
Operators
and

Matrices

Volume 8, Number 3 (2014), 659–682 doi:10.7153/oam-08-36

SELF–CONJUGATE DIFFERENTIAL AND DIFFERENCE OPERATORS

ARISING IN THE OPTIMAL CONTROL OF DESCRIPTOR SYSTEMS

VOLKER MEHRMANN AND LENA SCHOLZ

(Communicated by J. William Helton)

Abstract. We analyze the structure of the linear differential and difference operators associated
with the necessary optimality conditions of optimal control problems for descriptor systems in
continuous- and discrete-time. It has been shown in [27] that in continuous-time the associated
optimality system is a self-conjugate operator associated with a self-adjoint pair of coefficient
matrices and we show that the same is true in the discrete-time setting. We also extend these
results to the case of higher order systems. Finally, we discuss how to turn higher order systems
with this structure into first order systems with the same structure.

1. Introduction

The linear quadratic optimal control problem with constraints that are given by
differential-algebraic equations (DAEs) has been discussed in several publications [2,
24, 27, 29]. This is the problem of minimizing a cost functional

J (x,u) =
1
2
x(t)T Mex(t)+

1
2

∫ t

t

(
xTWx+ xTSu+uTSTx+uTRu

)
dt, (1)

subject to the constraint

Eẋ = Ax+Bu+ f , x(t) = x ∈ R
n, (2)

with coefficient functions E,A ∈ C0(I,Rn,n) , W ∈ C0(I,Rn,n) , B ∈ C0(I,Rn,m) , S ∈
C0(I,Rn,m) , R ∈ C0(I,Rm,m) , f ∈ C0(I,Rn) , and Me ∈ R

n,n , where R = RT , W =
WT and Me = MT

e . Here, I = [t,t] is a real time-interval and C�(I,Rn,m) denotes
the � -times continuously differentiable functions from the interval I to the real n×m
matrices. Note that for simplicity we omit the argument t in all matrix and vector
valued functions.

It has been shown in [24] that in the case that the differential-algebraic equation (2)
has some further properties, (i. e., if it is strangeness-free as a behavior system and if the
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coefficients are sufficiently smooth), then the necessary optimality condition is given by
the boundary value problem⎡

⎣ 0 E 0
−ET 0 0

0 0 0

⎤
⎦ d

dt

⎡
⎣λ

x
u

⎤
⎦ =

⎡
⎣ 0 A B

AT + d
dt E

T W S

BT ST R

⎤
⎦
⎡
⎣λ

x
u

⎤
⎦+

⎡
⎣ f

0
0

⎤
⎦ , (3)

with boundary conditions x(t) = x , E(t)T λ (t)−Mex(t) = 0.
If we denote the associated differential-algebraic equation (3) as E ż = A z + f̃ ,

then the pair of coefficient functions (E ,A ) has the property that E T = −E and
A T = A + Ė . Such pairs of matrix functions are called self-adjoint pairs, since it has
been shown in [27] that this is a property that is associated with a linear self-conjugate
differential-algebraic operator given by Lc := E ż−A z . Note that there may be restric-
tions to the value x and the weighting matrix Me that need to be satisfied to guarantee
the existence of solutions for (3), see [24].

It has also been shown in [25] for strangeness-free DAEs, and in [2, 29] for spe-
cial DAEs with properly stated leading term, that if one just formally writes down the
system (3) regardless of the properties, and if this system is uniquely solvable, then the
solution yields the optimal x,u , but may give a different Lagrange multiplier function
λ .

REMARK 1. In many practical applications the state x is not directly accessible
for measurements or observations and typically an output equation

y = Cx+Du+g, (4)

with C ∈ C0(I,Rp,n) , D ∈ C0(I,Rp,m) , and g ∈ C0(I,Rp) is added to (2). The cost
functional is then typically also stated in terms of the output equation, i. e.,

J (y,u) =
1
2
y(t)T M̃ey(t)+

1
2

∫ t

t

(
yTW̃y+ yT S̃u+uT S̃T y+uT R̃u

)
dt. (5)

In this case one can just insert the output equation (4) into the cost functional (5) and
obtain a cost functional of the form (1).

A typical approach in practice for the solution of optimal control problems is the
first-discretize-then-optimize or direct transcription approach, where the optimal con-
trol problem (1), i. e., the constraint as well as the cost functional are discretized and
then classical optimization techniques are applied to the resulting constrained optimiza-
tion problem, see e. g., [3, 4, 5, 7]. This method is easy to implement and it is also easy
to include other constraints like switching or inequality constraints, but, in general, not
much can be said about the convergence of the solution of this optimization problem to
the optimal solution of the continuous time problem, see [6, 18].

Another viewpoint of the first-discretize-then-optimize approach is that of discrete
time optimal control. If we discretize the DAE (2) on a time grid t = t0 < t1 < .. . < tN =
t with a suitable discretization method [8, 19, 23] and approximate the cost functional
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(1) by an appropriate quadrature rule, then we obtain a discrete-time linear-quadratic
optimal control problem of minimizing

Jd((xi),(ui)) =
1
2
xT
NMexN +

1
2

N−1

∑
j=0

(xT
j Wjx j + xT

j S ju j +uT
j S

T
j x j +uT

j R ju j), (6)

subject to the difference equation

Ei+1xi+1 = Aixi +Biui + fi, for i = 0, . . . ,N−1 and x0 = x ∈ R
n, (7)

with Ei,Ai,Wi ∈ R
n,n , Bi,Si ∈ R

n,m , Ri ∈ R
m,m and Wi = WT

i , Ri = RT
i for all i and

Me = MT
e ∈ R

n,n . Note that the matrices in (6) usually do not match to the corre-
sponding matrix functions in (1) at the discrete time points ti , e. g., usually Ei �= E(ti) ,
Ai �= A(ti) , etc.

Discrete-time optimal control problems of this form also arise when discrete mod-
eling is used right from the start or when the system is obtained by a sampling method,
see e. g. [22, 30].

In the following, x = (xi)N
i=0 and u = (ui)N

i=0 will denote sequences of vectors
xi ∈ R

n and ui ∈ R
m and we will use the notation

R
n
0,N := {(xi)N

i=0 | xi ∈ R
n}

to denote the vector space of sequences in R
n .

The discrete-time optimal control problem (6) can again be seen as a general op-
timization problem in Banach spaces, such that necessary optimality conditions can
be derived in the same way as in [11, 24, 28, 34]. If the constraint equation (7) is
strangeness-free, which in the discrete-time case has been defined and analyzed in
[9, 10], then we can extend previous results in the constant coefficient case of [34] to
show that the necessary optimality condition for ((xi),(ui)) to be an optimal solution
is the existence of a sequence of Lagrange multipliers (λi) such that ((xi),(ui),(λi))
satisfy the discrete-time optimality system

Ei+1xi+1 = Aixi +Biui + fi,

−ET
i λi−1 = Wixi +Siui−AT

i λi, (8)

0 = ST
i xi +Riui −BT

i λi,

together with the boundary conditions

E+
0 E0x0 = x, AT

0 λ0 = W0x0 +S0u0,

ET
N λN−1 = −MexN ,

(9)

see Section 3.
If we reformulate system (8) as a second order difference equation of the form⎡
⎣0 Ei+1 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣λi+1

xi+1

ui+1

⎤
⎦+

⎡
⎣ 0 −Ai −Bi

−AT
i Wi Si

−BT
i ST

i Ri

⎤
⎦
⎡
⎣λi

xi

ui

⎤
⎦+

⎡
⎣ 0 0 0

ET
i 0 0
0 0 0

⎤
⎦
⎡
⎣λi−1

xi−1

ui−1

⎤
⎦ =

⎡
⎣ fi

0
0

⎤
⎦ ,
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then again a special structure of the sequences of coefficient matrices (denoted in the
following by ((Ki),(Ni),(Mi))) can be observed, with the middle coefficient being
symmetric and the leading and last coefficient being transposes of each other, except
that the index is shifted by 1. A triple of matrix sequences with such a structure will be
called a self-adjoint triple of matrix sequences, see Section 4.

The paper is organized as follows. In Section 2 we recall the main results of
the theoretical analysis for DAE optimal control problems as presented in [26] and
[27]. In Section 3 necessary optimality conditions for the discrete-time optimal control
problem (6) are derived. Then, in Section 4, we investigate self-conjugacy of difference
operators and show that the operator associated with the discrete-time boundary value
problem (8) fits into this framework. Since we obtain higher order difference equations
in the discrete-time case we also discuss the related optimal control problem for higher
order systems in Section 5, where also structure preserving first order representations
for continuous- as well as discrete-time self-adjoint systems are studied. We close with
some concluding remarks in Section 6.

2. Preliminaries

The theoretical basis for DAE optimal control problems has been studied in many
different publications, see e. g., [2, 24, 27, 29, 34] and the references therein. We follow
the approach in [24, 27] in a behavior setting, see [36], and first summarize some of the
main results that are needed in the remainder of the paper.

The behavior approach proceeds by setting

E =
[
E 0

]
, A =

[
A B

]
, z =

[
x
u

]
and considering the system (2) in the form

E ż = A z+ f , (10)

with initial condition
[
In 0

]
z(t) = x . Following the presentation in [24, 27], we assume

that the system (10) is already given in regular strangeness-free form, meaning that E
and A are of the form

E =
[

E1 0
0 0

]
, A =

[
A1 B1

A2 B2

]
, f =

[
f1
f2

]

and satisfy the condition that

[
E1 0
A2 B2

]
is pointwise full row rank. A system with these

properties can always be obtained using certain regularization techniques. For details,
see [23, 24].

Since the use of adjoint equations is only reasonable for regular systems we restrict
ourselves to this case. It has been shown in [23] that a regular strangeness-free system
(10) has a well-defined differentiation index ν = 1 for every sufficiently smooth input
function u and every initial condition that is consistent with f and that the chosen input
function fixes a unique solution.
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For a Banach space formulation of (10), in [24] the Banach spaces Z = X×U and
Y were defined, where

X = C1
E+E(I,Rn) =

{
x ∈C(I,Rn), E+Ex ∈C1(I,Rn)

}
, U = C(I,Rm),

Y = C(I,Rn)× rangeE(t)T ,

and E+ denotes the Moore-Penrose inverse, see e. g. [17], of the matrix function

E =
[

E1

0

]
, together with the dual spaces

Z
∗ = C(I,Rn)×C(I,Rm)× rangeE(t)T × rangeE(t)T ,

Y
∗ = C1

EE+(I,Rn)× rangeE(t)T .

The linear quadratic optimal control problem (1), (2) can then be written as the
abstract optimization problem

minimize
1
2
Q(z,z) subject to L (z) = c, (11)

with z =
[

x
u

]
and c =

[
f

E(t)+E(t)x

]
, where Q : Z×Z→ R is a symmetric quadratic

form defined by

Q(v,z) = v(t)T
[

Me 0
0 0

]
z(t)+

∫
I

vT
[

W S
ST R

]
zdt,

and the linear operators L : Z → Y and its conjugate L ∗ : Y
∗ → Z

∗ are given by

L (z) =
(

E
d
dt

(E+Ex)− (A+E
d
dt

(E+E))x−Bu,E(t)+E(t)x(t)
)

,

L ∗(λ ,γ) =
(
−ET d

dt
(EE+λ )− (A+EE+Ė)T λ ,−BT λ ,γ −E(t)T λ (t),E(t)T λ (t)

)
.

It has been shown in [27] that with

R(z) = (Wx+Su,STx+Ru,0,Mex(t)) ∈ Z
∗,

and defining the operator

T : Y
∗ ×Z → Y×Z

∗, T (Λ,z) = (L (z),L ∗(Λ)−R(z)),

the necessary optimality conditions (3) can be written as

T (Λ,z) = (c,0) (12)

and that the operator T is self-conjugate. Note that (12) coincides with (3) if we
assume sufficient smoothness of the data, see again [24].
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REMARK 2. The discussed approach can be easily extended to linear higher order
optimal control problems, where one minimizes

J (x,u) =
1
2
x(t)T Mex(t)+

1
2

∫ t

t

(
k−1

∑
j=0

(x( j))TWjx
( j) + xT Su+uTST x+uTRu

)
dt,

(13a)

(with k > 1) subject to a constraint given by a k -th order differential-algebraic equation

k

∑
j=0

Ajx
( j) +Bu = f , x(t) = x0, ẋ(t) = x1, . . . , x(k−1)(t) = xk−1. (13b)

Here, Wj = WT
j ∈ C0(I,Rn,n) and Aj ∈ C0(I,Rn,n) for j = 0, . . . ,k . If the leading

coefficient matrix Ak is pointwise nonsingular, then we can apply the classical pro-
cedure to turn (13a) and (13b) into first order systems by introducing new variables
wi = x(i) for i = 0, . . . ,k−1, see also [35]. The formal necessary optimality conditions
for the corresponding first order system then lead to a two-point boundary value prob-
lem. With λ =

[
λ T

k−1 . . . λ T
0

]T
partitioned as w =

[
wT

0 . . . wT
k−1

]T
we can rewrite the

system again as a high order system in (x,μ) , where μ = λk−1 , yielding a boundary
value problem for 2(k−1) th order equations of the form

k

∑
j=0

Ajx
( j) +Bu = f ,

k

∑
j=0

(−1) j d j

dt j

(
AT

j μ
)
+

k−1

∑
j=0

(−1) j−1 d j

dt j

(
Wjx

( j)
)
−Su = 0,

−BT μ +STx+Ru = 0,

(14)

with boundary conditions

x(i)(t) = xi, i = 0,1, . . . ,k−1,

0 =
i

∑
j=0

(−1) j d j

dt j

(
AT

k−i+ jμ
)
+

i−1

∑
j=0

(−1) j+1 d j

dt j

(
Wk−i+ jx

(k−i+ j)
)∣∣∣∣∣

t

, i = 0, . . . ,k−2,

0 =
k−1

∑
j=0

(−1) j d j

dt j

(
AT

1+ jμ
)
+

k−2

∑
j=0

(−1) j+1 d j

dt j

(
W1+ jx

(1+ j)
)∣∣∣∣∣

t

−Mex(t).

In this way, we can always construct an even order boundary value problem and the
corresponding DAE operator is formally self-conjugate.

If the weighting matrices Wi are chosen to be zero for all i > k−1
2 if k is odd,

and for all i > k
2 if k is even, then all coefficients in front of derivatives higher than k

vanish. For constant coefficient problems (14) reduces to a system with an even matrix
tuple of coefficients.

Note that when Ak in (13b) is singular, this approach cannot be applied in a formal
straightforward way, because the first order formulation may change the index. In this
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case first a so-called trimmed first order formulation of the higher order system has to be
considered, see [13, 39]. Then, for the trimmed first order formulation we can formulate
the necessary optimality conditions and reformulation as a higher order boundary value
problem leads again to a self-adjoint high order system.

After briefly recalling the results for the continuous-time case, in the next section
we prove analogous results in the discrete-time case.

3. Necessary optimality conditions for discrete optimal control problems

In this section we derive necessary optimality conditions for the discrete-time op-
timal control problem (6) subject to (7). Similar results have been obtained in [34] for
systems with constant coefficients and in [28] for system with properly stated leading
term of tractability index one.

Again, we may assume without loss of generality that the difference equation (7)
is already given in regular strangeness-free form, i. e., using the behavior approach by
setting

Ei+1 =
[
Ei+1 0

]
, Ai =

[
Ai Bi

]
, zi =

[
xi

ui

]
,

we consider the system (7) in the form

Ei+1zi+1 = Aizi + fi, i = 0, . . . ,N−1,

with coefficients

Ei+1 =
[

E1,i+1 0
0 0

]
, Ai =

[
A1,i B1,i

A2,i B2,i

]
, fi =

[
f1,i

f2,i

]

that satisfy the condition[
E1,i+1 0
A2,i B2,i

]
has full row rank for all i = 0, . . . ,N−1.

Numerical methods for the computation of strangeness-free formulations of a discrete-
time system (7) have been presented in [9, 10].

To derive the necessary optimality conditions we use the classical approach of ap-
pending the constraint equations (7) to the cost term by means of Lagrange multipliers
and introducing the discrete functional

L((xi),(ui),(λi),δ ) =
1
2
xT
NMexN +

1
2

N−1

∑
j=0

(xT
j Wjx j + xT

j S ju j +uT
j S

T
j x j +uT

j R ju j)

+
N−1

∑
j=0

(Ej+1x j+1−Ajx j −Bju j − f j)T λ j +(E+
0 E0x0− x)T δ .

(15)
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Here, as in [24], we apply the projection onto cokernelE0 for the initial value x0 in
order to meet the consistency requirements for algebraic components.

The necessary conditions for a minimum are given by the requirement that the
gradients of L with respect to all unknowns vanish. We have the following gradients

∇λi
L = (Ei+1xi+1−Aixi −Biui− fi)T = 0, i = 0, . . . ,N−1,

∇x0L = W0x0 +S0u0−AT
0 λ0 +(E+

0 E0)T δ = 0,

∇xiL = Wixi +Siui +ET
i λi−1−AT

i λi = 0, i = 1, . . . ,N−1,

∇xN L = MexN +ET
NλN−1 = 0,

∇uiL = ST
i xi +Riui −BT

i λi = 0, i = 0, . . . ,N −1,

∇δ L = (E+
0 E0x0− x)T = 0,

giving the necessary optimality conditions

Ei+1xi+1−Aixi −Biui− fi = 0, i = 0, . . . ,N−1, (16a)

Wixi +Siui +ET
i λi−1−AT

i λi = 0, i = 1, . . . ,N−1, (16b)

ST
i xi +Riui−BT

i λi = 0, i = 0, . . . ,N−1, (16c)

together with the boundary conditions

W0x0 +S0u0−AT
0 λ0 +(E+

0 E0)T δ = 0, (17a)

MexN +ET
NλN−1 = 0, (17b)

E+
0 E0x0 = x. (17c)

These necessary conditions can be written (in a rather formal way) as a three term
recursion of the form⎡
⎢⎢⎣

0 Ei+1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λi+1

xi+1

ui+1

δ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 −Ai −Bi 0
−AT

i Wi Si 0
−BT

i ST
i Ri 0

0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λi

xi

ui

δ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0 0
ET

i 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λi−1

xi−1

ui−1

δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

fi
0
0
0

⎤
⎥⎥⎦ ,

(18)

for i = 1, . . . ,N−1, with boundary conditions⎡
⎢⎢⎣

0 E1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λ1

x1

u1

δ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 −A0 −B0 0
−AT

0 W0 S0 (E+
0 E0)T

−BT
0 ST

0 R0 0
0 E+

0 E0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λ0

x0

u0

δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f0
0
0
x

⎤
⎥⎥⎦ ,

and ⎡
⎢⎢⎣

0 0 0 0
0 Me 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λN

xN

uN

δ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0 0
ET

N 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λN−1

xN−1

uN−1

δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .
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Here, the additional Lagrange multiplier δ that is used to couple the initial condition
to the functional (15), in general, is chosen as δ = 0. Since δ is of no concern in (18),
in the following we will omit the last block row and column of (18).

If we look at the structure of the system (18), then we observe that the middle
term is symmetric while the leading term is the transpose of the last term with the index
shifted by one.

REMARK 3. In a similar fashion we can treat the discrete-time optimal control
problem of minimizing

Jd((x�),(u�)) =
1
2
xT
NMexN +

1
2

N−1

∑
j=0

(
xT

j Wjx j + xT
j S ju j +uT

j S
T
j x j +uT

j R ju j
)
, (19a)

subject to the k -th order discrete-time control system

k

∑
i=0

M[i]
i+ jxi+ j +Bju j = f j, j = 0,1, . . . ,N− k, (19b)

with given starting values for x0,x1, . . . ,xk−1 ∈ R
n and coefficient matrices M[i]

j ∈ R
n,n

for i = 0, . . . ,k , Bj ∈R
n,m , j = 0, . . . ,N , see e. g. [11] for the constant coefficient case.

In this case the Lagrangian takes the form

L((x�),(u�),(λ�),δ ) =
1
2
xT
NMexN +

1
2

N−1

∑
j=0

(xT
j Wjx j + xT

j S ju j +uT
j S

T
j x j +uT

j R ju j)

+
N−k

∑
j=0

(
k

∑
i=0

M[i]
i+ jxi+ j +Bju j − f j

)T

λ j +
k−1

∑
j=0

(
(M[ j]

j )+M[ j]
j x j − x j

)T
δ j,

(20)

and the necessary optimality conditions are given by

∇λ�
L =

(
k

∑
i=0

M[i]
i+�xi+� +B�u�− f�

)T

= 0, � = 0, . . . ,N− k,

∇x�
L = W�x� +S�u� +

k−�−1

∑
i=0

M[i]T
� λ�−i +

(
(M[�]

� )+M[�]
�

)T
δ� = 0, � = 0, . . . ,k−1,

∇x�
L = W�x� +S�u� +

k

∑
i=0

M[i]T
� λ�−i = 0, � = k, . . . ,N− k,

∇x�
L = W�x� +S�u� +

k

∑
i=0

M[i]T
� λ�−i = 0, � = N− k+1, . . . ,N−1,

∇xN L = MexN +
(
M[k]

N

)T
λN−k = 0,

∇u�
L = ST

� x� +R�u� +BT
� λ� = 0, � = 0, . . . ,N− k,
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∇u�
L = ST

� x� +R�u� = 0, � = N− k+1, . . . ,N −1,

∇δ j
L =

(
(M[ j]

j )+M[ j]
j x j − x j

)T
= 0, j = 0, . . . ,k−1.

This yields the optimality boundary value problem⎡
⎣0 M[k]

k+� 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣λ�+k

x�+k

u�+k

⎤
⎦+ . . .+

⎡
⎣0 M[1]

1+� 0
0 0 0
0 0 0

⎤
⎦
⎡
⎣λ�+1

x�+1

u�+1

⎤
⎦+

⎡
⎢⎣ 0 M[0]

� B�

(M[0]
� )T W� S�

BT
� ST

� R�

⎤
⎥⎦
⎡
⎣λ�

x�

u�

⎤
⎦

+

⎡
⎣ 0 0 0

(M[1]
� )T 0 0
0 0 0

⎤
⎦
⎡
⎣λ�−1

x�−1

u�−1

⎤
⎦+ . . .+

⎡
⎣ 0 0 0

(M[k]
� )T 0 0
0 0 0

⎤
⎦
⎡
⎣λ�−k

x�−k

u�−k

⎤
⎦ =

⎡
⎣ f�

0
0

⎤
⎦ ,

for � = k, . . . ,N − k , together with the corresponding boundary conditions. (Note that,
as before, we have omitted the variables δ j for better readability.) Again, we observe
a symmetry of the middle coefficient, while the leading and final coefficients have a
transposed structure with shifted indices.

In the following, we will show that the difference operator arising in the opti-
mality system (18) is self-conjugate with respect to suitably chosen dual systems and
corresponding Banach spaces.

4. Self-conjugate difference operators

In order to show that the difference operator arising in the optimality system (18)
is self-conjugate, we adapt the proof from the continuous-time case in [27] to the
discrete-time case. As in the continuous-time case we restrict ourselves to regular and
strangeness-free systems. Then, we can rewrite the discrete optimal control problem
(6), (7) as

minimize
1
2
Qd((zi),(zi)) subject to Ld((zi)) = (ci),

with (zi) =
([

xi

ui

])
and (ci) =

([
fi
x

])
, where Qd : Zd ×Zd → R is a discrete

symmetric quadratic form defined by

Qd((vi),(zi)) = vT
N

[
Me 0
0 0

]
zN +

N−1

∑
j=0

vT
j

[
Wj S j

ST
j R j

]
z j

and sequence spaces Zd = Xd ×Ud , where Xd ,Ud , Yd are given by

Xd = R
n
0,N , Ud = R

m
0,N−1 and Yd = R

n
0,N−1 × rangeET

0 . (21)

In view of the results from Section 3, we obtain that the linear difference operator
Ld : Zd → Yd for the constraint (7) is given by

Ld((zi)) = (Ei+1xi+1 −Aixi−Biui,E
+
0 E0x0). (22)
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In the next step we need to define dual systems 〈Zd ,Z
∗
d〉 and 〈Yd ,Y

∗
d〉 . Then, it

follows that the operator Ld has a unique conjugate operator L ∗
d : Y

∗
d → Z

∗
d (see also

[27]). Keeping in mind the necessary optimality conditions (16), we define the spaces

Z
∗
d = R

n
1,N−1 ×R

m
0,N−1× rangeET

0 × rangeET
N ,

Y
∗
d = R

n
0,N−1 × rangeET

0 ,
(23)

to obtain the bilinear systems 〈Zd ,Z
∗
d〉 and 〈Yd ,Y

∗
d〉 with the corresponding bilinear

forms

〈(zi),((ηi),(ϑi),δ ,ε)〉 =
N−1

∑
j=1

ηT
j x j +

N−1

∑
j=0

ϑT
j u j + δT x0 + εT xN , (24)

for (zi) ∈ Zd , ((ηi),(ϑi),δ ,ε) ∈ Z
∗
d , and

〈((gi),r),((λi),γ)〉 =
N−1

∑
j=0

λ T
j g j + γT r, (25)

for ((gi),r) ∈ Yd , and ((λi),γ) ∈ Y
∗
d . In the following, we show that these bilinear

systems are dual systems, i. e., the corresponding bilinear forms are non-degenerate.

THEOREM 1. The bilinear systems 〈Zd ,Z
∗
d〉 and 〈Yd ,Y

∗
d〉 with sequence spaces

as in (21), (23) and corresponding bilinear forms as in (24), (25) are dual systems.

Proof. Consider the bilinear system 〈Yd ,Y
∗
d〉 with its bilinear form given in (25).

In the following, we use the standard observation that if ( fi) ∈ R
n
0,N and 〈( fi),(gi)〉 =

∑N
j=0 f T

j g j = 0 for all (gi) ∈ R
n
0,N , then fi = 0 for all i = 0, . . . ,N . Let y∗ = ((λi),γ) ∈

Y
∗
d be fixed and assume that

〈y,y∗〉 =
N−1

∑
j=0

λ T
j g j + γT r = 0

for all y = ((gi),r) ∈ Yd . Choosing gi = 0 for all i = 0, . . . ,N − 1 and r = γ gives
γT γ = 0, hence γ = 0. Therefore, ∑N−1

j=0 λ T
j g j = 0 for all (gi) ∈ R

n
0,N , and hence

λ j = 0 for all j = 0, . . . ,N−1.
Let y = ((gi),r) ∈ Yd be fixed and assume that

〈y,y∗〉 =
N−1

∑
j=0

λ T
j g j + γT r = 0

for all y∗ = ((λi),γ) ∈ Y
∗
d . Choosing λi = 0 for all i = 0, . . . ,N − 1 and γ = r gives

rT r = 0, hence r = 0. Therefore, ∑N−1
j=0 λ T

j g j = 0 for all (λi) ∈ R
n
0,N−1 , where (gi) ∈

R
n
0,N−1 and hence, g j = 0 for j = 0, . . . ,N−1.

The proof for 〈Zd ,Z
∗
d〉 follows the same lines. �
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If 〈Zd ,Z
∗
d〉 is a dual system, then we know that the operator Ld has a unique

conjugate operator L ∗
d : Y

∗
d → Z

∗
d (see also [27]) that is given by

L ∗
d ((λi),γ) = ((ET

i λi−1−AT
i λi),(−BT

i λi),γ −AT
0 λ0,E

T
N λN−1). (26)

THEOREM 2. The operator L ∗
d : Y

∗
d →Z

∗
d defined by (26) is the unique conjugate

of Ld : Zd → Yd defined by (22).

Proof. Let (zi) = ((xi),(ui)) ∈ Zd and Λ = ((λi),γ) ∈ Y
∗
d . Using that E+

0 E0γ = γ
(since γ ∈ rangeET

0 and E+
0 E0 is a projector onto cokernel(E0) = range(ET

0 )), we have

〈Ld(zi),Λ〉 =
N−1

∑
j=0

λ T
j

(
Ej+1x j+1−Ajx j −Bju j

)
+ γTE+

0 E0x0

=
N−1

∑
j=1

(λ T
j−1Ejx j −λ T

j A jx j)+ λ T
N−1ENxN −

N−1

∑
j=0

λ T
j B ju j −λ T

0 A0x0 + γTE+
0 E0x0

=
N−1

∑
j=1

(ET
j λ j−1−AT

j λ j)T x j +
N−1

∑
j=0

(−BT
j λ j)T u j +(γ −AT

0 λ0)T x0 +(ET
NλN−1)T xN

= 〈(zi),L ∗
d (Λ)〉. �

Finally, we can define an operator Td : Y
∗
d ×Zd → Yd ×Z

∗
d of the form

Td(Λ,(zi)) = (Ld(zi),L ∗
d (Λ)+Rd(zi)), (27)

with
Rd(zi) =

(
(Wixi +Siui),(ST

i xi +Riui),W0x0 +S0u0,MexN
) ∈ Z

∗
d .

That means, for (zi) = ((xi),(ui)) ∈ Zd and Λ = ((λi),γ) ∈ Y
∗
d we have

Td(Λ,(zi)) =
(
(Ei+1xi+1−Aixi −Biui),E+

0 E0x0, (ET
i λi−1−AT

i λi +Wixi +Siui),

(−BT
i λi +ST

i xi +Riui),γ −AT
0 λ0 +W0x0 +S0u0,E

T
N λN−1 +MexN

)
and with γ = (E+

0 E0)T δ the necessary conditions (16), (17) can be written as

Td(Λ,(zi)) = ((ci),0). (28)

In order to show that the operator Td is self-conjugate we introduce the spaces

Vd = Y
∗
d ×Zd, Wd = Yd ×Z

∗
d,

and set V
∗
d = Wd , W

∗
d = Vd . Then, by construction, we have Td : Vd → Wd and also

Td : W
∗
d → V

∗
d . Obviously, the pairs 〈Vd ,V

∗
d〉 and 〈Wd ,W

∗
d〉 are dual systems with

respect to the so-called canonical bilinear form

〈(y∗,z),(y,z∗)〉 = 〈y,y∗〉+ 〈z,z∗〉 = 〈(y,z∗),(y∗,z)〉. (29)
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THEOREM 3. The operator Td as defined in (27) is self-conjugate with respect to
the canonical bilinear form (29), i. e., we have

〈Td(v), ṽ〉 = 〈v,Td(ṽ)〉 for all v, ṽ ∈ Vd .

Proof. Let v = (Λ,(zi)) ∈ Vd and ṽ = (Λ̃,(z̃i)) ∈ Vd . Then

〈Td(Λ,(zi)),(Λ̃,(z̃i))〉 = 〈(Ld((zi)),L ∗
d (Λ)+Rd((zi))),(Λ̃,(z̃i))〉

= 〈Ld((zi)), Λ̃〉+ 〈(z̃i),Rd((zi))〉+ 〈(z̃i),L ∗
d (Λ)〉,

as well as

〈(Λ,(zi)),Td(Λ̃,(z̃i))〉 = 〈(Λ,(zi)),(Ld((z̃i)),L ∗
d (Λ̃)+Rd((z̃i)))〉

= 〈Ld((z̃i)),Λ〉+ 〈(zi),Rd((z̃i))〉+ 〈(zi),L ∗
d (Λ̃)〉.

Since L ∗
d is the conjugate of Ld and because of

〈(z̃i),Rd((zi))〉 = Qd((zi),(z̃i)) = Qd((z̃i),(zi)) = 〈(zi),Rd((z̃i))〉

due to the symmetry of Qd , the two expressions are equivalent. �

We want to emphasize again, that (28) coincides with (16), (17). In particular,
the optimality system (16) can be written as (18) with the corresponding boundary
conditions, i. e., as a three-term recursion of the form

Kivi+1 +Nivi +Mivi−1 = gi, i = 1, . . . ,N−1, (30)

with Ki,Ni,Mi ∈R
�,� and inhomogeneity gi ∈R

� for all i , together with the boundary
conditions

K0v1 +N0v0 = g0,

NNvN +MNvN−1 = gN . (31)

This observation leads to the following definition.

DEFINITION 1. Let ((Ki),(Ni),(Mi)) be a triple of matrix sequences in R
�,�
0,N

with boundary terms KN = 0 and M0 = 0, then the triple
(
(M T

i+1),(N
T

i ),(K T
i−1)

)
of matrix sequences in R

�,�
0,N with boundary terms K T

−1 = 0 and M T
N+1 = 0 is called

the adjoint triple of ((Ki),(Ni),(Mi)) .

We have the following property of adjoint triples.

PROPOSITION 1. Let ((Ki),(Ni),(Mi)) have the adjoint triple ((M T
i+1),(N

T
i ),

(K T
i−1)) . Then, the matrix triple

(
(M T

i+1),(N
T

i ),(K T
i−1)

)
has an adjoint triple which

is given by ((Ki),(Ni),(Mi)) .
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Proof. The adjoint of
(
(M T

i+1),(N
T

i ),(K T
i−1)

)
is given by(

((K T
i−1+1)

T ),((N T
i )T ),((M T

i+1−1)
T )

)
= ((Ki),(Ni),(Mi)) . �

This observation leads to the definition of self-adjoint triples of matrix sequences.

DEFINITION 2. A triple of matrix sequences ((Ki),(Ni),(Mi)) in R
�,�
0,N , is called

self-adjoint if the following two conditions are satisfied

Ki = M T
i+1 and Ni = N T

i for i = 0, . . . ,N (32)

with boundary terms KN = M T
N+1 = 0 and M0 = K T

−1 = 0.

Note that for a triple of constant matrices, condition (32) reduces to M = K T and
N = N T , i. e., in this case a self-adjoint triple corresponds to a so-called palindromic
matrix triple (M ,N ,M T ) , see [31].

A self-conjugate system of the form

M T
i+1vi+1 +Nivi +Mivi−1 = gi, i = 1, . . . ,N−1, (33)

with boundary conditions as in (31) can always be written in the form⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N0 M T
1

M1 N1 M T
2

M2 N2 M T
3

. . .
. . .

. . .
MN−1 NN−1 M T

N
MN NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0

v1

v2
...

vN−1

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

g2
...

gN−1

gN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(34)

with symmetric system matrix.

REMARK 4. The described concept of self-conjugate difference operators is in
accordance with self-conjugate difference equations given in the form

Ld((xi)) = (Δ[PiΔxi−1]+Qixi)i,

where Δxi := xi+1 − xi , with Pi = PT
i and Qi = QT

i , see e. g., [1, 21]. Here we have
L ∗∗

d = Ld .

REMARK 5. We can also consider linear difference operators of order k = 2μ ,
μ ∈ N defined by

Ld : V → W, Ld((xi)) =
k

∑
j=0

Aj(i)xi−μ+ j, for all i ∈ I , (35)
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for an index set I ⊂ Z , with matrices Aj(i) ∈ R
n,n for j = 0, . . . ,k defined for all i

and sequence spaces V and W given by

V = {(xi)i∈I , xi ∈ R
n| Bj((xi)) = 0 for j = 0, . . . ,μ −1},

W = {(yi)i∈I , yi ∈ R
n} .

With index set I = {−μ , . . . ,N + μ} the boundary terms are given by

Bj((xi)) = {A+
k− j(i− μ + j)Ak− j(i− μ + j)xi = 0 for i = N +1, . . . ,N + μ − j,

A+
j (i)Aj(i)xi−μ+ j = 0 for i = 0, . . . ,μ −1− j}.

Then, the (formal) adjoint operator L ∗
d : W

∗ → V
∗ is given by

L ∗
d ((yi)) =

k

∑
j=0

AT
k− j(i− μ + j)yi−μ+ j,

with sequence spaces

V
∗ = {(xi)i∈I , xi ∈ R

n} ,

W
∗ =

{
(yi)i∈I , yi ∈ R

n | B∗
j((yi)) = 0 for j = 0, . . . ,μ −1

}
and boundary conditions

B∗
j((yi)) = {Ak− j(i− μ + j)A+

k− j(i− μ + j)yi−μ+ j = 0 for i = 0, . . . ,μ −1− j,

Aj(i)A+
j (i)yi = 0 for i = N +1, . . . ,N + μ − j}.

The difference operator (35) is (formally) self-conjugate if and only if

V = {(xi)i∈I , xi ∈ R
n| Bj((xi)) = B∗

j((xi)) = 0 for all j = 0, . . . ,μ −1}

and

Aj(i) = AT
k− j(i+ j− μ) for all j = 0, . . . ,k, i ∈ I0 = {0, . . . ,N}. (36)

For constant coefficient systems, the condition of self-conjugacy (36) again reduces to
Aj = AT

k− j for j = 0, . . . ,k and thus a self-conjugate difference operator is given by a
palindromic system

Ld(x) = A0xi−μ +A1xi−μ+1 + . . .+Aμxi + . . .+AT
1 xi+μ−1 +AT

0 xi+μ .

Following [9, 10] we can simplify matrix sequences associated with the coeffi-
cients of difference equations (30) by equivalence transformations that consist of scal-
ing the equation (30) with nonsingular matrices Pi ∈ R

�,� and by performing a change
of variables vi = Qiyi with nonsingular matrices Qi ∈ R

�,� . This gives a transformed
difference equation

K̃iyi+1 + ˜Niyi +M̃iyi−1 = Pigi,
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with

˜Ki = PiKiQi+1, ˜Ni = PiNiQi, M̃i = PiMiQi−1.

Taking a look at the behavior of the adjoint of the triple of matrix sequences under
equivalence transformations and assuming that ((Ki),(Ni),(Mi)) possesses an adjoint
triple, we see that (( ˜Ki),( ˜Ni),(M̃i)) possesses an adjoint triple as well, which is given
by

((M̃ T
i+1),( ˜N T

i ),( ˜K T
i−1)) = ((QT

i M T
i+1P

T
i+1),(Q

T
i N T

i PT
i ),(QT

i K T
i−1P

T
i−1)),

i. e., the adjoint triple of the transformed triple is equivalent to the adjoint triple of the
original triple.

In order to preserve self-conjugacy of the operator, i. e., self-adjointness of the
triple of coefficient sequences, we have to preserve the symmetry of Ni and, hence, we
have to require that Pi = QT

i , i. e., that the transformation is a (time-varying) congru-
ence transformation. We then have the following Lemma.

LEMMA 1. Consider a self-adjoint triple of matrix sequences ((Ki),(Ni),(Mi))
with Ki,Ni,Mi ∈ R

�,� and apply a congruence transformation with a sequence of
nonsingular Qi ∈ R

�,� , leading to the triple

(( ˜Ki),( ˜Ni),(M̃i)) = ((QT
i KiQi+1),(QT

i NiQi),(QT
i MiQi−1)).

Then the triple (( ˜Ki),( ˜Ni),(M̃i)) is again self-adjoint.

Proof. The condition for ˜Ni is trivially satisfied and for ˜Ki and M̃i we get

˜Ki = QT
i KiQi+1 = QT

i M T
i+1Qi+1 = M̃ T

i+1. �

In order to understand the solution behavior of linear matrix sequences, one usu-
ally computes canonical or condensed forms under the associated equivalence transfor-
mation. For constant matrix pairs the general canonical form under equivalence is given
by the Kronecker canonical form see, e. g., [16] and the condensed form is the staircase
or GUPTRI form [14, 15, 38]. The canonical form under congruence transformations
for even pencils has been given in [37] and the condensed form in [12]. For palindromic
pencils this form has been derived in [20]. The canonical form for time varying pairs
under equivalence has been presented in [10]. For matrix triples such canonical forms
in general are not known even for constant triples. Recently, a condensed form which
reveals partial information has been presented [13], as well as special structured Smith
forms [33, 32]. For systems with variable coefficients such canonical or condensed
forms are an open problem.



SELF-CONJUGATE OPERATORS ARISING IN OPTIMAL CONTROL OF DESCRIPTOR SYSTEMS 675

5. Structure preserving first order formulations

The problem of deriving structure preserving first order formulations for higher
order systems has been an active research field in the last years, see e. g. [11, 31].
Since often numerical software is only available for first order systems, it is important
to preserve the specific structure of a given problem when it is transformed into an
equivalent first order formulation. In this section we discuss first order formulations in
the case of systems with self-adjoint coefficient triples.

Consider a linear k -th order differential-algebraic operator of the form

L : Z → Y, z 	→ L (z) =
k

∑
i=0

Aiz
(i), (37)

with a tuple (Ak, . . . ,A0) of sufficiently smooth coefficient functions Ai ∈ C0(I,Rn,n)
and function spaces

Z = {z ∈C0(I,Rn) |A+
k Akz ∈Ck(I,Rn), Bi(z, t) = 0, i = 1, . . . ,k},

Y = C0(I,Rn),

with boundary conditions given by

Bi(z, t) =
{
(A+

i Ai)(�)z(i− j−1)|t = 0, for j = 0, . . . , i−1, � = 0, . . . , j
}

.

The unique conjugate operator L ∗ : Y
∗ → Z

∗ is then given by

L ∗(y) =
k

∑
i=0

(−1)i di

dti
(AT

i y) =
k

∑
i=0

(−1)i
i

∑
j=0

( i
j

)
(AT

i )( j)y(i− j),

with function spaces

Z
∗ = C0(I,Rn),

Y
∗ = {y ∈C0(I,Rn) |AkA

+
k y ∈Ck(I,Rn), B∗

i (y, t) = 0, i = 1, . . . ,k}
and boundary terms

B∗
i (y, t) =

{
(AiA

+
i )(�)y( j−�)|t = 0, for j = 0, . . . i−1, � = 0 . . . , j

}
.

In this setting, the conditions for self-conjugacy of the operator L are given by

A� =
k

∑
i=0

(−1)i( i
i−�

)
(AT

i )(i−�) =
k

∑
i=�

(−1)i(i
�

)
(AT

i )(i−�) (38)

for � = 0, . . . ,k (using that
( i

j

)
= 0 for j < 0), defined on a domain

Z = {z ∈C0(I,Rn) |A+
k Akz ∈Ck(I,Rn), Bi(z,t) = B∗

i (z, t) = 0, i = 1, . . . ,k}.
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In the special case k = 1, these conditions simplify to

A0 = AT
0 − ȦT

1 , A1 = −AT
1

with boundary conditions

(A1A
+
1 )z|t = 0, (A+

1 A1)z|t = 0.

For constant coefficient systems the conditions (38) read A� = (−1)�AT
� for � = 0, . . . ,k ,

i. e., the matrices are alternating symmetric/skew-symmetric. This corresponds to the
case of even matrix tuples, see [31, 33].

Note that in contrast to Definition 12, here for simplicity the zero boundary condi-
tions are incorporated into the domains Z and Y

∗ .
For these formal self-conjugate operators we obtain the following result.

THEOREM 4. Any self-conjugate linear k -th order differential operator L as in
(37) with coefficient functions that satisfy the conditions (38) can be written in the form

L (z) =
k

∑
�=0

(−1)�
d�

dt�
(
AT

� z
)
, (39)

where the leading coefficient matrix satisfies Ak = (−1)kAT
k .

Proof. Using the condition for self-conjugacy given in (38), the differential oper-
ator can be written as

L z =
k

∑
�=0

k

∑
i=�

(−1)i(i
�

)
(A(i−�)

i )T z(�)

=
k

∑
�=0

�

∑
j=0

(−1)�
(
�
j

)
(A(�− j)

� )T z( j)

=
k

∑
�=0

(−1)�
d�

dt�
(
AT

� z
)
. �

For further investigations it turns out to be useful to split a self-conjugate differen-
tial operator into even and odd order parts.

THEOREM 5. Any self-adjoint linear k -th order differential operator L as in
(37) with coefficient functions that satisfy the conditions (38) can be written as a sum
of differential operators of the form

L2ν(x) = (P2νx(ν))(ν), (40a)

L2ν−1(x) =
1
2
[(Q2ν−1x

(ν−1))(ν) + (Q2ν−1x
(ν))(ν−1)], (40b)

with matrix valued functions P2ν = PT
2ν ∈Cν (I,Rn,n) , Q2ν−1 = −QT

2ν−1 ∈Cν (I,Rn,n)
for ν = 0, . . . ,μ , where μ = k

2 if k is even and μ = k+1
2 if k is odd.
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Proof. We prove the statement by induction. For k = 1 we have

L (x) = A1ẋ+A0x =
1
2

d
dt

(A1x)+
1
2
(A1ẋ)+ (A0− 1

2
Ȧ1)x

with Q1 := A1 skew-symmetric and P0 := A0− 1
2 Ȧ1 symmetric (due to (38)). Similarly,

for k = 2 we have

L (x) = A2ẍ+A1ẋ+A0x

=
d
dt

(A2ẋ)+ (A1− Ȧ2)ẋ+A0x

=
d
dt

(A2ẋ)+
1
2

d
dt

((A1− Ȧ2)x)+
1
2
((A1− Ȧ2)ẋ)+ (A0− 1

2
(Ȧ1− Ä2))x,

with P2 := A2 and P0 := A0− 1
2 (Ȧ1−Ä2) symmetric, and Q1 := A1−Ȧ2 skew-symmetric

(due to (38)).
Now let L (x) = ∑k

i=0 Aix(i) be a self-conjugate differential operator and assume
that k = 2μ is even. The conditions in (38) imply that Ak = AT

k , and we can write the
operator as

L (x) =
dμ

dtμ

(
Akx

(μ)
)
−

μ

∑
i=1

(
μ
i

)
A(i)

k x(k−i) +Ak−1x
(k−1) + . . .+A1ẋ+A0x

=
dμ

dtμ

(
Akx

(μ)
)

+
k−1

∑
i=0

Ãix
(i),

with Ãi = Ai−
( μ
k−i

)
A(k−i)

k , for i = k−μ , . . . ,k−1, and Ãi = Ai for i = 0, . . . ,k−μ−1.
If we subtract from L (x) the self-conjugate expression

L2μ(x) =
dμ

dtμ (Akx
(μ)) = Akx

k +
μ

∑
j=1

(μ
j

)
A( j)

k x(k− j),

(i. e., Pk := Ak ), then we obtain again a self-conjugate expression

L (x) = L (x)−L2μ(x) =
k−1

∑
i=0

Aix
(i)−

μ

∑
j=1

(μ
j

)
A( j)

k x(k− j)

=
μ−1

∑
i=0

Aix
(i) +

k−1

∑
i=μ

(Ai −
( μ
k−i

)
A(k−i)

k )x(i)

of odd order k−1.
If k = 2μ − 1 is odd, then we have Ak = −AT

k . By subtracting from L (x) the
self-conjugate expression

L2μ−1(x) =
1
2

[
(Akx

(μ−1))(μ) + (Akx
(μ))(μ−1)

]
= Akx

(k) +
1
2

[
μ

∑
j=1

(μ
j

)
A( j)

k x(k− j) +
μ−1

∑
j=1

(μ−1
j

)
A( j)

k x(k− j)

]
,
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(i. e., Qk := Ak ), then we obtain a self-conjugate expression

L (x) = L (x)−L2μ−1(x) =
k−1

∑
i=0

Aix
(i) − 1

2

[
μ

∑
j=1

(μ
j

)
A( j)

k x(k− j) +
μ−1

∑
j=1

(μ−1
j

)
A( j)

k x(k− j)

]

of even order k−1.
Due to the inductive assumption, a self-adjoint operator of order k−1 can be writ-

ten as a sum of expressions of the form (40a) and (40b). This completes the proof. �
In the following, we say that a k th-order self-adjoint differential operator is in

partitioned form, if it is given by

L (x) =

{
∑r

ν=0 L2ν(x)+ ∑r
ν=1 L2ν−1(x), if k is even with r = k

2 ,

∑r−1
ν=0 L2ν(x)+ ∑r

ν=1 L2ν−1(x), if k is odd with r = k+1
2 .

(41)

EXAMPLE 1. For a linear second order differential operator of the form

Mẍ+Cẋ+Kx = f , (42)

with coefficient functions M,C,K ∈C(I,Rn,n) that are sufficiently smooth and satisfy
the conditions

M = MT , C = (2Ṁ−C)T , and K = (M̈− Ċ+K)T , for all t ∈ I,

the formulation (39) is given by

d2

dt2
(
MT x

)− d
dt

(
CT x

)
+KTx = f ,

and the partitioned form (41) by

P0x+
d
dt

(P2ẋ)+
1
2

d
dt

(Q1x)+
1
2
Q1ẋ = f . (43)

with P0 := K− 1
2(Ċ− M̈) , P2 := M , and, Q1 := C− Ṁ .

In order to derive structure preserving first order formulations, we assume that the
leading matrix Ak is pointwise nonsingular. Otherwise, the task is more complicated,
and we have to consider trimmed first order formulations, see [39].

In the second order case (using the notation of Example 1), introducing in (43) the
new variable v = ẋ , we get

d
dt

(P2ẋ) =
d
dt

(P2v) = P2v̇+ Ṗ2v,

yielding

P2v̇+ Ṗ2v+P0x+
1
2
Q̇1x+Q1ẋ = f .
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This gives the first order system[
0 −P2

P2 Q1

][
v̇
ẋ

]
+

[
P2 0
Ṗ2 P0 + 1

2 Q̇1

][
v
x

]
=

[
0
f

]
,

or equivalently [
0 −M
M C− Ṁ

]
︸ ︷︷ ︸

E

[
v̇
ẋ

]
+

[
M 0
Ṁ K

]
︸ ︷︷ ︸

A

[
v
x

]
=

[
0
f

]
,

with a self-adjoint pair of coefficient functions (E ,A ) .
Similar, for a third order system in partitioned form

P0x+
d
dt

(P2ẋ)+
1
2

[
d
dt

(Q1x)+Q1ẋ

]
+

1
2

[
d2

dt2
(Q3ẋ)+

d
dt

(Q3ẍ)
]

= f ,

with nonsingular leading matrix Q3 = A3 , by introducing v1 = ẋ , and v2 = v̇1 = ẍ we
get

d
dt

(Q3ẍ) =
d
dt

(Q3v2) = Q̇3v2 +Q3v̇2,

as well as

d2

dt2
(Q3ẋ) =

d2

dt2
(Q3v1) =

d
dt

(Q̇3v1 +Q3v2) = Q̈3v1 + Q̇3v̇1 + Q̇3v2 +Q3v̇2,

d
dt

(P2ẋ) =
d
dt

(P2v1) = P2v̇1 + Ṗ2v1.

Altogether this yields the first order formulation⎡
⎣ 0 0 Q3

0 −Q3 −P2 + 1
2 Q̇3

Q3 P2 + 1
2 Q̇3 Q1

⎤
⎦
⎡
⎣v̇2

v̇1

ẋ

⎤
⎦+

⎡
⎣ 0 −Q3 0
Q3 P2− 1

2 Q̇3 0
Q̇3 Ṗ2 + 1

2 Q̈3 P0 + 1
2 Q̇1

⎤
⎦
⎡
⎣v2

v1

x

⎤
⎦ =

⎡
⎣0

0
f

⎤
⎦ ,

or equivalently, using Q3 = A3 , P2 = A2− 3
2 Ȧ3 , Q1 = A1 − Ȧ2 + Ä3 , P0 = A0− 1

2 Ȧ1 +
1
2 Ä2 − 1

2

...
A3 ,⎡

⎣ 0 0 A3

0 −A3 −A2 +2Ȧ3

A3 A2− Ȧ3 A1− Ȧ2 + Ä3

⎤
⎦

︸ ︷︷ ︸
E

⎡
⎣v̇2

v̇1

ẋ

⎤
⎦+

⎡
⎣ 0 −A3 0

A3 A2−2Ȧ3 0
Ȧ3 Ȧ2 − Ä3 A0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣v2

v1

x

⎤
⎦ =

⎡
⎣0

0
f

⎤
⎦ ,

and again the matrix pair (E ,A ) is self-adjoint, since A0, . . . ,A3 satisfy the condition
(38). It is obvious, but rather technical, how to extend this construction to higher orders
k > 3.

In the discrete-time case the situation is somehow different. For odd order dif-
ference operators there does not exist a self-conjugate operator corresponding to the
definition given in Remark 5, since a two-term recursion can never be written in the
form (34) with symmetric system matrix.

Nevertheless, we can derive an equivalent two-term recursion with similar struc-
tures as in the constant coefficient case, see [11].
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EXAMPLE 2. For a second order self-adjoint difference operator with constant
coefficients

M xi−1 +N xi +M T xi+1 = fi,

by setting vi := xi+1 we have the palindromic first order form[
M T N −M
M T M T

][
vi

xi

]
+

[
M M

N −M T M

][
vi−1

xi−1

]
=

[
fi
fi

]
,

see [31].
Proceeding like this in the case of variable coefficients, for a self-conjugate system

(33) we obtain[
M T

i+1 Ni−Mi

M T
i+1 M T

i+1

][
vi

xi

]
+

[
Mi Mi

Ni −M T
i+1 Mi

][
vi−1

xi−1

]
=

[
fi
fi

]
.

For the special case of difference equations from optimal control problems in (18)
(omitting the last row and column) by shifting the first block row we get⎡
⎣ 0 Ek 0
−AT

k Wk Sk

−BT
k ST

k Rk

⎤
⎦
⎡
⎣λk

xk

uk

⎤
⎦+

⎡
⎣ 0 −Ak−1 −Bk−1

ET
k 0 0
0 0 0

⎤
⎦
⎡
⎣λk−1

xk−1

uk−1

⎤
⎦ =

⎡
⎣ fk−1

0
0

⎤
⎦ , k = 0, . . . ,N−1,

similar to the BVD-pencil structure introduced in [11].

6. Conclusion

We have shown that the necessary optimality conditions for discrete-time linear
quadratic control problems with variable coefficients leads to self-conjugate difference
operators associated with self-adjoint triples of coefficient functions, thus achieving a
similar result as in the continuous time case. We have also extended these results to
higher order differential or difference equation constraints and shown how first order
reductions can be carried out that lead to first order systems with the same structural
properties.
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