STRONG COMMUTATIVITY PRESERVING GENERALIZED DERIVATIONS ON TRIANGULAR RINGS

He Yuan, Yao Wang, Yu Wang and Yiqiu Du

(Communicated by P. Šemrl)

Abstract

Let $\mathscr{U}=\operatorname{Tri}(A, M, B)$ be a triangular ring such that either A or B has no nonzero central ideals. It is shown that every pair of strong commutativity preserving generalized derivations g_{1}, g_{2} of \mathscr{U} (i.e., $\left[g_{1}(x), g_{2}(y)\right]=[x, y]$ for all $x, y \in \mathscr{U}$) is of the form $g_{1}(x)=\lambda^{-1} x+[x, u]$ and $g_{2}(x)=\lambda^{2} g_{1}(x)$, where $\lambda \in Z(\mathscr{U})$, the center of \mathscr{U}, and $u \in \mathscr{U}$ with $u[\mathscr{U}, \mathscr{U}]=0=[\mathscr{U}, \mathscr{U}] u$. As consequences, every pair of strong commutativity preserving generalized derivations on upper triangular matrix rings and nest algebras is determined.

1. Introduction

Let R be a ring with center $Z(R)$. For $x, y \in R$, we set $[x, y]=x y-y x$. By $[R, R]$ we denote the additive subgroup of R generated by all $[x, y]$, where $x, y \in R$. An additive map $g: R \rightarrow R$ is called a generalized derivation of R if there exists a derivation d of R such that $g(x y)=g(x) y+x d(y)$ for all $x, y \in R$. Basic examples are derivations and generalized inner derivations (i.e., maps of type $x \mapsto a x+x b$ for some $a, b \in R$). The notion of generalized derivations was introduced by Brešar in [5] and these maps have been studied extensively in rings and operator algebras (see [$1,4,13,14,15,16,17])$.

Let S be a subset of R. A map $f: S \rightarrow R$ is said to be strong commutativity preserving on S if $[f(x), f(y)]=[x, y]$ for all $x, y \in S$. In [2] Bell and Daif investigated strong commutativity preserving derivations on semiprime rings. In [6] Brešar and Miers proved that if f is a strong commutativity preserving map on a semiprime ring R, then there exist an invertible element $\lambda \in C$ with $\lambda^{2}=1$ and additive map ξ : $R \rightarrow C$ such that $f(x)=\lambda x+\xi(x)$ for all $x \in R$, where C is the extended centroid of R. They also proved that if $f, g: R \rightarrow R$ is a pair of additive maps of a semiprime ring R such that f is onto and $[f(x), g(x)]=[x, y]$ for all $x \in R$, then there exist an invertible element $\lambda \in C$ and additive maps $\xi, \eta: R \rightarrow C$ such that $f(x)=\lambda x+\xi(x)$ and $g(x)=\lambda^{-1} x+\eta(x)$ for all $x \in R$ [6, Theorem 2]. Strong commutativity preserving maps on rings have been discussed in several directions (see [10, 18, 19, 20, 21]).

In 2001, Cheung [7] initiated the study of mapping problems on triangular algebras; he described commuting maps of these algebras. This result has been extended in

[^0][3, 11, 12]. Recently, Qi and Hou [22] investigated surjective additive strong commutativity preserving maps of triangular rings.

In the present paper, we shall investigate strong commutativity preserving generalized derivations on triangular rings. As consequences strong commutativity preserving generalized derivations on upper triangular matrix rings and nest algebras are determined.

2. The main results

Let A and B be unital rings with unit elements 1_{A} and 1_{B}, respectively. Let M be a unital (A, B)-bimodule, which is faithful as a left A-module and also as a right B-module. The ring

$$
\mathscr{U}=\operatorname{Tri}(A, M, B):=\left\{\left.\binom{a m}{b} \right\rvert\, a \in A, m \in M, b \in B\right\}
$$

under the usual matrix operations is said to be a triangular ring (see [12, 22, 23]). Let us define two natural projections $\pi_{A}: \mathscr{A} \rightarrow A$ and $\pi_{B}: \mathscr{A} \rightarrow B$ by

$$
\pi_{A}:\binom{a m}{b} \mapsto a \quad \text { and } \quad \pi_{B}:\binom{a m}{b} \mapsto b
$$

Any element of the form

$$
\left(\begin{array}{rr}
a & 0 \\
& b
\end{array}\right) \in \mathscr{U}
$$

will be denoted by $a \oplus b$. By [23, Proposition 1.1] we know that the center $Z(\mathscr{U})$ of \mathscr{U} coincides with

$$
\{a \oplus b \mid a m=m b \quad \text { for all } m \in M\}
$$

Moreover, $\pi_{A}(Z(\mathscr{A})) \subseteq Z(A)$ and $\pi_{B}(Z(\mathscr{A})) \subseteq Z(B)$, and there exists a unique ring isomorphism $\tau: \pi_{A}(Z(\mathscr{A})) \rightarrow \pi_{B}(Z(\mathscr{A}))$ such that $a m=m \tau(a)$ for all $m \in M$. The most important examples of triangular rings are upper triangular matrix rings and nest algebras.

We begin with a description of generalized derivations of triangular rings.

PROPOSITION 2.1. Let \mathscr{U} be a triangular ring. Let g be a generalized derivation of \mathscr{U}. Then

$$
g\binom{a m}{b}=\binom{a_{0} a+p_{A}(a) a s+t b+a_{0} m+f(m)}{b_{0} b+p_{B}(b)}
$$

for all $a \in A, b \in B, m \in M$, where $a_{0} \in A, b_{0} \in B, s, t \in M$, and
(i) p_{A} is a derivation of $A, f(a m)=p_{A}(a) m+a f(m)$;
(ii) p_{B} is a derivation of $B, f(m b)=m p_{B}(b)+f(m) b$.

Proof. Since g be a generalized derivation of \mathscr{U} we have that

$$
g(x y)=g(x) y+x d(y)
$$

for all $x, y \in \mathscr{U}$, where d is a derivation of \mathscr{U}. Let $x=1$ we get $g(y)=g(1) y+d(y)$ for all $y \in \mathscr{U}$. In view of [8, Theorem 2.2.1] we have that

$$
d\binom{a m}{b}=\binom{p_{A}(a) a s-s b+f(m)}{p_{B}(b)}
$$

for all $a \in A, b \in B, m \in M$, where $s \in M$ and
(i) p_{A} is a derivation of $A, f(a m)=p_{A}(a) m+a f(m)$;
(ii) p_{B} is a derivation of $B, f(m b)=m p_{B}(b)+f(m) b$.

Set

$$
g(1)=\left(\begin{array}{cc}
a_{0} & m_{0} \\
& b_{0}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
g\left(\begin{array}{cc}
a & m \\
b
\end{array}\right) & =\left(\begin{array}{cc}
a_{0} & m_{0} \\
& b_{0}
\end{array}\right)\binom{a m}{b}+\binom{p_{A}(a) a s-s b+f(m)}{p_{B}(b)} \\
& =\binom{a_{0} a+p_{A}(a) a s+t b+a_{0} m+f(m)}{b_{0} b+p_{B}(b)}
\end{aligned}
$$

for all $a \in A, b \in B, m \in M$, where $t=m_{0}-s$.
We are in a position to present the main result of this paper.
THEOREM 2.1. Let \mathscr{U} be a triangular ring such that either A or B has no nonzero central ideals. If g_{1}, g_{2} are a pair of generalized derivations such that

$$
\left[g_{1}(x), g_{2}(y)\right]=[x, y]
$$

for all $x, y \in \mathscr{U}$, then $g_{1}(x)=\lambda^{-1} x+[x, u]$ and $g_{2}(x)=\lambda^{2} g_{1}(x)$ for all $x \in \mathscr{U}$, where $\lambda \in Z(\mathscr{U})$ and $u \in \mathscr{U}$ with $u[\mathscr{U}, \mathscr{U}]=0=[\mathscr{U}, \mathscr{U}] u$.

Proof. We assume without loss of generality that A has no nonzero central ideals. In view of Proposition 2.1 we assume that

$$
g_{1}\binom{a m}{b}=\binom{a_{0} a+p_{A}(a) a s+t b+a_{0} m+f(m)}{b_{0} b+p_{B}(b)}
$$

and

$$
g_{2}\binom{a^{\prime} \quad m^{\prime}}{b^{\prime}}=\binom{a_{0}^{\prime} a^{\prime}+p_{A}^{\prime}\left(a^{\prime}\right) a^{\prime} s^{\prime}+t^{\prime} b^{\prime}+a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)}{b_{0}^{\prime} b^{\prime}+p_{B}^{\prime}\left(b^{\prime}\right)}
$$

for all $a, a^{\prime} \in A, b, b^{\prime} \in B, m, m^{\prime} \in M$, where $a_{0}, a_{0}^{\prime} \in A, b_{0}, b_{0}^{\prime} \in B, s, s^{\prime}, t, t^{\prime} \in M$ and
(i) p_{A}, p_{A}^{\prime} are derivations of $A, f(a m)=p_{A}(a) m+a f(m)$, and $f^{\prime}\left(a^{\prime} m^{\prime}\right)=p_{A}^{\prime}\left(a^{\prime}\right) m^{\prime}+$ $a^{\prime} f^{\prime}\left(m^{\prime}\right)$;
(ii) p_{B}, p_{B}^{\prime} are derivations of $B, f(m b)=m p_{B}(b)+f(m) b$, and $f^{\prime}\left(m^{\prime} b^{\prime}\right)=m^{\prime} p_{B}^{\prime}\left(b^{\prime}\right)+$ $f^{\prime}\left(m^{\prime}\right) b^{\prime}$.

By our assumption we have that

$$
\left[g_{1}\left(\begin{array}{cc}
a & m \tag{1}\\
& b
\end{array}\right), g_{2}\left(\begin{array}{cc}
a^{\prime} & m^{\prime} \\
& b^{\prime}
\end{array}\right)\right]=\left[\left(\begin{array}{cc}
a & m \\
& b
\end{array}\right),\left(\begin{array}{cc}
a^{\prime} & m^{\prime} \\
& b^{\prime}
\end{array}\right)\right]
$$

for all $a, a^{\prime} \in A, b, b^{\prime} \in B$, and $m, m^{\prime} \in M$. We prove the result in the following five steps:

Step 1. we prove that

$$
\begin{align*}
a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right) & =m^{\prime} \tag{2}\\
a_{0}^{\prime}\left(a_{0} m+f(m)\right) & =m \tag{3}
\end{align*}
$$

for all $m, m^{\prime} \in M$. Setting $a=1_{A}, b=m=0$, and $a^{\prime}=b^{\prime}=0$ in (1) we get that

$$
\left[\left(\begin{array}{cc}
a_{0} & s \\
& 0
\end{array}\right),\left(\begin{array}{cc}
0 & a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right) \\
0
\end{array}\right)\right]=\left[\left(\begin{array}{cc}
1_{A} & 0 \\
& 0
\end{array}\right),\left(\begin{array}{c}
0 \\
m^{\prime} \\
\\
\end{array}\right)\right]
$$

for all $m^{\prime} \in M$. This implies that

$$
a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right)=m^{\prime}
$$

for all $m^{\prime} \in M$. Similarly, setting $a=b=0, a^{\prime}=1_{A}, b^{\prime}=m^{\prime}=0$ in (1) we get that

$$
a_{0}^{\prime}\left(a_{0} m+f(m)\right)=m
$$

for all $m \in M$.

Step 2. We prove that $a_{0} \oplus b_{0}, a_{0}^{\prime} \oplus b_{0}^{\prime} \in Z(\mathscr{U})$. Setting $a=1_{A}, b=1_{B}, m=0$, $a^{\prime}=b^{\prime}=0$ in (1) we get that

$$
\left[\binom{a_{0} s+t}{b_{0}},\binom{0 a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)}{0}\right]=0
$$

for all $m^{\prime} \in M$. This implies that

$$
a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right)-\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right) b_{0}=0
$$

for all $m \in M$. Multiplying the last relation by a_{0} from the left hand side we get

$$
a_{0}\left(a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right)\right)=\left(a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right)\right) b_{0}
$$

for all $m^{\prime} \in M$. Substituting (2) into the last relation yields $a_{0} m^{\prime}=m^{\prime} b_{0}$ for all $m^{\prime} \in M$. Hence, $a_{0} \oplus b_{0} \in Z(\mathscr{U})$. By the symmetry of g_{1} and g_{2} we obtain that $a_{0}^{\prime} \oplus b_{0}^{\prime} \in Z(\mathscr{U})$.

Step 3. We prove that

$$
a_{0} p_{A}^{\prime}(a)=0, \quad b_{0} p_{B}^{\prime}(b)=0, \quad a_{0}^{\prime} p_{A}(a)=0, \quad b_{0}^{\prime} p_{B}(b)=0
$$

for all $a \in A$ and $b \in B$. Replacing m^{\prime} by $m^{\prime} b$ in (2) yields

$$
a_{0}\left(a_{0}^{\prime} m^{\prime} b+f^{\prime}\left(m^{\prime}\right) b+m^{\prime} p_{B}^{\prime}(b)\right)=m^{\prime} b
$$

for all $b \in B, m^{\prime} \in M$. Multiplying (2) by $b \in B$ from the right hand side we obtain

$$
a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right) b=m^{\prime} b
$$

for all $b \in B, m^{\prime} \in M$. Comparing the last two relations yields $a_{0} m^{\prime} p_{B}^{\prime}(b)=0$. Since $a_{0} \oplus b_{0} \in Z(\mathscr{U})$ we get that $m^{\prime} b_{0} p_{B}^{\prime}(b)=0$ for all $b \in B$ and $m^{\prime} \in M$. The faithfulness of right B-module M yields that $b_{0} p_{B}^{\prime}(b)=0$ for all $b \in B$. Similarly, replacing m^{\prime} by $a m^{\prime}$ in (2) yields

$$
a_{0}\left(a_{0}^{\prime} a m^{\prime}+a f^{\prime}\left(m^{\prime}\right)+p_{A}^{\prime}(a) m^{\prime}\right)=a m^{\prime}
$$

for all $a \in A, m^{\prime} \in M$. Multiplying (2) by $a \in A$ from the left hand side we get

$$
a_{0}\left(a_{0}^{\prime} a m^{\prime}+a f^{\prime}\left(m^{\prime}\right)\right)=a m^{\prime}
$$

for all $a \in A, m^{\prime} \in M$ as $a_{0}, a_{0}^{\prime} \in Z(A)$. Comparing the last two relations yields $a_{0} p_{A}^{\prime}(a) m^{\prime}=0$ for all $a \in A$ and $m^{\prime} \in M$. The faithfulness of left A-module M yields that $a_{0} p_{A}^{\prime}(a)=0$ for all $a \in A$. In view of the symmetry of g_{1} and g_{2} we obtain that $a_{0}^{\prime} p_{A}(a)=0$ and $b_{0}^{\prime} p_{B}(b)=0$ for all $a \in A$ and $b \in B$.

Step 4. We prove that $a_{0}^{\prime}=a_{0}^{-1}$ and $b_{0}^{\prime}=b_{0}^{-1}$ and

$$
f=f^{\prime}=0, \quad p_{A}=p_{A}^{\prime}=0, \quad p_{B}=p_{B}^{\prime}=0
$$

Setting $m=m^{\prime}=0$ and $b=b^{\prime}=0$ in (1) we get that

$$
\left[\left(\begin{array}{cc}
a_{0} a+p_{A}(a) & a s \tag{4}\\
0
\end{array}\right),\left(\begin{array}{r}
a_{0}^{\prime} a^{\prime}+p_{A}\left(a^{\prime}\right) \\
a^{\prime} s^{\prime} \\
0
\end{array}\right)\right]=\left[\left(\begin{array}{r}
a \\
0 \\
0
\end{array}\right),\left(\begin{array}{rr}
a^{\prime} & 0 \\
& 0
\end{array}\right)\right]
$$

for all $a, a^{\prime} \in A$. It follows from (4) that

$$
\begin{equation*}
\left[a_{0} a+p_{A}(a), a_{0}^{\prime} a^{\prime}+p_{A}^{\prime}\left(a^{\prime}\right)\right]=\left[a, a^{\prime}\right] \tag{5}
\end{equation*}
$$

for all $a, a^{\prime} \in A$. Multiplying (5) with $a_{0} \in Z(A)$ we get that

$$
a_{0}\left[a_{0} a+p_{A}(a), a_{0}^{\prime} a^{\prime}+p_{A}^{\prime}\left(a^{\prime}\right)\right]=a_{0}\left[a, a^{\prime}\right]
$$

for all $a, a^{\prime} \in A$. Since $a_{0}, a_{0}^{\prime} \in Z(A), a_{0} p_{A}^{\prime}\left(a^{\prime}\right)=a_{0}^{\prime} p_{A}(a)=0$ for all $a, a^{\prime} \in A$, we get from the last relation that

$$
\begin{aligned}
{\left[a_{0} a, a^{\prime}\right] } & =a_{0}\left[a_{0} a+p_{A}(a), a_{0}^{\prime} a^{\prime}+p_{A}^{\prime}\left(a^{\prime}\right)\right] \\
& =\left[a_{0} a+p_{A}(a), a_{0} a_{0}^{\prime} a^{\prime}+a_{0} p_{A}^{\prime}\left(a^{\prime}\right)\right] \\
& =\left[a_{0} a+p_{A}(a), a_{0} a_{0}^{\prime} a^{\prime}\right] \\
& =\left[a_{0}^{\prime} a_{0} a+a_{0}^{\prime} p_{A}(a), a_{0} a^{\prime}\right] \\
& =\left[a_{0}^{\prime} a_{0} a, a_{0} a^{\prime}\right] \\
& =\left[a_{0}^{\prime} a_{0}^{2} a, a^{\prime}\right]
\end{aligned}
$$

and so $\left[a_{0} a-a_{0}^{\prime} a_{0}^{2} a, a^{\prime}\right]=0$ for all $a, a^{\prime} \in A$. This implies that

$$
a_{0}\left(1_{A}-a_{0}^{\prime} a_{0}\right) a \in Z(A)
$$

for all $a \in A$. That is, $a_{0}\left(1_{A}-a_{0}^{\prime} a_{0}\right) A$ is a central ideal of A. By our assumption we infer that $a_{0}\left(1_{A}-a_{0}^{\prime} a_{0}\right)=0$. Multiplying (2) with $\left(1_{A}-a_{0}^{\prime} a_{0}\right)$ we get that

$$
\left(1_{A}-a_{0}^{\prime} a_{0}\right) m^{\prime}=\left(1_{A}-a_{0}^{\prime} a_{0}\right) a_{0}\left(a_{0}^{\prime} m^{\prime}+f^{\prime}\left(m^{\prime}\right)\right)=0
$$

for all $m^{\prime} \in M$. That is, $\left(1_{A}-a_{0}^{\prime} a_{0}\right) M=0$. The faithfulness of left A-module M yields $1_{A}-a_{0}^{\prime} a_{0}=0$ and so $a_{0}^{\prime} a_{0}=1_{A}$. Hence $a_{0}^{\prime}=a_{0}^{-1}$ is an invertible element of $\pi_{A}(Z(\mathscr{U}))$. Since $a_{0} \oplus b_{0}, a_{0}^{\prime} \oplus b_{0}^{\prime} \in Z(\mathscr{U})$ we easily check that $b_{0}^{\prime}=b_{0}^{-1}$ is an invertible element of $\pi_{B}(Z(\mathscr{U}))$.

Thus, the relations (2) and (3) can be rewritten as

$$
m^{\prime}+a_{0} f^{\prime}\left(m^{\prime}\right)=m^{\prime} \quad \text { and } \quad m+a_{0}^{\prime} f(m)=m
$$

for all $m, m^{\prime} \in M$. Hence $a_{0} f^{\prime}\left(m^{\prime}\right)=0$ and $a_{0}^{\prime} f(m)=0$ and so $f(m)=f^{\prime}\left(m^{\prime}\right)=0$ for all $m^{\prime} \in M$. Since $a_{0}^{\prime}=a_{0}^{-1}$ and $b_{0}^{\prime}=b_{0}^{-1}$ we get from Step 3 that

$$
p_{A}=p_{A}^{\prime}=0 \quad \text { and } \quad p_{B}=p_{B}^{\prime}=0
$$

Step 5. We prove that $s=-t, s^{\prime}=t^{\prime}, s^{\prime}=\left(a_{0}^{\prime}\right)^{2} s$ and

$$
[A, A] s=0=s[B, B] .
$$

Setting $m=m^{\prime}=0$ in (1) we get that

$$
\left.\left.\begin{array}{l}
{\left[\left(\begin{array}{cc}
a_{0} a+p_{A}(a) & a s+t b \\
b_{0} b+p_{B}(b)
\end{array}\right),\left(\begin{array}{cc}
a_{0}^{\prime} a^{\prime}+p_{A}\left(a^{\prime}\right) & a^{\prime} s^{\prime}+t^{\prime} b^{\prime} \\
b_{0}^{\prime} b^{\prime}+p_{B}^{\prime}\left(b^{\prime}\right)
\end{array}\right)\right.} \tag{6}
\end{array}\right] .\right]
$$

for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. It follows from (6) that

$$
\begin{equation*}
a_{0} a\left(a^{\prime} s^{\prime}+t^{\prime} b^{\prime}\right)+(a s+t b) b_{0}^{\prime} b^{\prime}-a_{0}^{\prime} a^{\prime}(a s+t b)-\left(a^{\prime} s^{\prime}+t^{\prime} b^{\prime}\right) b_{0} b=0 \tag{7}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. Setting $b=b^{\prime}=0$ in (7) we get that

$$
\begin{equation*}
a_{0} a a^{\prime} s^{\prime}-a_{0}^{\prime} a^{\prime} a s=0 \tag{8}
\end{equation*}
$$

for all $a, a^{\prime} \in A$. Setting $a=a^{\prime}=1_{A}$ in (8) we get $a_{0} s^{\prime}=a_{0}^{\prime} s$. Thus, the relation (8) becomes $a_{0}\left(a a^{\prime}-a^{\prime} a\right) s^{\prime}=0$ and then $\left(a a^{\prime}-a^{\prime} a\right) s^{\prime}=0$ as a_{0} is an invertible element of A. That is, $[A, A] s^{\prime}=0$. Recall that $a_{0} s^{\prime}=a_{0}^{\prime} s$. It is easy to check that $[A, A] s=0$. Setting $a=a^{\prime}=0$ in (7) we get that

$$
\begin{equation*}
t b b_{0}^{\prime} b^{\prime}-t^{\prime} b^{\prime} b_{0} b=0 \tag{9}
\end{equation*}
$$

for all $b, b^{\prime} \in B$. Setting $b=b^{\prime}=1_{B}$ in (9) we get $t b_{0}^{\prime}=t^{\prime} b_{0}$. Thus, the relation (9) becomes $t\left[b, b^{\prime}\right] b_{0}^{\prime}=0$ and so $t\left[b, b^{\prime}\right]=0$ as b_{0}^{\prime} is an invertible element of B. Hence $t[B, B]=0$. Setting $a=0, b^{\prime}=0, a^{\prime}=1_{A}$, and $b=1_{B}$ in (7) we get $a_{0}^{\prime} t=-s^{\prime} b_{0}$. Setting $a^{\prime}=0, b=0, a=1_{A}$, and $b^{\prime}=1_{B}$ in (7) we get $a_{0} t^{\prime}=-s b_{0}^{\prime}$. Recall that $a_{0} s^{\prime}=a_{0}^{\prime} s$. It is easy to check that $s=-t, s^{\prime}=-t^{\prime}$, and $s^{\prime}=\left(a_{0}^{\prime}\right)^{2} s$.

Set $\lambda=a_{0}^{\prime} \oplus b_{0}^{\prime}$. Then $\lambda^{-1}=a_{0} \oplus b_{0}$. Using the relations in steps 2,4 , and 5 we obtain that

$$
\begin{aligned}
g_{1}\binom{a m}{b} & =\binom{a_{0} a a s+t b+a_{0} m}{b_{0} b} \\
& =\lambda^{-1}\binom{a m}{b}+\left[\binom{a m}{b},\left(\begin{array}{r}
0 \\
s \\
0
\end{array}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
g_{2}\binom{a m}{b} & =\lambda\binom{a m}{b}+\left[\binom{a m}{b},\binom{0\left(a_{0}^{\prime}\right)^{2} s}{0}\right] \\
& =\lambda\binom{a m}{b}+\left[\binom{a m}{b}, \lambda^{2}\left(\begin{array}{c}
0 \\
s \\
0
\end{array}\right)\right] \\
& =\lambda^{2} g_{1}\binom{a m}{b}
\end{aligned}
$$

for all $a \in A, b \in B, m \in M$. Set $u=\left(\begin{array}{r}0 \\ 0 \\ 0\end{array}\right)$. In view of Step 5 it is easy to check that $u[\mathscr{U}, \mathscr{U}]=0=[\mathscr{U}, \mathscr{U}] u$. This proves the result.

REMARK 2.1. Let \mathscr{U} be a triangular ring. Suppose that $u \in \mathscr{U}$ such that $u[\mathscr{U}, \mathscr{U}]$ $=0=[\mathscr{U}, \mathscr{U}] u$. Then

$$
u=\left(\begin{array}{c}
0 \\
m_{0} \\
\\
0
\end{array}\right)
$$

for some $m_{0} \in M$ with $[A, A] m_{0}=0=m_{0}[B, B]$.
Applying Theorem 2.1 and Remark 2.1 we have the following result:

Corollary 2.1. Let \mathscr{U} be a triangular ring such that either $1_{A} \in[A, A]$ or $1_{B} \in[B, B]$. If g_{1}, g_{2} are a pair of generalized derivations such that

$$
\left[g_{1}(x), g_{2}(y)\right]=[x, y]
$$

for all $x, y \in \mathscr{U}$, then there exists $\lambda \in Z(\mathscr{U})$ such that $g_{1}(x)=\lambda^{-1} x$ and $g_{2}(x)=\lambda x$ for all $x \in \mathscr{U}$.

Proof. We assume without loss of generality that $1_{A} \in[A, A]$. We claim that A has no nonzero central ideals. Indeed, if I is a central ideal of A, then $I=I 1_{A} \subseteq I[A, A]=$ $[I A, A]=0$. By Theorem 2.1 we get that $g_{1}(x)=\lambda^{-1} x+[x, u]$ and $g_{2}(x)=\lambda^{2} g_{1}(x)$ for all $x \in \mathscr{U}$, where $\lambda \in Z(\mathscr{U})$ and $u \in \mathscr{U}$ with $u[\mathscr{U}, \mathscr{U}]=0=[\mathscr{U}, \mathscr{U}] u$. It suffices to show $u=0$. By Remark 2.1 we get that

$$
u=\left(\begin{array}{cc}
0 & m_{0} \\
& 0
\end{array}\right)
$$

for some $m_{0} \in M$ with $[A, A] m_{0}=0=m_{0}[B, B]$. Since $1_{A} \in[A, A]$ we get $m_{0}=0$ and so $u=0$.

3. Applications

Let $n \geqslant 2$ be an integer. Let $\mathscr{T}_{n}(S)$ be an upper upper triangular matrix ring over a unital ring S. Then $\mathscr{T}_{n}(S)$ can be viewed as the triangular ring

$$
\left(\begin{array}{cc}
S & S^{n-1} \\
& \mathscr{T}_{n-1}(S)
\end{array}\right) .
$$

Applying Theorem 2.1 we have the following result:
COROLLARY 3.1. Let $\mathscr{T}_{n}(S)$ be an upper triangular matrix ring with $n \geqslant 3$. If g_{1}, g_{2} are a pair of generalized derivations of $\mathscr{T}_{n}(S)$ such that

$$
\left[g_{1}(x), g_{2}(y)\right]=[x, y]
$$

for all $x, y \in \mathscr{T}_{n}(S)$, then there exist $\lambda \in Z\left(\mathscr{T}_{n}(S)\right)$ and $A \in \mathscr{T}_{n}(S)$ with the property

$$
A\left[\mathscr{T}_{n}(S), \mathscr{T}_{n}(S)\right]=0=\left[\mathscr{T}_{n}(S), \mathscr{T}_{n}(S)\right] A
$$

such that $g_{1}(x)=\lambda^{-1} x+[x, A]$ and $g_{2}(x)=\lambda^{2} g_{1}(x)$ for all $x \in \mathscr{T}_{n}(S)$.

Proof. It is easy to check that $\mathscr{T}_{n-1}(S)$ has no nonzero central ideals. Consequently, Theorem 2.1 yields the conclusion.

As a consequence of Corollary 2.1 we have the following result:

Corollary 3.2. Let S be a unital noncommutative ring with $1 \in[S, S]$. Let $\mathscr{T}_{n}(S)$ be an upper triangular matrix ring with $n \geqslant 2$. If g_{1}, g_{2} are a pair of generalized derivations of $\mathscr{T}_{n}(S)$ such that

$$
\left[g_{1}(x), g_{2}(y)\right]=[x, y]
$$

for all $x, y \in \mathscr{T}_{n}(S)$, then there exists $\lambda \in Z\left(\mathscr{T}_{n}(S)\right)$ such that $g_{1}(x)=\lambda^{-1} x$ and $g_{2}(x)=\lambda x$ for all $x \in \mathscr{T}_{n}(S)$.

Applying Theorem 2.1 we have the following result:
Corollary 3.3. Let S be a unital noncommutative prime ring. Let $\mathscr{T}_{n}(S)$ be an upper triangular matrix ring with $n \geqslant 2$. If g_{1}, g_{2} are a pair of generalized derivations of $\mathscr{T}_{n}(S)$ such that

$$
\left[g_{1}(x), g_{2}(y)\right]=[x, y]
$$

for all $x, y \in \mathscr{T}_{n}(S)$, then there exists $\lambda \in Z\left(\mathscr{T}_{n}(S)\right)$ such that $g_{1}(x)=\lambda^{-1} x$ and $g_{2}(x)=\lambda x$ for all $x \in \mathscr{T}_{n}(S)$.

Proof. Since S is a noncommutative prime ring we see that S has no nonzero central ideals and so the condition of Theorem 2.1 is met. It follows from Theorem 2.1 that there exists an invertible element $\lambda \in Z\left(\mathscr{T}_{n}(S)\right)$ such that $g_{1}(x)=\lambda^{-1} x+[x, A]$ and $g_{2}(x)=\lambda^{2} g_{1}(x)$ for all $x \in \mathscr{T}_{n}(S)$, where $A \in \mathscr{T}_{n}(S)$ with $A\left[\mathscr{T}_{n}(S), \mathscr{T}_{n}(S)\right]=0=$ $\left[\mathscr{T}_{n}(S), \mathscr{T}_{n}(S)\right] A$. It suffices to show that $A=0$. Set

$$
A=\sum_{\substack{i, j=1 \\ i \leqslant j}}^{n} a_{i j} e_{i j}
$$

where $a_{i j} \in S$ and $e_{i j}$ denotes the standard matrix unit of $\mathscr{T}_{n}(S)$. We get from the property $A\left[\mathscr{T}_{n}(S), \mathscr{T}_{n}(S)\right]=0$ that in particular, $A[S, S]=0$ and then $a_{i j}[S, S]=0$ for every $a_{i j}$ in A. Since S is a noncommutative prime ring we easily check that each $a_{i j}=0$. Hence $A=0$.

A nest \mathscr{N} is a totally ordered set of closed subspaces of a Hilbert space H such that $\{0\}, H \in \mathscr{N}$, and \mathscr{N} is closed under the taking of arbitrary intersections and closed linear spans of its elements. The nest algebra associated to \mathscr{N} is the set $\mathscr{T}(\mathscr{N})=\{T \in \mathscr{B}(H) \mid T N \subseteq N$ for all $N \in \mathscr{N}\}$.

A nest algebra $\mathscr{T}(\mathscr{N})$ is called trivial if $\mathscr{N}=\{0, H\}$. A nontrivial nest algebra can be viewed as a triangular algebra. Namely, if $N \in \mathscr{N} \backslash\{0, H\}$ and E is the orthonormal projection onto N, then $\mathscr{N}_{1}=E(\mathscr{N})$ and $\mathscr{N}_{2}=(1-E)(\mathscr{N})$ are nests of N and N^{\perp}, respectively. Moreover, $\mathscr{T}\left(\mathscr{N}_{1}\right)=E T(\mathscr{N}) E, \mathscr{T}\left(\mathscr{N}_{2}\right)=$ $(1-E) \mathscr{T}(\mathscr{N})(1-E)$ are nest algebras. Thus

$$
\mathscr{T}(\mathscr{N})=\binom{\mathscr{T}\left(\mathscr{N}_{1}\right) E \mathscr{T}(\mathscr{N})(1-E)}{\mathscr{T}\left(\mathscr{N}_{2}\right)}
$$

is a triangular ring. We refer the reader to [9] for the general theory of nest algebras.

Corollary 3.4. Let \mathscr{N} be a nest of a complex Hilbert space H with $\operatorname{dim}(H)>$ 2. If g_{1}, g_{2} are a pair of generalized derivations of $\mathscr{T}(\mathscr{N})$ such that

$$
\left[g_{1}(x), g_{2}(y)\right]=[x, y]
$$

for all $x, y \in \mathscr{T}(\mathscr{N})$, then there exist $\lambda \in C$ and $A \in \mathscr{T}(\mathscr{N})$ with the property

$$
A[\mathscr{T}(\mathscr{N}), \mathscr{T}(\mathscr{N})]=0=[\mathscr{T}(\mathscr{N}), \mathscr{T}(\mathscr{N})] A
$$

such that $g_{1}(x)=\lambda^{-1} x+[x, A]$ and $g_{2}(x)=\lambda^{2} g_{1}(x)$ for all $x \in \mathscr{T}(\mathscr{N})$.
Proof. If \mathscr{N} is a trivial nest, then $\mathscr{T}(\mathscr{N})=\mathscr{B}(H)$ is a prime ring and hence the conclusion follows from [20, Corollary 2.12]. Thus, we may assume that \mathscr{N} is a nontrivial nest. Since $\operatorname{dim}(H)>2$ it follows that either $\operatorname{dim}\left(\mathscr{T}\left(\mathscr{N}_{1}\right)\right)>1$ or $\operatorname{dim}\left(\mathscr{T}\left(\mathscr{N}_{2}\right)\right)>1$. If $\operatorname{dim}\left(\mathscr{T}(\mathscr{N})_{1}\right)>1$, then either $\mathscr{T}\left(\mathscr{N}_{1}\right)=\mathscr{B}(\mathscr{N})$ is a noncommutative prime ring or $\mathscr{T}\left(\mathscr{N}_{1}\right)$ is a triangular algebra. Similarly, if $\operatorname{dim}\left(\mathscr{N}_{2}\right)>1$, then either $\mathscr{T}\left(\mathscr{N}_{2}\right)=\mathscr{B}\left(\mathscr{N}_{2}\right)$ is a noncommutative prime ring or $\mathscr{T}\left(\mathscr{N}_{2}\right)$ is a triangular algebra. Consequently, either $\mathscr{T}\left(\mathscr{N}_{1}\right)$ or $\mathscr{T}\left(\mathscr{N}_{2}\right)$ has no nonzero central ideals (see [3, Lemma 2.6]). Thus, the result follows from Theorem 2.1.

Acknowledgement. The authors would like to express their sincere thanks to the referee for careful reading of the paper and useful suggestions.

REFERENCES

[1] E. Alba, N. Argac, De V. Filippis, Generalized derivations with Engel conditions on one-sided ideals, Comm. Algebra 36 (2008), 2063-2071.
[2] H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), 443-447.
[3] D. Benkovič, D. Eremita, Commuting traces and commmutativity preserving maps on triangular algebras, J. Algebra 280 (2004), 797-824.
[4] N. Boudi, S. Ouchrif, On generalized derivations in Banach algebras, Studia Math. 194 (2009), 81-89.
[5] M. BREŠAR, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
[6] M. Brešar, C. R. Miers, Strong commutativity preserving maps of semiprime rings, Canad. Math. Bull. 37 (1994), 457-460.
[7] W.-S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117-127.
[8] W.-S. Cheung, Mappings on triangular algebras, PhD Dissertation, University of Victoria, 2000.
[9] K. R. Davidson, Nest Algebras, in: Pitman Res. Notes Math. Ser., vol. 191, Longmans, Harlow, 1988.
[10] Q. Deng, M. Ashraf, On strong commutativity preserving maps, Results Math. 30 (1996), 259-263.
[11] Y. Q. DU, Y. WANG, k-Commuting maps on triangular algebras, Linear Algebra Appl. 436 (2012), 1367-1375.
[12] D. EREmita, Functional identities of degree 2 in triangular rings, Linear Algebra Appl. 438 (2013), 584-597.
[13] DE V. Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162 (2007), 93-108.
[14] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), 1147-1166.
[15] T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), 4057-4073.
[16] T.-K. Lee, Y. Zhou, An identity with generalized derivations, J. Algebra Appl. 8 (2009) 307-317.
[17] P.-B. Liao, C.-K. Liu, On generalized Lie derivations of Lie ideals of prime algebras, Linear Algebra Appl. 430 (2009), 1236-1242.
[18] J.-S. Lin, C.-K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl. 428 (2008), 1601-1609.
[19] J.-S. Lin, C.-K. LiU, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), 14-23.
[20] C.-K. LiU, Strong commutativity preserving generalized derivations on right ideals, Monatsh Math. 166 (2012), 453-465.
[21] J. MA, X. W. XU, F. W. NiU, Strong commutativity preserving generalized derivations on semiprime rings, Acta Math. Sin. (Engl. Ser) 24 (2008), 1835-1842.
[22] X. F. Qi, J. C. Hou, Strong commutativity preserving maps on triangular rings, Operators and Matrices 6 (2012), 147-158.
[23] Y. WANG, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl. 434 (2011), 625-635.

He Yuan
Institute of Mathematics, Jilin University
Changchun 130012, China
e-mail: yuanhe1983@126.com
Yao Wang
School of Mathematics and Statistics
Nanjing University of Information Science and Technology
Nanjing 210044, China
e-mail: wangyao@nuist.edu.cn
Yu Wang
Department of Mathematics, Shanghai Normal University
Shanghai 200234, China
e-mail: ywang2004@126.com
Yiqiu Du
College of Mathematics, Jilin Normal University
Siping 136000, China
e-mail: duyiqiu2013@126.com

[^0]: Mathematics subject classification (2010): 15A78, 47L35, 16U80, 16W25.
 Keywords and phrases: Triangular ring, upper triangular matrix ring, nest algebra, strong commutativity preserving maps, generalized derivations.

