_{2 n \times 2 n}, C=$ $\left(c_{i j}\right)_{2 n \times 2 n}$, it follows that $\left(S_{\left(\sum_{k=1}^{2 n} b_{i k} c_{k j}\right)}-\sum_{k=1}^{2 n} H_{b_{i k}} H_{\bar{c}_{k j}}^{*}\right)_{2 n \times 2 n}$ is compact and

$$
\left\|\left(S_{\left(\sum_{k=1}^{2 n} b_{i k} c_{k j}\right)}-\sum_{k=1}^{2 n} H_{b_{i k}} H_{\bar{c}_{k j}}^{*}\right) u_{w, s}\right\|_{2} \rightarrow 0, \quad s \rightarrow 0+
$$

By Lemma 7.1 in [11] we also have

$$
\left\|\sum_{k=1}^{2 n} H_{b_{i k}} H_{c_{k j}}^{*} u_{w, s}\right\|_{2} \rightarrow 0, \quad s \rightarrow 0+
$$

Since $\left(S_{\left(\sum_{k=1}^{2 n} b_{i k} c_{k j}\right)} u_{w, s}\right) \perp\left(\sum_{k=1}^{2 n} H_{b_{i k}} H_{c_{k j}}^{*} u_{w, s}\right)$, we get

$$
\left\|S_{\left(\sum_{k=1}^{2 n} b_{i k} c_{k j}\right)} u_{w, s}\right\|_{2}=\left\|\left(S_{\left(\sum_{k=1}^{2 n} b_{i k} c_{k j}\right)}-\sum_{k=1}^{2 n} H_{b_{i k}} H_{c_{k j}}^{*}\right) u_{w, s}\right\|_{2}+\left\|\sum_{k=1}^{2 n} H_{b_{i k}} H_{c_{k j}}^{*} u_{w, s}\right\|_{2} \rightarrow 0, s \rightarrow 0+.
$$

Thus Lemma 7.2 in [11] implies that

$$
\left|\sum_{k=1}^{2 n} b_{i k}(w) c_{k j}(w)\right|^{2}=\lim _{s \rightarrow 0+}\left\|S_{\left(\sum_{k=1}^{2 n} b_{i k} c_{k j}\right)} u_{w, s}\right\|_{2}^{2}=0
$$

for a.e. w on \mathbb{D}, that is $B(w) C(w)=0$ for almost all $w \in \mathbb{D}$. So we get that if $S_{B} S_{C}$ is a compact operator, then $H_{B} H_{C^{*}}^{*}$ is compact and $B C=0$.

Using Theorem 4.1, and combining with the fact that $S_{F} S_{G}-S_{G} S_{F}$ is compact if and only if $H_{B} H_{C^{*}}^{*}$ is compact and $B C=0$, we can get Theorem 4.2. This completes the proof.

An operator A is said to be essentially normal if $A A^{*}-A^{*} A$ is compact. By taking $G=F^{*}$, we immediately get the following characterization of essentially normal block Toeplitz operators.

Corollary 4.1. Let $F \in L_{n \times n}^{\infty}(\mathbb{D})$.
(i) If S_{F} is a essentially normal block Toeplitz operators, then $F F^{*}=F^{*} F$ and $\|\left(H_{F} k_{w}\right)$ $\otimes\left(H_{F^{T}} k_{w}\right)-\left(H_{F^{*}} k_{w}\right) \otimes\left(H_{\bar{F}} k_{w}\right) \| \rightarrow 0$ as $|w| \rightarrow 1-$.
(ii) If $\left\|\left(H_{F(z)} k_{w}(z)\right) \overline{\left(H_{\overline{F^{*}(\zeta)}} k_{w}(\zeta)\right)^{T}}-\left(H_{F^{*}(\zeta)} k_{w}(\zeta)\right) \overline{\left(H_{\overline{F(z)}} k_{w}(z)\right)^{T}}\right\| \rightarrow 0$ as $|w| \rightarrow 1-$, then S_{F} is a essentially normal block Toeplitz operators and $F F^{*}=F^{*} F$.

Acknowledgements. The suggestions given by the editor and the referee for the improvement of the original paper are gratefully acknowledged.

REFERENCES

[1] S. AXLER, Bergman spaces and their operators. Surveys of some recent results in operator theory, Vol. I, 1-50, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.
[2] S. AXLER AND Ž. ČUČKOVIĆ, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1-12.
[3] S. AXLER, Ž. ČUČKOVIĆ AND N. V. RaO, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951-1953.
[4] A. Brown and P. R. Halmos, Algebraic Properties of Toeplitz Operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
[5] P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, Pacific J. Math. 190 (1999), no. 1, 87-109.
[6] C. Gu and D. Zheng, Products of block Toeplitz operators, Pacific J. Math. 185 (1998), no. 1, 115-148.
[7] R. KERR, Products of Toeplitz operators on a vector valued Bergman space, Integral Equations Operator Theory 66 (2010), no. 3, 367-395.
[8] B. Zhang, Y. Shi and Y. Lu, Products of block dual Toeplitz operators, Acta Mathematica Sinica, Chinese Series, Nov., 2011, Vol 54, no. 6, pp. 901-912.
[9] K. Stroethoff, Essentially commuting Toeplitz operators with harmonic symbols, Canad. J. Math. 45 (1993), no. 5, 1080-1093.
[10] K. Stroethoff and D. Zheng, Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1999), no. 1, 289-313.
[11] K. Stroethoff and D. Zheng, Algebraic and spectral properties of dual Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2495-2520.
[12] K. ZHU, Operator theory in function spaces, Second edition. Mathematical Surveys and Monographs, 138. American Mathematical Society, Providence, RI, 2007.

[^0]: Mathematics subject classification (2010): 47B35, 47B47.
 Keywords and phrases: Vector valued Bergman space, dual Toeplitz operator, commutator, semicommutator, compact.

 This research is supported by NSFC, Item Numbers: 11271059, 11326097 and 11301046.

