ON CERTAIN FUNCTIONAL EQUATION RELATED TO A CLASS OF GENERALIZED INNER DERIVATIONS

Nejc Širovnik and Joso Vukman

(Communicated by F. Kittaneh)

Abstract

The main purpose of this paper is to prove the following result. Let X be a real or complex Banach space, let $\mathscr{L}(X)$ be the algebra of all bounded linear operators on X and let $\mathscr{A}(X) \subseteq \mathscr{L}(X)$ be a standard operator algebra. Suppose there exists an additive mapping $T: \mathscr{A}(X) \rightarrow \mathscr{L}(X)$ satisfying the relation $T\left(A^{n}\right)=T(A) A^{n-1}-A T\left(A^{n-2}\right) A+A^{n-1} T(A)$ for all $A \in \mathscr{A}(X)$ and some fixed integer $n>2$. In this case T is of the form $T(A)=A B+B A$ for all $A \in \mathscr{A}(X)$ and some fixed $B \in \mathscr{L}(X)$.

Throughout, R will represent an associative ring with center $Z(R)$. A ring R is n-torsion free, where $n>1$ is an integer, in case $n x=0, x \in R$, implies $x=0$. Recall that R is prime if $a R b=(0)$ implies that either $a=0$ or $b=0$ and is semiprime in case $a R a=(0)$ implies $a=0$. We denote by $Q_{s}(R)$ the symmetric Martindale ring of quotients of a semiprime ring R (see [1, Chapter 2]). An additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$. A derivation $D: R \rightarrow R$ is inner in case D is of the form $D(x)=a x-x a$ for all $x \in R$ and some fixed $a \in R$. A mapping $T(x)=a x+x b$, where a and b are fixed elements of a ring, is sometimes called a generalized derivation. We follow Hvala [11] and call such mappings generalized inner derivations, as they present a generalization of the concept of inner derivation. In the theory of operator algebras, they are considered as an important class of so-called elementary operators - i.e., mappings of the form

$$
x \longmapsto \sum_{i=1}^{n} a_{i} x b_{i}
$$

We refer the reader to [14] for a good account of the theory of elementary operators. A mapping $T(x)=a x+x a$, where a is a fixed element of a ring, will be called symmetric generalized inner derivation. Let X be a real or complex Banach space and let $\mathscr{L}(X)$ and $\mathscr{F}(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $\mathscr{L}(X)$, respectively. An algebra $\mathscr{A}(X) \subseteq \mathscr{L}(X)$ is said to be standard in case $\mathscr{F}(X) \subset \mathscr{A}(X)$. Any standard operator algebra is prime, which is a consequence of a Hahn-Banach theorem.

Motivated by the work of Brešar [2], Vukman, Kosi-Ulbl and Eremita [18] proved the following result (see [9] for a generalization).

[^0]THEOREM 1. Let R be a 2 -torsion free semiprime ring and let $T: R \rightarrow R$ be an additive mapping satisfying the relation

$$
\begin{equation*}
T(x y x)=T(x) y x-x T(y) x+x y T(x) \tag{1}
\end{equation*}
$$

for all pairs $x, y \in R$. In this case T is of the form $2 T(x)=q x+x q$ for all $x \in R$ and some fixed $q \in Q_{S}(R)$.

Since any symmetric generalized inner derivation satisfies the functional equation (1), Theorem 1 characterizes symmetric generalized inner derivations among all additive mappings on 2-torsion free semiprime rings. Fošner and Vukman [7] proved the result below (see [10] for a generalization).

THEOREM 2. Let R be a 2 -torsion free prime ring and let $T: R \rightarrow R$ be an additive mapping satisfying the relation

$$
\begin{equation*}
T\left(x^{3}\right)=T(x) x^{2}-x T(x) x+x^{2} T(x) \tag{2}
\end{equation*}
$$

for all $x \in R$. In this case T is of the form $4 T(x)=q x+x q$ for all $x \in R$ and some fixed $q \in Q_{S}(R)$.

In the proof of Theorem 1 some ideas from [2] are used, while in the proof of Theorem 2 as the main tool Brešar-Beidar-Chebotar theory (the theory of functional identities) is used. We refer the reader to [3] for an introductory account on functional identities and to [4] for a full treatment of this theory. Let us point out that Theorem 1 and Theorem 2 were used in the solution of some functional equations arising from so-called bicircular projections (see $[6,7,8,10,13,16,17,19]$).

The substitution $y=x^{n-2}$ in (1) gives

$$
\begin{equation*}
T\left(x^{n}\right)=T(x) x^{n-1}-x T\left(x^{n-2}\right) x+x^{n-1} T(x) \tag{3}
\end{equation*}
$$

It is our aim in this paper to prove the following result, which is related to the functional equation (3).

THEOREM 3. Let X be a real or complex Banach space and let $\mathscr{A}(X)$ be a standard operator algebra on X. Suppose there exists an additive mapping $T: \mathscr{A}(X) \rightarrow$ $\mathscr{L}(X)$ satisfying the relation

$$
T\left(A^{n}\right)=T(A) A^{n-1}-A T\left(A^{n-2}\right) A+A^{n-1} T(A)
$$

for all $A \in \mathscr{A}(X)$ and some fixed integer $n>2$. In this case T is of the form $T(A)=$ $A B+B A$ for all $A \in \mathscr{A}(X)$ and some fixed $B \in \mathscr{L}(X)$.

Let us point out that in Theorem 3 we obtain as a result the continuity of T under purely algebraic assumptions concerning T, which means that Theorem 2 might be of some interest from the automatic continuity point of view. For results concerning automatic continuity we refer to [5] and [15]. In the proof of Theorem 3 we use Theorem 2 and the fact that for any standard operator algebra $\mathscr{A}(X)$ we have $Q_{S}(\mathscr{A}(X))=\mathscr{L}(X)$.

Proof. We have the relation

$$
\begin{equation*}
T\left(A^{n}\right)=T(A) A^{n-1}-A T\left(A^{n-2}\right) A+A^{n-1} T(A) \tag{4}
\end{equation*}
$$

Let us first restrict our attention to $\mathscr{F}(X)$.
Let A be from $\mathscr{F}(X)$ and let $P \in \mathscr{F}(X)$ be a projection with $A P=P A=A$. Putting $A+P$ for A in the above relation, we obtain

$$
\begin{align*}
\sum_{i=0}^{n}\binom{n}{i} T\left(A^{n-i} P^{i}\right)= & T(A+P)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} A^{n-1-i} P^{i}\right) \\
& -\sum_{i=0}^{n-2}\binom{n-2}{i}(A+P) T\left(A^{n-2-i} P^{i}\right)(A+P) \\
& +\left(\sum_{i=0}^{n-1}\binom{n-1}{i} A^{n-1-i} P^{i}\right) T(A+P) \tag{5}
\end{align*}
$$

Using (4) and rearranging the relation (5) in sense of collecting together terms involving equal number of factors of P, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n-1} f_{i}(A, P)=0 \tag{6}
\end{equation*}
$$

where $f_{i}(A, P)$ stands for the expression of terms involving i factors of P.
Replacing A by $A+2 P, A+3 P, \ldots, A+(n-1) P$ in turn in the relation (4) and expressing the resulting system of $n-1$ homogeneous equations of variables $f_{i}(A, P)$, $i=1,2, \ldots, n-1$, we see that the coefficient matrix of the system is a van der Monde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2 & 2^{2} & \cdots & 2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
n-1 & (n-1)^{2} & \ldots & (n-1)^{n-1}
\end{array}\right]
$$

Since the determinant of the matrix is different from zero, it follows that the system has only a trivial solution. In particular,

$$
\begin{aligned}
f_{n-1}(A, P)= & \binom{n}{n-1} T(A)-\binom{n-1}{n-1} T(A) P-\binom{n-1}{n-2} T(P) A \\
& +\binom{n-2}{n-2} A T(P) P+\binom{n-2}{n-2} P T(P) A+\binom{n-2}{n-3} P T(A) P \\
& -\binom{n-1}{n-1} P T(A)-\binom{n-1}{n-2} A T(P)
\end{aligned}
$$

The above relation reduces to

$$
\begin{align*}
n T(A)= & T(A) P+(n-1) T(P) A-A T(P) P-P T(P) A \\
& -(n-2) P T(A) P+P T(A)+(n-1) A T(P) . \tag{7}
\end{align*}
$$

Multiplying the above relation from both sides by P, we obtain

$$
\begin{equation*}
2 P T(A) P=P T(P) A+A T(P) P \tag{8}
\end{equation*}
$$

which reduces (7) to

$$
\begin{equation*}
2 n T(A)=2 T(A) P+2 P T(A)+2(n-1)(T(P) A+A T(P))-n(P T(P) A+A T(P) P) \tag{9}
\end{equation*}
$$

Left multiplication of the above relation by P gives, using the relation (8), the relation

$$
\begin{equation*}
2 P T(A)=2 A T(P)+P T(P) A-A T(P) P \tag{10}
\end{equation*}
$$

and similary we obtain

$$
\begin{equation*}
2 T(A) P=2 T(P) A+A T(P) P-P T(P) A \tag{11}
\end{equation*}
$$

Applying (10) and (11) in (9), we obtain

$$
\begin{equation*}
2 T(A)=A(2 T(P)-T(P) P)+(2 T(P)-P T(P)) A \tag{12}
\end{equation*}
$$

Multiplying the relation (8) from both sides by A, we obtain

$$
\begin{equation*}
2 A T(A) A=A^{2} T(P) A+A T(P) A^{2} \tag{13}
\end{equation*}
$$

Applying the relations (12) and (13), we obtain

$$
\begin{aligned}
& 2 T(A) A^{2}+2 A^{2} T(A) \\
& =\left(A^{2} T(P) A+A T(P) A^{2}\right)+(2 T(P)-P T(P)) A^{3}+A^{3}(2 T(P)-T(P) P) \\
& =2 A T(A) A+2 T\left(A^{3}\right)
\end{aligned}
$$

We therefore have

$$
\begin{equation*}
T\left(A^{3}\right)=T(A) A^{2}-A T(A) A+A^{2} T(A) \tag{14}
\end{equation*}
$$

From the relation (12) one can conclude that T maps $\mathscr{F}(X)$ into itself. Therefore we have an additive mapping $T: \mathscr{F}(X) \rightarrow \mathscr{F}(X)$ satisfying the relation (14) for all $A \in \mathscr{F}(X)$. Since $\mathscr{F}(X)$ is prime, one can apply Theorem 2 , which implies that T is of the form $4 T(A)=A C+C A$ for all $A \in \mathscr{F}(X)$ and some $C \in Q_{S}(\mathscr{F}(X))$. Since $Q_{S}(\mathscr{F}(X))=\mathscr{L}(X)$ (this is a direct consequence of [1, Theorem 4.3.8] and [12, p.78, Example 5]), it follows that $C \in \mathscr{L}(X)$. Therefore, one can conclude that T is of the form

$$
\begin{equation*}
T(A)=A B+B A \tag{15}
\end{equation*}
$$

for all $A \in \mathscr{F}(X)$ and some $B \in \mathscr{L}(X)$. It remains to prove that the relation (15) holds on $\mathscr{A}(X)$ as well. Let us introduce $T_{1}: \mathscr{A}(X) \rightarrow \mathscr{L}(X)$ by $T_{1}(A)=A B+B A$ and consider $T_{0}=T-T_{1}$. Obviously, the mapping T_{0} is additive and satisfies the relation (4). Besides, T_{0} vanishes on $\mathscr{F}(X)$. It is our aim to prove that T_{0} vanishes on $\mathscr{A}(X)$ as well. Let $A \in \mathscr{A}(X)$, let P be a one-dimensional projection and $S=$ $A+P A P-(A P+P A)$. It is clear that $T_{0}(S)=T_{0}(A)$ and $S P=P S=0$. We have the relation

$$
T_{0}\left(A^{n}\right)=T_{0}(A) A^{n-1}-A T_{0}\left(A^{n-2}\right) A+A^{n-1} T_{0}(A)
$$

for all $A \in \mathscr{A}(X)$. Applying the above relation, we obtain

$$
\begin{aligned}
& T_{0}(S) S^{n-1}-S T_{0}\left(S^{n-2}\right) S+S^{n-1} T_{0}(S)=T_{0}\left(S^{n}\right)=T_{0}\left(S^{n}+P\right)=T_{0}\left((S+P)^{n}\right) \\
& =T_{0}(S+P)(S+P)^{n-1}-(S+P) T_{0}\left((S+P)^{n-2}\right)(S+P)+(S+P)^{n-1} T_{0}(S+P) \\
& =T_{0}(S)\left(S^{n-1}+P\right)-(S+P) T_{0}\left(S^{n-2}\right)(S+P)+\left(S^{n-1}+P\right) T_{0}(S) \\
& =T_{0}(S) S^{n-1}+T_{0}(S) P-S T_{0}\left(S^{n-2}\right) S-S T_{0}\left(S^{n-2}\right) P-P T_{0}\left(S^{n-2}\right) S \\
& \quad-P T_{0}\left(S^{n-2}\right) P+S^{n-1} T_{0}(S)+P T_{0}(S) .
\end{aligned}
$$

From the above relation it follows that

$$
T_{0}(S) P-S T_{0}\left(S^{n-2}\right) P-P T_{0}\left(S^{n-2}\right) S-P T_{0}\left(S^{n-2}\right) P+P T_{0}(S)=0
$$

and since $T_{0}(S)=T_{0}(A)$, we can write

$$
\begin{equation*}
T_{0}(A) P-S T_{0}\left(A^{n-2}\right) P-P T_{0}\left(A^{n-2}\right) S-P T_{0}\left(A^{n-2}\right) P+P T_{0}(A)=0 \tag{16}
\end{equation*}
$$

Multiplying the above relation from both sides by P, we obtain

$$
\begin{equation*}
2 P T_{0}(A) P-P T_{0}\left(A^{n-2}\right) P=0 \tag{17}
\end{equation*}
$$

Putting $2 A$ for A in the above relation, we obtain

$$
\begin{equation*}
4 P T_{0}(A) P-2^{n-2} P T_{0}\left(A^{n-2}\right) P=0 \tag{18}
\end{equation*}
$$

In case $n=3$, the relation (17) gives

$$
\begin{equation*}
P T_{0}(A) P=0 . \tag{19}
\end{equation*}
$$

In case $n>3$, the relations (17) and (18) give (19). Considering the above relation in the relation (17), we obtain

$$
P T_{0}\left(A^{n-2}\right) P=0
$$

which reduces the relation (16) to

$$
\begin{equation*}
T_{0}(A) P-S T_{0}\left(A^{n-2}\right) P-P T_{0}\left(A^{n-2}\right) S+P T_{0}(A)=0 \tag{20}
\end{equation*}
$$

Putting $2 A$ for A (in this case S becomes $2 S$) in the above relation, we obtain

$$
2 T_{0}(A) P-2^{n-1} S T_{0}\left(A^{n-2}\right) P-2^{n-1} P T_{0}\left(A^{n-2}\right) S+2 P T_{0}(A)=0
$$

which together with the relation (20) implies that

$$
T_{0}(A) P+P T_{0}(A)=0
$$

Right multiplication of the above relation by P gives

$$
T_{0}(A) P+P T_{0}(A) P=0
$$

and the relation (19) reduces the above relation to

$$
T_{0}(A) P=0
$$

Since P is an arbitrary one-dimensional projection, if follows from the above relation that $T_{0}(A)=0$ for any $A \in \mathscr{A}(X)$, which completes the proof of the theorem.

We proceed with the following purely algebraic conjecture.
Conjecture 4. Let $n>2$ be a fixed integer and let R be a semiprime ring with suitable torsion restrictions. Suppose there exists an additive mapping $T: R \rightarrow R$ satisfying the relation

$$
T\left(x^{n}\right)=T(x) x^{n-1}-x T\left(x^{n-2}\right) x+x^{n-1} T(x)
$$

for all $x \in R$. In this case T is of the form $2 T(x)=q x+x q$ for all $x \in R$ and some fixed $q \in Q_{S}(R)$.

We conclude the article with the result below, which proves the above conjecture in case a ring has the identity element.

THEOREM 5. Let $n>2$ be a fixed integer and let R be a $n!-$ torsion free semiprime ring with the identity element. Suppose there exists an additive mapping $T: R \rightarrow R$ satisfying the relation

$$
T\left(x^{n}\right)=T(x) x^{n-1}-x T\left(x^{n-2}\right) x+x^{n-1} T(x)
$$

for all $x \in R$. In this case T is of the form $2 T(x)=a x+x a$ for all $x \in R$ and some fixed $a \in R$.

Proof. We have the relation

$$
\begin{equation*}
T\left(x^{n}\right)=T(x) x^{n-1}-x T\left(x^{n-2}\right) x+x^{n-1} T(x) \tag{21}
\end{equation*}
$$

Let y be any element of the center $Z(R)$. Putting $x+y$ in the above relation, we obtain

$$
\begin{align*}
\sum_{i=0}^{n}\binom{n}{i} T\left(x^{n-i} y^{i}\right)= & T(x+y)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} x^{n-1-i} y^{i}\right) \\
& -\sum_{i=0}^{n-2}\binom{n-2}{i}(x+y) T\left(x^{n-2-i} y^{i}\right)(x+y) \\
& +\left(\sum_{i=0}^{n-1}\binom{n-1}{i} x^{n-1-i} y^{i}\right) T(x+y) \tag{22}
\end{align*}
$$

Using (21) and rearranging the relation (22) in sense of collecting together terms involving equal number of factors of y, we obtain

$$
\sum_{i=1}^{n-1} f_{i}(x, y)=0
$$

where $f_{i}(x, y)$ stands for the expression of terms involving i factors of y. Replacing x by $x+2 y, x+3 y, \ldots, x+(n-1) y$ in turn in the relation (21) and expressing the resulting system of $n-1$ homogeneous equations of variables $f_{i}(x, y), i=1,2, \ldots, n-$ 1 , we see that the coefficient matrix of the system is a van der Monde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
n-1 & (n-1)^{2} & \ldots & (n-1)^{n-1}
\end{array}\right]
$$

Since the determinant of the matrix is different from zero, it follows that the system has only a trivial solution. In particular, putting the identity element e for y, we obtain

$$
\begin{aligned}
f_{n-1}(x, e)= & \binom{n}{n-1} T(x)-\binom{n-1}{n-1} T(x)-\binom{n-1}{n-2} a x \\
& +\binom{n-2}{n-2} x a+\binom{n-2}{n-2} a x+\binom{n-2}{n-3} T(x) \\
& -\binom{n-1}{n-1} T(x)-\binom{n-1}{n-2} x a,
\end{aligned}
$$

where a denotes $T(e)$. The above relation reduces to

$$
2(n-2) T(x)=(n-2) a x+(n-2) x a .
$$

Since R is n !-torsion free, it follows from the above relation that

$$
2 T(x)=a x+x a
$$

for all $x \in R$. The proof of the theorem is now complete.

REFERENCES

[1] K. I. Beidar, W. S. Martindale 3Rd, A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., New York, (1996).
[2] M. Breš AR, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
[3] M. Brešar, Functional identities: A survey, Contemporary Math. 259 (2000), 93-109.
[4] M. Brešar, M. A. Chebotar and W. S. Martindale 3rd, Functional identities, Birkhäuser Verlag, Basel-Boston-Berlin (2007).
[5] H. G. Dales, Automatic continuity, Bull. London Math. Soc. 10 (1978), 129-183.
[6] M. FOŠNER, D. ILIŠEVIĆ, On a class of projections on * -rings, Commun. Algebra 33 (2005), 32933310.
[7] M. Fošner, J. Vukman, On some equations in prime rings, Monatsh. Math. Vol. 152 (2007), 135150.
[8] A. Fošner and J. Vukman, Some functional equations on standard operator algebras, Acta Math. Hungar. 118 (2008), 299-306.
[9] A. Fošner, and J. Vukman, On certain functional equations related to Jordan triple (θ, ϕ) derivations on semiprime rings, Monatsh. Math. Vol. 162 (2011), 157-165.
[10] M. Fošner, J. Vukman, On some functional equations in prime rings, Commun. Algebra Vol. 39 (2011), 2647-2658.
[11] B. Hvala, Generalized derivations in rings, Commun. Algebra Vol. 26 (1998), 1147-1166.
[12] N. Jacobson, Structure of rings, American mathematical Society Colloquium publications, Vol. 37, Revised edition American Mathematical Society (Providence, 1964).
[13] J. Vukman, I. Kosi-Ulbl, On some functional equations on standard operator algebras, Glasnik Mat. Vol. 44 (2009), 447-455.
[14] M. Mathied, Elementary Operators and Applications, Proceedings of the International Work-shop, World Scientific, Singapore (1992).
[15] A. M. Sinclair, Automatic continuity of linear operators, London Math. Soc. Lecture Note Ser. 21, Cambridge University Press, Cambridge, London, New York and Melbourne (1976).
[16] L. L. STAChó, B. ZALAR, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 9-20.
[17] L. L. Stachó, B. Zalar, Bicircular projections and characterization of Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), 3019-3025.
[18] J. Vukman, I. Kosi-Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. Vol. 71 (2005), 53-60.
[19] J. Vukman, On functional equations related to bicircular projections, Glasnik. Mat. Vol. 41, (2006), 51-55.
(Received January 26, 2012)
Nejc Širovnik
Department of Mathematics and Computer Science
University of Maribor, FNM, Koroška 160 2000 Maribor, Slovenia
e-mail: nejc.sirovnik@uni-mb.si
Joso Vukman
Department of Mathematics and Computer Science
University of Maribor, FNM, Koroška 160 2000 Maribor, Slovenia
e-mail: joso.vukman@uni-mb.si

[^0]: Mathematics subject classification (2010): 16W10, 46K15, 39B05.
 Keywords and phrases: Prime ring, semiprime ring, Banach space, standard operator algebra, derivation, generalized derivation.

 This research has been supported by the Research Council of Slovenia.

