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THE WEIGHTED MOORE–PENROSE INVERSE FOR SUM OF MATRICES
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Abstract. In this paper we exhibit that under the rank additivity condition r(A+ B) = r(A)+
r(B) , a neat relationship between the weighted Moore-Penrose inverse of A+B and the weighted
Moore-Penrose inverses of A and B .

1. Introduction

Throughout this paper Cm×n denotes the set of all m×n matrices over the complex
field C . Ik denotes the identity matrix of order k , Om×n is the m×n matrix of all zero
entries (if no confusion occurs, we will drop the subscript). For a matrix A ∈Cm×n , the
symbols A∗ , R(A) , N(A) and r(A) denote the conjugate transpose, the range space,
the null space and the rank of A , respectively.

Adopting the notations of [12], let A ∈ Cm×n , a generalized inverse X of A is a
matrix which satisfies some of the following four Penrose equations [9]:

(1) AXA = A, (2) XAX = X , (3) (AX)∗ = AX , (4) (XA)∗ = XA.

For a subset {i, j, · · · ,k} of the set {1,2,3,4} , the set of n ×m matrices satisfy-
ing the equations (i) , ( j) , · · · , (k) from among equations (1)− (4) is denoted by
A{i, j, · · · ,k} . A matrix in A{i, j, · · · ,k} is called an {i, j, · · · ,k} -inverse of A and is
denoted by A(i, j,···,k) . The unique {1,2,3,4} -inverse of A is denoted by A† , which
is called the Moore-Penrose inverse of A . The weighted Moore-Penrose inverse A†

MN
with respect to a pair of Hermitian positive definite matrices M ∈Cm×m and N ∈Cn×n

is defined to be the unique solution of the following four matrix equations [12]:

AXA = A, XAX = X , (MAX)∗ = MAX , (NXA)∗ = NXA. (1)

When M = Im , N = In , the matrix X satisfying (1.1) is called the Moore-Penrose
inverse of A and is denoted by X = A†

ImIn
= A† . Further, A� = N−1A∗M stands for the

weighted conjugate transpose of A .
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Although the theory of generalized inverses has had a substantial development
over the past several decades, there are lots of fundamental problems on generalized
inverses of matrices that need further investigation. One such problem is concerned to
the generalized inverse for a sum of matrices. Suppose A and B are a pair of matrices of
the same size. In many situations, one wants to know the expressions of (A+B)(i, j,···,K)

and its properties. For example, give a decomposition (A + B)†
MN = P1 + P2 under

various given conditions, where P1 and P2 have some close relationship with weighted
Moore-Penrose inverses of A and B , respectively.

The generalized inverse for a sum of matrices was introduced by Penrose [9]. It
has quite important applications in numerical linear algebra and applied fields, such as,
linear control theory [1], statistics [8], projection algorithms [2] and perturbation anal-
ysis of matrix [6]. Moreover, as one of the fundamental research problems in matrix
theory, the generalized inverse for a sum of matrices is a very useful tool in many algo-
rithms for the computation of the generalized parallel sum of A and B . The generalized
parallel sum originally arose in an attempt to generalize a network synthesis procedure
of Duffin [4] and has been studied in the scalar case by Erickson [5]. Suppose that
A,B ∈ Cm×n , then we define the generalized parallel sum of A and B by A(A+B)†B
or A(A + B)†

MNB . One such problem concerns to the Moore-Penrose inverse or the
weighted Moore-Penrose inverse of A+B .

Various generalized inverses for sums of two rectangular matrices were developed
by Cline [3], Hartwig [7], Y.Tian [10], Z.Xiong [13], and so on, see [9, 12]. In this
paper, we exhibit a neat relationship between the weighted Moore-Penrose inverse of
A+B and the weighted Moore-Penrose inverses of A and B under some rank additivity
conditions.

As the main tools in our discussion, we first mention the following three lemmas,
which will be used in this paper.

LEMMA 1.1. [12] Let A ∈ Cm×n , and let M and N be two Hermitian positive
definite matrices of order m and n, respectively. Then

(I) (A†
MN)∗ = (A∗)†

N−1M−1 ,

(II) A†
MN = N−1A∗(AN−1A∗)†

MM−1 = (A∗MA)†
N−1N

A∗M,

(III) A†
MN = N−1/2(M1/2AN−1/2)†M1/2,

(IV) R(AA†
MN) = R(A), N(AA†

MN) = M−1N(A∗) = N(A�),

(V) R(A†
MNA) = N−1R(A∗) = R(A�), N(A†

MNA) = N(A),

(VI) A† = (A∗A)†A∗ = A∗(AA∗)†.

LEMMA 1.2. [12] Let L and M be two complementary subspaces of Cn , and let
PL,M be a projector on L along M . Then

(I) (Im −PL,M)A = O iff R(A) ⊆ L,
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(II) A(In−PL,M) = O iff M ⊆ N(A),

(III) In−PL,M = PM,L.

LEMMA 1.3. [11] [Weighted Singular Value Decomposition] Let A ∈Cm×n with
rank r , M ∈ Cm×m and N ∈ Cn×n be two Hermitian positive definite matrices. Then
there exists an M-unitary matrix U and an N−1 -unitary matrix V (i.e. U∗MU = Im ,
V ∗N−1V = In ), such that

A = U

(
∑ O

O O

)
V ∗, (2)

where ∑ = diag(μ1,μ2, · · · ,μr) , μi =
√

λi and λ1 � λ2 � · · ·� λr > 0 are the nonzero
eigenvalues of A�A = (N−1A∗M)A. Then μ1 � μ2 � · · · � μr > 0 are the nonzero
weighted singular values of A and (2) is called the Weighted Singular Value Decompo-
sition of A. In this case, the weighted Moore-Penrose inverse of A with respect to the
Hermitian positive definite matrices M ∈Cm×m and N ∈Cn×n is given by

A†
MN = N−1V

⎛⎝∑−1 O

O O

⎞⎠U∗M. (3)

For the convenience of readers, we will adopt the following notation

W = A+(Y +Yp)G(Z +Zp)∗, Ã = M1/2AN−1/2, Ỹ = M1/2YS−1/2,

Ỹp = M1/2YpS
−1/2, Z̃ = N−1/2ZS1/2, Z̃p = N−1/2ZpS

1/2,

where A ∈ Cm×n , Y,Yp ∈ Cm×s , G ∈ Cs×s , Z,Zp ∈ Cn×s , M , N and S are three
Hermitian positive definite matrices of order m , n and s , respectively.

2. Main results

In this section, the weighted Moore-Penrose inverse of A+B is discussed under
the condition r(A+B) = r(A)+ r(B) .

THEOREM 2.1. Let A∈Cm×n , Y,Yp ∈Cm×s , G∈Cs×s , Z,Zp ∈Cn×s , M , N and
S be three Hermitian positive definite matrices of order m, n and s, respectively. Sup-
pose that R(Ỹ )⊆ R(Ã) , R(Ỹp)⊥R(Ã) , R(Z̃)⊆ R(Ã∗) , R(Z̃p)⊥ R(Ã∗) , G is invertible,
Yp is of full column rank and Zp is of full column rank. Then

W †
MN = (A+(Y +Yp)G(Z +Zp)∗)†

MN

= A†
MN −EZ∗A†

MN −A†
MNYC∗ +E(G−1 +Z∗A†

MNY )C∗, (4)

where C = MYp(YP
∗MYP)−1 = ((YP)†

MS)
∗ and E = N−1Zp(Zp

∗N−1Zp)−1 = (Zp
∗)†

SN .
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Proof. Let T = A†
MN −EZ∗A†

MN −A†
MNYC∗ +E(G−1 +Z∗A†

MNY )C∗ . Then it is
only necessary to show that T and W satisfy the equations in (1). From the hypothesis
R(Ỹp) ⊥ R(Ã) and R(Z̃p) ⊥ R(Ã∗) , we have

R(Ỹp) ⊆ N(Ã∗), R(Ã) ⊆ N(Ỹp
∗), (5)

and

R(Z̃p) ⊆ N(Ã), R(Ã∗) ⊆ N(Z̃p
∗). (6)

Combining the formulas (III), (VI) in Lemma 1.1 with (5), we have

N−1/2A∗C = N−1/2A∗((YP)†
MS)

∗ = N−1/2A∗M1/2((ỸP)†)∗S−1/2

= Ã∗((ỸP)†)∗S−1/2 = Ã∗([(ỸP)ỸP]†(ỸP)∗)∗S−1/2

= Ã∗ỸP[(ỸP)∗ỸP]†S−1/2 = O. (7)

According to (7), we get

N−1/2A∗C = O and C∗A = O. (8)

On the other hand, by the formula (II) in Lemma 1.1 and (5), we have

S−1/2Y ∗
P (A†

MN)∗ = S−1/2Y ∗
P MA(A∗MA)†

N−1N

= S−1/2Y ∗
P M1/2M1/2A(A∗MA)†

N−1N

= (ỸP)∗Ã(A∗MA)†
N−1N

= O. (9)

From (9), we have

S−1/2Y ∗
P (A†

MN)∗ = O and (A†
MN)YP = O. (10)

Similar to the proof of (8) and (10), we obtain the following formulas by the for-
mulas (II), (III), (VI) in Lemma 1.1 and (6).

AE = O, Z∗
pA

†
MN = O. (11)

According to the hypothesis of Theorem 2.1, we obtain

R(Ỹ ) ⊆ R(Ã) ⇔ R(Y ) ⊆ R(A) and R(Z̃) ⊆ R(Ã∗) ⇔ R(Z) ⊆ R(A∗). (12)

Then, from definition of C and E in (4) and the formulas (8), (10), (11), (12), we have

Z∗E = O, C∗Y = O, C∗Yp = Is, ZP
∗E = Is. (13)

Combining (8), (10), (11), (12), (13) with the formulas (IV), (V) in Lemma 1.1
and the formulas (I), (II) in Lemma 1.2, we have

WT

= (A+(Y +Yp)G(Z +Zp)∗)(A†
MN −EZ∗A†

MN −A†
MNYC∗ +E(G−1 +Z∗A†

MNY )C∗)

= AA†
MN −YC∗ − (Y +Yp)GZ∗A†

MNYC∗ +(Y +Yp)G(G−1 +Z∗A†
MNY )C∗

= AA†
MN −YC∗ +(Y +Yp)C∗

= AA†
MN +Yp(Yp)†

MS. (14)



THE WEIGHTED MOORE-PENROSE INVERSE FOR SUM OF MATRICES 751

From (14), we obtain

MWT = MAA†
MN +MYp(Yp)†

MS = (MWT )∗. (15)

Similar to the proof of (14) and (15), we have

TW

= (A†
MN −EZ∗A†

MN −A†
MNYC∗ +E(G−1 +Z∗A†

MNY )C∗)(A+(Y +Yp)G(Z +Zp)∗)

= A†
MNA−EZ∗+A†

MNYG(Z +Zp)∗ −EZ∗A†
MNYG(Z +Zp)∗

− A†
MNYC∗(Y +Yp)G(Z +Zp)∗ +E(G−1 +Z∗A†

MNY )C∗(Y +Yp)G(Z +Zp)∗

= A†
MNA−EZ∗+E(Z +Zp)∗

= A†
MNA+(Zp

∗)†
SNZp

∗, (16)

and

NTW = NA†
MNA+N(Zp

∗)†
SNZp

∗ = (NTW )∗. (17)

On the other hand, by (8), (10), (11), (12), (13) and the formulas (IV), (V) in
Lemma 1.1 and the formulas (I), (II) in Lemma 1.2, we have

WTW

= (AA†
MN +Yp(Yp)†

MS)(A+(Y +Yp)G(Z +Zp)∗)

= A+AA†
MNYG(Z +Zp)∗ +Yp(Yp)†

MS(Y +Yp)G(Z +Zp)∗

= A+YG(Z +Zp)∗ +YpG(Z +Zp)∗

= W, (18)

and

TWT

= (A†
MN −EZ∗A†

MN −A†
MNYC∗ +E(G−1 +Z∗A†

MNY )C∗)(AA†
MN +Yp(Yp)†

MS)

= A†
MN −EZ∗A†

MN −A†
MNYC∗Yp(Yp)†

MS +E(G−1 +Z∗A†
MNY )C∗Yp(Yp)†

MS

= A†
MN −EZ∗A†

MN −A†
MNYC∗ +E(G−1 +Z∗A†

MNY )C∗

= T. (19)

Combining (15), (17), (18) with (19), we obtain the results in Theorem 2.1. �

THEOREM 2.2. Let A ∈ Cm×n , Y,Yp ∈ Cm×s , G ∈ Cs
s×s and Z,Zp ∈ Cn×s . As-

sume R(Ỹ ) ⊆ R(Ã) , R(Ỹp) ⊥ R(Ã) , R(Z̃) ⊆ R(Ã∗) and R(Z̃p) ⊥ R(Ã∗) . Then the
following statements, (I) implies (II), conversely, (II) and (III) imply (1).

(I) Yp and Zp are o f f ull column rank,

(II) r(A+(Y +Yp)G(Z +Zp)∗) = r(A)+ r((Y +Yp)G(Z +Zp)∗),
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(III) r((Y +Yp)G(Z +Zp)∗) = s.

Proof. (II) and (III)⇒(I): using the assumption R(Ỹ ) ⊆ R(Ã) , we have

R(Y )⊆ R(A) and R(A+(Y +Yp)G(Z+Zp)∗)⊆ R(A)+R(Y )+R(Yp) = R(A)+R(Yp).

Thus, if (II) and (III) in Theorem 2.2 hold, we have

r(A)+ s = r(A+(Y +Yp)G(Z +Zp)∗) � r(A)+ r(Yp), (20)

from (20) and the assumption, we conclude that

s � r(Yp) � s,

that is Yp (and similarly Zp ) is of full column rank.
(I)⇒(II): Suppose Yp and Zp are of full column rank, then from Theorem 2.1 and

the formula (IV) in Lemma 1.1, we have

r(W ) = r(A+(Y +Yp)G(Z +Zp)∗)
= r(WT )
= r((A+(Y +Yp)G(Z +Zp)∗)T )

= r(AA†
MN +Yp(Yp)†

MS)

= r(M1/2AN−1/2N1/2A†
MNM−1/2 +M1/2YPS−1/2S1/2(Yp)†

MSM
−1/2)

= r(Ã(Ã)† + Ỹp(Ỹp)†). (21)

Since R(Ỹp) ⊥ R(Ã) and r(Yp) = s � r(G) � r((Y +Yp)G(Z +Zp)∗) , we obtain

r(A+(Y +Yp)G(Z +Zp)∗) = r(Ã(Ã)† + Ỹp(Ỹp)†)
= r(Ã)+ r(Ỹp)
= r(A)+ r(Yp)
� r(A)+ r((Y +Yp)G(Z +Zp)∗). (22)

On the other hand, according to a trivially fact, we have

r(A+(Y +Yp)G(Z +Zp)∗) � r(A)+ r((Y +Yp)G(Z +Zp)∗). (23)

Combining (22) and (23), we conclude

r(A+(Y +Yp)G(Z +Zp)∗) = r(A)+ r((Y +Yp)G(Z +Zp)∗), (24)

that is the formula (II) in Theorem 2.2 holds. �

For positive integers s and m such that s � m , let Lm,s denotes a matrix of size
m×s with ones on the diagonal and zeros elsewhere. Similarly, let Ln,s (s � n) denotes
a matrix of size n× s with ones on the diagonal and zeros elsewhere. To simplify
notations and since n and m are fixed, we short Lm,s to Ls and Ln,s to Ls

′ .
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Let B∈Cs
m×n . Then from Lemma 1.3, we know that the matrices B has weighted

singular value decompositions:

B = UBDBVB
∗,

where U∗
BMUB = Im , VB ∗N−1VB = In and

DB =

(
∑s O

O O

)
, (25)

∑s = diag(μ1,μ2, · · · ,μs), and μ1 � μ2 � · · · � μs > 0, μi are the nonzero weighted
singular values of B . In this case, the weighted Moore-Penrose inverse of B with
respect to the Hermitian positive definite matrices M ∈ Cm×m and N ∈ Cn×n is given
by

B†
MN = N−1VB

⎛⎝∑−1
s O

O O

⎞⎠U∗
BM = N−1VBD†

BU
∗
BM. (26)

In the next of this section, we will consider the weighted Moore-Penrose inverse
of A+B under the condition r(A+B) = r(A)+ r(B) , where A∈Cr

m×n and B∈Cs
m×n

are given matrices.

THEOREM 2.3. Let A ∈ Cr
m×n , B ∈ Cs

m×n , M , N and S be three Hermitian
positive definite matrices of order m, n and s, respectively. If r(A+B) = r(A)+ r(B) ,
then

(A+B)†
MN = (In−F)A†

MN(Im − J)+FB†
MNJ, (27)

where
F = (PR(B�),N(B)PN(A),R(A�))

†
NN ,

J = (PN(A�),R(A)PR(B),N(B�))
†
MM .

Proof. From the formula (25), we have

A+B = M−1/2(M1/2AN−1/2 +M1/2BN−1/2)N1/2

= M−1/2(M1/2AN−1/2 +M1/2UBDBVB
∗N−1/2)N1/2

= M−1/2(M1/2AN−1/2 +M1/2UBLsLs
∗DBLs

′(Ls
′)∗VB

∗N−1/2)N1/2. (28)

Let

X = PR(Ã)M
1/2UBLs, (29)

Xp = P
R(Ã)⊥M1/2UBLs, (30)
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Q = PR(Ã∗)N
−1/2VBLs

′, (31)

Qp = P
R(Ã∗)⊥N−1/2VBLs

′, (32)

and

G1 = Ls
∗DBLs

′. (33)

Then, from (28–33) and the formula (III) in Lemma 1.2, we have

X +Xp = M1/2UBLs and Q+Qp = N−1/2VBLs
′,

and

A+B = A+(M−1/2X +M−1/2Xp)G1(N1/2Q+N1/2Qp)∗, (34)

where

G1 = Ls
∗DBLs

′ =

⎛⎜⎜⎜⎝
μ1 · · · O

...
. . .

...

O · · · μs

⎞⎟⎟⎟⎠ ,

μi are the nonzero weighted singular values of B and G1 is invertible.

Let ˜(M−1/2X) = M1/2M−1/2XS−1/2 and ˜(N1/2Q) = N−1/2N1/2QS1/2, then from
(29) and (31), we have

R ˜(M−1/2X) = R(XS−1/2) and R ˜(M−1/2X) ⊆ R(Ã),

R ˜(N1/2Q) = R(QS1/2) and R ˜(N1/2Q) ⊆ R(Ã∗). (35)

Let ˜(M−1/2Xp) = M1/2M−1/2XpS−1/2 and ˜(N1/2Qp) = N−1/2N1/2QpS1/2, then from
(30) and (32), we have

R ˜(M−1/2Xp) = R(Xp) and R ˜(M−1/2Xp) ⊥ R(Ã),

R ˜(N1/2Qp) = R(Qp) and R ˜(N1/2Qp) ⊥ R(Ã∗). (36)

From the assumptions r(B) = s and r(A+B) = r(A)+ r(B) in Theorem 2.3, and the
results in Theorem 2.2, we know M−1/2Xp and N1/2Qp are of full column rank.

Combining the formulas (29-36) with the results in Theorem 2.1, we have

(A+B)†
MN = (A+(M−1/2X +M−1/2Xp)G1(N1/2Q+N1/2Qp)∗)†

MN

= A†
MN −K(N1/2Q)∗A†

MN −A†
MN(M−1/2X)H∗

+K(G1
−1 +(N1/2Q)∗A†

MN(M−1/2X))H∗, (37)
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where

H = M(M−1/2Xp)(Xp
∗M−1/2MM−1/2Xp)−1 = M1/2Xp(Xp

∗Xp)−1,

K = N−1(N1/2Qp)(Qp
∗N1/2N−1N1/2Qp)−1 = N−1/2Qp(Qp

∗Qp)−1.

According to (25), (26), (33), (34) and the formula (III) in Lemma 1.2, we have

G1
−1 = (Ls

′)∗DB
†Ls and DB

† = VB
∗B†

MNUB = VB
∗N−1/2(M1/2BN−1/2)†M1/2UB.

Thus

KG1
−1H∗ = K(Ls

′)∗DB
†LsH

∗

= K(Ls
′)∗VB

∗N−1/2(M1/2BN−1/2)†M1/2UBLsH
∗

= K(N1/2Q+N1/2Qp)∗B†
MN(M−1/2X +M−1/2Xp)H∗. (38)

The last equation holds since

X +Xp = M1/2UBLs and Q+Qp = N−1/2VBLs
′.

By (37) and (38), we have

(A+B)†
MN = (In−KQ∗N1/2)A†

MN(Im −M−1/2XH∗)

+ (KQ∗N1/2 +KQp
∗N1/2)B†

MN(M−1/2XH∗+M−1/2XpH
∗). (39)

This is the basic form of (A + B)†
MN that we seek. Next we proceed to compute

KQ∗N1/2 , M−1/2XH∗ , KQp
∗N1/2 and M−1/2XpH∗ .

Let B̃ = M1/2BN−1/2 . Then from (29–32) and (37), we have

KQ∗N1/2 = N−1/2Qp(Qp
∗Qp)−1Q∗N1/2 = N−1/2(Qp

∗)†Q∗N1/2

= N−1/2((Ls
′)∗VB

∗N−1/2P
R(Ã∗)⊥)†(Ls

′)∗VB
∗N−1/2PR(Ã∗)N

1/2

= N−1/2(N−1/2VBLs
′(Ls

′)∗VB
∗N−1/2P

R(Ã∗)⊥)†PR(Ã∗)N
1/2

= N−1/2(N−1/2VBDB
†DBVB

∗N−1/2P
R(Ã∗)⊥)†PR(Ã∗)N

1/2

= N−1/2(N−1/2VBDB
†UB

∗M1/2M1/2UBDBVB
∗N−1/2P

R(Ã∗)⊥)†PR(Ã∗)N
1/2

= N−1/2((M1/2UBDBVB
∗N−1/2)†M1/2UBDBVB

∗N−1/2P
R(Ã∗)⊥)†PR(Ã∗)N

1/2

= N−1/2(PR(B̃∗)PR(Ã∗)⊥)†PR(Ã∗)N
1/2

= (PR(B�),N(B)PN(A),R(A�))
†
NNPR(A�),N(A), (40)



756 ZHIPING XIONG AND YINGYING QIN

and

M−1/2XH∗ = M−1/2PR(Ã)M
1/2UBLs(Xp

∗Xp)−1Xp
∗M1/2

= M−1/2PR(Ã)M
1/2UBLsXp

†M1/2

= M−1/2PR(Ã)M
1/2UBLs(PR(Ã)⊥M1/2UBLs)†M1/2

= M−1/2PR(Ã)(PR(Ã)⊥M1/2UBLsLs
∗UB

∗M1/2)†M1/2

= M−1/2PR(Ã)(PR(Ã)⊥M1/2UBDBDB
†UB

∗M1/2)†M1/2

= M−1/2PR(Ã)(PR(Ã)⊥M1/2UBDBVB
∗N−1/2N−1/2VBDB

†UB
∗M1/2)†M1/2

= M−1/2PR(Ã)(PR(Ã)⊥ B̃B̃†)†M1/2

= M−1/2PR(Ã)(PR(Ã)⊥PR(B̃))
†M1/2

= PR(A),N(A�)(PN(A�),R(A)PR(B),N(B�))
†
MM . (41)

Similarly, we get

KQp
∗N1/2 = (PR(B�),N(B)PN(A),R(A�))

†
NNPN(A),R(A�),

M−1/2XpH
∗ = PN(A�),R(A)(PN(A�),R(A)PR(B),N(B�))

†
MM. (42)

From (40-42) and the formula (III) in Lemma 1.2, we have

KQ∗N1/2 +KQp
∗N1/2 = (PR(B�),N(B)PN(A),R(A�))

†
NN = F,

M−1/2XH∗ +M−1/2XpH
∗ = (PN(A�),R(A)PR(B),N(B�))

†
MM = J. (43)

Substituting (40), (41), (42) and (43) into (39) yield

(A+B)†
MN = (In−FPR(A�),N(A))A

†
MN(Im −PR(A),N(A�)J)+FB†

MNJ. (44)

From the formulas (IV), (V) in Lemma 1.1 and the formulas (I), (II) in Lemma 1.2, we
have

PR(A�),N(A)A
†
MN = A†

MN and A†
MNPR(A),N(A�) = A†

MN , (45)

Combining (44) with (45), we have

(A+B)†
MN = (In−F)A†

MN(Im − J)+FB†
MNJ. (46)

The proof of Theorem 2.3 is complete. �

COROLLARY 2.4. Let A ∈Cr
m×n , B ∈Cs

m×n . If r(A+B) = r(A)+ r(B) , then

(A+B)† = (In−S′)A†(Im −T ′)+S′B†T ′, (47)

where

S′ = (PR(B∗)PN(A))
† and T ′ = (PN(A∗)PR(B))

†. (48)
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