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LINEAR TRANSFORMATIONS WITH CHARACTERISTIC

SUBSPACES THAT ARE NOT HYPERINVARIANT

PUDJI ASTUTI AND HARALD K. WIMMER

(Communicated by M. Omladič)

Abstract. If f is an endomorphism of a finite dimensional vector space over a field K then an
invariant subspace X ⊆ V is called hyperinvariant (respectively, characteristic) if X is invariant
under all endomorphisms (respectively, automorphisms) that commute with f . According to
Shoda (Math. Zeit. 31, 611–624, 1930) only if |K| = 2 then there exist endomorphisms f with
invariant subspaces that are characteristic but not hyperinvariant. In this paper we obtain a de-
scription of the set of all characteristic non-hyperinvariant subspaces for nilpotent maps f with
exactly two unrepeated elementary divisors.

1. Introduction

Let K be a field, V an n -dimensional vector space over K and f : V → V a K -
linear map. A subspace X ⊆ V is said to be hyperinvariant (under f ) [9, p. 305]
if it remains invariant under all endomorphisms of V that commute with f . If X
is an f -invariant subspace of V and if X is invariant under all automorphisms of V
that commute with f , then [1] we say that X is characteristic (with respect to f ).
Let Inv(V, f ) , Hinv(V, f ) , and Chinv(V, f ) be sets of invariant, hyperinvariant and
characteristic subspaces of V , respectively. These sets are lattices, and

Hinv(V, f ) ⊆ Chinv(V, f ) ⊆ Inv(V, f ).

If the characteristic polynomial of f splits over K (such that all eigenvalues of f are
in K ) then one can restrict the study of hyperinvariant and of characteristic subspaces
to the case where f has only one eigenvalue, and to the case where f is nilpotent. Thus,
throughout this paper we shall assume f n = 0. Let Σ(λ )= diag(1, . . . ,1,λ t1 , . . . ,λ tm)∈
Kn×n[λ ] be the Smith normal form of f such that t1 + · · ·+ tm = n . We say that an
elementary divisor λ r is unrepeated if it appears exactly once in Σ(λ ) .

The structure of the lattice Hinv(V, f ) is well understood ([11], [6], [12], [9, p.
306]). We point out that Hinv(V, f ) is the sublattice of Inv(V, f ) generated by

Ker f k, Im f k, k = 0,1, . . . ,n.
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It is known ([13], [10, p. 63/64], [1]) that each characteristic subspace is hyperinvariant
if |K| > 2. Hence, only if V is a vector space over the field K = GF(2) one may find
K -endomorphisms f of V with characteristic subspaces that are not hyperinvariant. A
necessary and sufficient condition for the existence of such mappings f is due to Shoda
(see also [3, Theorem 9, p. 510] and [10, p. 63/64]). It involves unrepeated elementary
divisors of f .

THEOREM 1.1. [13, Satz 5, p. 619] Let V be a finite dimensional vector space
over the field K = GF(2) and let f : V → V be nilpotent. The following statements
are equivalent.

(i) There exists a characteristic subspace of V that is not hyperinvariant.

(ii) For some numbers R and S with R+1 < S the map f has exactly one elemen-
tary divisor λ R and exactly one of the form λ S .

Provided that f satisfies condition (ii) of Shoda’s theorem how can one construct
all characteristic subspaces of V that are not hyperinvariant? For the moment the an-
swer to that question is open. In this paper we assume that f has exactly one pair of
unrepeated elementary divisors. In that case we show how to construct the family of
characteristic and non-hyperinvariant subspaces associated to f . For that purpose we
prove rather general results on the structure of characteristic non-hyperinvariant sub-
spaces and we clarify the role of unrepeated elementary divisors of f . We note that our
study can be interpreted in the setting of module theory. In the context of abelian group
theory [8] one would deal with characteristic subgroups of p -groups that are not fully
invariant.

We first discuss an example, which displays features of characteristic subspaces
that will become important later, and we introduce concepts that will allow us to state
Theorem 1.3 at the end of this section.

1.1. An example and basic concepts

The inequality R+1 < S in Theorem 1.1 is valid for (R,S) = (1,3) . In Example
1.2 below we describe a subspace that is characteristic but not hyperinvariant with re-
spect to a map f with elementary divisors λ and λ 3 . We first introduce some notation,
in particular we define the concepts of exponent and height. We set V [ f j] = Ker f j ,
j � 0. Thus, f n = 0 implies V = V [ f n] . Define ι = idV and f 0 = ι . Let x ∈ V .
The smallest nonnegative integer � with f �x = 0 is called the exponent of x . We write
e(x) = � . A nonzero vector x is said to have height q if x ∈ f qV and x /∈ f q+1V . In
this case we write h(x) = q . We set h(0) = −∞ . The n -tuple

H(x) =
(
h(x),h( f x), . . . ,h( f n−1x)

)

is the indicator [8, p. 3] or Ulm sequence [10] of x . Thus, if e(x) = k then H(x) =
(h(x), . . . ,h( f k−1x),∞, . . . ,∞) . We say that H(x) has a gap at j , if 1 � j < e(x) and
h( f jx) > 1+h( f j−1x) . Let End(V, f ) be the algebra of all endomorphisms of V that
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commute with f . The group of automorphisms of V that commute with f will be
denoted by Aut(V, f ) . Let

〈x〉 = span{ f ix, i � 0}= {c0x+c1 f x+ · · ·+cn−1 f n−1x; ci ∈K, i = 0,1, . . . ,n−1}

be the f -cyclic subspace generated by x . If B ⊆V we define 〈B〉 = ∑b∈B 〈b〉 and

Bc = 〈αb; b ∈ B, α ∈ Aut(V, f )〉.

We call Bc the characteristic hull of B . Clearly, if α ∈ Aut(V, f ) then α( f jx) =
f j(αx) for all x ∈V . Hence it is obvious that

e(αx) = e(x) and h(αx) = h(x) for all x ∈V, α ∈ Aut(V, f ). (1)

Let e1 = (1,0, . . . ,0)T , . . . , em = (0, . . . ,0,1)T be the unit vectors of Km , and let Nm

denote the lower triangular nilpotent m×m Jordan block.

EXAMPLE 1.2. [10, p. 63/64]) Let K = GF(2) . Consider V = K4 and let f :
V →V be K -linear with elementary divisors λ and λ 3 . With respect to the basis {ei} ,
i = 1, . . . ,4, the map f is given by f x = Nx with

N = diag(N1,N3) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

and V = 〈e1〉⊕ 〈e2〉 with e(e1) = 1 and e(e2) = 3. Then α ∈ Aut(V, f ) if and only if
αx = Ax and A ∈ K4×4 is a nonsingular matrix satisfying AN = NA , that is (see e.g.
[14, p. 28]),

A =

⎛
⎜⎜⎝

1 ν 0 0
0 1 0 0
0 ω 1 0
κ μ ω 1

⎞
⎟⎟⎠ , κ ,μ ,ν,ω ∈ K.

Define z = e1 + e3 . We show that the characteristic subspace X = 〈z〉c is not hyperin-
variant. We have αz = (e1 + κe4)+ (e3 + ωe4) , and therefore

X = 〈z〉c = 〈e1+ f e2〉c = span{e1+e3,e1 +e3+e4}= {0,e1+e3,e1+e3+e4,e4}.

Let π1 = diag(1,0,0,0) be the orthogonal projection on Ke1 . Then π1 ∈ End(V, f ) .
We have π1z = e1 , but e1 /∈ X . Therefore X is a characteristic subspace that is not
hyperinvariant. From H(z) = (0,2,∞,∞) we see that H(z) has a gap at j = 1. �

To make the connection with Kaplansky’s exposition of Shoda’s theorem [10, p.
63/64] we define the numbers

d( f ,r) = dim
(
V [ f ]∩ f r−1V / V [ f ]∩ f rV

)
, r = 1,2, . . . ,n.
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In accordance with the terminology of abelian p -groups [7, p. 154] or p -modules [10,
p.27] we call d( f ,r) the (r− 1)-th Ulm invariant of f . Then d( f ,r) is equal to the
number of entries λ r in the Smith form of f , and d( f ,r) = 1 means that λ r is an
unrepeated elementary divisor. In the following it may be convenient to write d(r)
instead of d( f ,r) . We recall (see e.g. [4]) that methods or concepts of abelian group
theory must be translated to modules over principal ideal domains and then specialized
to K[λ ]-modules before they can be applied to linear algebra.

With regard to Theorem 1.3 below we note additional definitions. Suppose
dimKer f = m . Let λ t1 , . . . ,λ tm be the elementary divisors of f such that t1+ · · ·+tm =
dimV . Then V can be decomposed into a direct sum of f -cyclic subspaces 〈ui〉 such
that

V = 〈u1〉 ⊕ · · · ⊕ 〈um〉 and e(ui) = ti, i = 1, . . . ,m. (2)

If (2) holds and if the elements in U are ordered by nondecreasing exponents such that

e(u1) � · · · � e(um)

then we call U = (u1, . . . ,um) a generator tuple of V (with respect to f ). The tuple
(tm, . . . ,t1) of exponents – written in nonincreasing order – is known as Segre charac-
teristic of f . The set of generator tuples of V will be denoted by U . We call u ∈V a
generator of V (see also [7, p.4]) if u ∈U for some U ∈ U . In other words, u ∈V is
a generator if and only if u 	= 0 and

V = 〈u〉⊕V2 for some V2 ∈ Inv(V, f ). (3)

If f has only two elementary divisors then part (ii) of the following theorem gives
a description of the set Chinv(V, f )\Hinv(V, f ) .

THEOREM 1.3. Assume |K|= 2 . Suppose λ R and λ S are unrepeated elementary
divisors of f and R+1 < S . Let u and v be corresponding generators of V such that
e(u) = R and e(v) = S .

(i) A subspace
X = 〈 f R−su+ f S−qv〉c (4)

is characteristic and not hyperinvariant if the integers s,q satisfy

0 < s � R, s < q, R− s < S−q. (5)

(ii) Suppose V = 〈u〉⊕〈v〉 . Then an invariant subspace X ⊆V is characteristic and
not hyperinvariant if and only if X is of the form (4) and s,q satisfy (5).

The proof of Theorem 1.3(ii) will be given in Section 2, where two propositions
will be proved, one dealing with sufficiency and the other one with necessity of condi-
tion (5). In Section 3 we split the space V into two complementary invariant subspaces
E and G such that the unrepeated elementary divisors of f are those of f|E and the
repeated ones are those of f|G . It will be shown that a characteristic subspace X is
hyperinvariant in V if and only if X ∩E is hyperinvariant in E . An application of
that approach is a proof of Theorem 1.3(i). In Section 4 we extend Theorem 1.3(ii)
assuming that f has only two unrepeated elementary divisors.
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2. The case of two elementary divisors

In this section we give a proof of Theorem 1.3(ii). It is based on auxiliary results
on hyperinvariant subspaces and on images of generators under f -commuting automor-
phisms of V .

2.1. Hyperinvariant subspaces

Suppose dimKer f = m . Let U = (u1, . . . ,um) ∈ U be a generator tuple with
e(ui) = ti , i = 1, . . . ,m , such that

0 < t1 � · · · � tm.

Set�t = (t1, . . . ,tm) and t0 = 0. Let L (�t ) be the set of m-tuples �r = (r1, . . . ,rm) ∈ Zm

satisfying
0 � r1 � · · · � rm and 0 � t1 − r1 � · · · � tm − rm. (6)

We write �r 
�s if �r = (ri)m
i=1 , �s = (si)m

i=1 ∈ L (�t ) and ri � si , i = 1, . . . ,m . Then(
L (�t ),
)

is a lattice. The following theorem is due to Fillmore, Herrero and Longstaff
[6]. We refer to [9] for a proof.

THEOREM 2.1. Let f : V →V be nilpotent.

(i) If �r ∈ L (�t ) , then

W (�r ) = f r1V ∩V [ f t1−r1 ] + · · ·+ f rmV ∩V [ f tm−rm ]

is a hyperinvariant subspace. Conversely, each W ∈ Hinv(V, f ) is of the form
W = W (�r ) for some �r ∈ L (�t ) .

(ii) If �r ∈ L (�t ) then W (�r ) = f r1〈u1〉 ⊕ · · · ⊕ f rm〈um〉 .
(iii) The mapping �r �→ W (�r ) is a lattice isomorphism from

(
L (�t ),
 )

onto
(Hinv(V, f ),⊇) .

For a given�t the number of hyperinvariant subspaces is

nH(�t ) = ∏m
i=1(1+ ti− ti−1). (7)

Let XH denote the largest hyperinvariant subspace contained in a characteristic
subspace X . Using a generator tuple U = (u1, . . . ,um) ∈ U one can give an explicit
description of XH . Let x ∈V be decomposed as

x = x1 + · · ·+ xm, xi ∈ 〈ui〉, i = 1, . . . ,m, (8)

and let π j :V →V be the projections defined by π jx = x j , i = 1, . . . ,m . If X ⊆V then
π jx ∈ X for all x ∈ X is equivalent to

π jX = X ∩〈u j〉. (9)

The following theorem shows that (9) holds if e(u j) = t and λ t is a repeated elementary
divisor.
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THEOREM 2.2. [2, Lemma 4.5, Lemma 4.2, Theorem 4.3] Suppose X is a char-
acteristic subspace of V . Let U = (u1, . . . ,um) ∈ U .

(i) If d(t j) > 1 then π jX = X ∩〈u j〉 .
(ii) The subspace X is hyperinvariant if and only if

π jX = X ∩〈u j〉, j = 1, . . . ,m, (10)

or equivalently,
X = ⊕m

i=1

(
X ∩〈ui〉

)
. (11)

(iii) The subspace
XH = ⊕m

i=1

(
X ∩〈ui〉

)
(12)

is the largest hyperinvariant subspace contained in X .

In a characteristic subspace X elements outside of XH are of special interest (if
they exist).

LEMMA 2.3. Let X be a characteristic subspace.

(i) If W is a proper subspace of X then X = 〈X \W 〉c .

(ii) If X is not hyperinvariant then X = 〈X \XH〉c and

〈X \XH〉c = 〈X \XH〉. (13)

Proof. (i) From X \W ⊆ X and Xc = X follows 〈X \W 〉c ⊆ X . Conversely,
if x ∈ X then either x ∈ X \W or x ∈ W . In the first case it is obvious that x ∈
〈X \W 〉c . Suppose x ∈W . Choose an element z ∈ X \W . Then x+ z ∈ X \W . Thus
z ∈ 〈X \W 〉c and x+ z ∈ 〈X \W〉c , and therefore x ∈ 〈X \W 〉c . Hence X ⊆ 〈X \W〉c ,
which completes the proof.

(ii) Because of X � XH we can choose W = XH , and obtain X = 〈X \XH〉c . Let
us show that

α(X \XH) = X \XH for all α ∈ Aut(V, f ). (14)

Since XH is hyperinvariant and X is characteristic we have α(XH) = XH and α(X) =
X . Consider x ∈ X \XH . Suppose αx ∈ XH . Then x ∈ α−1(XH) = XH , which is a
contradiction. It is obvious that (14) is equivalent to (13). �

2.2. Images under automorphisms

If x ∈V and α ∈ Aut(V, f ) then it follows from (1) that H(αx) = H(x) . We note
a converse result due to Baer.

THEOREM 2.4. (See [10], [8, p. 4]) Let x,y ∈ V . Then H(x) = H(y) if and only
if y = αx for some α ∈ Aut(V, f ) .
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We shall use Baer’s theorem in Lemma 2.7 to determine the set {αu;α ∈ Aut(V, f )}
for generators u of V . With regard to the proof of Lemma 2.7 we put together basic
facts on exponent and height.

If x ∈V , x 	= 0, and e(x) = k , then e( f jx) = k− j , j = 0,1, . . . ,k−1. The height
of f jx satisfies the inequality h( f jx) � j +h(x) , j = 0,1, . . . ,k−1. If x1, . . . ,xm ∈ V
then

h(x1 + · · ·+ xm) � min{h(xi);1 � i � m}. (15)

In general, the inequality (15) is strict. Consider Example 1.2 with x1 = e3 + e1 , x2 =
e4 + e1 , and h(x1) = h(x2) = 0 and h(x1 + x2) = 1. We have equality in (15) if the
vectors xi satisfy the assumption of the following lemma.

LEMMA 2.5. Let U = (u1, . . . ,um) ∈ U . If x = ∑m
i=1 xi , xi ∈ 〈ui〉 , i = 1, . . . ,m,

x 	= 0 , then
h(x) = min{h(xi); 1 � i � m, xi 	= 0} (16)

and
e(x) = max{e(xi); 1 � i � m, xi 	= 0}. (17)

Proof. To prove the identity (16) we set q̃ = min{h(xi); xi 	= 0} and q = h(x) .
Then q � q̃ . On the other hand we have x = f qy , y = ∑yi , yi ∈ 〈ui〉 . Hence xi = f qyi

for all i , and therefore q̃ � q .
With regard to (17) we set �̃ = max{e(xi); xi 	= 0} and � = e(x) . Then 0 = f �x =

∑m
i=1 f �xi implies f �xi = 0 for all i . Hence �̃ � � . On the other hand

0 	= f �−1x = ∑m
i=1 f �−1xi

implies f �−1x j 	= 0 for some j , 1 � j � k , and therefore �̃ � � . �
We remark that the preceding lemma can be deduced from results on marked sub-

spaces in [5].

LEMMA 2.6. Suppose λ t is an elementary divisor of f . Then u is a generator of
V with e(u) = t if and only if f t u = 0 and

h( f ju) = j, j = 0,1, . . . ,t−1. (18)

Proof. Suppose u is a generator and

V = 〈u〉⊕V2 and e(u) = t. (19)

Let h( f t−1u) = (t −1)+ τ , τ � 0. Then f t−1u = f t−1+τ w̃ for some w̃ = w+w2 with
w ∈ 〈u〉 , w2 ∈V2 . Then 〈u〉∩V2 = 0 implies f t−1u = f t−1+τw , and we obtain τ = 0.
Hence h( f t−1u) = t−1, which is equivalent to (18).

Now suppose u ∈ V satisfies (18). Let v ∈ V be a generator corresponding to λ t

such that V = 〈v〉⊕W2 and e(v) = t . We have shown before that H(v) = (0,1, . . . ,t −
1,∞, . . . ,∞) . Hence H(u) = H(v) , and therefore Theorem 2.4 implies u = αv for
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some α ∈ Aut(V, f ) . Then V = α(〈v〉 ⊕W2) = 〈u〉 ⊕αW2 shows that u is also a
generator. �

A consequence of Lemma 2.6 is the following observation. Suppose u is a gener-
ator of V and w ∈ 〈u〉 and h(w) = 0. Then 〈w〉 = 〈u〉 .

LEMMA 2.7. Suppose λ t is an unrepeated elementary divisor of f . Let U =
(u1, . . . ,um)∈U , and e(up) = t . If u∈V then the following statements are equivalent.

(i) The vector u is a generator of V with e(u) = t .

(ii) There exists an α ∈ Aut(V, f ) such that u = αup .

(iii) We have

u = y + g with y = cup + f v, c 	= 0, v ∈ 〈up〉, g ∈ 〈ui; i 	= p〉[ f t ]. (20)

Proof. If u and uρ are generators of V then we have e(u) = e(uρ) if and only if
H(u) = H(uρ) . Hence it follows from Theorem 2.4 and Lemma 2.6 that (i) and (ii) are
equivalent.

(i) ⇒ (iii) Let u be decomposed such that u = y+g and y∈ 〈up〉 and g∈ 〈ui; i 	=
p〉 . Then (17) implies e(g) � e(u) = t , that is g ∈V [ f t ] . Let us show that h(y) = 0, or
equivalently

y = cup + f v, c 	= 0, v ∈ 〈up〉. (21)

We have g = g< + g> with g< ∈ 〈ui; i < p〉 , and g> ∈ 〈ui; i > p〉 . If i < p then
e(ui) < e(up) = t . Hence f t−1g< = 0, and

f t−1u = f t−1y+ f t−1g>. (22)

If i > p then e(ui) > t . Therefore

〈ui〉[ f t ] = f e(ui)−t〈ui〉 ⊆ fV.

Hence h(g>) � 1 and h( f t−1g>) � t . Now suppose h(y) 	= 0. Then h(y) � 1 and
h( f t−1y) � t . Therefore (22) implies h( f t−1u) � t . This is a contradiction to the
assumption that u is a generator with h( f t−1u) = t −1. Hence h(y) = 0.

(iii) ⇒ (i) Assume (20). Then (21) implies that y is a generator with e(y) = t .
Thus h(y) = 0 and h( f t−1y) = t − 1. Moreover, we have e(g) � t . Hence e(u) =
max{e(y),e(g)} = t . From (16) follows

t −1 � h( f t−1u) = min{h( f t−1y),h( f t−1g)} � h( f t−1y) = t−1.

Hence h( f t−1u) = t−1. Then Lemma 2.6 completes the proof. �
Lemma 2.7 will be used in the proof of Proposition 2.11. We note that the assump-

tion |K| = 2 implies that the vector y in (20) is of the form

y = uρ + f v, v ∈ 〈uρ〉. (23)
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If u is a generator with e(u) = t then there is no gap in the indicator sequence
H( f ju) = ( j, j + 1, . . . ,t − 1,∞, . . . ,∞) . We mention without proof that 〈x〉c is hyper-
invariant if and only if H(x) has no gap. We only need the following special case of
that result.

LEMMA 2.8. Let λ t be an unrepeated elementary divisor of f and u a generator
of V with e(u) = t . Then

〈 f ju〉c = Im f j ∩Ker f t− j, j = 0, . . . ,t, (24)

and 〈 f ju〉c is hyperinvariant.

Proof. Let U = (u1, . . . ,um) ∈ U such that e(up) = t and up = u . Then

Ker f t = 〈up〉
⊕(⊕1�i�m;i	=p 〈ui〉[ f t ]

)

and 〈up〉 =
〈
cup + f v;c 	= 0, v ∈ 〈up〉

〉
. Hence

Ker f t = 〈cup + f v+g;c 	= 0, v ∈ 〈up〉, g ∈ 〈ui; i 	= p〉[ f t ]〉
= 〈αup;α ∈ Aut(V, f )〉 = 〈up〉c.

If 0 < j < t then

〈 f jup〉c = f j〈up〉c = f j Ker f t = f j Ker f t− j = Im f j ∩Ker f t− j. �

A general theorem that contains the following lemma can be found in [8, Lemma
65.4, p. 4].

LEMMA 2.9. Suppose V = 〈u1〉⊕ 〈u2〉 and e(u1) < e(u2) . If x ∈ V then there
exists an automorphism α ∈ Aut(V, f ) such that

αx = f k1u1 + f k2u2 (25)

for some k1,k2 ∈ N0 .

Proof. Let x = x1 +x2 , xi ∈ 〈ui〉 , i = 1,2. Suppose x1 	= 0 and x2 	= 0. If h(xi) =
ki then xi = f ki ũi , ũi ∈ 〈ui〉 , h(ũi) = 0, i = 1,2. Therefore 〈ũi〉 = 〈ui〉 , i = 1,2, such
that (ũ1, ũ2) ∈ U . Then α : (ũ1, ũ2) �→ (u1,u2) ∈ Aut(V, f ) yields (25). �

2.3. Proof of Theorem 1.3(ii)

In this section we assume dimKer f = 2 such that V = 〈u1〉⊕〈u2〉 . We prove two
propositions. They provide the complete description of the set Chinv(V, f )\Hinv(V, f )
in Theorem 1.3(ii). The following notation will be convenient. If we write

α : (u1,u2) �→ (û1, û2) ∈ Aut(V, f )

we assume (û1, û2) ∈ U , and α denotes the automorphism in Aut(V, f ) defined by
(αu1,αu2) = (û1, û2) .



734 P. ASTUTI AND H. K. WIMMER

PROPOSITION 2.10. Let |K| = 2 . Suppose V = 〈u1〉 ⊕ 〈u2〉 and e(u1) = R,
e(u2) = S , and R + 1 < S . If X is a characteristic non-hyperinvariant subspace of
V then

X = 〈 f R−su1 + f S−qu2〉c with 0 < s < q and 0 � R − s < S − q, (26)

and
XH = 〈 f R−s+1u1, f S−q+1u2〉 = Im f R−s+1∩Ker f q−1 (27)

is the largest hyperinvariant subspace contained in X .

Proof. Theorem 2.2(iii) and Theorem 2.1(ii) imply

XH = (X ∩〈u1〉)⊕ (X ∩〈u2〉) = W (�r ) = 〈 f r1u1〉⊕ 〈 f r2u2〉 (28)

for some pair �r = (r1,r2) satisfying r1 � R , r2 � S , and

0 � r1 � r2 and 0 � R− r1 � S− r2. (29)

Since X is not hyperinvariant we have X � XH . Let x ∈ X \XH . By Lemma 2.9 there
exists an automorphism α ∈ Aut(V, f ) such that

αx = z = f μ1u1 + f μ2u2 ∈ X\XH . (30)

Suppose μ1 � r1 . Then f μ1u1 ∈ 〈 f r1u1〉 ⊆ X , and because z ∈ X also f μ2u2 = z−
f μ1u1 ∈X . Hence f μ1u1 ∈X∩〈u1〉 and f μ2u2 ∈X∩〈u2〉 , and we would obtain z∈XH .
Similarly, it is impossible that μ2 � r2 . Therefore

μ1 < r1, μ2 < r2. (31)

We shall see that
μ1 +1 = r1, μ2 +1 = r2. (32)

If R = 1 then μ1 = 0, and μ1 +1 = r1 = 1. If R > 1 then f u1 	= 0, and

β : (u1,u2) �→ (u1 + f u1,u2) ∈ Aut(V, f )

yields
β z = ( f μ1u1 + f μ1+1u1)+ f μ2u2 = z+ f μ1+1u1 ∈ X .

Since X is characteristic and z ∈ X , we have β z ∈ X . Hence

f μ1+1u1 ∈ X ∩〈u1〉 = 〈 f r1u1〉,

and we obtain μ1 +1 � r1 . A similar argument yields, μ2 +1 � r2 . Hence (31) implies
the relations (32). Thus

z = f μ1u1 + f μ2u2, μ1 = r1 −1, μ2 = r2−1.
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Hence there exists a unique vector z ∈ X \XH with a representation (30). Then (14)
implies X \XH = {αz;α ∈ Aut(V, f )} and (13) yields

X = 〈z〉c = 〈 f μ1u1 + f μ2u2〉c. (33)

According to the definitions of s and t we have 0 � μ1 � μ2 and 0 � R−μ1 � S−μ2 .
Hence it remains to show that

μ1 	= R, μ1 	= μ2 and R− μ1 	= S− μ2. (34)

Suppose R = μ1 . Then z = f μ2u2 , and Lemma 2.8 implies X = 〈 f μ1u2〉c ∈Hinv(V, f ) .
Suppose μ1 = μ2 . Then z = f μ1(u1 +u2) . Using

γ : (u1,u2) �→ (u1,u2 +u1) ∈ Aut(V, f )

we obtain γ−1z = f μ1u2 ∈ X . Hence Lemma 2.8 implies X = 〈 f μ1u2〉c ∈ Hinv(V, f ) .
Suppose R− μ1 = S− μ2 . Then S− (μ2− μ1) = R and

z = f μ1(u1 + f μ2−μ1u2) = f μ1(u1 + f S−Ru2).

Therefore σ : (u1,u2) �→ (u1 + f S−Ru2,u2) ∈ Aut(V, f ) yields σ−1z = f μ1u1 . Then
X = 〈 f μ1u1〉c ∈ Hinv(V, f ) . Hence the inequalities (34) are valid.

From (28) and (32) follows XH = 〈 f μ1+1u1, f μ2+1u2〉 . Moreover (34) implies
〈 f μ1+1u1, f μ2+1u2〉 = Im f μ1+1∩Ker f S−(μ2+1) .

We obtain (26) and (27) if we set μ1 = R− s and μ2 = S−q . �

PROPOSITION 2.11. Assume |K| = 2 . Suppose V = 〈u1〉⊕〈u2〉 , and e(u1) = R,
e(u2) = S such that R+1 < S . Let s,q be integers satisfying

0 < s < q, 0 � R− s < S−q. (35)

Then the subspace
X = 〈 f R−su1 + f S−qu2〉c

is characteristic and not hyperinvariant, and

X = 〈 f R−su1 + f S−qu2, f R−s+1u1, f S−q+1u2〉. (36)

We have
dimX = s+q−1. (37)

If s > 1 then f|X has the elementary divisors λ q and λ s−1 . If s = 1 then X =
〈 f R−su1 + f S−qu2〉 and the corresponding elementary divisor is λ q .

Proof. Define z = f R−su1 + f S−qu2 . Then X = 〈z〉c . Set q̃ = R+(q− s) and

z̃ = u1 + f S−q̃u2 and X̃ = 〈z̃〉c.
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Then (R− s) + (S− q̃) = S− q . Therefore z = f R−sz̃ and X = f R−sX̃ , and (35) is
equivalent to

R < q̃, 0 < S− q̃. (38)

Let us first deal with the height-zero space X̃ = 〈z̃〉c and then pass to X = 〈z〉c . Let
α ∈ Aut(V, f ) . We determine α z̃ using Lemma 2.7. Recall that |K| = 2 implies (23),
that is we have y = uρ + f v , v ∈ 〈uρ〉 in (20). If αu1 = x1 + x2 , xi ∈ 〈ui〉 , i = 1,2,
then

x1 = u1 + f v1, v1 ∈ 〈u1〉 and x2 ∈ 〈ui; i 	= 1〉[ f R] = 〈u2〉[ f R] = f S−R〈u2〉.

Similarly, αu2 = y1 + y2 , yi ∈ 〈ui〉 , i = 1,2, and

y2 = u2 + f w2, w2 ∈ 〈u2〉 and y1 ∈ 〈ui; i 	= 2〉[ f S] = 〈u1〉[ f S] = 〈u1〉.

Then

α z̃ = (u1 + f v1 + x2)+ ( f S−q̃u2 + f S−q̃+1w2 + f S−q̃y1) =

z̃+( f v1 + f S−q̃y1)+ (x2 + f S−q̃+1w2). (39)

From S− q̃ > 0 follows f S−q̃y1 ∈ f 〈u1〉 . From q̃ > R follows S−R � S− q̃+1, and
therefore x2 ∈ f S−q̃+1〈u2〉 . Set v̂ = f v1 + f S−q̃y1 and ŵ = x2 + f S−q̃+1w2 . Then

α z̃ = z̃+ v̂+ ŵ, and v̂ ∈ f 〈u1〉, ŵ ∈ f S−q̃+1〈u2〉. (40)

Define L̃ = 〈z̃, f S−q̃+1u2〉 . Because of f z̃ = f u1 + f S−q̃+1u2 we obtain L̃ =
〈z̃, f u1, f S−q̃+1u2〉 . Then (40) implies 〈z̃〉c ⊆ L̃ . If

β : (u1,u2) �→ (u1,u2 + f u2) ∈ Aut(V, f )

then β z̃ = z̃+ f S−q̃+1u2 ∈ 〈z̃〉c . Hence

β z̃− z̃ = f S−q̃+1u2 ∈ 〈z̃〉c,

and therefore L̃ ⊆ 〈z̃〉c , and we obtain

L̃ = 〈z̃〉c = 〈z̃, f u1, f S−q̃+1u2〉. (41)

We determine the dimension of 〈z̃〉c . If R = 1 then f u1 = 0 and f z̃ = f S−q̃+1u2 .
Therefore 〈z̃〉c = 〈z̃〉 and dim〈z̃〉 = e(z̃) = q̃ . If R > 1 then 〈z̃〉c = 〈z̃, f u1〉 . Let

x = ∑R−1
μ=0 cμ f μu1 +∑q̃−1

μ=0 cμ f S−q̃+μu2 ∈ 〈z̃〉.

Then x∈ 〈 f u1〉 if and only if c0 = · · ·= cq̃−1 = 0, that is, x = 0. Hence 〈z̃〉∩〈 f u1〉= 0,
and

dim〈z̃〉c = dim〈z̃〉+dim〈 f u1〉 = q̃+(R−1). (42)
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At this point we go back to X = 〈z〉c = f R−s〈z̃〉 . Then (41) yields (36). From (42)
we obtain

dimX = dim f R−s〈z̃〉+dim f R−s〈 f u1〉= [q̃−(R−s)]+[(R−1)−(R−s)] = s+q−1,

which proves (37). If s > 1 then X = 〈z〉 ⊕ 〈 f R−s+1u1〉 is a direct sum of f -cyclic
subspaces of dimension q and s−1, respectively. Hence, in that case, the elementary
divisors of f|X are λ q and λ s−1 . It is easy to see that the case s = 1 leads to X = 〈z〉 .

We show next that f R−su1 /∈ X . Suppose to the contrary that f R−su1 ∈ X . Then
z = f R−su1 + f S−qu2 ∈ X would imply f S−qu2 ∈ X . Hence 〈 f R−su1〉⊕〈 f S−qu2〉 ⊆ X ,
and therefore dimX � s+ q , in contradiction to (37). Hence f R−su1 /∈ X . Let π1 be
the projection of V on 〈u1〉 along 〈u2〉 . Then π1 ∈ End(V, f ) . But π1z = f R−su1 /∈ X .
Hence the subspace X is not hyperinvariant. �

EXAMPLE 1.2 continued. If (R,S) = (1,3) then (s,q) = (1,2) is the only solution
of (35). Then (R− s,S− q) = (0,1) , and X = 〈 f 0e1 + f 1e2〉c is the only character-
istic non-hyperinvariant subspace of V . According to (7) there are 6 hyperinvariant
subspaces in V . �

3. Separating repeated and unrepeated elementary divisors

According to Shoda’s theorem only unrepeated elementary divisors are relevant
for the existence of characteristic non-hyperinvariant subspaces. In this section we
examine this fact in more detail. Let E and G be invariant subspaces of V and assume

V = E ⊕G and d( f ,t) = d( f|E ,t) if d( f ,t) = 1 and

d( f ,t) = d( f|G, t) if d( f ,t) > 1. (43)

Thus the unrepeated elementary divisors of f are those of f|E and the repeated ones are
those of f|G . If (43) holds then there exists a generator tuple U = (u1, . . . ,um) adapted
to E and G such that

E = 〈ui;e(ui) = ti;d(ti) = 1〉 and G = 〈ui;e(ui) = ti;d(ti) > 1〉. (44)

We shall see that a characteristic subspace X is hyperinvariant in V if and only if X ∩E
is hyperinvariant in E . We first consider a general direct sum decomposition of V .

LEMMA 3.1. Let V1 and V2 be invariant subspaces of V such that V = V1⊕V2 .

(i) If X ∈ Chinv(V, f ) then (X ∩Vi) ∈ Chinv(Vi, f|Vi
) , i = 1,2 .

(ii) If X ∈ Hinv(V, f ) then (X ∩Vi) ∈ Hinv(Vi, f|Vi
) , i = 1,2 .

(iii) A subspace X is hyperinvariant if and only if X is characteristic and

X = (X ∩V1)⊕ (X ∩V2) and X ∩Vi ∈ Hinv(Vi, f|Vi
), i = 1,2. (45)
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Proof. (i) Let x1 ∈ X ∩V1 and g1 ∈ Aut(V1, f|V1
) . To show that g1(x1) ∈ X we

extend g1 to an automorphism g ∈ Aut(V, f ) as follows. Let ι2 be the identity map of
V2 . Then g = g1 + ι2 ∈ Aut(V, f ) . Therefore X ∈ Chinv(V, f ) implies g(x1) ∈ X . On
the other hand g(x1) = g1(x1) ∈V1 . Hence g1(x1) ∈ X ∩V1 .

(ii) Let x1 ∈ X ∩V1 and h1 ∈ End(V1, f|V1
) . If 02 is the zero map on V2 then

h = h1 +02 ∈ End(V, f ) . An argument as in part (i) shows that h1(x1) ∈ X ∩V1 .

(iii) Let Vi = ⊕mi
ν=1〈u(i)

ν 〉 , i = 1,2, be decomposed into cyclic subspaces, and let

U = (u j)m
j=1 ∈ U contain the vectors u(1)

ν , ν = 1, . . . ,m1 , and u(2)
ν ,ν = 1, . . . ,m2 .

Define Xi = X ∩Vi , i = 1,2. Suppose X is characteristic and (45) holds. Then
Lemma 3.1(ii) and V1∩V2 = 0 imply

Xi = ⊕mi
ν=1(Xi ∩〈u(i)

ν 〉) = ⊕m
j=1(Xi ∩〈u j〉), i = 1,2.

Hence

X = X1⊕X2 = ⊕m
j=1

(
(X1 ∩〈u j〉)+ (X2∩〈u j〉)

)

⊆⊕m
j=1[(X1 +X2)∩〈u j〉] = ⊕m

j=1(X ∩〈u j〉) ⊆ X .

Then X satisfies (11), and therefore X is hyperinvariant. Using (11) it is not difficult
to see that X ∈ Hinv(V, f ) implies (45). �

We apply the preceding lemma to the decomposition V = E ⊕G . Let πE be the
projection of V on E along G , and let πG denote the complementary projection such
that πE +πG = ι . Then πE f = fπE and πG f = fπG . Let (X∩E)H|E denote the largest
hyperinvariant subspace (with respect to f|E ) contained in E .

LEMMA 3.2. Let E and G be subspaces of V such that (43) holds. Suppose X
is a characteristic subspace of V .

(i) Then πEX = X ∩E and πGX = X ∩G, and

X = (X ∩E)⊕ (X ∩G). (46)

Moreover,

X ∩E ∈ Chinv(E, f|E) and X ∩G ∈ Hinv(G, f|G), (47)

and
XH = (X ∩E)H|E ⊕ (X ∩G) (48)

(ii) The subspace X is hyperinvariant in V if and only if X ∩E is hyperinvariant in
E .

Proof. (i) Let U ∈ U satisfy (44). If x ∈ X then Theorem 2.2(i) yields

πGx =
(
∑d(ti)>1 πi

)
x = ∑d(ti)>1 πix ∈ X .
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Hence πGX ⊆ X ∩G , and therefore πGX = X ∩G . Then x = πGx+πEx implies πEx ∈
X . Thus we obtain πEX = X ∩E , and X = πEX ⊕πGX .

From Lemma 3.1(i) we conclude that X ∩E and X ∩G are characteristic in E , re-
spectively in G . According to (43) the map f|G has only repeated elementary divisors.
Hence Theorem 1.1 implies that X ∩G is hyperinvariant in G . The description of XH

in (48) follows from (12).
(ii) The subspace X ∩G is hyperinvariant in G . We apply Lemma 3.1(iii). �

The assumption that X is characteristic is essential for (46).

EXAMPLE 3.3. Let V = 〈u1,u2,u3〉 with e(u1) = 1, e(u2) = e(u3) = 2. Then
E = 〈u1〉 and G = 〈u2,u3〉 . Set X = 〈u1 + f u2〉 . Then X ∩G = 0 and X � (X ∩E)⊕
(X ∩G) .

In the following we deal with invariant subspaces associated to subsets of unre-
peated elementary divisors of f . Let T be an invariant subspace of V such that f|T has
only unrepeated elementary divisors and such that

V = T ⊕V2 for some V2 ∈ Inv(V, f ),

and f|T and f|V2
have no elementary divisors in common. The subspace T can also be

characterized as follows. There exists a T2 ∈ Inv(V, f ) such that

T ⊕T2 = E, and T2⊕G = V2, E ⊕G = V and E and G satisfy (43). (49)

Let πT be the projection on T along V2 and πV2 be the complementary projection. If
Y ⊆ T then YcT denotes the characteristic hull of Y with respect to T ,

YcT =
〈
αT y; y ∈ Y, αT ∈ Aut(T, f |T )

〉
.

A spin-off from the following lemma is a proof of Theorem 1.3(i).

LEMMA 3.4. Let T be an invariant subspace such that f|T has only unrepeated
elementary divisors and (49) holds. Suppose X is a characteristic subspace of V .

(i) Then X ∩ T ∈ Chinv(T, f|T ) . If the subspace X is hyperinvariant in V then
X ∩T is hyperinvariant in T .

(ii) We have
Aut(T, f|T ) = {πT απT ; α ∈ Aut(V, f )}. (50)

(iii) If Y ⊆ T then
Y c ∩T = πTY c = YcT . (51)

Proof. (i) Because of V = T ⊕V2 one can apply Lemma 3.1.
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(ii) Let U = {u1, . . . ,um} be a generator tuple of V such that a subtuple UT =
{uτ1 , . . . ,uτq}⊆U is a generator tuple of T (with respect to f|T ). Set IT = {τ1, . . . ,τq} .
If i ∈ IT then Lemma 2.7 implies

α ui = ciui + f vi +∑ j∈IT , j 	=i
w j +∑k/∈IT ,1�k�m

xk,

where ci 	= 0, vi ∈ 〈ui〉 , wj ∈ 〈u j〉[ f ti ] and xk ∈ 〈uk〉[ f ti ] . Hence

(πT α)ui = ciui + f vi +∑ j∈IT , j 	=i w j.

Then Lemma 2.5 yields e
(
(πT α)ui

)
= ti , and

h( f ti−1(πT α)ui) = h( f ti−1ui) = ti −1,

and h((πT α)ui) = 0. By Lemma 2.6 the element (πT α)ui ∈ T is a generator. Hence(
(πT α)uτ1 , . . . ,(πT α)uτq

)
is a generator tuple of T . Then the map given by

πT α : ui �→ (πT α)ui, i ∈ IT ,

is in Aut(T, f |T ) . Hence πT απT ∈ Aut(T, f |T ) . Now consider an automorphism αT ∈
Aut(T, f |T ) . We extend αT to an automorphism α̃ ∈ Aut(V, f ) defining

α̃ : ui �→ αT ui if i ∈ IT , and α̃ : ui �→ ui if i /∈ IT . (52)

Then (πT α̃πT )uτi = αT uτi , i = 1, . . . ,q , and therefore αT = πT α̃πT .
(iii) Let us show first that πTYc = Yc ∩T . If α ∈ Aut(V, f ) then αT = πT απT ∈

Aut(T, f|T ) . Let α̃ ∈ Aut(V, f ) be the extension of αT given by (52). If y ∈ Y ⊆ T
then πT αy = πT απT y = αT y = α̃y ∈ Yc . Hence πTY c ⊆ Yc , which suffices to prove
πTY c = Yc ∩T . Then

Yc ∩T = πTY c〈(πT α)y; α ∈ Aut(V, f ), y ∈ Y 〉 = 〈(πT απT )y; α ∈ Aut(V, f ), y ∈ Y 〉
= 〈(αT )y; αT ∈ Aut(T, f|T ), y ∈ Y 〉 = YcT . �

Proof of Theorem 1.3 (i). We apply Lemma 3.4. Let T = 〈uρ ,uτ〉 . Set zs,q =
f R−suρ + f S−quτ , and Y = 〈zs,q〉 . Then Y ⊆ T , and YcT = Yc ∩T . It follows from
Proposition 2.11 that YcT is not hyperinvariant in T . Hence Yc = 〈zs,q〉c is not hyper-
invariant in V . �

Suppose Y ⊆ E is characteristic and non-hyperinvariant with respect to f|E How
can one extend Y to a subspace X that has these properties in the entire space V ?

THEOREM 3.5. Let E and G be subspaces of V such that (43) holds. Let Y ∈
Chinv(E, f|E) . If Ys is a subspace of Y and W is a subspace of G such that Ys +W is
characteristic in V then

(Y +W )c ∩E = Y. (53)

The subspace (Y +W)c is hyperinvariant in V only if Y is hyperinvariant in E .
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Proof. Set X = (Y +W )c . We are going to show that πEX =Y . Because of Y ⊆ E
and Y ⊆ X we see that

Y ⊆ (X ∩E) ⊆ πEX . (54)

It is obvious that (Y +W )c ⊆ Yc +Wc . From Y,W ⊆ (Y +W )c follows Yc +Wc ⊆
(Y +W)c . Hence X = Yc +Wc . Therefore

πEX = πEY c + πEWc. (55)

Since Ys +W is characteristic we have Wc ⊆ (Ys +W )c = Ys +W . Hence Ys ⊆ E and
W ⊆ G , or equivalently πEW = 0, imply πEWc ⊆ Ys ⊆ Y . Since Y is characteristic in
E it follows from Lemma 3.4 that YcE =Y = πEYc . Hence (55) implies πEX ⊆Y , and
(54) yields Y = X ∩E = πEX . Thus we proved (53). If Y is not hyperinvariant in E
then it follows from Lemma 3.2 that X is not hyperinvariant in V . �

4. The main theorem

In this section we drop the assumption that V is generated by two vectors. Hence
the map f can have more than two elementary divisors. We assume that only two of
them are unrepeated. In that case we obtain a description of the family of characteristic
non-hyperinvariant subspaces which extends Theorem 1.3(ii).

We first consider the case where f has no unrepeated elementary divisors. In
terms of a decomposition V = E ⊕G in (43) that assumption is equivalent to V = G .

LEMMA 4.1. Let U = (u1, . . . ,um) ∈ U , e(ui) = ti , i = 1, . . . ,m. Suppose f has
no unrepeated elementary divisors, that is

d(ti) > 1 f or all i = 1, . . . ,m. (56)

Then X ⊆V is hyperinvariant if and only if

X = 〈 f r1u1 + · · ·+ f rmum〉c (57)

for some �r = (r1, . . . ,rm) satisfying (6).

Proof. By Shoda’s theorem the assumption (56) implies that each characteristic
subspace of V is hyperinvariant. Hence, if X is of the form (57) then X ∈ Hinv(V, f ) .
Now suppose X is hyperinvariant. According to Theorem 2.1 we have

X = W (�r ) = 〈 f r1u1〉 ⊕ · · · ⊕ 〈 f rmum〉 (58)

for some �r satisfying (6). Define w = f r1u1 + · · · + f rmum . Then w ∈ W (�r ) . Since
W (�r ) is hyperinvariant, it is obvious that 〈w〉c ⊆W (�r ) . To prove the converse inclusion
we apply Theorem 2.2(ii) to the hyperinvariant subspace 〈w〉c . We obtain πiw = f riui ∈
〈w〉c , i = 1, . . . ,m , and therefore W (�r ) ⊆ 〈w〉c . Hence X = W (�r ) = 〈w〉c . �
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The notation in Theorem 4.2 below will be the following. We write �μ ′ = �μ +
(�eρ +�eτ) if

(μ ′
1, . . . ,μ ′

ρ , . . . ,μ ′
τ , . . . ,μ ′

m) =

(μ1, . . . ,μρ , . . . ,μτ , . . . ,μm)+ (0, . . . ,1, . . . ,1, . . . ,0), (59)

that is,
μ ′

i = μi if i 	= ρ ,τ, and μ ′
ρ = μρ +1, μ ′

τ = μτ +1. (60)

Then �μ ′ ∈ L (�t ) means

μ ′
i � ti, i = 1, . . . ,m, and μ ′

1 � · · · � μ ′
m, t1− μ ′

1 � · · · � tm − μ ′
m. (61)

THEOREM 4.2. Let |K| = 2 . Suppose that among the elementary divisors of f
there are exactly two unrepeated ones, namely λ R and λ S . Let U = (u1, . . . ,um) ∈ U
and e(uρ) = R, e(uτ) = S . A subspace X ⊆V is characteristic and not hyperinvariant
if and only if

X = 〈 f μ1u1 + · · ·+ f μmum〉c, (62)

such that the entries μρ and μτ of μ = (μ1, . . . ,μm) satisfy

0 � μρ < μτ and 0 < R− μρ < S− μτ , (63)

and such that �μ +(�eρ +�eτ) ∈ L (�t ) .

Proof. Set E = 〈uρ〉⊕ 〈uτ〉 and G = 〈ui;e(ui) = ti;d(ti) > 1〉 . Then V = E ⊕G ,
as in (43). Suppose X ∈ Chinv(V, f )\Hinv(V, f ) . Lemma 3.2 implies

X = (X ∩E)⊕ (X ∩G).

The subspace X ∩G is hyperinvariant in G , whereas X ∩E is characteristic but not
hyperinvariant in E . By assumption E is generated by two elements. Hence it follows
from Proposition 2.10 that X ∩E = 〈z〉cE . Referring to (33) and (34) we obtain z =
f μρ uρ + f μτ uτ for some integers μρ ,μτ satisfying (63). According to Lemma 4.1 we
have X ∩G = 〈w〉cG for some

w = ∑
1�i�m; i	=ρ ,τ

f μiui ∈ X ∩G.

Set ẑ = z+w . Let us show that X = 〈ẑ〉c . If αE ∈ Aut(E, f|E) and αG ∈ Aut( f|G,V )
then αV = αE +αG ∈Aut( f ,V ) . Hence αEz+αGw = αV (z+w)∈ 〈ẑ〉c , and we obtain

X = 〈z〉cE ⊕〈w〉cG ⊆ 〈ẑ〉c. (64)

Since X is characteristic it is obvious that 〈ẑ〉c ⊆ X . Therefore X = 〈ẑ〉c , and X is of
the form (62). From (27) follows

(
〈z〉cE

)
H|E

= 〈 f μρ +1uρ〉⊕ 〈 f μτ+1uτ〉.
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The proof of Lemma 4.1 shows that

〈w〉cG = ⊕
1�i�m; i	=ρ ,τ

〈 f μi ui〉.

Then (48) yields

XH =
(
〈z〉cE

)
H|E

⊕ 〈
w
〉cG = ⊕

i=1,...,m
〈 f μ ′

i ui〉, (65)

with μ ′
i , i = 1, . . . ,m , defined by (60). The subspace XH is hyperinvariant. Hence

Theorem 2.1 implies �μ ′ = (μ ′
1, . . . ,μ ′

m) ∈ L (�t ) .
Now consider a subspace

X =
〈

∑m
i=1 f μi ui

〉c

assuming that the inequalities (63) hold and �μ ′ =�μ +(�eρ +�eτ) ∈ L (�t ) . Define

z = f μρ uρ + f μτ uτ , w = ∑
1�i�m; i	=ρ ,τ

f μiui, and ẑ = z+w.

Then X = 〈ẑ〉c . Since X is characteristic it follows from Lemma 3.2 that πE ẑ = z ∈
X ∩E , πGẑ = w ∈ X ∩G . Set Y = 〈z〉cE and W = 〈w〉cG . Then Lemma 3.4(iii) implies
Y = 〈z〉c ∩ E . The inequalities (61) ensure that W is hyperinvariant in G and that
W = ⊕i	=ρ ,τ〈 f μi ui〉 . Let us show first that X = (Y +W)c . Since X is characteristic we
have (Y +W)c ⊆ X . Conversely, z+w ∈ Y +W yields X = 〈z+w〉c ⊆ (Y +W )c . It
follows from (63) that 〈z〉cE = Y is not hyperinvariant in E . Hence

YH|E = 〈 f μρ +1uρ , f μτ +1uτ〉 = 〈 f μ ′
ρ uρ , f μ ′

τ uτ〉.

Then �μ ′ ∈L (�t ) implies that YH|E +W is hyperinvariant in V . We apply Theorem 3.5
choosing Ys = YH|E and conclude that X is not hyperinvariant. �

EXAMPLE 4.3. We consider a map f with elementary divisors λ ,λ 3,λ 7,λ 7 and
V = ⊕4

i=1〈ui〉 such that�t =
(
e(ui)

)
= (1,3,7,7) . We know that

0 � μ1 < 1, 0 � μ2 < 3 and μ1 < μ2, 1− μ1 < 3− μ2,

has the unique solution (μ1,μ2) = (0,1) . Hence

�μ = (0,1,μ3,μ4) and �μ ′ = (1,2,μ3,μ4).

Then �μ ′ ∈ L (�t ) if and only if (μ3,μ4) = ( j, j) , j = 2, . . . ,6. Define g j = u1 + f u2 +
f ju3 + f ju4 and Xj = 〈g j〉c , j = 2, . . . ,6, and X = 〈u1 + f u2〉c . Then

e(u2 + f j−1u3 + f j−1u4) = e(u2), j = 5,6,

implies X5 = X6 = X . We obtain 4 different characteristic not hyperinvariant sub-
spaces, namely X ,X2,X3,X4 . There are nH = 30 hyperinvariant subspaces in V .
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4.1. Concluding remarks

We have restricted our study to the case of two unrepeated elementary divisors.
Using methods of our paper one can prove more general results. For example one can
extend Theorem 1.3(i) as follows.

THEOREM 4.4. Let |K| = 2 . Suppose λ tρ1 , . . . ,λ tρk are unrepeated elementary
divisors of f such that tρ1 < · · · < tρk . Let U = (u1, . . . ,um) ∈ U be a generator tuple
with e(uρ j ) = tρ j , j = 1, . . . ,k . Suppose (μρ1 , . . . ,μρk ) ∈ Nk

0 and set z = f μρ1 uρ1 +
· · ·+ f μρk uρk . If

μρ j < tρ j , j = 1, . . . ,k, (66)

and
μρ1 < μρ2 < · · · < μρk and 0 < tρ1 − μρ1 < · · · < tρk − μρk , (67)

then X = 〈z〉c is a characteristic and not hyperinvariant subspace of V .

In Example 4.5 below we illustrate Theorem 4.4. We also construct a non-hyper-
invariant subspace that is not the characteristic hull of a single element. Such subspaces
will be studied in a subsequent paper.

EXAMPLE 4.5. Let |K| = 2. Suppose f has elementary divisors λ ,λ 3,λ 5 such
that V = 〈u1〉⊕ 〈u2〉⊕ 〈u3〉 and

(t1,t2,t2) =
(
e(u1),e(u2),e(u3)

)
= (1,3,5).

Then (μ1,μ2,μ3) = (0,1,2) is the only solution of the set of inequalities

0 � μ1 < 1, 0 � μ2 < 3, 0 � μ3 < 5; 0 � μ1 < μ2 < μ3, 0 < 1−μ1 < 3−μ2 < 5−μ3.

Set
z = u1 + f u2 + f 2u3. (68)

Then X = 〈z〉c ∈ Chinv(V, f ) \Hinv(V, f ) . The fact that X is not hyperinvariant can
be verified as follows. We have e(z) = 3 and the indicator sequence of z is H(z) =
(0,2,4,∞,∞) . Define Y = {x ∈V | H(x) = H(z)} . Then

Y = {z+ v2 + v3; v2 ∈ f 2〈u2〉; v3 ∈ f 3〈u3〉}.
Hence

〈z〉c = 〈Y 〉 = 〈z, f 2u2, f 3u3〉. (69)

Then π3z = f 2u3 /∈ 〈Y 〉 . Therefore 〈Y 〉 is not hyperinvariant in V .
The following subspace W is also in Chinv(V, f ) \Hinv(V, f ) . We shall see that

it is not the characteristic hull of a single element. Let

W = 〈z1,z2〉c and z1 = u1 + f u2, z2 = f 2u3.

Then 〈z1, f 3u3〉c = 〈z1〉 and 〈z2〉c = Im f 2∩Ker f 3 = Im f 2 = 〈 f 2u2, f 2u3〉 . Therefore
W = 〈z1〉⊕〈 f 2u3〉 . We have π1z1 = u1 /∈W . Hence W is not hyperinvariant. Suppose
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W = 〈w〉c for some w ∈ W . Then w = x + y with x ∈ 〈z1〉 , y ∈ 〈 f 2u3〉 . Because
of z1 ∈ W and h(z1) = 0 it is necessary that h(w) = 0. Hence h(x) = 0. Therefore
〈x〉 = 〈z1〉 , and x = γz1 for some γ ∈ Aut( f ,V ) . Hence we can assume w = z1 + y . If
h(y) � 3 then e(w) = e(z1) and 〈w〉c = 〈z1〉c � W . If h(y) = 2 then y = β ( f 2u3) for
some β ∈ Aut( f ,V ) , and therefore

〈w〉c = 〈z1 + f 2u3〉c = 〈z〉c,
where z is given by (68). We have seen before that π3z = f 2u3 /∈ 〈z〉c . Hence 〈w〉c =
〈z1 + z2〉c � W . Therefore 〈w〉c 	= W for all w ∈W . �
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