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COMMUTING OF BLOCK DUAL TOEPLITZ OPERATORS

B0 ZHANG AND YUFENG LU

(Communicated by V. V. Peller)

Abstract. In this paper, we characterize the commuting (semi-commuting) and the essentially
commuting (semi-commuting) of block dual Toeplitz operators.

1. Introduction

Let dA denote Lebesgue area measure on the unit disk D, normalized so that the
measure of D equals 1. The scalar valued Bergman space L2(ID) is the Hilbert space
consisting of all analytic functions on ID that are also in L?>(ID,dA). The scalar val-
ued Bergman space L2(ID) is a Hilbert space with the inner product given by (f,g) =
Jpf(2)g(2)dA(z), for f, g € L2(D). Let Py denote the orthogonal projection of
L*(DD,dA) onto L2(DD). For a function f € L*(D), the Toeplitz operator Ty : L2(D) —
L%(D) and the Hankel operator Hy : L2(D) — (L2(ID))" are respectively defined by

Ts(g) =Po(fg), Helg)=(I—P)(fg), geLi(D).

Ty and Hy are clearly bounded linear operators for every function f € L(ID). We can
also define the dual Toeplitz operator Sy : (L2(D))* — (L2(D))*, Spg= (I—P)(fg),
g € (L2(D))*. Clearly, S is a bounded linear operator on (L2(ID))* for every function
ferl=(D).

For a measurable function f: D) — C" with [ [|f(2)||2:dA(z) < o, we say that
f € L*(D,C"). The space L*(ID,C") is a Hilbert space with the inner product given
by (f,g) = Jp(f(2),g(z))cndA(z). The vector valued Bergman space L2(ID,C") is
the Hilbert space consisting of all analytic C"— valued functions on D that are also
in L2(D,C"). Let My, be the set of n x n complex matrices, L., (D) denote the
space of M, -valued essentially bounded Lebesgue measurable functions on ) and

H;:, (D) denote the space of M, ,-valued bounded analytic functions on D.
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- (D), the block Toeplitz operator Tr and the block Hankel
operator Hr on L?(ID,C"), the block dual Toeplitz operator Sr on (L*(ID,C"))* with
symbol F' are defined respectively, as follows:

For F = (fij)nxn € L,

Try Try - Ty, Hp, Hyy -+ Hy,, Stir Stz = St
Tr— ijzl Tf-zz Tfj2n Hp— H{‘zl H{’zz H{’zn and Sp— ijzl ijzz SJTZn 7
Tfnl TfnZ Tfnn anl anZ ann anl an2 ann

where each Ty, (1 <i,j < n) is a Toeplitz operator on L2(D), each Hyp,(1<i,j<n)
is a Hankel operator on L2(D) and each § #;(1 <i,j <n) is a dual Toeplitz operator
on (L2(D))*. Let P be the orthogonal projection from L*(ID,C") onto L2(ID,C"). It
is easy to see that Tru = P(Fu) and Spv = (I — P)(Fv), where u = (uy,ua,---,u,)",
v=(v,v2,--,v)" and u; € L2(D), v; € (LZ(D))*. Clearly, Tr and Sr are bounded
linear operators for every function F = (fij)uxn € Ly, (D).

The problem on commuting (dual) Toeplitz operators has attracted special atten-
tion over the years, particularly in view of the implications that commutativity has for
the study of the associated structural and spectral theories. In the setting of the Hardy
space over the unit disk, the celebrated theorem of Brown and Halmos [4] gives con-
crete necessary and sufficient conditions on the symbols to guarantee commutativity
and Gorkin and Zheng [5] completely characterized the essentially commuting Toeplitz
operators.

In the case of the Bergman space of the unit disk, the first complete result was
obtained by S. Axler and Zeljko. Cu¢kovié [2], who characterized commuting Toeplitz
operators with harmonic symbols. K. Stroethoff later extended that result to essentially
commuting Toeplitz operators in [9], and S. Axler, Zeljko. Cugkovi¢ and N. V. Rao [3]
subsequently proved that if two Toeplitz operators commute and the symbol of one of
them is nonconstant analytic, then the other one must be analytic.

Recently, many mathematicians have paid more attention to dual Toeplitz opera-
tors.

On the unit disk, commutativity of dual Toeplitz operators were studied by K.
Stroethoff and D. Zheng in [11]. On the vector valued Bergman space, Kerr [7] gave
a necessary and sufficient condition for the boundedness of the Toeplitz product T T+
on L2(D,C"), and Lu, Zhang and Shi [8] gave some necessary and sufficient conditions
for the product of two block dual Toeplitz operators still to be a block dual Toeplitz op-
erator. Because two matrix-valued functions may not be commuting, the commuting
problems of block (dual) Toeplitz operators are much more complicated and interest-
ing. On the vector valued Hardy space H?(C"), Gu and Zheng [6] gave necessary and
sufficient conditions for two block Toeplitz operators commuting or essentially com-
muting. In this paper, we investigate when two block dual Toeplitz operators on the
vector Bergman space commute or essentially commute and give some necessary and
sufficient conditions.
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2. Preliminaries
On the vector valued Bergman space, it is easy to check that
Trg = Tr1G + Hp-Hg
and
SrG = SrSG + HpH . (2.1)

If we write f = f, + f_ foreach f € L>(D) where f, € L2(D) and f_ € (L2(D))*
then F = (fij)axn can also be written as F = F + F_ with Fy = ((fij)+)nxn and
F_ = ((fij)=)nxn. For A= (ajj) € Myx,, we define

||AH.><, = Ssup \a,-j|.

1<i, j<n
Let (M,xn)1 denote the closed unit ball of M, in the above norm. Let &2, be the
set of n x n permutation matrices and E; = (ajx)nxn, Where aj; = 1 and ay = 0(i #
jork= j). Note that for a n x n matrix B, BE; and B have the same j—th column
and all other columns of BE; equal to zero.
The Bergman space lel (D) has reproducing kernels K,, given by
1

KW(Z):m7 Z,WGD.

Forevery h € L2(D), we have (h,K,,) = h(w), w € D. In particular, ||K,||» = (KW,KWﬁ
= (1 —|w[?)~!. The functions

1—|wp?

kW(Z) = m

are the normalized reproducing kernels for Lg (D).
For w € D, the fractional linear transformation ¢,,, defined by

is an automorphism of the unit disk. In fact, ¢, ' = ¢@,. The real Jacobian for the
change of variable { = ¢,,(z) is equal to |@’,(z)|*> = (1 — |w|?)?/|1 —Wwz|*. Thus we
have the change-of-variable formula

/h 0w (2))dA(z /h 11__|W| /h Whn(D)PdAG),  (22)

where / is a positive measurable or integrable function on .
For f, g € L*(D), define the rank 1 operator f®g: L*(D) — L*(D) by

(f@gh=(hgf
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for h € L*(D).
Also for F = (fij)nxn,G = (8ij)nxn € Muxn(L*(D)), define the operator F ® G:
L*(D,C") — L*(D,C") by

n n

n
D fu®gn X fuu®gke o X fik @ &kn
k=1 =1 =

P "
D ®gn YR8k X fok D &k
(FRG)h=| k=1 k=1 k=1

n n n
X k@8 X fu®@8r2 X fuk @ &
k=1 k=1 k=1
for h € L>(D,C").
Given a linear operator 7 on (L2(D))* and w € D, we define the operator S,,(7T)
by
Sw(T)=T — Se, TS5, -
Note that
So(T) = Su(Sw(T)) =T —284,TSg, + 55, TS% .
From the proof of Proposition 4.8 in [10], we have
(Hyky) ® (Hghy) = Hy (ky @ k) Hy = Sy, (H/HS).

Let T be a linear operator on (L2(ID))* ®C", we can also define the operator Sy (T) =
T —Sy, TSVW , Where

Sp, 0 -+ 0
0 Sy, -+ O
Sl[/w: . (P . .
0 0 "'S(Pw .

It follows that

Sip(T) =T =28y, TSy, + 5, TS5, .

3. Commuting block dual Toeplitz operators

Stroethoff and Zheng [11] showed that the semi-commutator S¢S, — S¢e is zero
exactly when either f or g is analytic for the scalar functions f and g, and they
also characterized when the commutator S¢S, — S¢Sy is zero. In this section, we
will characterize when the semi-commutator (Sr,Sg] = SrSg — Spg or the commu-
tator [Sr,Sg] = SrS¢ — SGSF is zero for block dual Toeplitz operators with matrix
symbols F and G.
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THEOREM 3.1. Let F = (fij)uxn, G = (8ij)nxn € Lyyp, (D). Then:
(i) (SF,Sg] =0 ifand only if F-@G_ =0;
(ii) (SF,S(;} =0 if and only if there exist matrix A; € (Myxn)1 and Rj € &y for each
j=1,---,n, such that

(Rj—Aj)F ceH”

nxn

(D) and A; GE; € Hy,

nxn

D), j=1,-.n.

Proof. (i) If (Sr,Sg] =0, thatis SrS¢ = Sr¢, applying (2.1), then we have Hr H}.. =
n
0. Itis easy to check that S}, (HrHG.) = ( X (Hfky) ® (Hg ky)), - Therefore,
k=1

8kj"™ W

n —
Y (Hpl)® (Hgkjl) =0, thatis F. ® G_ =0.
k=1
Conversely, suppose F~ ® G_ = 0. Claim 1: SzS¢ is a dual Toeplitz operator.
We use induction to prove Claim 1. If Hp 1 ® Hg 1 =0, then fi; or gy is

analytic on D. Therefore, the result is true for 1.

n—1
Now assume the result is true for n — 1. Thatis, if ¥ (Hy, 1) ® (Hg,1) =0, then
k=1 '

n—1
2 S£iSe, is a dual Toeplitz operator.
k=1 '
In the following, we prove that the result is true for n.
n
If 3 (Hp, 1) ® (Hg,1) =0, then we get
k=1

(t, Hgy )y, 1+ (o 1)Hy L+ (u, H, 1) Hy, 1 =0 (3.

for all u € (L2)*. Let Q; = V{Hg 1;1 <k<n-—1}. Forevery uc Qj*, we have
(u,Hg, 1)Hy, 1 =0. It follows that Hy, 1 =0 (Case 1) or (u,Hg, 1) =0 (Case 2).

n—1
Case 1. 1f Hy, 1 =0, then f;, is analyticon D and ¥ (Hy, 1) ® (Hg,1) =0. By
k=1
n—1
the induction hypothesis, we obtain that 2 S£Sg,; is a dual Toeplitz operator. Since

2 StiSe; = 2 kaSgkj—i—Sfm ¢,; and fi, is analytic, we can conclude that Z SfuSer;

1s also a dual Toephtz operator.
Case 2. If (u,Hg, 1) =0 for each u € Qj , then Hg .1 € Q;. So we get that there
exist Ay, A, -+, A,_1 € C such that

g)lj ZAngl

So g,j — Mg — Mg~ — A 18(n-1) is an analytic function, denoted by /. Re-
placing g,; by A181;+A2g2j++ + A1 (n—1)j+ I in (3.1), we get

n—1

e
> (u,Hg 1)Hp 1+ (u, Y, AeHg, 1)H, 1=0.
k=1 k=1
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Thus

<u’ Hgl/ 1>Hftl J”Il.fin 1 + <u ngf

1)H

fiZJ"IZ.fm 1 ot < H

8(n-1)j 1>Hftn l)“"ln lflnl

It is equal to
n—1

2 (Hfik+zkfin 1) ® (Hgkj 1) =0.

k=1
n—1

By the induction hypothesis, we get Y, S( ot Tt )Sgkj is a dual Toeplitz operator. Note
k:1 J 1 Jimn

that

n n—1
2 SfikSgkj = 2 SfikSgkj +SfinSgnj
k=1 k=1

n—1
=Y

:kSgkj + Sfmsf
k
n

X181+ A28 j+ A+ An18(n1);+h

I
—- =

= SflkSgkj + 2 2'kamSgk/ +Sf ne

w-
I

where the last equality follows from that % is an analytic function. So Z SfSe; 18

also a dual Toeplitz operator. By the arbitrary of i and j, we conclude that SFSg is a
dual Toeplitz operator. Claim 1 is proved.
If SrSg is a dual Toeplitz operator, then there exists an H = (h, j)an eLy (D),

such that S¢S = Sy . Applying (2.1), we have Spg_yg = HrH}... It is easy to check
n
that S5, (HpH{.) = (kgl(Hﬂkk w) ® (Hg, ky)) ., - Thus

8kj"W

S n (H ® (Hg, .k
(17‘%V‘2)2(k§1.fikgkj7 ij g‘l flk 8kj )
n
In particular, S n = Hr1)® (Hg, . 1).
P (1—|Z\2)2(k§1ﬂkgkj—hi_/) k§1( ) ® 8kj )
Since rank(S n ) < n, there exist not all zero complex numbers

(1_|Z‘2)2(k§lfikgkj_ t/)
ai, az, -+, apy+1, such that

S n a12+a222+"'+a lzn+l :O
(1—|z\2)2(k§1ﬂkgk_/—hi_/)( " )

Combining the above equality with facts that @ = (1 — |z|?)? ( Z fixgkj — hij)(a1Z +

@7+ +a, 12" is analytic and ‘ |hnll 0(z) =0, we get (p( ) 0 forall zeD.
z|—1—
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n
Thus 3 figk; = hij with the exception of at most n+ 1 points. Therefore, SpSg =
k=1

Src-

(ii) From the proof of (i), we have if SpSi = Sr¢, then ( i (Hf, ky) ® (Hgk,k Nnxn
=0. Foreach j=1,---,n, by Proposition 4 in [6], there é{;ilst matrix Aj € (Myxn)i
and permutation matrix R; such that

(Rj—Aj)Hp, 1, Hy )T =0, i=1,-n
and

A;‘[Hﬁj
Since (R; —A;)(I—Py) = (I—Po)(R; —A;), we have

(Rj—Ap[fin, Sl €Hp (D), i=1,-,n

1,---,Hg 1]T =0.

8nj

and
Aj[glp 7§nj]T € HZOXI(D)
So we get

(Rj—Aj))FT € H?

nxn

(D) and AGE €eH;

nxn

(D).
Next, we prove the sufficiency. For A € (M,x,)1 and permutation matrix R;. Let
xXi= (X, 7xi")T =(R;j—Aj)fic and y=(y1, - 7)’n>T :Aj‘go,

where o is permutation and fic = (fis(1),"**» fio(n)) - then we have

P

(Hfzkkw)®(H§k]k ) H* Hfsz]—,_ +H* Hfsnj

+Hj Hy +-+H} Hy,, i=1,n,

k=1

where j=1,---,n. Since xi, yp € H*(D), 1 <k <n, (Hf, ky )®(Hé—,k/.kw) =0

H M= WMS

1
for 1 <i, j <n. Itis easy to check that S, (HpH.) = ( (Hﬂk w) @ (Hgk/.kw))nxn.

Therefore, we have HpH/ = 0. That is SpSg = Sgg .
So we complete the proof. [

In the following, we study the commutator [Sr,Ss] = SpSc — SGSF by reducing
it to the semi-commutator case. Let

s~ (55). e (5,0)

A simple calculation gives that

S5 — S Sr Sr 0\ [ SeSr—SrSg 0
B2e=\10 0 )\ =ss0)~ 0 0)
Combining this with (2.1), we see that SrSg = SgSF if and only if Spc = HgH. . By

Theorem 3.1, we have BC = 0, that is GF — FG =0 and HgH}.. = 0. This leads to the
following result.
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THEOREM 3.2. Let F = (fij)uxn, G = (8ij)nxn € Ly (D). Then:
(i) [SF,SG] =0 if and only if FG=GF and F- @G- —G_®F_ =0.
(ii) [Sr,Sc] = 0 if and only if FG = GF and there exist matrix Aj € (Mayx2n)1 and
Rj € D, foreach j=1,---,n, such that

GT - F - .
(Rj_Aj)<FT>EH2n><n(D) and A;<_6>EJ'GH2n><n(D)7 Jj=1,-,n

An operator A is said to be normal if AA* —A*A = 0. Taking G = F* in Theorem
3.2 and noting that S = Sr+, we have the following characterization of normal block
Toeplitz operators.

COROLLARY 3.1. Let F € L;;, (D). Then:
(i) Tr is normal if and only if FF* = F*F and F- @ FT —F*@F_ =0.
(ii) Tr is normal if and only if FF* = F*F and there exist matrix Aj € (Manxon)1 and

Rj € D, foreach j=1,---,n, such that

F - «f F - .
(RJ—A,) <FT) €H2an(D) and AJ(_FT>EJ€H2H><"(D)7 ]:17-..7}‘1.

4. Essentially commuting block dual Toeplitz operators

Stroethoff and Zheng [11] proved that the commutator [S,S,] is compact if and
only if ||(Hgky) ® (Hgkw) — (Hyrky) ® (Hgky)|| — O as [w] — 1—, where f and g be
bounded measurable functions on ). For block dual Toeplitz operators, we will give
a necessary and a sufficient condition for the semi-commutator (Sr,S¢] = SrS¢ — Srg
and the commutator [Sr,Sg| = SFrSG — S¢SF to be compact, analogous to the result of
Stroethoff and Zheng.

For F = (fij)nxn € Lyy,,(D), we define

Hy, ky Hy k- Hy, oy
Hrk, — Hfz'lkw Hfz.zkw Hfz.nkw

anlkw anZkW e annkw
then we get our main result.

THEOREM 4.1. Let F = (fij)nxn, G = (8ij)nxn € Ly, (D).
(i) If (Sr,Sc] is compact, then ||(Hrky) ® (Hgky)|| — 0, as [w| — 1—.
(i) If H(HF(z)kw(Z))(Hmkw(C))TH — 0, as |w| — 1—, then (Sp,S¢] is compact.
THEOREM 4.2. Let F, G € L}, ,(D).
(i) If [SF, S| is compact, then FG = GF and ||(Hrk,,) ® (Hgky) — (Hckw) @ (Hgky) ||
—0as |w— 1—.
(i) IF | o () B g o VT — (Hlsc o () VT | — 0, a5 o] — 1,
then [Sr,S¢] is compact and FG = GF .
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To prove the main theorems we will make use of the following lemmas.

LEMMA 4.1. If fi, gx € L*(D), k=1,2,---,n, then

n

I3 Aol < 20 AE

k=1 k=1

Proof. Let u € L*(D). Then it is easy to check that
2 fe®gk) ||§—/|z u,8k) fi(2) PdA(z)
= [| 3 [@me)@aa0 arce)

=[] /H)u@)(};gk@vk(z»dfx(o|2dA<z>

Applying Holder’s inequality we have

| [OE 8O0 < [m@Pae) [[| Sa@ne are)

Thus
I3 (e sula < ela( [, 13 5(@h(0PdAGAR)
= - | S E(EAE)
=1

So we get the desired result. [J

In the following we write P, for the integral operator on L?(ID,dA) with kernel
1/]1 —wz)?. It is well-known that Py is L”-bounded for 1 < p < eo (see [1] or [12]).

LEMMA 4.2. Let € >0 and 6 = (2+¢€)/(1+¢€). Then

k=1
1 4
<nCe sup [l sup kanwWﬂnu\ﬁ](w)”ﬁplnvmw)l”
o L
<| Z Hyy ko () Lk (D)) 5

where w €D, Ce € C, fi, gx € L”(D,dA) and u, v € (L2(D))* with k=1,2,---,n.
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Proof. Note that for every function u € L2(ID), the derivative «'(w) = (u,K},). So

w

M=

k=1

[ e [ D,

Letting Gy ,, denote Py(gxo @w)o ¢, and Gk,W denote Py(fio@w)o@y, 1 <k<n,
the functions z — zGy,(z)/(1 —Wz)® and § — (G, (§)/(1 —=WwE)? are in L2(D).
Since u, v € (L2(D))* we have

u(2)zGy 0 (2) (§)¢Grw(8) B
L (1—zw) A@=0 and / 1 _Twp AE)=0

(Hg u)' (w)(H i Hg u,K,,) (K, Hf v)|
=12

Thus
Ii(Hgku)’(w)(H;kv)f(w)
=1

( 8k(2) =G (2) (i (§) =G (£))]dA($)dA(2)]

(1—zw)3 lg“w kl

//]D)|1—ZW|4 51— CWI“ édA(C)dA(Z))
|3 @G @) (O -G (OP .
X (/D/]D |1—zw|*|1=Cw]* dA(C)dA(Z)) =

1 (/ ju(z)|? (1—\w\2)5/<”5>dA() %/ () (1—\w\2>8/(”8)dA(C))%
T wP)? o 1z Ti—zwlelre g [ 1—Cwe/ 050

<1“W‘2>4'§1 (2 (2)—Grw (2)) (fe()~Grn (L)) [H

=

1
X = = dA(§)dA(z)) **e.
(L[ TR e (£)dA())
Since (1—|w|?)/|1—zw| <2, (1—|w|?)/|1 —w| <2 and 28/(1+8) <2 we get

(
i CROUC]

<L
ST=WPP
(1=1wP)*] 3 GG D) e §)-Gun(E) B

) (/]DJ/]D) 12w 1—Cw]* dA(§)dA(2)) 7.
(4.1)

Pullaf) o) /O Py 1) o)
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By the change-of-variable formula (2.2), we have

(1=wP)*| £ (8@-Gan () ()~ Gun(E) P
L/ R o dA(L)dA(2)

D
= [ 13 Geoon@ R0 ou@ (i o 0n(&) ~ Ao ou(E))[aAQ)dA()
k=1

= [ ]| ST G a1 - Bk () A )aA),

(4.2)
Using (2.2), it is easy to check that
LS TR m @ - R o pu(O)Paa@anc)
1
([ [ S k@t (2)Pda()anc) 2 3
k=1

i (Hj, o)k Hgk(C)kW(C))”~

Applying Holder’s inequality and (4.3), we get

/ /D | Z T Po) (@0 Pu(@) (I — Po)(fico 9w (L)) T°dA(L)dA(2)

<([ 13 TR0 pu @~ ) o pu(E)PANAR) >
k=1

X /D/D}kgl 1—P)(8i 0 () (I = Po)(fi o 9w ()] 2 GA0)dAE) 2 (4a4)

<L S T AT o - ) e ol E)F 2 dA(aA )

I3 By g o
=1

Since P is L[*12€ pounded, there exist constants Cre >0, 1 <k <n,such that

oL IZ<1—Po><gkow(z))(l—%)(fko<pw<c>>|2<l+8>dA<g>dA<z>>ﬁ

- H 2 I— PO (gko(pW(Z))(I_PO)(fkO(pW(c))HL2(1+£)(D27dA(C)dA(Z))
k=1

n

< X[ =Po)Bropulz ||L21+s)1n>dA H (I = P) (fk°¢W(C))||L2<1+8)(D,dA(g))
k=1



646 BO ZHANG AND YUFENG LU

n
< ECk,ngkHw”fk“w (4.5)

nC sup [|gell sup [|felle,

\\n \\n

where C;, = max{Cy,1 <k <n}.
From (4.1), (4.3), (4.4) and (4.5), we conclude that there exists a constant Cg , such
that

|3 (B ) (W) TV )

1 4
<nsCe sup Hng sup ka||°°WPI[|M|5](W)1/8P1[|V|6}(W)1/5

<k<n 1<k<n

X”sz(ka(z)kw(Z))WHI/@Jrg). O
-1

Proof of Theorem 4.1. (i) If (Sp,S¢] is compact, then HrH;. is compact by (2.1).

Itis obvious that Hr Hg;. is compact if and only if each entry of ( Z Hy, Hy, ))ij is com-
k=
pact. Then Lemma 6.2 in [10] implies that || 2 Hy, Hy S%( 2 Hy, Hy )Sq,M |—0

as |w| — 1—. From Proposition 4.1 in [10] we know that ky ®kw =1-2Ty,T5, +
T,, qu, Using identities (4.6) and (4.7) in [10], we have

HZ Hiyhow) @ (Hg Ko )|

=|l ZHf,A 2|

* 2 2 *
(Hfingk —2Hp, T, T%H +Hfsz T(Pngk )H

1l
M= T

~
Il
—

1l
M=

* * 2 2
(HfzkHEk] - 2Sq)WHftkH§k] Saw + S‘Pwalk Hgk] Saw) H

T
I

N
M=

(Hfingkj_S(Pwazk S(PM H+|| ES‘PW Hfzk S(Pwa:k TkjS%)S%”
k=1

=~

M= -

N
=

(Hfzk Hgk j _Sq)W Hflk Hgk_,' Saw ) | |

~
Il

1

N
=
M =

HftkHAk S(pW ZHftk Sk]) ¢w||'

T
I

n
Thus | 1|1n} | X (Hy,kw)®(Hg, ky)|| = 0 forany 1 < i, j < n. Therefore ||(Hpk,)®
w—=l- =1

(Hgky)|| — 0 as [w| — 1—. We get the conclusion.



COMMUTING OF BLOCK DUAL TOEPLITZ OPERATORS 647

(ii) If H(HF(Z)kW(z))(H@kW(C))TH — 0 as |w| — 1—, then foreach 1 <i,j <n,

we have || i (Hfik ) kw(Z))(Hgkj(g)kw(C))H — 0 as |w| — 1—. In the following, we

only need to prove 2 Hy, kH * is a compact operator, for each 1 <1i,j < n.

For u, v e CC(ID)) (Lﬁ(ID)))L, as Theorem 6.3 in [10] we have

<kEl Hy, Hy u,v kEl (Hg u.Hf v) =1+1+111,

where

=3 (1= b ) O3 G 3G dA ()
1,8 S —
=> [ = w2, ) ()T VY ) A (),

1,3 T DV (w)
=33 [ (= ) 0 )T A ().
For 0 <s <1 we write I = I, +I{, Il = II;+1I{ and III = IIl; + III{, where

I = 3(2 / a0 PP ) )T 3410 A ().

1,& / TH* oV (1)
o= g2 [ (0 b ) O S G,

| -
I = — / 1= |w]?) (Hz u) (w)(H v) (w)dA(w)).
=303 D T ST A )
It is easy to see that there exist compact operators K/, K/ and K/ on (L2(D))* such
that (Klu,v) =1, (K!'u,v) = II! and (Kmu v) = III'. Observing that the operator
K, = K/ + K" + K" is compact, and (( z Hp Hy  —Kou,v) = I+ 11+ 111, we will

estimate each of the terms Iy, 11, and III Note that

L= [ P ) () T TOrIdA )
k=1Ys<|w|<

[w] 1(1 |W|2)2(kn ( gkjl‘)(W)W)dA(W)
s<|w|< 1 H Hi v
-3 w 1(1 — |W|2)2(i <ngkju’[(w>m)dA(W)
s<|w|< =l r

I
W
—~
—_
I
=
)
~—
S
—~
1=

(u, Hg, Ky) (Hy, Ky, v))dA(w)

—_

23 (S (Hpk) © (Hg o), v)dA(w).

s<|w|<1l 5y
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It follows that

Ha koo )I| - [[ull2[[v]]2-

Using Lemma 4.2 we have

1
11| <

n
= w
\2 .\'<|w|<1 ‘ ‘ g

l

Hj v)'(w)|dA(w)

2 sup lald sup [l / L)) 7)) 2 ()
2 1<k<n 1<k<n <|W|<1

X sup ”2(Hﬁk(z)kW(Z))(ngk,-(g)kW(C))HU<2+S)~
s<w|<l k=1 ’
Since p=2/6 > 1 and P, is L”-bounded, there exists a constant C such that
/ Py[|ul®)(w)* 2 dA(w) <C/ [lu|® (w)]*/2dA(w) = C|lull3
s<|w|<1 s<|w|<1

By the Cauchy-Schwarz inequality,

/.Y<|w.<1”1””'5}<W>” Oy [[v[°)(w)"/2dA(w) < Cllufla|[v]1

Thus

1
Cns
|11 <

1
5 Ce sup HngH sup | fixll=

<k<n 1<k<n

X sup HZ Hy, (oykw(2)) (Hg

e Ok (VYO e[V -
s<lw|<l k=1

Term 111 is estimated similar to /I;. From the estimates of the three terms Iy, II; and
111, we obtain

EHf,k oo~ KOuw)| <Csup || X (Hy ok (@) (Ha o k(D)1 379 a2 v]]2
s<lw|<l k=1

for some constant C’ > 0, combining with Lemma 4.1, we conclude that

I3, Hiabs, ~ K < sup | 320, () g R ED V7.
k=1 s<jw|<l k=1

Soif || i (Hf'k (okw(2)) (Hg, () kw(C))[| — O as |w| — 1—, then it follows from the
above inequality that K; — Z Hy, Hy

in operator norm. Since each of the operators
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K is compact, we conclude that the operator Z Hy, AH + is compact. This completes

the proof. [J

By Theorem 4.1, it is easy to prove Theorem 4.2.
Proof of Theorem 4.2. Let

- (50). (50

Then SpSg — SgSF is compact if and only if SpSc¢ is compact.
If SpSc is compact, then (2.1) implies that the operator Sgc — HpH}.. = SpSc¢ is
compact. Let u,,, be defined as in Corollary 6.2 in [11] and B = (b;j)2ux2n, C =

2n
(¢ij)anx2n, it follows that (S(ZZ" ) kEI HbikHE*kj)ZnXZn is compact and
ikChkj =
2n
10S 2 - ZHbingkj)uw7s 2—0, s—0+.

Y bikcrj) k=
(k:l ikCkj k=1

By Lemma 7.1 in [11] we also have

||2ku Tyj uw,.\'”Z—)O, s—0+.

Since (S », Uyg) L (Z H, H; B Uys), We get
(kzlbikckj)

HS( 2n uw7sH2: ||(S 2n _ZHb,k Ty )uwsH2+” ZHb,A uws||2_>0 s—0+4.

b'kck’ Z h'k(,‘k —
|k o ok k=1

Thus Lemma 7.2 in [11] implies that

=0,

|Zblk Ck/ _51—1>I(];1+HS 2n

(X bixerj

fora.e. w on D, thatis B(w)C(w) =0 for almost all w € D. So we get that if SpS¢ is
a compact operator, then HgH . is compact and BC =0.

Using Theorem 4.1, and combining with the fact that SrSg — SgSF is compact if
and only if HgH(. is compact and BC = 0, we can get Theorem 4.2. This completes
the proof. [J

An operator A is said to be essentially normal if AA* —A*A is compact. By taking
G = F*, we immediately get the following characterization of essentially normal block
Toeplitz operators.
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COROLLARY 4.1. Let F € L

BO ZHANG AND YUFENG LU

(D).

nxn

(i) If SF is a essentially normal block Toeplitz operators, then FF* = F*F and ||(Hrk,)
® (HFTkW) — (Hp*kw) & (kaW)H — 0 as |W| — 1—.

(i) If || (Hp 3y kw (2)) (Hzzrk ()T = (Hp- )k (8)) (Hprk (2) | — 0 as [w| — 1—,
then Sf is a essentially normal block Toeplitz operators and FF* = F*F .
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