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PRE–IMAGES OF BOUNDARY POINTS OF THE NUMERICAL RANGE

TIMOTHY LEAKE, BRIAN LINS AND ILYA M. SPITKOVSKY

(Communicated by Z. Drmač)

Abstract. This paper considers matrices A ∈ Mn(C) whose numerical range contains boundary
points generated by multiple linearly independent vectors. Sharp bounds for the maximum num-
ber of such boundary points (excluding flat portions) are given for unitarily irreducible matrices
of dimension � 5 . An example is provided to show that there may be infinitely many for n = 6 .
For matrices unitarily similar to tridiagonal, however, a finite upper bound is found for all n .
A somewhat unexpected byproduct of this is an explicit example of A ∈ M5(C) which is not
tridiagonalizable via a unitary similarity.

1. Introduction

Let Cn be the standard n -dimensional vector space over the complex field C , with
the scalar product 〈x,y〉 = x∗y and the associated norm ‖x‖ = 〈x,x〉1/2 . The set of all
n -by-n matrices with elements in C will be denoted by Mn(C) . The numerical range
(also called the field of values) of A ∈ Mn(C) is by definition the set

F(A) = {〈Ax,x〉 : x ∈ C
n,‖x‖ = 1}.

There is a vast number of publications on the numerical range and its properties; the
proofs of all the basic properties used below can be found in standard references [9] or
[10]. Note in particular that F(A) is convex.

According to the definition, F(A) is the range of the function fA(x) = 〈Ax,x〉
when the domain is the unit sphere CSn = {x ∈ Cn : ‖x‖ = 1} . The inverse f−1

A is
a multivalued function. In fact, for any z ∈ F(A) and x ∈ f−1

A (z) , eiθ x ∈ f−1
A (A) for

all θ ∈ [0,2π) . Even after identifying vectors that are scalar multiples, the map f−1
A

may still be multivalued. We say that a point z ∈ F(A) is multiply generated if f−1
A (z)

contains at least two linearly independent vectors, otherwise z is singularly generated.
The continuity properties of f−1

A were the subject of consideration in [5], and the notion
of multiply generated points arose there as an auxiliary issue. This paper is devoted to
its systematic treatment.

Note that all the points z from the relative interior of F(A) are multiply gener-
ated. Moreover, for such z the set f−1

A (z) contains n linearly independent vectors [3,
Theorem 1] (for the n = 2 case, see also [24, Lemma 3(b)]). So, only points z on the
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boundary ∂F(A) of F(A) are of interest. We classify them as follows: flat portions of
the boundary are non-trivial line segments lying in ∂F(A) , corner points are z∈ ∂F(A)
belonging to more than one supporting line of F(A) , and round points are all points of
∂F(A) different from corner points and points in the relative interior of the flat portions.
So, the set of extreme points of F(A) consists of all corner points and round points of
∂F(A) .

It is not hard to show that the relative interiors of flat portions are always multiply
generated. The corner points, being normal eigenvalues of A , are also easy to handle.
This is done, along with some preliminary observations, in Section 2. The rest of
the paper is thus devoted to round boundary points. In Section 3 it is shown how
to reduce the treatment of arbitrary A to that of its unitarily irreducible blocks. The
case of 3-by-3 matrices is covered there in passing. The next two sections deal with
4-by-4 and 5-by-5 matrices, respectively. The bottom line here is that only finitely
many multiply generated round boundary points can occur, and the sharp upper bound
for their number is given, both for unitarily irreducible matrices and in general. A
short Section 6 contains an example showing that the situation changes dramatically
for matrices of bigger size, namely, that infinitely many (actually, all) round boundary
points may be multiply generated, starting with n = 6. However, imposing an additional
structure may keep the number of such points “under control” for matrices of arbitrary
size. This is illustrated by tridiagonal matrices in Section 7. It is also shown there that
certain 5-by-5 matrices constructed in Section 5 are not tridiagonalizable by a unitary
similarity. Though the existence of such matrices has been known, we are not aware of
specific examples in the literature. Finally, Section 8 provides an alternative point of
view on the multiply generated boundary points, in terms of the so called critical curves
of A .

2. Preliminary observations

For every angle θ , denote by �θ the supporting line of F(A) having slope −cotθ
and such that e−iθ F(A) lies to the right of the vertical line e−iθ �θ . We will say that
�θ is an exceptional supporting line (and, respectively, θ is an exceptional angle) if �θ
contains at least one multiply generated point of F(A) .

We will be using the standard notation ReA = 1
2 (A+A∗) and ImA = 1

2i (A−A∗)
for any A ∈ Mn(C) . Let also

H(θ ) = Re
(
e−iθ A
)

, K(θ ) = Im
(
e−iθA
)

,

abbreviating H(0) and K(0) to H and K , respectively.
Considering A as a linear transformation on Cn , for a subspace L ⊂ Cn we will

denote by A|L the compression of A onto L .

THEOREM 2.1. Given A∈Mn(C) , the angle θ is exceptional if and only if H(θ )
has a multiple minimal eigenvalue.
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Proof. Indeed, fA(x) ∈ �θ if and only if x is an eigenvector of H(θ ) correspond-
ing to its minimal eigenvalue λ0 . If the respective eigenspace L is one-dimensional,
then F(A)∩ �θ is obviously a singleton z , and this z is singularly generated.

Suppose now that dimL > 1. Denote by k1 (resp., k2 ) the minimal (resp., maxi-
mal) eigenvalue of K0 = K(θ )|L . Then

F(A)∩ �θ = eiθ [λ0 + ik1,λ0 + ik2],

and for any ξ ∈ [k1,k2] ,

f−1
A (eiθ (λ0 + iξ )) = f−1

K0
(ξ ) = f−1

K0−ξ I(0). (2.1)

So, if k1 	= k2 (that is, K0 is different from a scalar multiple of the identity), then
eiθ [λ0 + ik1,λ0 + ik2] is a flat portion of ∂F(A) lying on �θ . According to (2.1), for
ξ ∈ (k1,k2) the set f−1

A (eiθ (λ0 + iξ )) consists of all the neutral vectors (having length
1) of the indefinite Hermitian matrix K0 − ξ I . Thus, all the points from the relative
interior of F(A)∩ �θ are multiply generated. The endpoints of F(A)∩ �θ may or may
not be multiply generated, depending on whether k1 and k2 are multiple or simple
eigenvalues of K0 . If, on the other hand, k1 = k2 := k (that is, K0 = kI ), then F(A)∩�θ
is a singleton z = eiθ (λ0 + ik) , and f−1

A (z) is the whole unit sphere of L . Either way,
some points of F(A)∩ �θ are multiply generated. �

As in [11], we say that a matrix A is generic if the eigenvalues of Re(e−iθ A) as
functions of θ do not cross. For generic A , the boundary of F(A) is smooth and,
according to Theorem 2.1, all its points are singularly generated. This is the case, in
particular, for non-normal 2-by-2 matrices (which of course can also be proved directly,
and was observed already a number of times). More generally, all points of ∂F(A) are
singularly generated if A ∈ Mn(C) is pure almost normal, that is, unitarily irreducible
and possesses n−1 orthogonal eigenvectors, see [17]. On the other hand, the following
two observations can be easily extracted from the proof of Theorem 2.1.

COROLLARY 2.2. Relative interiors of flat portions of ∂F(A) consist entirely of
multiply generated points.

COROLLARY 2.3. A corner point z of F(A) is multiply generated if and only if it
is a multiple eigenvalue of A.

Indeed, such z is a normal eigenvalue of A , and thus an eigenvalue of H(θ ) of the
same multiplicity.

So, only round points of ∂F(A) need to be investigated further. The following
technical result will be useful in this regard.

PROPOSITION 2.4. If z is a multiply generated round point of ∂F(A) , then there
is a 2 -dimensional subspace onto which the compression of A equals zI .

Proof. In the notation of Theorem 2.1 and its proof, the restriction (and thus the
compression H0 ) of H(θ ) onto L is a scalar multiple of the identity. If F(A)∩ �θ is
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a singleton, then the compression K0 of K(θ ) is a scalar multiple of the identity as
well, and thus so is A|L . This is not true any more if F(A)∩ �θ contains an interval.
However, in the latter case z is an endpoint of this interval, and it corresponds to a
multiple eigenvalue of K0 . Any 2-dimensional subspace of the respective eigenspace
of K0 has the desired property. �

In different terms, Proposition 2.4 means that multiply generated round points of
∂F(A) belong to the rank-2 numerical range of A , see e.g. [4].

We end this section with the following simple observation which will be repeat-
edly used below. Let us say, following [14], that two matrices A,B are affine equivalent
if the pair {ReB, ImB} can be obtained from {ReA, ImA} by an invertible affine trans-
formation:

ReB = c11 ReA+ c12 ImA+ c1I, ImB = c21 ReA+ c22 ImA+ c2I, (2.2)

where [ci j]2i, j=1 is an invertible real matrix, and c1,c2 are real as well. Under condition
(2.2), the numerical range W (B) is obtained from W (A) via the same affine transfor-
mation. In particular, parallel supporting lines of W (A) are mapped to also parallel
supporting lines of W (B) , while the angle between the intersecting supporting lines
can be changed arbitrarily. In particular, two intersecting supporting lines of W (A) can
be mapped onto orthogonal supporting lines of B . Moreover, affine equivalent matrices
are unitarily reducible (or irreducible) only simultaneously.

3. Reduction via unitary similarity

Recall now that the numerical range is invariant under unitary similarities, that is,
F(A) = F(B) whenever A∼= B . (Here and below ∼= stands for unitary similarity, which
is an equivalence relation on Mn(C) .) Moreover, for block diagonal matrices

A = A1⊕·· ·⊕Am, (3.1)

F(A) is the convex hull of F(A1), . . . ,F(Am) . The latter is therefore true whenever A
is unitarily reducible, that is, unitarily similar to a block diagonal matrix with at least
two blocks. Our next result concerns round points of ∂F(A) for unitarily reducible A .

THEOREM 3.1. Let A∼= A1⊕·· ·⊕Am and let z be a round point of ∂F(A) . Then
z is multiply generated as a point of F(A) if and only if it either (a) belongs to F(Ai)
for more than one i , or (b) is multiply generated as a point of F(Ai) for some i.

Proof. Without loss of generality we may suppose that (3.1) holds. Representing
x ∈ CSn as x = x1⊕·· ·⊕ xm in accordance with (3.1), we see that

fA(x) =
m

∑
i=1

〈Aixi,xi〉 =
m

∑
i=1

tiζi, (3.2)

where ζi ∈ F(Ai) ⊂ F(A) and ti = ‖xi‖2 , so that ∑m
i=1 ti = 1, ti � 0 ( i = 1, . . . ,m).
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Since z is an extreme point of F(A) , for (3.2) to hold it is necessary and sufficient
that for each i = 1, . . . ,m either xi = 0 or ζi = z . In other words,

f−1
A (z) =

{
∑αixi : ∑ |αi|2 = 1, xi ∈ f−1

Ai
(z)
}

, (3.3)

with the summation over i’s satisfying z ∈ F(Ai) and xi from the domain of Ai iden-
tified with its imbedding into Cn . So, f−1

A (z) contains linearly independent vectors,
unless the right hand side of (3.3) reduces to one summand and the respective f−1

Ai
(z)

is one-dimensional. �

Based on Corollary 2.2 and Theorem 3.1, a complete description of all multiply
generated points can be given for any A provided it has been obtained for its unitarily
irreducible blocks.

Here is one such result, to illustrate the point.

THEOREM 3.2. For A ∈ M3(C) , there is at most one multiply generated extreme
point on ∂F(A) . This point, when it exists, must be a normal eigenvalue of A.

Proof. Suppose z ∈ ∂F(A) is a multiply generated extreme point. According to
Proposition 2.4 (if z is round) or Corollary 2.3 (if it is a corner point), A is then unitarily
similar to a matrix of the form ⎛

⎝z 0 ∗
0 z ∗
∗ ∗ ∗

⎞
⎠ .

In particular, z is an eigenvalue of A . Lying on the boundary of F(A) , it then must be
a normal eigenvalue, that is, A is in fact unitarily similar to (z)⊕B .

Since z is a round point of ∂F(A) , a 2-by-2 block B is not normal, and z∈ ∂F(B) .
From Theorem 3.1 we see that z is then indeed a multiply generated (round) point of
∂F(A) while all other points of ∂F(A) are singularly generated. �

So, unitarily irreducible 3-by-3 matrices A do not have multiply generated round
points on the boundary of F(A) . This fact was actually observed (and used) in the proof
of [5, Theorem 10].

4. The 4-by-4 case

With the dimension increase, multiply generated round points start to emerge, in
limited quantities.

THEOREM 4.1. If A is an unitarily irreducible 4 -by-4 matrix, then there is at
most one boundary round point that is multiply generated.

Proof. We will show that A ∈ M4(C) having two multiply generated round points
z1,z2 ∈ ∂F(A) must be unitarily reducible.
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Case 1. The points z1 and z2 lie on parallel supporting lines. Considering the
matrix αA+β I in place of A if needed, by an appropriate choice of α,β ∈ C (α 	= 0)
we may without loss of generality arrange for these supporting lines to be vertical. By
Proposition 2.4, there exist 2-dimensional subspaces Lj of the eigenspaces of H cor-
responding to the eigenvalues ξ j := Rez j for which K|Lj = η jI (here η j = Imz j, j =
1,2). If ξ1 = ξ2 := ξ , then L1,L2 are subspaces of the same eigenspace of H , inter-
secting only at 0. Thus, the ξ -eigenspace of H is (at least) 4-dimensional, implying
that H = ξ I . This makes A normal, and therefore unitarily reducible.

On the other hand, if ξ1 	= ξ2 , then L1,L2 are the respective eigenspaces of H ,
and are therefore orthogonal. An appropriate unitary similarity then yields

A ∼= H + iK =
(

ξ1I 0
0 ξ2I

)
+ i

(
η1I B
B∗ η2I

)
. (4.1)

Yet another unitary similarity of the form U ⊕V with 2-by-2 blocks U,V allows us
to replace B in (4.1) by D = U∗BV without changing H and the diagonal blocks in
K . Using U,V from the singular value decomposition of B , we may thus achieve
D = diag(d1,d2) , that is,

A ∼= A′ =

⎛
⎜⎜⎝

ξ1 0 0 0
0 ξ1 0 0
0 0 ξ2 0
0 0 0 ξ2

⎞
⎟⎟⎠+ i

⎛
⎜⎜⎝

η1 0 d1 0
0 η1 0 d2

d1 0 η2 0
0 d2 0 η2

⎞
⎟⎟⎠ .

From this form, it is clear that span{e1,e3} is a shared invariant subspace of ReA′
and ImA′ , implying that A′ (and thus A) is unitarily reducible, a contradiction.

Case 2. The supporting lines of z1 and z2 are not parallel. Applying an affine
equivalence as described in Section 2, we may without loss of generality suppose that
F(A) is located in the first quadrant while z1,z2 are, respectively, real and pure imag-
inary: z1 = λ and z2 = iμ . Of course, z1,z2 	= 0 (because otherwise we would be in
the setting of Case 1), so λ ,μ > 0.

As in Case 1, let us invoke Proposition 2.4 to find a 2-dimensional subspace L the
compression of A onto which equals λ I , and then use a unitary similarity mapping the
span of {e1,e2} onto L to observe that

A ∼= H + iK =
(

λ I D
D H0

)
+ i

(
0 0
0 K0

)
, where D =

(
d1 0
0 d2

)
. (4.2)

The presence of a multiply generated round point on the imaginary axis implies that
dimkerH � 2. From here, H0 = λ−1D2 , and the vectors

v1 = [d1,0,−λ ,0]T , v2 = [0,d2,0,−λ ]T

form an orthogonal basis of kerH .
A direct computation shows that 〈Kv1,v2〉 = λ 2ω , where ω is an off diagonal

entry of K0 in (4.2). So, both H0 and K0 are diagonal, which implies that the span of
{e1,e3} is an invariant subspace for both H and K , Thus, A is untarily reducible. �
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There indeed exist unitarily irreducible 4-by-4 matrices with multiply generated
round boundary points. We will give here an example of such a matrix which, in addi-
tion, has a flat portion on the boundary of F(A) . The proof of unitary irreducibility in
this example, and some others below, is based on the following simple observation.

PROPOSITION 4.2. Let A = H + iK ∈ Mn(C) be such that H(= ReA) has a sim-
ple eigenvalue μ , with v being a corresponding eigenvector. Suppose that

{v,Kv,Q1Kv,Q2Kv, ...}
has rank n, where each Qi is some product of H and K . Then A is unitarily irre-
ducible.

Proof. If L is a reducing subspace of A , then μ is an eigenvalue of the compres-
sion of A onto L or L⊥ . Consequently, v must lie in one of these subspaces; switching
the roles of L and L⊥ if needed, we may without loss of generality suppose that v ∈ L .
Being invariant under both H and K , the subspace L must then also contain all the
vectors Qv , where Q is a product of H s and K s in an arbitrary order. Under the condi-
tions imposed, this implies that L is the whole space. In other words, A does not have
non-trivial reducing subspaces and, as such, is unitarily irreducible. �

EXAMPLE 4.3. Let A = H + iK , where

H =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 2
1 0 1 0
0 2 0 4

⎞
⎟⎟⎠ and K =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 2 −1/2
0 0 −1/2 5

⎞
⎟⎟⎠ .

Then span{e1,e2} = kerK , and H|kerK = I . So, 1 is a round boundary point. On the
other hand, 0 is the minimal eigenvalue of H , with kerH spanned by

v1 = [1,0,−1,0]T , v2 = [0,2,0,−1]T .

Since 〈Kv1,v2〉 = −1/2 	= 0, F(A) has a flat portion along the imaginary axis.
To invoke Proposition 4.2, observe that v = [0,1,0,2]T is an eigenvector of H

corresponding to its simple eigenvalue 5. A direct computation shows that the vectors

v,Kv = [0,0,−1,10]T , HKv = [−1,20,−1,40]T , KHKv = [0,0,−22,401/2]T

are linearly independent. Thus, A is unitarily irreducible.

Putting pieces together with the help of Theorem 3.1, we thus obtain the following
result for 4-by-4 matrices, unitarily reducible or not.

THEOREM 4.4. For A ∈M4(C) , the set of multiply generated extreme points may
consist of 0,1,2 , or all points of ∂F(A) . More than one multiply generated extreme
point may occur only if ∂F(A) is an ellipse.
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Figure 1: F(A) for Example 4.3. The magnified image on the right illustrates a short vertical
flat portion containing i

Proof. For unitarily irreducible matrices, all extreme points must be round, and for
n = 4 the number is 0 or 1, according to Theorem 4.1 and Example 4.3. If A ∼= B⊕ (z) ,
where B ∈ M3(C) is unitarily irreducible, then the only way a multiply generated ex-
treme boundary point may occur is if z ∈ ∂F(B) (not lying in the relative interior of its
flat portion, if any), and then it is the only one. So, 0 and 1 are again the only pos-
sibilities. Similarly, for A ∼= C⊕ (z1)⊕ (z2) with a unitarily irreducible 2-by-2 block
C , we have 0,1, or 2 multiply generated extreme points on ∂F(A) , depending on the
location of z1,z2 relative to the ellipse ∂F(C) and each other. Note that two multiply
generated round points materialize only if z1,z2 ∈ ∂F(C) , in which case F(A) = F(C)
is an ellipse.

If A is normal, then there are no round boundary points at all, multiply or singu-
larly generated, and at most 2 multiply generated corner points.

Finally, let A ∼= A1 ⊕A2 , with unitarily irreducible 2-by-2 blocks A1,A2 . Then
there are no corner points. The ellipses ∂F(A1) , ∂F(A2) may have 0,1,2 tangent
points, or coincide. If the number of tangent points is zero or one, then the number
of multiply generated round boundary points does not exceed one (note that it equals 0
when ∂F(A1) , ∂F(A2) are tangent but lie outside of each other). On the other hand, if
there are at least two multiply generated round boundary points, then one of the ellipses
F(A1) and F(A2) lies inside another, say F(A1) ⊇ F(A2) . Then F(A) = F(A1) is an
ellipse, and either there are exactly two multiply generated round boundary points (if
F(A1) 	= F(A2)), or all the points of ∂F(A) are multiply generated. �

5. The 5-by-5 case

We start with a simple observation, concerning matrices of any size and having
two multiply generated round points on the boundary.

LEMMA 5.1. Let z1,z2 be multiply generated round points of ∂F(A) for some
A ∈ Mn(C) . Then n � 4 , and A is unitarily similar to⎛

⎝A1 0 B1

0 A2 B2

C∗
1 C∗

2 D

⎞
⎠ , (5.1)
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where A1,A2 ∈ M2(C) are such that z1,z2 ∈ ∂F(A1)∩∂F(A2) and

the range of e−iθ j Bk − eiθ jCk is orthogonal to f−1
Ak

(z j), j,k = 1,2. (5.2)

Here θ j is the angle formed by the supporting line of F(A) containing z j with the
positive real axis; condition (5.2) is vacuously satisfied for n = 4.

Proof. Choose linearly independent x j,y j ∈ f−1
A (z j) , j = 1,2, and denote by

L the span of {x1,x2,y1,y2} . Then z1,z2 remain extreme points of F(A0) , where
A0 = A|L . By construction of L , they are also multiply generated. According to
Theorem 3.2, dimL = 4, so in particular n � 4. From the considerations of Theo-
rem 4.4 it is clear that A0

∼= A1⊕A2 , with A1,A2 as described in the statement. In other
words, (5.1) holds.

We now turn to condition (5.2). All four combinations of j,k can be treated in
exactly in the same way, so without loss of generality let j = k = 1. Since, moreover,
(5.2) is invariant under rotations and translations, it suffices to consider the situation
when θ1 = π/2 and z1 = 0. The matrix (5.1) then must have (positive) semi-definite
real part, which property is thus inherited by all its compressions. Let now x ∈ f−1

A1
(0)

while y ∈ Cn−4 is arbitrary. The compression of (5.1) onto the span of

[x, 0, . . . ,0︸ ︷︷ ︸
n−2 times

]T and [0,0,0,0,y]T

has the real part equal(
0 z
z 〈ReDy,y〉

)
, where z =

1
2
〈(B1 +C1)y,x〉.

The semi-definiteness of the latter matrix is equivalent to z = 0 which, due to the arbi-
trariness of y , implies (5.1). �

Note that each of the matrices Aj may be unitarily reducible, in which case z1,z2

are the eigenvalues of the respective Aj (and thus the endpoints of its numerical range).
For n = 5, this yields some important consequences.

LEMMA 5.2. Suppose A∈M5(C) has two multiply generated round points z1,z2 ∈
∂F(A) , and in the respective representation (5.1) both A1,A2 are unitarily reducible.
Then A itself is unitarily reducible. Moreover,

A ∼= B⊕ (z1)⊕ (z2), where B ∈ M3(C) and z1,z2 ∈ ∂F(B). (5.3)

Proof. Due to the unitary reducibility of A1,A2 , representation (5.1) can be sim-
plified further as ⎛

⎜⎜⎜⎜⎝
z1 0 0 0 b1

0 z2 0 0 b2

0 0 z1 0 ∗
0 0 0 z2 ∗
c1 c2 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠ .
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Yet another unitary similarity, mapping the spans of {e1,e3} and {e2,e4} onto them-
selves, allows us to arrange in addition for c1 = c2 = 0. Then (5.2) implies that
b1 = b2 = 0. Thus, (5.3) holds. Since z1,z2 ∈ F(B) , we also have F(B) = F(A) ,
so in fact z1,z2 ∈ ∂F(B) . �

Now we can give a complete description of all 5-by-5 matrices with two multiply
generated round points lying on the same supporting line.

THEOREM 5.3. A matrix A ∈ M5(C) has two multiply generated round points
z1,z2 lying on the same supporting line of F(A) if and only if (5.3) holds with B ∈
M3(C) unitarily irreducible and [z1,z2] being the flat portion of ∂F(B) . All other
round points of ∂F(A) are singularly generated.

Proof. Necessity. According to Lemma 5.1, A is unitarily similar to (5.1). It is
clear that F(Aj) ⊂ F(A) , and by assumption [z1,z2] is contained in the boundary of
F(A) . To prevent the line segment (z1,z2) from lying in the interior of at least one
of the F(Aj) , it must be the case that both of the matrices Aj are normal. Now (5.3)
follows from Lemma 5.2. In our setting, the 3-by-3 matrix B has a flat portion on the
boundary with the endpoints being round, not corner points. This is only possible if B
is unitarily irreducible.

Sufficiency follows immediately from Theorem 3.1. Combined with Theorem 3.2,
Theorem 3.1 also implies that all round points of ∂F(B) except for z1,z2 are singularly
generated. �

Theorem 5.3 implies in particular that matrices A ∈ M5(C) with two multiply
generated round points lying on the same supporting line of F(A) must be unitarily
reducible. The following examples show that this does not have to be the case when the
supporting lines are different.

EXAMPLE 5.4. Let

A = H + iK =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 3

⎞
⎟⎟⎟⎟⎠+ i

⎛
⎜⎜⎜⎜⎝

1 −i 0 0 1
i 1 0 0 i
0 0 1 −i 0
0 0 i 1 0
1 −i 0 0 5

⎞
⎟⎟⎟⎟⎠

Then σ(H) = {4,2,1,0,0},σ(K) ≈ {5.56,2,1.44,0,0} . The eigenvector v =
[0,0,1,1,2]T corresponds to a simple eigenvalue 4 of H , and the set

{v,Kv,HKv,KHKv,HKHKv} (5.4)

is linearly independent, so A is unitarily irreducible by Proposition 4.2. On the other
hand, a basis for kerH is given by v1 = [0,0,−1/

√
2,1/

√
2,0]T and v2 = [−1/

√
2,

1/
√

2,0,0,0]T while the compression of K onto span{v1,v2} is the identity operator.
So, i is a multiply generated round point of F(A) . A similar computation shows that 1
is as well.
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Figure 2: F(A) for Example 5.4. The points 1 and i are multiply generated.

EXAMPLE 5.5. Let

A = H + iK =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 0
0 0 1 0 1
0 0 0 0 0
0 0 1 0 3

⎞
⎟⎟⎟⎟⎠+ i

⎛
⎜⎜⎜⎜⎝

1 −i 0 0 1
i 1 0 0 i
0 0 0 0 0
0 0 0 1 1
1 −i 0 1 5

⎞
⎟⎟⎟⎟⎠ .

The matrix A is unitarily irreducible because v = [0,0,−1+
√

2,0,1]T is an eigenvec-
tor of H corresponding to its simple eigenvalue 2 +

√
2, and the set (5.4) is linearly

independent for this choice of v,H,K as well. Direct computation again shows that
A|kerK = H|kerK = I and A|kerH = iK|kerH = iI , so we have multiply generated
round points 1 and i on ∂F(A) .

Figure 3: F(A) for Example 5.5. The points 1 and i are multiply generated.

EXAMPLE 5.6. Now let

A = H + iK =

⎛
⎜⎜⎜⎜⎝

1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0
0 0 0 0 1/2

⎞
⎟⎟⎟⎟⎠+ i

⎛
⎜⎜⎜⎜⎝

1 −i/2 0 0 1
i/2 −1 0 0 2
0 0 1 −i/2 3
0 0 i/2 −1 4
1 2 3 4 5

⎞
⎟⎟⎟⎟⎠ .

Here v = e5 is an eigenvector of H , corresponding to its simple eigenvalue 1/2,
and the vectors v,Kv,HKv,KHKv,K2v are linearly independent. Thus, A is unitarily
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irreducible. The remaining eigenvalues of H are 0 and 1, both having multiplicity two.
It is easy to check that K|kerH = K|ker(H − I) = 0, which makes 0 and 1 multiply
generated round points of ∂F(A) .

Figure 4: F(A) for Example 5.6. The points 0 and 1 are multiply generated.

Note that in all three examples the matrices are of the form (5.1). Since they were
shown to be unitarily irreducible, according to Lemma 5.2 at least one of the blocks
A1,A2 in each of them should be unitarily irreducible as well. In agreement with this,
both blocks are unitarliy irreducible in Examples 5.4 and 5.6, while in Example 5.5
block A2 is diagonal (and thus unitarily reducible in a trivial way). Note also that the
supporting lines coincide with the real and imaginary axes in Examples 5.4, 5.5 (and
thus are not parallel) and are both vertical in Example 5.6.

So, there exist unitarily irreducible A ∈M5(C) with two multiply generated round
points on ∂F(A) . In fact, this bound is sharp:

THEOREM 5.7. A 5 -by-5 matrix A with more than two multiply generated round
points on ∂F(A) is unitarily reducible.

We precede the proof of Theorem 5.7 by two technical lemmas, which also provide
additional useful information.

LEMMA 5.8. Let A ∈ M5(C) have two multiply generated round points z1,z2 ∈
∂F(A) lying on parallel supporting lines, and yet another exceptional supporting line
� . Then either � contains a flat portion of ∂F(A) with singularly generated endpoints,
or A is unitarily reducible.

Proof. The case of z1,z2 lying on the same supporting line is covered by The-
orem 5.3 (and the presence of � is then irrelevant). So, let these supporting lines be
different.

Passing from A to its affine equivalent, we may without loss of generality suppose
that the multiply generated round boundary points lie on vertical supporting lines, the
left of them coinciding with the imaginary axis:

z1 = iλ , z2 = ξ + iμ ,

and that � is the real axis, supporting F(A) from below.
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A subsequent unitary transformation, existing due to Lemma 5.1, allows then to
represent A in the form

A = H + iK =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 ξ 0 0 0
0 0 0 0 0
0 0 0 ξ 0
0 0 0 0 x

⎞
⎟⎟⎟⎟⎠+ i

⎛
⎜⎜⎜⎜⎝

λ d1 0 0 y1

d1 μ 0 0 y2

0 0 λ d2 y3

0 0 d2 μ y4

y1 y2 y3 y4 y

⎞
⎟⎟⎟⎟⎠ .

Note that the off diagonal entries in the last row and column of H equal zero because
0 � H � ξ I .

If λ = 0 or μ = 0, then z1 (respectively, z2 ) is a corner point of F(A) , so A is re-
ducible. Thus, we may suppose λ ,μ 	= 0. The kernel of K is at least two-dimensional,
so the rank of K does not exceed 3. Computing the row echelon form of K , we con-
clude from here that at least one of the d j must equal

√
λ μ , and for the respective j ,

y2 j = y2 j−1
√

μ/λ .
The rest of the reasoning depends on the number of j ’s for which d j =

√
λ μ .

Case 1. d j =
√

λ μ for both j = 1,2 . Then

K =

⎛
⎜⎜⎜⎜⎜⎝

λ
√

λ μ 0 0 y1√
λ μ μ 0 0 y1

√
μ/λ

0 0 λ
√

λ μ y3

0 0
√

λ μ μ y3
√

μ/λ
y1 y1
√

μ/λ y3 y3
√

μ/λ y

⎞
⎟⎟⎟⎟⎟⎠ .

Let now W be the subspace spanned by the vectors v1 = −y3e1 + y1e3 and v2 =
−y3e2 + y1e4 . Clearly, W is invariant under H : the first vector is in kerH and the
second is a ξ -eigenvector. But it is also invariant under K :

Kv1 = λv1 +
√

λ μv2, Kv2 =
√

λ μv1 + μv2.

Since H and K share a non-trivial proper subspace, A is unitarily reducible.
Case 2. d j =

√
λ μ for exactly one value of j . Without loss of generality (at a

cost of a permutational similarity) let d1 =
√

λ μ while d := d2 	=
√

λ μ .
In this case condition dimkerK � 2 yields

y =
1
λ

(
|y1|2 + |y3|2 +

|λy4−dy3|2
λ μ −d2

)
. (5.5)

Moreover, then dimkerK = 2 and the vectors

w1 =

⎡
⎢⎢⎢⎢⎣
−√μ/λ

1
0
0
0

⎤
⎥⎥⎥⎥⎦ , w2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

− y1
λ+μ

− y1
λ+μ
√

μ/λ
dy4−μy3
λ μ−d2

dy3−λ y4
λ μ−d2

1

⎤
⎥⎥⎥⎥⎥⎥⎦



712 T. LEAKE, B. LINS AND I. M. SPITKOVSKY

form an orthogonal basis of kerK . Observe now that 〈Hw1,w2〉 = −ξ y1
λ+μ
√

μ/λ .
So, y1 	= 0 implies that H|kerK is not a scalar multiple of the identity, yielding the
flat portion of ∂F(A) on � . The endpoints of this flat portion are singularly generated,
because dimkerK = 2.

On the other hand, y1 = 0 implies y2 = 0, thus making the span of {e1,e2} a
common invariant subspace of H and K . The matrix A is then unitarily reducible. �

LEMMA 5.9. Let A∈M5(C) be unitarily irreducible, with two multiply generated
round points z1,z2 ∈ ∂F(A) lying on non-parallel supporting lines �1, �2 . Then there
is at most one more additional direction of an exceptional supporting line.

Proof. Passing from A to its affine equivalent we will not change the configuration
and number of multiply generated round points or flat portions on ∂F(A) . Unitary
irreducibility of A also is invariant under such transformations. So, we may without loss
of generality suppose that F(A) lies in the first quadrant and given multiply generated
boundary points are located on the axes equidistantly from the origin.

Invoking then Lemma 5.1, we may further suppose without loss of generality that
A is of the form (5.1). If both blocks A1,A2 are unitarily reducible, then A is also
unitarily reducible (Lemma 5.2), and we are done. In the remaining situation, one of
the sets F(A1),F(A2) is an ellipse E while the other is either a line segment connecting
two points z1,z2 ∈ ∂E or yet another ellipse, tangent to E at these two points. Since
two ellipses having two tangent points cannot intersect elsewhere, one of the sets F(Aj)
is a subset of another. Using a permutational similarity if needed, we may suppose that
F(A1) ⊇ F(A2) .

Observe now that the centers of F(Aj) are located on the bisector of the first
quadrant, that is, can be written as q j(1+ i) with q j > 0. Moreover, the matrices ReAj ,
ImAj must be singular, since the axes are tangent to F(Aj) , j = 1,2. Using unitary
transformations to put Aj in a constant diagonal form, we arrive at the representations

ReAj = q j

(
1 1
1 1

)
, ImAj = q j

(
1 ε j

ε j 1

)

with some unimodular ε j , j = 1,2. Along with the additional relations imposed on the
5th column of A by conditions (5.2), we finally arrive at

A = H + iK =

⎛
⎜⎜⎜⎜⎝

q1 q1 0 0 x1

q1 q1 0 0 x1

0 0 q2 q2 x2

0 0 q2 q2 x2

x1 x1 x2 x2 x3

⎞
⎟⎟⎟⎟⎠+ i

⎛
⎜⎜⎜⎜⎝

q1 ε1q1 0 0 y1

ε1q1 q1 0 0 ε1y1

0 0 q2 ε2q2 y2

0 0 ε2q2 q2 ε2y2

y1 ε1y1 y2 ε2y2 y3

⎞
⎟⎟⎟⎟⎠ . (5.6)

(Note that the off diagonal elements in the 5th row and column of H can be made real
via an additional diagonal unitary similarity, not changing the left upper 4-by-4 block
of H and K .)
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If x j = y j = 0 for j = 1 or 2, then the respective Aj becomes a direct summand
of A , making A unitarily reducible in a trivial way. So,

At least one of the entries x j and y j differs from zero for each j = 1,2. (5.7)

By Theorem 2.1, there is a one-to-one correspondence between the directions of
additional exceptional supporting lines, not parallel to the axes, and real t 	= 0 such that
the matrix

tH +K =

⎛
⎜⎜⎜⎜⎝

(t +1)q1 (t + ε1)q1 0 0 tx1 + y1

(t + ε1)q1 (t +1)q1 0 0 tx1 + ε1y1

0 0 (t +1)q2 (t + ε2)q2 tx2 + y2

0 0 (t + ε2)q2 (t +1)q2 tx2 + ε2y2

∗ ∗ ∗ ∗ tx3 + y3

⎞
⎟⎟⎟⎟⎠ (5.8)

has a multiple maximal or minimal eigenvalue λ . Being multiple, λ is thus an eigen-
value of the left upper 4-by-4 block

Z = Z1⊕Z2 := q1

(
t +1 t + ε1

t + ε1 t +1

)
⊕q2

(
t +1 t + ε2

t + ε2 t +1

)
(5.9)

of (5.8).
The way we proceed from here varies, depending on whether the sets F(Aj) co-

incide.
Case 1. F(A2) is a proper subset of F(A1) . In particular, A1 is not normal, that

is, ε1 is not real. Moreover, since two ellipses tangent at two points do not intersect
elsewhere, we have

∂F(A1)∩∂F(A2) = {z1,z2}. (5.10)

Due to (5.10), λ is then a simple eigenvalue of Z1 , and not an eigenvalue of Z2 .
Consequently, diagonalizing Z1 forces the respective element in the 5-th column of
(5.8) to vanish. Equivalently,

[tx1 + ε1y1,−(tx1 + y1)]T (5.11)

is an eigenvector of Z1 corresponding to the eigenvalue λ . A direct computation then
yields

(t + ε1)(tx1 + y1)2 = (t + ε1)(tx1 + ε1y1)2. (5.12)

If one (and then, according to (5.7), exactly one) of the entries x1,y1 equals zero, then
(5.12) implies ε1 ∈R , which is not true. So, x1y1 	= 0. Moreover, from (5.12) it follows
that

|tx1 + y1| = |tx1 + ε1y1| .
Once again using ε1 /∈ R , we conclude

ε1y1 = y1. (5.13)
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With this in mind, (5.12) can be rewritten as

(t + ε1)ζ ∈ R, (5.14)

where
ζ = (tx1 + y1)/(tx1 + y1).

Represent y1/x1 in the polar form as sω , where s > 0 and |ω | = 1. Then

ζ = (t + sω)/(t + sω), (5.15)

while (5.13) means simply that ε1 = ω2 . In particular, Imω 	= 0. Condition (5.14) is
thus equivalent to

t = − Im(ω2ζ )/ Imζ (5.16)

(note that Imζ 	= 0 since otherwise (5.13) would imply ε1 ∈ R). Plugging (5.15) into
(5.16) and canceling the joint multiple 4it Imω 	= 0 yields

t = s
sReω −1
Reω − s

.

Thus, there is at most one additional potential direction of an exceptional supporting
line.

Case 2. F(A1) = F(A2) is a non-degenerate ellipse. Then in (5.6), and thus in
(5.8), we have

q1 = q2 =: q, ε1 = ε2 =: ε /∈ R. (5.17)

So, in (5.9), Z1 = Z2 . We will show that the existence of an additional exceptional
supporting line � then implies the unitary reducibility of A .

Suppose such � exists. Diagonalizing for the respective value of t each of Zj to
diag[λ ,μ ] , λ 	= μ , via the same 2-by-2 unitary similarity will force both (1,5) and
(3,5) entries of tH +K to disappear, due to the semi-definiteness of tH +K−λ I . This
is only possible if

tx1 + y1

tx1 + εy1
=

tx2 + y2

tx2 + εy2
.

A direct computation shows that then

x1y2 = x2y1. (5.18)

Let now
v1 = [1,0,s,0,0]T , v2 = [0,1,0,s,0]T ,

where

s =

{
−x1/x2 if x1 	= 0,

−y1/y2 if x2 = 0,y2 	= 0.

From (5.6), taking (5.17) and (5.18) into account, we conclude:

Hv1 = Hv2 = q(v1 + v2), Kv1 = q(v1 + εv2), Kv2 = q(εv1 + v2).
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In other words, the span of v1,v2 is an invariant subspace both for H and K , and thus
a reducing subspace for A . �

Proof of Theorem 5.7. If two multiply generated round points have parallel (in
particular, coinciding) supporting lines, there cannot be any other multiply generated
round points by Lemma 5.8.

It remains thus to consider the case when ∂F(A) contains (at least) three multiply
generated round points, with pairwise non-parallel supporting lines. If A is unitarily
irreducible, the situation reduces to that of Lemma 5.9. In particular, A is of the form
(5.6), two of the multiply generated round points lie on the axes, and the third one is the
value z of fA on the unit sphere of L = ker(tH +K−λ I) , where λ is an eigenvalue
of Z1 from (5.9). An additional piece of information, compared with the setting of
Lemma 5.9, is that now the compression of A onto L must equal zI .

Now observe that the eigenvector (5.11) of Z1 differs only by a scalar multiple
from [1,−ζ ]T . So, the unitary 2-by-2 matrix U diagonalizing Z1 can be chosen as

U =
√

2
2

(
1 1
−ζ ζ

)
.

Let W =U⊕ I3 . A direct computation shows that W ∗(tH +K)W −λ I5 = (0)⊕M ,
where

M =

⎛
⎜⎜⎝

2ζ (t + ε1)q1 0 0
√

2(tx1 + y1)
0
0

Z2−λ I2
tx2 + y2

tx2 + ε2y2

∗ ∗ ∗ tx3 + y3−λ

⎞
⎟⎟⎠ .

Since Z2 − λ I is invertible, kerM is (at most) one dimensional. On the other hand,
dimL = dimkerM + 1, so kerM must be non-trivial in order for z to be a multiply
generated point.

Thus, L = W span{e1,v} , with v = [0,v1,v2,v3,v4]T and [v1,v2,v3,v4]T being a
non-zero vector in kerM . From the structure of M it follows that all v j are non-zero

and, moreover, v1 = −
√

2(tx1+y1)
2ζ (t+ε1)q1

v4 .

The condition A|L = zI implies in particular that 〈HWv,We1〉 = 0. But

〈HWv,We1〉 = 〈W ∗HWv,e1〉 =
√

2
2ζ

v4(y1 − y1)
(

x1

tx1 + y1
− tx1 +Rey1

(tx1 + y1)(t + ε1)

)
.

Observe that y1 /∈ R , since otherwise (5.13) would imply ε1 = 1. So,

x1

tx1 + y1
=

tx1 +Rey1

(tx1 + y1)(t + ε1)
,

or equivalently
t(g+ i Img− ε1) = gε1 −gReg,

where g = y1/x1 . Due to (5.13) we may replace gε1 by g , so that finally

t(g+ i Img− ε1) = g(1−Reg). (5.19)
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If Reg = 1, then the right hand side of (5.19) is zero. Since t 	= 0, from here
we obtain g+ i Img− ε1 = 0. Taking the real part and recalling that Reg = 1 yields
Reε1 = 1. But |ε1| = 1, so in fact ε1 = 1 — a contradiction.

If Reg 	= 1, then in order for the (unique) solution of (5.19) to be real we must have
(g+ i Img− ε1)g ∈ R . From here, using ε1g = g again: ig Img−g ∈ R . Since Reg 	=
1, this is only possible if g is real. But then again ε1 = 1, also a contradiction. �

EXAMPLE 5.10. It is possible for a unitarily irreducible 5-by-5 matrix to have
two multiply generated round boundary points and a flat portion not parallel to either
one of them. Take H to be⎛

⎜⎜⎜⎜⎝
3 3 0 0 1
3 3 0 0 1
0 0 1 1 0
0 0 1 1 0
1 1 0 0 1

120

(
1675−263

√
30
)

⎞
⎟⎟⎟⎟⎠

and K to be⎛
⎜⎜⎜⎜⎜⎜⎝

3 2− i
√

5 0 0 − 5−i
√

5−i
√

6+
√

30
6+

√
30

2+ i
√

5 3 0 0 − 5+i
√

5+i
√

6+
√

30
6+

√
30

0 0 1 −i − 5
2

0 0 i 1 − 5i
2

− 5+i
√

5+i
√

6+
√

30
6+

√
30

− 5−i
√

5−i
√

6+
√

30
6+

√
30

− 5
2

5i
2 8

⎞
⎟⎟⎟⎟⎟⎟⎠

We compute σ(H) ≈ {6.445,2,1.509,0,0} and σ(K) ≈ {10.047,5.653, .299,0,0} . It
is easy to compute kerH , kerK and verify that H|kerK = I2 , whereas K|kerH = iI2 .
Thus, 1 and i are multiply generated boundary round points. We can also compute
σ(H + K) = {6 +

√
30,6 +

√
30,2.233, .534, .232} . Since the largest eigenvalue of

H +K is repeated, θ = π/4 is an exceptional angle for A . Two linearly independent
(6+

√
30)-eigenvectors of H +K can be chosen as

v1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
30

(
−5+ i

√
5+

√
30
)

0
−5((5+i)+

√
30)

88+16
√

30
−5i((5−i)+

√
30)

88+16
√

30
1

⎞
⎟⎟⎟⎟⎟⎟⎠ , v2 =

⎛
⎜⎜⎜⎜⎝

−i+
√

5√
6

1
0
0
0

⎞
⎟⎟⎟⎟⎠ .

Observe that 〈(K −H)v2,v2〉 = 0 while 〈(K −H)v1,v1〉 = −17
6 + 263

4
√

30
	= 0. So,

the compression of K −H onto the (6 +
√

30)-eigenspace of H + K is not a scalar
multiple of the identity, and thus there is a flat portion of ∂F(A) on the supporting line
�θ .
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To show that H + iK is unitarily irreducible, consider v = [r,r,0,0,1]T , where

r =
1

480

(
−955+263

√
30+
√

3102295−502330
√

30

)
.

This is an eigenvector of H corresponding to its simple eigenvalue

1
240

(
2395−263

√
30+
√

3102295−502330
√

30

)
Yet another computation yields

det
(
v Kv HKv KHKv HKHKv

)≈−1469.46i 	= 0.

Thus we have a linearly independent set, so H + iK is unitarily irreducible.

Figure 5: F(A) for example 5.10. The points 1 and i are multiply generated, and there is a flat
portion forming an angle of 3π

4 with the positive real axis.

Armed with Theorems 4.4 and 5.7, we can easily give a complete description of
the multiply generated round boundary points of ∂F(A) for all A ∈ M5(C) , unitarily
reducible or not.

THEOREM 5.11. For A ∈ M5(C) , the set of multiply generated round points con-
sists of 0,1,2,3 elements, is an elliptical arc, or the whole ∂F(A) , which in the latter
case must be an ellipse.

Proof. Case 1. A is unitarily irreducible. The result follows directly from Theo-
rems 5.7.

Case 2. A∼= B⊕(z) for some B∈M4(C) . Denote by M (X) the set of all multiply
generated round boundary points for the matrix X(= A,B) . Then M (A) = M (B) if z
lies in the interior of F(B) , M (A) = M (B)∪{z} if z ∈ ∂F(B) , and M (A) coincides
with the exposed portion of M (B) in conv{F(B),z} if z /∈ F(B) . It remains to invoke
Theorem 4.4.

Case 3. A is unitarily reducible but has no one-dimensional blocks. This can
only happen if A ∼= B1⊕B2 with some unitarily irreducible B1 ∈ M3(C) , B2 ∈ M2(C) .
Then both B1 and B2 have no multiply generated round boundary points, according to
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Theorem 3.2. Thus, multiply generated round boundary points of A can possibly occur
only where ∂F(B1) and ∂F(B2) are tangent. Note that Γ := ∂F(B2) is an ellipse.

In order to achieve the maximal number of tangent points, Γ should be either
subscribed about or inscribed in the curve ∂F(B1) . In the former case, Anderson’s
theorem (see, e.g., [25] or Lemma 6 in [23] and historical comments therein) implies
that either ∂F(B1)∩ ∂F(B2) consists of at most two points or the two sets coincide.
On the other hand, in the latter case Theorem 2.5 from [8] guarantees that either again
∂F(B1)∩∂F(B2) consists of at most two points or ∂F(B1) contains an elliptical arc.
Based on Kippenhahn’s classification of the numerical ranges of 3× 3 unitarily ir-
reducible matrices ([14], see also [13]), if ∂F(B1) contains an elliptical arc, it is an
ellipse, that is, F(B1) = F(B2) . �

6. Beyond M5(C)

Based on the consideration of n = 3,4,5 cases above, it is natural to guess that an
n -by-n unitarily irreducible matrix A can have not more than n−3 multiply generated
round boundary points. However, starting with n = 6 this is no longer the case. This
phenomenon is closely related with the failure of Kippenhahn’s conjecture (see, e.g.,
[15, 21, 20] and references therein), also starting with n = 6. We adapt the counterex-
ample from [15, Theorem 3.2] to our purposes of studying multiply generated boundary
round points.

EXAMPLE 6.1. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 x 0 cy 0 0
0 0 y 0 0 0
0 0 0 0 0 0
0 0 −cx 0

√
1− c2ξ 0

0 0 0 0 0 η
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , (6.1)

where x,y,ξ ,η ,c > 0, x2 + y2 = ξ 2 + η2 = 4, c < 1.
According to [15], F(A) is the unit disk and A is unitarily irreducible. Also, the

eigenvalues of Re(e−iθ A) do not depend on θ and equal ±1 (each having multiplicity
2) and ±cη/2. So, each point of ∂F(A) is multiply generated (and they are all round).

7. Tridiagonal matrices

Imposing additional algebraic structure on A may force the number of multiply
generated boundary points to be finite, independent of the matrix size. We consider here
the so called tridiagonalizable matrices, that is, matrices unitarily similar to tridiagonal
ones.
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In its turn, a matrix A ∈ Mn(C) is tridiagonal if ai j = 0 whenever |i− j| > 1. To
simplify the notation, we will record such matrices as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2 a3
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (7.1)

To put things in perspective, recall that for n � 4 all matrices A ∈ Mn(C) are
tridiagonalizable. This is trivial for n = 1,2 and relatively easy for n = 3. For n = 4,
the result was established only recently [18] and the proof uses some machinery from
complex algebraic geometry. The existence of non-tridiagonalizable n -by-n matrices
with n � 6 was proved in [16, 22]. Later [6] it was established that, starting with n = 5,
the non-tridiagonalizable matrices form a dense, second category subset of Mn(C) .

Following [2], we say that a tridiagonal matrix (7.1) is improper if it contains a
zero pair of corresponding off-diagonal entries: b j = c j = 0 for some j = 1, . . . ,n−1,
and proper otherwise. The flat portions on the boundary of F(A) for proper tridiagonal
matrices A were described in [2, Theorem 10]. As part of the proof, it was shown there
that the eigenvalues of Re(e−iθ A) are simple, unless for some j either b j = c j = 0, or

|b j| = |c j| 	= 0,θ ≡ 1
2
(argb j + argc j)+

π
2

mod π (7.2)

From here and Theorem 2.1 we immediately obtain:

LEMMA 7.1. A tridiagonal matrix (7.1) is generic if
∣∣b j
∣∣ 	= ∣∣c j
∣∣ for all j = 1, . . . ,

n−1 . If this is not the case but (7.1) is proper, then its exceptional angles are contained
among 1

2(argb j + argc j)± π
2 where j is such that

∣∣b j
∣∣= ∣∣c j
∣∣ holds.

In particular, any Jordan block J is generic. It is well known that F(J) is a cir-
cular disk; Lemma 7.1 implies that in addition all the points of ∂F(J) are singularly
generated.

THEOREM 7.2. A proper tridiagonal matrix (7.1) has at most n−2 multiply gen-
erated boundary round points, and only � n−1

2 � of them can be located on pair-wise
non-parallel supporting lines.

Proof. For an exceptional θ , denote by m the number of j ’s satisfying (7.2) and
say that they form the cluster Jθ corresponding to θ . Then Re(e−iθ A) is the direct sum
of m+1 proper tridiagonal Hermitian (and thus normal) matrices, say H1, . . . ,Hm . By
[2, Corollary 7], each of them has simple eigenvalues while their eigenvectors have non-
zero first and last entries. Denote by μ the minimal eigenvalue of Re(e−iθ A) , and let
Hk1 , . . . ,Hks be the blocks Hk having μ as their (also minimal) eigenvalue; according
to Theorem 2.1 we must have s � 2 for a multiply generated boundary round point or
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flat portion to appear. Finally, let x1, . . . ,xs be the respective unit eigenvectors which
thus form an orthonormal basis of the eigenspace L of Re(e−iθ A) corresponding to the
eigenvalue μ .

The compression K0 of Im(e−iθ A) onto L has a tridiagonal matrix the (i, i +
1)-entry of which is non-zero if and only if the blocks Hki ,Hki+1 are contiguous in
Re(e−iθ A) .

Since s does not exceed m+1, in the case m = 1 we are forced to have s = m+
1 = 2 which in turn implies the contiguity of H1,H2 . Thus, K0 is not a scalar multiple
of the identity and �θ contains a flat portion of ∂F(A) but no multiply generated round
points.

So, we must have m � 2 in order for multiply generated round boundary points
to materialize on the supporting lines with a given slope. This proves that there are at
most � n−1

2 � clusters Jθ which can correspond to multiply generated boundary round
points.

If m � 2, then a multiply generated boundary round point potentially may materi-
alize. There are never more than two such points on the same line (since they then have
to be endpoints of a flat portion), and in order for there to be two, K0 has to have two
multiple eigenvalues. Thus, in this case s � 4. Moreover, the blocks Hk1 , . . . ,Hks can-
not all be contiguous, since otherwise the matrix of K0 would be proper and therefore
could not have multiple eigenvalues. So, s < m+1, implying that we must have m � 4
if there are two multiply generated round points on at least one supporting line with the
given slope.

The conclusion is that we need m = |Jθ |� k in order to have k multiply generated
round boundary points on the supporting lines with the slope −cotθ , and the equality
is possible only if k = 2 or 4. So, the total number of multiply generated round bound-
ary points is strictly less than the total number of indices {1, . . . ,n−1} (and thus does
not exceed n− 2), unless the clusters form a partition of {1, . . . ,n− 1} with each Jθk

of this partition containing exactly 2 or 4 elements, with exactly
∣∣Jθk

∣∣ multiply gener-
ated round boundary points lying on the supporting lines with the slope −cotθk . This
completes the proof for n even. For n odd it is needed to observe in addition that the
cluster Jθ0 containing 1 or n−1 corresponds to only one supporting line and therefore
generates less than

∣∣Jθ0

∣∣ points. �

COROLLARY 7.3. For n odd, let A ∈ Mn(C) be a proper tridiagonal matrix with
(n−1)/2 multiply generated round points located on pair-wise non-parallel supporting
lines. Then ∂F(A) contains at most (n−3)/2 flat portions, and each of them is parallel
to one of these lines.

Indeed, for such A the set {1, . . . ,n−1} must be partitioned in exactly (n−1)/2
clusters, each consisting of two indices and corresponding to one multiply generated
round portion. The flat portions, if they exist, must therefore correspond to some of
these clusters and thus be parallel to the respective supporting lines. Moreover, the
cluster(s) containing 1 and n− 1 cannot generate additional exceptional supporting
lines.
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EXAMPLE 7.4. In general, tridiagonal matrices (proper or not) can achieve n−2
multiply generated boundary round points: a matrix of the form

A =
(

0 2
0 0

)
⊕

n−3⊕
k=0

e2π ik/(n−2) (7.3)

(which is a slight modification of Example 38 from [2], suggested by C. K. Li) has
n− 2 multiply generated boundary round points. Even if the matrix in question is
required to be unitarily similar to a proper tridiagonal matrix, examples still persist.

Consider, e.g., the matrix (7.3) for n = 3, and U =

⎛
⎜⎝

1
2 − 1√

2
− 1

2
1
2

1√
2

− 1
2

1√
2

0 1√
2

⎞
⎟⎠ . Then U∗AU =

⎛
⎜⎝

1 1√
2

0

− 1√
2

−1 1√
2

0 − 1√
2

1

⎞
⎟⎠ , a proper tridiagonal matrix.

Since every 4-by-4 matrix is tridiagonalizable, Theorem 7.2 provides an alterna-
tive justification for the Case 2 in the proof of Theorem 4.1. Note however that the one
given there is more elementary and direct.

On the other hand, from Corollary 7.3 it is clear that for a tridiagonal A ∈ M5(C)
with two multiply generated round boundary points lying on non-parallel supporting
lines a flat portion of ∂F(A) , if it exists, must be parallel to one of these supporting
lines. Thus, the matrix from Example 5.10 is not tridiagonalizable. We are not aware
of other constructive examples of such kind. Of course, the matrices A ∈ M6(C) from
Example 6.1 are not tridiagonalizable either.

8. Critical curves and multiply generated boundary points

In this section, we offer an alternative characterization of the multiply generated
boundary points of F(A) .

For A ∈ Mn(C) , the matrix valued function Re(e−iθ A) is analytic in the real vari-
able θ . A result of Rellich [19] (see also [1, Section 3.5.4, Corollary 2]) implies
that there is a family of analytic functions xk : [0,2π ] → Cn , k ∈ {1, . . . ,n} , such
that {x1(θ ), . . . ,xn(θ )} is an orthonormal basis of eigenvectors of Re(e−iθ A) for each
θ ∈ [0,2π ] . The corresponding eigenvalue functions λk(θ ) are also analytic and the
number of distinct eigenvalues s � n remains constant for all but finitely many values
of θ [1, Section 3.2.2, Theorem 2]. Those θ ∈ [0,2π ] for which Re(e−iθ A) has less
than s distinct eigenvalues are called exceptional points.

For each k ∈ {1, . . . ,n} , let zk(θ ) = 〈xk(θ ),Axk(θ )〉 . Each zk(θ ) is an analytic
curve in C , and we follow [12] in referring to these as the critical curves of A . A
famous result of Kippenhahn [14] asserts that the numerical range of A is the convex
hull of a family of plane algebraic curves CA . It is shown in [12] that the union of the
curves zk(θ ) coincides with CA .
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A characterization of zk is given in [12]. It is shown there that

zk(θ ) = eiθ (λk(θ )+ iλ ′
k(θ )), (8.1)

where λ ′
k(θ ) denotes the derivative of λk(θ ) . Note that the boundary points of F(A)

correspond to the maximum and minimum eigenvalues λk . Multiply generated points
on the boundary occur when two or more eigenvalues λk coincide with maxλk or
minλk , and have the same slope λ ′

k . If the eigenvalue curves cross with differing
slopes, then the angle θ where the intersection occurs corresponds to a flat portion of
∂F(A) .

Since Re(e−i(θ+π)A)=−Re(e−iθ A) , there is a permutation τ of the set {1, . . . ,n}
such that λk(θ + π) = −λτ(k)(θ ) and therefore zk(θ + π) = zτ(k)(θ ) [7, Section 5].
For this reason, it is sufficient to look for intersections of the critical curves only on the
interval [0,π) (or on any other interval of length π ).

PROPOSITION 8.1. For A ∈ Mn(C) and z a round point of ∂F(A) , z is multiply
generated if and only if z is contained in more than one critical curve zk(θ ) with
domain θ ∈ [0,π) .

Proof. If z is a multiply generated round boundary point, then the angle θ corre-
sponding to z must be exceptional by Theorem 2.1. From the proof of Theorem 2.1,
it follows that there must be more than one eigenvector xk(θ ) of Re(e−iθ A) such that
z = fA(xk(θ )) . Thus z is contained in more than one curve zk . The converse is true by
definition. �

The following proposition is a restatement of Proposition 8.1 using (8.1).

PROPOSITION 8.2. Let A ∈ Mn(C) and suppose that lθ is a supporting line of
F(A) . If lθ contains a multiply generated round boundary point, then there exists
k1 	= k2 ∈ {1, . . . ,n} such that mink{λk(θ )} = λk1(θ ) = λk2(θ ) and λ ′

k1
(θ ) = λ ′

k2
(θ ) .

The supporting line lθ contains a flat portion of ∂F(A) if and only if there exists
k1 	= k2 ∈ {1, . . . ,n} such that mink{λk(θ )} = λk1(θ ) = λk2(θ ) and λ ′

k1
(θ ) 	= λ ′

k2
(θ ) .

In Figure 8 we revisit Example 4.3. Here the supporting line lπ contains a multiply
generated point as the two minimum eigenvalue curves of Re(e−iθ A) intersect tangen-
tially at θ = π/2. The supporting line lπ/2 contains a flat portion of the boundary due
to the crossing of the two minimal eigenvalue curves when θ = 0.
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Figure 6: Two views of the numerical range including critical curves and the corresponding

λk(θ ) for A =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 2
1 0 1+2i −i/2
0 2 −i/2 4+5i

⎞
⎟⎟⎠ . The zoomed in view at the bottom shows a flat portion of

the boundary.
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