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STAR PARTIAL ORDER–HEREDITARY SUBSPACES IN B(H )
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(Communicated by D. R. Farenick)

Abstract. Let B(H ) be the algebra of all bounded linear operators on a complex Hilbert space
H . It is proved that a weak operator topology closed nonzero subspace M in B(H ) is
hereditary with respect to the star partial order, that is, for any A ∈B(H ) and B ∈M , A ∈M
whenever A∗A = A∗B and AA∗ = BA∗ , if and only if there is a unique pair of nonzero projections
P and Q in B(H ) such that M = PB(H )Q .

1. Introduction

In the last few decades, many researchers have studied properties of various partial
orders on semigroups, such as minus partial order, star partial order, left and right star
partial order, and so on (cf. [1, 2, 5, 6, 10]). Moreover, some of these partial orders
have been extended to the matrix and operator algebras and many interesting results
have been obtained.

Let Mn be the algebra of all n× n complex matrices. One of the orders on Mn

is the star partial order
∗
� defined by Drazin in [6]. Let A,B ∈ Mn .Then we say that

A
∗
� B if A∗A = A∗B and AA∗ = BA∗ . We note that this definition can be extended to a

C∗ -algebra by the same way. In particular, it can be extended to the C∗ -algebra B(H )
of all bounded linear operators on a complex Hilbert space H . For example, Dolinar
and Marovt gave an equivalent definition (Definition 2 in [5]) of the star partial order
and considered some properties of this partial order in [5].

As we known for a partial order on B(H ) , the heredity of the partial order is an
important property to consider; for instance, the notion of hereditary subalgebras in a
C∗ -algebra ([4]). Similarly, we consider partial order-hereditary subspaces in B(H )
for a partial order “�”.

DEFINITION 1. Let “�” be a partial order on B(H ) and M a subspace of
B(H ) . For any A ∈B(H ) and B ∈M , if A ∈M whenever A�B , then we say that
M is a hereditary subspace with respect to the partial order “�”.
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If M is a hereditary subspace with respect to the star partial order, then we say
that M is a star partial order-hereditary subspace of B(H ) . It is clear M ∗ = {X∗ :
X ∈ M } is also a star partial order-hereditary subspace whenever M is. We recall
that on operator P ∈ B(H ) is a projection if P = P∗ = P2 . Let P and Q be two
projections in B(H ) and M = PB(H )Q . For any A∈ PB(H )Q and B∈B(H ) ,

if B
∗
� A , by Corollary 2.4 in [1], we have R(B) ⊆ R(A) and R(B∗) ⊆ R(A∗) , thus

B ∈ PB(H )Q . Then it is clear that M is a weak operator topology closed star partial
order-hereditary subspace. Does the converse hold? We consider this problem in this
paper. It shall be proven in Theorem 1 that if M is a norm closed star partial order-
hereditary subspace in B(H ) , then there is a unique pair of projections P and Q in
B(H ) such that M ∩K (H ) = PK (H )Q and M

w = PB(H )Q , where K (H )
is the set of all compact operators in B(H ) and M

w
is the weak operator topology

closure of M . We next recall some notions.
Let H and K be two complex Hilbert spaces and B(H ,K ) the space of all

bounded linear operators from H to K . We denote by F (H ) and P(H ) the set
of all finite-rank operators and the set of all projections in B(H ) , respectively. For
every pair of vectors x,y ∈ H , x⊥y means that 〈x,y〉 = 0 and x⊗ y stand for a rank-1
linear operator on H defined by (x⊗ y)z = 〈z,y〉x for any z ∈ H . For a subset S
of H (resp. B(H )), [S] denotes the norm closed subspace of H (resp. B(H ))
spanned by S . For an operator A ∈ B(H ) , we write R(A) , N(A) and σ(A) for the
range, the kernel and the spectrum of A , respectively. Throughout this paper, we will
denote by I the identity operator on any Hilbert space.

2. Star partial order-hereditary subspaces

For a closed subspace M ⊆H , we denote by PM the orthogonal projection on M .
Let T ∈B(H ) . We denote by H1 = R(T ∗) , H2 = N(T ) , K1 = R(T ) and K2 = N(T ∗)
respectively. Then

H = H1⊕H2 = K1 ⊕K2 (1)

and

T =
(

T0 0
0 0

)
(2)

with respect to the orthogonal decompositions (1), where T0 ∈B(H1,K1) is an injective
operator with dense range.

LEMMA 1. Let M be a norm closed star partial order-hereditary subspace in
B(H ) . Then PR(T)B(H )PN(T )⊥ ⊆ M for any operator T ∈ M with closed range.

Proof. Let T ∈ M with closed range and has the matrix form (2). We have T0

is invertible. Let T0 = UA be the polar decomposition of T0 . Then A ∈ B(H1) is
an invertible positive operator and U ∈ B(H1,K1) is a unitary operator. Now we let
A =

∫
σ(A) λdEλ be the spectral decomposition of A . For any Borel subset Δ ⊆ σ(A) ,

we have H1 = E(Δ)H1 ⊕ (I−E(Δ))H1 . Then

H = E(Δ)H1 ⊕ (I−E(Δ))H1⊕H2 = UE(Δ)H1⊕U(I−E(Δ))H1⊕K2. (3)
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Put U1 = U |E(Δ)H1
, A1 = E(Δ)A , U2 = U |(I−E(Δ))H1

and A2 = (I − E(Δ))A on H1

respectively. Then

T =

⎛
⎝U1A1 0 0

0 U2A2 0
0 0 0

⎞
⎠

according to the orthogonal decompositions (3). Let

TΔ =

⎛
⎝U1A1 0 0

0 0 0
0 0 0

⎞
⎠

according to the decompositions (3) again. It follows that TΔ
∗
� T from Lemma 3 in

[5]. Hence TΔ ∈ M for all Borel subset Δ ⊂ σ(A) . Thus for any simple function

f =
n
∑

k=1
αkχΔk on σ(A) , where χΔ(·) is the characteristic function of Δ , we have Tf =

n
∑

k=1
αkTΔk ∈ M . In fact, we have

Tf =
n

∑
k=1

αkTΔk =
(

U f (A)A 0
0 0

)

according to the decompositions (1).

Let f (λ ) = λ−1 on σ(A) . Then f is continuous on σ(A) and hence there exists
a sequence of simple function { fn} such that | fn− f | → 0 (n→ ∞) uniformly and thus
‖ fn(A)− f (A)‖ = ‖ fn(A)−A−1‖→ 0 (n → ∞) . Since M is norm closed and

(
U fn(A)A 0

0 0

)
∈ M ,

it follows that

lim
n→∞

(
U fn(A)A 0

0 0

)
=

(
U 0
0 0

)
∈ M .

It is known that (UE)∗(UE) = (UE)∗U and (UE)(UE)∗ =U(UE)∗ for every projec-

tion E ∈ B(H1) . Then UE
∗
� U and thus

(
UE 0
0 0

) ∗
�

(
U 0
0 0

)
,
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which implies that

(
UE 0
0 0

)
∈ M . Then for every X ∈ B(H1) , we have

(
UX 0
0 0

)
∈

M since X is a linear combination of finitely many projections from Theorem 3 in [9].
Take any B ∈ PK1B(H )PH1 . Then

B =
(

B0 0
0 0

)
=

(
U(U∗B0) 0

0 0

)

for some B0 ∈ B(H1,K1) . Then B ∈ M and hence PK1B(H )PH1 ⊆ M . �

We note that if there is an invertible T ∈ M , then M = B(H ).

LEMMA 2. Let M be a nonzero norm closed star partial order-hereditary sub-
space in B(H ) . Then there exist rank-1 operators in M .

Proof. Take any nonzero T ∈ M and let T = UA be the polar decomposition
of T , where U is a partial isometry with initial space H1 and final space K1 , and
A =

∫
σ(A) λdEλ the spectral decomposition of A as in the proof of Lemma 1. For any

t ∈ (0,‖T‖) , put Tt = UE[t,‖T‖]A . It is easy to show that Tt �= 0 has closed range.
Furthermore, according to the decompositions H = H1 ⊕H2 = E[0,‖T‖]H1 ⊕ (I −
E[0,‖T‖])H1⊕H2 = UE[0,‖T‖]H1⊕U(I−E[0,‖T‖])H1⊕K2 = K1 ⊕K2 , we have

Tt =

⎛
⎝UE[t,‖T‖]A 0 0

0 0 0
0 0 0

⎞
⎠ and T =

⎛
⎝UE[t,‖T‖]A 0 0

0 U(I−E[t,‖T‖])A 0
0 0 0

⎞
⎠ .

It follows that Tt
∗
� T by Lemma 3 in [5] again. Then Tt ∈ M for all t ∈ (0,‖T‖) .

Now the desired result follows from Lemma 1. �

THEOREM 1. Let M be a nonzero norm closed star partial order-hereditary sub-
space in B(H ) . Then there exists a unique pair of projections P,Q ∈ B(H ) such
that M ∩K (H ) = PK (H )Q and M

w
= PB(H )Q.

Proof. The uniqueness is evident. We recall that P(H ) is the set of all projec-
tions in B(H ) . For any two projections P,Q∈P(H ) , P � Q whenever PQ = QP =
P . Let T = {(P,Q) : P,Q∈P(H ) and PK (H )Q⊆M } . We define an partial order
on T such that T is a poset. We say that (P1,Q1)�(P2,Q2) if P1�P2 and Q1�Q2

for any pair of (P1,Q1),(P2,Q2) ∈ T . Note that (0,0) ∈ P(H ) . We claim that T
has a maximal element with respect to this partial order. For an arbitrary totally order
subset {(Pi,Qi)} ⊆ T , {Pi} and {Qi} are also totally order subsets of P(H ) . Then
both {Pi} and {Qi} have supremums in P(H ) , which are denoted by P0 and Q0 ,
respectively. Then (Pi,Qi) � (P0,Q0) for all i . For any pair of vectors x,y ∈ H , since
Pi and Qi converge to P0 and Q0 in the strong operator topology respectively, we have
‖Pix−P0x‖ → 0 and ‖Qiy−Q0y‖ → 0. Hence ‖Pix⊗Qiy−P0x⊗Q0y‖ → 0. Since
Pix⊗Qiy = Pi(x⊗y)Qi ∈M for all i and M is norm closed, we have P0x⊗Q0y∈M .
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Therefore P0K (H )Q0 ⊆M , that is (P0,Q0)∈T . It follows that T contains a max-
imal element (P,Q) from Zorn′s Lemma, and then PK (H )Q ⊆ M . It is clear that
both P and Q are nonzero from Lemma 2.

Next we prove that M ∩K (H )⊆ PK (H )Q . We firstly note that M ∩K (H )
is the closed linear span of all rank-1 operators in M .

Let T ∈M ∩K (H ) be a nonzero operator with the matrix form (2). It is known
that both H1 and K1 are separable. As in the proof of Lemma 1, if T0 =UA is the polar
decomposition of T0 , then A ∈ B(H1) is injective positive compact operator and U ∈
B(H1,K1) is a unitary operator. Thus there are an orthonormal basis {ei : 1 � i � n}
(n is finite or ∞) of H1 and a sequence of decreasing positive numbers {λi : 1 � i � n}
such that A =

n
∑
i=1

λi(ei ⊗ ei) , where the series converges in norm if n is infinite. It is

trivial that λiei ⊗ ei
∗
� A for all i . Then

λiUei⊗ ei =
(

λiUei⊗ ei 0
0 0

) ∗
�

(
UA 0
0 0

)
=

(
T0 0
0 0

)
= T.

Hence λiUei⊗ ei ∈ M for all i . It follows that

T =
(

T0 0
0 0

)
=

n

∑
i=1

(
λiUei⊗ ei 0

0 0

)
.

If M ∩K (H ) � PK (H )Q , then there exist two nonzero vectors ξ and η such
that T = ξ ⊗η ∈ M and T /∈ PK (H )Q . Note that

T = ξ ⊗η = Pξ ⊗Qη +Pξ ⊗ (1−Q)η +(1−P)ξ ⊗Qη +(1−P)ξ ⊗ (1−Q)η .

Put ξ1 = (1−P)ξ and η1 = (1−Q)η . Then there is at least one nonzero vector in
{ξ1,η1} by the assumption. The proof will be divided into three cases.

Case 1. Pξ = 0 and Qη = 0. We may assume that ξ and η are unit vectors. For
any unit vectors x1 ∈ PH and y1 ∈ QH , we have x1 ⊗ y1 ∈ PK (H )Q ⊆ M . Put
A = 1

2 (x1⊗y1 +x1⊗η +ξ ⊗y1 +ξ ⊗η) and B = x1⊗y1 +ξ ⊗η . Note that B ∈ M .

Since 〈ξ ,x1〉 = 〈η ,y1〉 = 0, we have A∗A = A∗B and AA∗ = BA∗ . That is, A
∗
� B .

Thus A ∈ M . It follows that both x1 ⊗η + ξ ⊗ y1 = 2A−B and x1 ⊗ y1 + x1 ⊗η +
ξ ⊗ y1 − ξ ⊗η = 2A−B+ x1⊗ y1 − ξ ⊗η are in M . We put A1 = x1 ⊗ y1 + x1 ⊗η
and B1 = x1 ⊗ y1 + x1 ⊗η + ξ ⊗ y1 − ξ ⊗η again. Then we similarly have A1

∗
� B1 ,

which implies that A1 ∈ M . Thus x1 ⊗ η = A1 − x1 ⊗ y1 ∈ M . Denote by Px the
projection onto the space [x] for any vector x ∈ H . Then PK (H )Pη ⊆ M . Hence
PK (H )(Q+Pη) ⊆ M and (P,Q) � (P,Q+Pη) ∈ T . This is a contradiction since
(P,Q) is a maximal element of T .

Case 2. Pξ �= 0 and Qη �= 0. If there is only one nonzero element in {ξ1,η1} ,
say, η1 �= 0, then ξ1 = 0, Pξ = ξ and T1 = ξ ⊗η1 = T −ξ ⊗Qη ∈M . If dimPH =
1, then PK (H )Pη1 ⊆M and hence PK (H )(Q+Pη1)⊆M . This is a contradiction
too. Assume that dimPH � 2. Take any unit vectors x1 ∈ (P−Pξ )H and y1 ∈QH .
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Then we have ξ ⊗ y1,x1 ⊗ y1 ∈ M . As above, we may assume that ξ and η1 are also
unit vectors. Let A = 1

2(ξ ⊗y1 +ξ ⊗η1 +x1⊗y1 +x1⊗η1) and B = ξ ⊗η1 +x1⊗y1 .

We can show that A∗A = A∗B and AA∗ = BA∗ , which means that A
∗
� B . Note that

B ∈ M and so A ∈ M . Thus x1⊗η1 = 2A−ξ ⊗ y1−ξ ⊗η1− x1⊗ y1 ∈ M . For any
x ∈ PH , we have x = x1 + αξ for some x1 ∈ (P−Pξ )H and α ∈ C . It follows that
x⊗η1 = x1 ⊗η1 + αT1 ∈ M . Hence PK (H )(Q+Pη1) ⊆ M , a contradiction. We
similarly have a contradiction if ξ1 �= 0 and η1 = 0. Thus both ξ1 and η1 are nonzero.
Since Pξ ⊗Qη ∈ M , Pξ ⊗η1 + ξ1 ⊗Qη + ξ1 ⊗η1 = ξ ⊗η −Pξ ⊗Qη ∈ M . Let

A = Pξ ⊗η1 +ξ1⊗η1 and B =− ‖ξ1‖2

‖Pξ‖2 Pξ ⊗Qη +Pξ ⊗η1 +ξ1⊗Qη +ξ1⊗η1 ∈M .

We can also show that A∗A = A∗B and AA∗ = BA∗ . Thus A
∗
� B and A ∈ M . It

follows that ξ1 ⊗Qη = (Pξ ⊗η1 + ξ1⊗Qη + ξ1 ⊗η1)−A ∈ M and thus ξ ⊗Qη =
Pξ ⊗Qη + ξ1 ⊗Qη ∈ M . That is, there is a rank-1 operator ξ ⊗Qη ∈ M such that
(I−P)ξ �= 0 and (I−Q)Qη = 0. We now have a contradiction again.

Case 3. Either Pξ or Qη is 0. Without loss of generality we assume that Qη = 0.
Then T = Pξ ⊗η1 + ξ1⊗η1 ∈ M . If ξ1 = 0, then T = Pξ ⊗η1 = ξ ⊗η1 = T1 ∈ M
as in Case 2. We can get a contradiction too.

Now we assume that ξ1 �= 0. Take any nonzero vector y ∈ QH and put Ty =
Pξ ⊗ y+T ∈ M . Note that Ty �∈ PK (H )Q . Since (Pξ ⊗ y)∗(Pξ ⊗ y) = ‖Pξ‖2y⊗ y
and ‖Pξ‖2y⊗ y+‖Pξ‖2y⊗η1 = (Pξ ⊗ y)∗(Ty) , we have (Pξ ⊗ y)∗(Pξ ⊗ y) �= (Pξ ⊗
y)∗(Ty) . It follows that Pξ ⊗ y

∗
� Ty does not hold. We know that there are two rank-1

operators T1 = x1 ⊗ y1 and T2 = x2 ⊗ y2 for some xi,yi ∈ H such that Ti
∗
� Ty for

i = 1,2 and Ty = T1 +T2 from Lemma 3 in [5]. Then Ti ∈ M ( i = 1,2). If PT1Q = 0,

then PT2Q = PTyQ = Pξ ⊗ y �= T2 since T2
∗
� Ty . This implies that T2 �∈ PK (H )Q

as well as Px2 �= 0 and Qy2 �= 0. Hence by Case 2 this is a contradiction. We can
similarly get a contradiction if PT2Q = 0. Thus PTiQ �= 0 for i = 1,2. Since Ty �∈
PK (H )Q , there is at least one Ti , for example T2 , such that T2 �∈ PK (H )Q . Note
that T2 ∈M and Px2 �= 0 and Qy2 �= 0. Then T2 satisfies the condition of Case 2. This
is a contradiction again. We similarly have a contradiction if Pξ = 0. Consequently,
we have M ∩K (H ) = PK (H )Q .

Lastly, we prove that M
w

= PB(H )Q . Since M ∩K (H ) = PK (H )Q , it is
obvious that PB(H )Q ⊆ M

w
. It is sufficient to show that M

w ⊆ PB(H )Q . Let
T ∈ M with closed range. By Lemma 1, we have

PR(T)B(H )PN(T )⊥ ⊆ M .

Hence,
PR(T)B(H )PN(T )⊥ = PR(T)K (H )PN(T )⊥

w

⊆ M ∩K (H )
w

= PK (H )Q
w

= PB(H )Q,

which implies that R(T ) ⊆ R(P) . For any operator T ∈ M , let Tt(0 < t < ‖T‖) be
operators defined as in the proof of Lemma 2. We note that Tt ∈ M with closed range
such that lim

t→0
‖Tt −T‖ = 0. We then have R(T )⊆ R(P) since R(Tt)⊆ R(P) . It follows
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that [Ax : A ∈ M ,x ∈ H ] ⊆ R(P) . Since Tx ∈ [Ax : A ∈ M ] for all T ∈ M
w

and any
x ∈ H , we have R(T ) ⊆ R(P) . Similarly, R(T ∗) ⊆ R(Q) for all T ∈ M

w
. Therefore

T ∈ PB(H )Q and M
w ⊆ PB(H )Q . �

COROLLARY 1. Let M be a nonzero star partial order-hereditary subspace in
Mn . Then there exists a unique pair of projections P,Q ∈ Mn such that M = PMnQ.

EXAMPLE 1. Let N be an infinite dimensional Hilbert space and H = N ⊕
N . Let

M =
{(

X11 X12

X21 X22

)
: X11,X12 ∈ B(N ) and X21,X22 ∈ K (N )

}
.

Then M is a norm closed star partial order-hereditary subspace such that K (H ) �
M � B(H ).

In fact, this is easily proved by Douglas’s Range Inclusion Theorem (cf. Theorem
17.1 in [4]). It is also known that both M ∗ and M ∩M ∗ are also star partial order-
hereditary subspaces containing K (H ) . However M

∨
M ∗ is not star partial order-

hereditary. In fact, we have

M
∨

M ∗ =
{(

X11 X12

X21 X22

)
: X11,X12,X21 ∈ B(N ) and X22 ∈ K (N )

}
.

Let A = 1
2

(
I I
I I

)
and B =

(
0 I
I 0

)
, where I ∈ B(N ) is the identity operator. It it

trivial that A
∗
� B and B ∈ M

∨
M ∗ . However A �∈ M

∨
M ∗ .

Acknowledgements. The authors would like to thank the referees for their valuable
comments and suggestions.

RE F ER EN C ES

[1] J. ANTEZANA, C. CANO, I. MOSCONI, D. STOJANOFF, A note on the star order in Hilbert spaces,
Linear and Multilinear Algebra, 58 (2010), 1037–1051.

[2] J. K. BAKSALARY, S. K. MITRA, Left-star and right-star partial orderings, Linear Algebra and its
Applications, 149 (1991), 73–89.
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