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Abstract. The main purpose of this paper is to prove the following result. Let X be a real
or complex Banach space, let L (X) be the algebra of all bounded linear operators on X and
let A (X) ⊆ L (X) be a standard operator algebra. Suppose there exists an additive mapping
T : A (X)→L (X) satisfying the relation T (An) = T (A)An−1−AT(An−2)A+An−1T (A) for all
A ∈ A (X) and some fixed integer n > 2 . In this case T is of the form T (A) = AB+BA for all
A ∈ A (X) and some fixed B ∈ L (X) .

Throughout, R will represent an associative ring with center Z(R). A ring R is
n -torsion free, where n > 1 is an integer, in case nx = 0, x ∈ R , implies x = 0. Recall
that R is prime if aRb = (0) implies that either a = 0 or b = 0 and is semiprime in
case aRa = (0) implies a = 0. We denote by Qs(R) the symmetric Martindale ring of
quotients of a semiprime ring R (see [1,Chapter 2]). An additive mapping D : R → R
is called a derivation if D(xy) = D(x)y+xD(y) holds for all pairs x,y∈ R . A derivation
D : R → R is inner in case D is of the form D(x) = ax− xa for all x ∈ R and some
fixed a ∈ R. A mapping T (x) = ax+ xb, where a and b are fixed elements of a ring,
is sometimes called a generalized derivation. We follow Hvala [11] and call such map-
pings generalized inner derivations, as they present a generalization of the concept of
inner derivation. In the theory of operator algebras, they are considered as an important
class of so-called elementary operators - i.e., mappings of the form

x �−→
n

∑
i=1

aixbi.

We refer the reader to [14] for a good account of the theory of elementary operators. A
mapping T (x) = ax+xa, where a is a fixed element of a ring, will be called symmetric
generalized inner derivation. Let X be a real or complex Banach space and let L (X)
and F (X) denote the algebra of all bounded linear operators on X and the ideal of all
finite rank operators in L (X), respectively. An algebra A (X) ⊆ L (X) is said to be
standard in case F (X) ⊂ A (X). Any standard operator algebra is prime, which is a
consequence of a Hahn-Banach theorem.

Motivated by the work of Brešar [2], Vukman, Kosi-Ulbl and Eremita [18] proved
the following result (see [9] for a generalization).
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THEOREM 1. Let R be a 2− torsion free semiprime ring and let T : R → R be an
additive mapping satisfying the relation

T (xyx) = T (x)yx− xT(y)x+ xyT (x) (1)

for all pairs x,y ∈ R. In this case T is of the form 2T (x) = qx+ xq for all x ∈ R and
some fixed q ∈ QS(R) .

Since any symmetric generalized inner derivation satisfies the functional equation
(1), Theorem 1 characterizes symmetric generalized inner derivations among all addi-
tive mappings on 2− torsion free semiprime rings. Fošner and Vukman [7] proved the
result below (see [10] for a generalization).

THEOREM 2. Let R be a 2− torsion free prime ring and let T : R → R be an
additive mapping satisfying the relation

T (x3) = T (x)x2 − xT (x)x+ x2T (x) (2)

for all x ∈ R. In this case T is of the form 4T (x) = qx + xq for all x ∈ R and some
fixed q ∈ QS(R) .

In the proof of Theorem 1 some ideas from [2] are used, while in the proof of
Theorem 2 as the main tool Brešar-Beidar-Chebotar theory (the theory of functional
identities) is used. We refer the reader to [3] for an introductory account on functional
identities and to [4] for a full treatment of this theory. Let us point out that Theorem
1 and Theorem 2 were used in the solution of some functional equations arising from
so-called bicircular projections (see [6, 7, 8, 10, 13, 16, 17, 19]).

The substitution y = xn−2 in (1) gives

T (xn) = T (x)xn−1 − xT (xn−2)x+ xn−1T (x). (3)

It is our aim in this paper to prove the following result, which is related to the
functional equation (3).

THEOREM 3. Let X be a real or complex Banach space and let A (X) be a stan-
dard operator algebra on X . Suppose there exists an additive mapping T : A (X) →
L (X) satisfying the relation

T (An) = T (A)An−1−AT (An−2)A+An−1T (A)

for all A ∈ A (X) and some fixed integer n > 2. In this case T is of the form T (A) =
AB+BA for all A ∈ A (X) and some fixed B ∈ L (X).

Let us point out that in Theorem 3 we obtain as a result the continuity of T under
purely algebraic assumptions concerning T, which means that Theorem 2 might be of
some interest from the automatic continuity point of view. For results concerning auto-
matic continuity we refer to [5] and [15]. In the proof of Theorem 3 we use Theorem 2
and the fact that for any standard operator algebra A (X) we have QS(A (X)) = L (X).
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Proof. We have the relation

T (An) = T (A)An−1−AT(An−2)A+An−1T (A). (4)

Let us first restrict our attention to F (X) .
Let A be from F (X) and let P ∈ F (X) be a projection with AP = PA = A .

Putting A+P for A in the above relation, we obtain

n

∑
i=0

(n
i

)
T (An−iPi) = T (A+P)

(n−1

∑
i=0

(n−1
i

)
An−1−iPi

)

−
n−2

∑
i=0

(n−2
i

)
(A+P)T (An−2−iPi)(A+P)

+
(n−1

∑
i=0

(n−1
i

)
An−1−iPi

)
T (A+P). (5)

Using (4) and rearranging the relation (5) in sense of collecting together terms
involving equal number of factors of P , we obtain

n−1

∑
i=1

fi(A,P) = 0, (6)

where fi(A,P) stands for the expression of terms involving i factors of P .
Replacing A by A+2P , A+3P , . . . , A+(n−1)P in turn in the relation (4) and

expressing the resulting system of n−1 homogeneous equations of variables fi(A,P) ,
i = 1,2, . . . ,n−1, we see that the coefficient matrix of the system is a van der Monde
matrix ⎡

⎢⎢⎢⎣
1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n−1 (n−1)2 . . . (n−1)n−1

⎤
⎥⎥⎥⎦ .

Since the determinant of the matrix is different from zero, it follows that the system
has only a trivial solution. In particular,

fn−1(A,P) =
( n

n−1

)
T (A)− (n−1

n−1

)
T (A)P− (n−1

n−2

)
T (P)A

+
(n−2

n−2

)
AT (P)P+

(n−2
n−2

)
PT (P)A+

(n−2
n−3

)
PT (A)P

−(n−1
n−1

)
PT (A)− (n−1

n−2

)
AT (P).

The above relation reduces to

nT (A) = T (A)P+(n−1)T(P)A−AT(P)P−PT(P)A
−(n−2)PT(A)P+PT(A)+ (n−1)AT(P). (7)

Multiplying the above relation from both sides by P , we obtain

2PT (A)P = PT (P)A+AT(P)P, (8)
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which reduces (7) to

2nT (A) = 2T (A)P+2PT(A)+2(n−1)(T(P)A+AT(P))−n(PT(P)A+AT(P)P).
(9)

Left multiplication of the above relation by P gives, using the relation (8), the
relation

2PT (A) = 2AT (P)+PT(P)A−AT(P)P (10)

and similary we obtain

2T (A)P = 2T (P)A+AT(P)P−PT (P)A. (11)

Applying (10) and (11) in (9), we obtain

2T (A) = A(2T (P)−T (P)P)+ (2T(P)−PT(P))A. (12)

Multiplying the relation (8) from both sides by A , we obtain

2AT (A)A = A2T (P)A+AT(P)A2. (13)

Applying the relations (12) and (13), we obtain

2T (A)A2 +2A2T (A)
= (A2T (P)A+AT(P)A2)+ (2T (P)−PT(P))A3 +A3(2T (P)−T (P)P)
= 2AT (A)A+2T(A3).

We therefore have

T (A3) = T (A)A2−AT (A)A+A2T (A). (14)

From the relation (12) one can conclude that T maps F (X) into itself. Therefore
we have an additive mapping T : F (X) → F (X) satisfying the relation (14) for all
A ∈ F (X) . Since F (X) is prime, one can apply Theorem 2, which implies that T
is of the form 4T (A) = AC+CA for all A ∈ F (X) and some C ∈ QS(F (X)) . Since
QS(F (X)) = L (X) (this is a direct consequence of [1, Theorem 4.3.8] and [12, p.78,
Example 5]), it follows that C ∈ L (X) . Therefore, one can conclude that T is of the
form

T (A) = AB+BA, (15)

for all A ∈ F (X) and some B ∈ L (X) . It remains to prove that the relation (15)
holds on A (X) as well. Let us introduce T1 : A (X) → L (X) by T1(A) = AB+BA
and consider T0 = T − T1 . Obviously, the mapping T0 is additive and satisfies the
relation (4). Besides, T0 vanishes on F (X) . It is our aim to prove that T0 vanishes
on A (X) as well. Let A ∈ A (X) , let P be a one-dimensional projection and S =
A+PAP− (AP+PA) . It is clear that T0(S) = T0(A) and SP = PS = 0. We have the
relation

T0(An) = T0(A)An−1−AT0(An−2)A+An−1T0(A)
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for all A ∈ A (X) . Applying the above relation, we obtain

T0(S)Sn−1−ST0(Sn−2)S+Sn−1T0(S) = T0(Sn) = T0(Sn +P) = T0((S+P)n)
= T0(S+P)(S+P)n−1− (S+P)T0((S+P)n−2)(S+P)+ (S+P)n−1T0(S+P)
= T0(S)(Sn−1 +P)− (S+P)T0(Sn−2)(S+P)+ (Sn−1+P)T0(S)
= T0(S)Sn−1 +T0(S)P−ST0(Sn−2)S−ST0(Sn−2)P−PT0(Sn−2)S

−PT0(Sn−2)P+Sn−1T0(S)+PT0(S).

From the above relation it follows that

T0(S)P−ST0(Sn−2)P−PT0(Sn−2)S−PT0(Sn−2)P+PT0(S) = 0

and since T0(S) = T0(A) , we can write

T0(A)P−ST0(An−2)P−PT0(An−2)S−PT0(An−2)P+PT0(A) = 0. (16)

Multiplying the above relation from both sides by P , we obtain

2PT0(A)P−PT0(An−2)P = 0. (17)

Putting 2A for A in the above relation, we obtain

4PT0(A)P−2n−2PT0(An−2)P = 0. (18)

In case n = 3, the relation (17) gives

PT0(A)P = 0. (19)

In case n > 3, the relations (17) and (18) give (19). Considering the above relation
in the relation (17), we obtain

PT0(An−2)P = 0,

which reduces the relation (16) to

T0(A)P−ST0(An−2)P−PT0(An−2)S+PT0(A) = 0. (20)

Putting 2A for A (in this case S becomes 2S ) in the above relation, we obtain

2T0(A)P−2n−1ST0(An−2)P−2n−1PT0(An−2)S+2PT0(A) = 0,

which together with the relation (20) implies that

T0(A)P+PT0(A) = 0.

Right multiplication of the above relation by P gives

T0(A)P+PT0(A)P = 0
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and the relation (19) reduces the above relation to

T0(A)P = 0.

Since P is an arbitrary one-dimensional projection, if follows from the above rela-
tion that T0(A) = 0 for any A∈A (X) , which completes the proof of the theorem. �

We proceed with the following purely algebraic conjecture.

CONJECTURE 4. Let n > 2 be a fixed integer and let R be a semiprime ring
with suitable torsion restrictions. Suppose there exists an additive mapping T : R → R
satisfying the relation

T (xn) = T (x)xn−1− xT (xn−2)x+ xn−1T (x)

for all x ∈ R . In this case T is of the form 2T (x) = qx + xq for all x ∈ R and some
fixed q ∈ QS(R) .

We conclude the article with the result below, which proves the above conjecture
in case a ring has the identity element.

THEOREM 5. Let n > 2 be a fixed integer and let R be a n!− torsion free semiprime
ring with the identity element. Suppose there exists an additive mapping T : R→ R sat-
isfying the relation

T (xn) = T (x)xn−1− xT (xn−2)x+ xn−1T (x)

for all x ∈ R. In this case T is of the form 2T (x) = ax + xa for all x ∈ R and some
fixed a ∈ R.

Proof. We have the relation

T (xn) = T (x)xn−1− xT (xn−2)x+ xn−1T (x) (21)

Let y be any element of the center Z(R) . Putting x+ y in the above relation, we
obtain

n

∑
i=0

(n
i

)
T (xn−iyi) = T (x+ y)

(n−1

∑
i=0

(n−1
i

)
xn−1−iyi

)

−
n−2

∑
i=0

(n−2
i

)
(x+ y)T (xn−2−iyi)(x+ y)

+
(n−1

∑
i=0

(n−1
i

)
xn−1−iyi

)
T (x+ y). (22)

Using (21) and rearranging the relation (22) in sense of collecting together terms
involving equal number of factors of y , we obtain

n−1

∑
i=1

fi(x,y) = 0,
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where fi(x,y) stands for the expression of terms involving i factors of y . Replacing
x by x + 2y , x + 3y , . . . , x +(n− 1)y in turn in the relation (21) and expressing the
resulting system of n−1 homogeneous equations of variables fi(x,y) , i = 1,2, . . . ,n−
1, we see that the coefficient matrix of the system is a van der Monde matrix

⎡
⎢⎢⎢⎣

1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n−1 (n−1)2 . . . (n−1)n−1

⎤
⎥⎥⎥⎦ .

Since the determinant of the matrix is different from zero, it follows that the system
has only a trivial solution. In particular, putting the identity element e for y , we obtain

fn−1(x,e) =
( n

n−1

)
T (x)− (n−1

n−1

)
T (x)− (n−1

n−2

)
ax

+
(n−2

n−2

)
xa+

(n−2
n−2

)
ax+

(n−2
n−3

)
T (x)

−(n−1
n−1

)
T (x)− (n−1

n−2

)
xa,

where a denotes T (e) . The above relation reduces to

2(n−2)T(x) = (n−2)ax+(n−2)xa.

Since R is n! -torsion free, it follows from the above relation that

2T (x) = ax+ xa

for all x ∈ R . The proof of the theorem is now complete. �
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[6] M. FOŠNER, D. ILIŠEVIĆ,On a class of projections on ∗ -rings, Commun. Algebra 33 (2005), 3293–

3310.
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