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STRONG COMMUTATIVITY PRESERVING

GENERALIZED DERIVATIONS ON TRIANGULAR RINGS
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(Communicated by P. Šemrl)

Abstract. Let U = Tri(A,M,B) be a triangular ring such that either A or B has no nonzero cen-
tral ideals. It is shown that every pair of strong commutativity preserving generalized derivations
g1,g2 of U (i.e., [g1(x),g2(y)] = [x,y] for all x,y ∈U ) is of the form g1(x) = λ−1x+[x,u] and
g2(x) = λ 2g1(x) , where λ ∈Z(U ) , the center of U , and u∈U with u[U ,U ] = 0= [U ,U ]u .
As consequences, every pair of strong commutativity preserving generalized derivations on up-
per triangular matrix rings and nest algebras is determined.

1. Introduction

Let R be a ring with center Z(R) . For x,y ∈ R , we set [x,y] = xy− yx . By
[R,R] we denote the additive subgroup of R generated by all [x,y] , where x,y ∈ R .
An additive map g : R → R is called a generalized derivation of R if there exists a
derivation d of R such that g(xy) = g(x)y + xd(y) for all x,y ∈ R . Basic examples
are derivations and generalized inner derivations (i.e., maps of type x �→ ax + xb for
some a,b ∈ R). The notion of generalized derivations was introduced by Brešar in
[5] and these maps have been studied extensively in rings and operator algebras (see
[1, 4, 13, 14, 15, 16, 17]).

Let S be a subset of R . A map f : S → R is said to be strong commutativity
preserving on S if [ f (x), f (y)] = [x,y] for all x,y ∈ S . In [2] Bell and Daif investigated
strong commutativity preserving derivations on semiprime rings. In [6] Brešar and
Miers proved that if f is a strong commutativity preserving map on a semiprime ring
R , then there exist an invertible element λ ∈ C with λ 2 = 1 and additive map ξ :
R → C such that f (x) = λx + ξ (x) for all x ∈ R , where C is the extended centroid
of R . They also proved that if f ,g : R → R is a pair of additive maps of a semiprime
ring R such that f is onto and [ f (x),g(x)] = [x,y] for all x ∈ R , then there exist an
invertible element λ ∈C and additive maps ξ ,η : R →C such that f (x) = λx+ ξ (x)
and g(x) = λ−1x+η(x) for all x∈ R [6, Theorem 2]. Strong commutativity preserving
maps on rings have been discussed in several directions (see [10, 18, 19, 20, 21]).

In 2001, Cheung [7] initiated the study of mapping problems on triangular alge-
bras; he described commuting maps of these algebras. This result has been extended in
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[3, 11, 12]. Recently, Qi and Hou [22] investigated surjective additive strong commu-
tativity preserving maps of triangular rings.

In the present paper, we shall investigate strong commutativity preserving general-
ized derivations on triangular rings. As consequences strong commutativity preserving
generalized derivations on upper triangular matrix rings and nest algebras are deter-
mined.

2. The main results

Let A and B be unital rings with unit elements 1A and 1B , respectively. Let M
be a unital (A,B)-bimodule, which is faithful as a left A-module and also as a right
B-module. The ring

U = Tri(A,M,B) :=
{(

a m
b

)
| a ∈ A,m ∈ M,b ∈ B

}

under the usual matrix operations is said to be a triangular ring (see [12, 22, 23]). Let
us define two natural projections πA : A → A and πB : A → B by

πA :

(
a m

b

)
�→ a and πB :

(
a m

b

)
�→ b.

Any element of the form (
a 0

b

)
∈ U

will be denoted by a⊕ b . By [23, Proposition 1.1] we know that the center Z(U ) of
U coincides with

{a⊕b | am = mb for all m ∈ M} .

Moreover, πA(Z(A )) ⊆ Z(A) and πB(Z(A )) ⊆ Z(B) , and there exists a unique ring
isomorphism τ : πA(Z(A )) → πB(Z(A )) such that am = mτ(a) for all m ∈ M . The
most important examples of triangular rings are upper triangular matrix rings and nest
algebras.

We begin with a description of generalized derivations of triangular rings.

PROPOSITION 2.1. Let U be a triangular ring. Let g be a generalized derivation
of U . Then

g

(
a m

b

)
=

(
a0a+ pA(a) as+ tb+a0m+ f (m)

b0b+ pB(b)

)

for all a ∈ A, b ∈ B, m ∈ M, where a0 ∈ A, b0 ∈ B, s, t ∈ M, and

(i) pA is a derivation of A, f (am) = pA(a)m+a f (m);

(ii) pB is a derivation of B, f (mb) = mpB(b)+ f (m)b.
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Proof. Since g be a generalized derivation of U we have that

g(xy) = g(x)y+ xd(y)

for all x,y ∈ U , where d is a derivation of U . Let x = 1 we get g(y) = g(1)y+d(y)
for all y ∈ U . In view of [8, Theorem 2.2.1] we have that

d

(
a m

b

)
=

(
pA(a) as− sb+ f (m)

pB(b)

)

for all a ∈ A , b ∈ B , m ∈ M , where s ∈ M and

(i) pA is a derivation of A , f (am) = pA(a)m+a f (m) ;

(ii) pB is a derivation of B , f (mb) = mpB(b)+ f (m)b .

Set

g(1) =
(

a0 m0

b0

)
.

Then

g

(
a m

b

)
=

(
a0 m0

b0

)(
a m

b

)
+

(
pA(a) as− sb+ f (m)

pB(b)

)

=
(

a0a+ pA(a) as+ tb+a0m+ f (m)
b0b+ pB(b)

)

for all a ∈ A , b ∈ B , m ∈ M , where t = m0− s . �
We are in a position to present the main result of this paper.

THEOREM 2.1. Let U be a triangular ring such that either A or B has no
nonzero central ideals. If g1,g2 are a pair of generalized derivations such that

[g1(x),g2(y)] = [x,y]

for all x,y ∈ U , then g1(x) = λ−1x+[x,u] and g2(x) = λ 2g1(x) for all x ∈ U , where
λ ∈ Z(U ) and u ∈ U with u[U ,U ] = 0 = [U ,U ]u.

Proof. We assume without loss of generality that A has no nonzero central ideals.
In view of Proposition 2.1 we assume that

g1

(
a m

b

)
=

(
a0a+ pA(a) as+ tb+a0m+ f (m)

b0b+ pB(b)

)

and

g2

(
a′ m′

b′

)
=

(
a′0a

′ + p′A(a′) a′s′ + t ′b′ +a′0m
′ + f ′(m′)

b′0b
′ + p′B(b′)

)

for all a,a′ ∈ A , b,b′ ∈ B , m,m′ ∈ M , where a0,a′0 ∈ A , b0,b′0 ∈ B , s,s′,t,t ′ ∈ M and
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(i) pA, p′A are derivations of A , f (am)= pA(a)m+a f (m) , and f ′(a′m′)= p′A(a′)m′+
a′ f ′(m′) ;

(ii) pB, p′B are derivations of B , f (mb)= mpB(b)+ f (m)b , and f ′(m′b′)= m′p′B(b′)+
f ′(m′)b′ .

By our assumption we have that

[
g1

(
a m

b

)
,g2

(
a′ m′

b′

)]
=

[(
a m

b

)
,

(
a′ m′

b′

)]
(1)

for all a,a′ ∈ A , b,b′ ∈ B , and m,m′ ∈ M . We prove the result in the following five
steps:

Step 1 . we prove that

a0(a′0m
′ + f ′(m′)) = m′, (2)

a′0(a0m+ f (m)) = m (3)

for all m,m′ ∈ M . Setting a = 1A , b = m = 0, and a′ = b′ = 0 in (1) we get that

[(
a0 s

0

)
,

(
0 a′0m

′ + f ′(m′)
0

)]
=

[(
1A 0

0

)
,

(
0 m′

0

)]

for all m′ ∈ M . This implies that

a0(a′0m
′ + f ′(m′)) = m′

for all m′ ∈ M . Similarly, setting a = b = 0, a′ = 1A , b′ = m′ = 0 in (1) we get that

a′0(a0m+ f (m)) = m

for all m ∈ M .

Step 2 . We prove that a0⊕b0,a′0 ⊕b′0 ∈ Z(U ) . Setting a = 1A , b = 1B , m = 0,
a′ = b′ = 0 in (1) we get that

[(
a0 s+ t

b0

)
,

(
0 a′0m

′ + f ′(m′)
0

)]
= 0

for all m′ ∈ M . This implies that

a0(a′0m
′ + f ′(m′))− (a′0m

′ + f ′(m′))b0 = 0

for all m ∈ M . Multiplying the last relation by a0 from the left hand side we get

a0(a0(a′0m
′ + f ′(m′))) = (a0(a′0m

′ + f ′(m′)))b0
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for all m′ ∈M . Substituting (2) into the last relation yields a0m′ = m′b0 for all m′ ∈M .
Hence, a0⊕b0 ∈ Z(U ) . By the symmetry of g1 and g2 we obtain that a′0⊕b′0 ∈Z(U ) .

Step 3 . We prove that

a0p′A(a) = 0, b0p′B(b) = 0, a′0pA(a) = 0, b′0pB(b) = 0

for all a ∈ A and b ∈ B . Replacing m′ by m′b in (2) yields

a0(a′0m
′b+ f ′(m′)b+m′p′B(b)) = m′b

for all b ∈ B , m′ ∈ M . Multiplying (2) by b ∈ B from the right hand side we obtain

a0(a′0m
′ + f ′(m′))b = m′b

for all b ∈ B , m′ ∈ M . Comparing the last two relations yields a0m′p′B(b) = 0. Since
a0⊕b0 ∈ Z(U ) we get that m′b0p′B(b) = 0 for all b∈ B and m′ ∈ M . The faithfulness
of right B-module M yields that b0p′B(b) = 0 for all b∈ B . Similarly, replacing m′ by
am′ in (2) yields

a0(a′0am′ +a f ′(m′)+ p′A(a)m′) = am′

for all a ∈ A , m′ ∈ M . Multiplying (2) by a ∈ A from the left hand side we get

a0(a′0am′ +a f ′(m′)) = am′

for all a ∈ A , m′ ∈ M as a0,a′0 ∈ Z(A) . Comparing the last two relations yields
a0p′A(a)m′ = 0 for all a ∈ A and m′ ∈ M . The faithfulness of left A-module M yields
that a0p′A(a) = 0 for all a ∈ A . In view of the symmetry of g1 and g2 we obtain that
a′0pA(a) = 0 and b′0pB(b) = 0 for all a ∈ A and b ∈ B .

Step 4 . We prove that a′0 = a−1
0 and b′0 = b−1

0 and

f = f ′ = 0, pA = p′A = 0, pB = p′B = 0.

Setting m = m′ = 0 and b = b′ = 0 in (1) we get that

[(
a0a+ pA(a) as

0

)
,

(
a′0a

′ + pA(a′) a′s′
0

)]
=

[(
a 0

0

)
,

(
a′ 0

0

)]
(4)

for all a,a′ ∈ A . It follows from (4) that

[a0a+ pA(a),a′0a
′ + p′A(a′)] = [a,a′] (5)

for all a,a′ ∈ A . Multiplying (5) with a0 ∈ Z(A) we get that

a0[a0a+ pA(a),a′0a
′ + p′A(a′)] = a0[a,a′]
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for all a,a′ ∈ A . Since a0,a′0 ∈ Z(A) , a0p′A(a′) = a′0pA(a) = 0 for all a,a′ ∈ A , we get
from the last relation that

[a0a,a′] = a0[a0a+ pA(a),a′0a
′ + p′A(a′)]

= [a0a+ pA(a),a0a
′
0a

′ +a0p′A(a′)]
= [a0a+ pA(a),a0a

′
0a

′]
= [a′0a0a+a′0pA(a),a0a

′]
= [a′0a0a,a0a

′]

= [a′0a
2
0a,a′]

and so [a0a−a′0a
2
0a,a′] = 0 for all a,a′ ∈ A . This implies that

a0(1A−a′0a0)a ∈ Z(A)

for all a ∈ A . That is, a0(1A − a′0a0)A is a central ideal of A . By our assumption we
infer that a0(1A −a′0a0) = 0. Multiplying (2) with (1A −a′0a0) we get that

(1A −a′0a0)m′ = (1A −a′0a0)a0(a′0m
′ + f ′(m′)) = 0

for all m′ ∈ M . That is, (1A − a′0a0)M = 0. The faithfulness of left A-module M
yields 1A − a′0a0 = 0 and so a′0a0 = 1A . Hence a′0 = a−1

0 is an invertible element
of πA(Z(U )) . Since a0 ⊕ b0,a′0 ⊕ b′0 ∈ Z(U ) we easily check that b′0 = b−1

0 is an
invertible element of πB(Z(U )) .

Thus, the relations (2) and (3) can be rewritten as

m′ +a0 f ′(m′) = m′ and m+a′0 f (m) = m

for all m,m′ ∈ M . Hence a0 f ′(m′) = 0 and a′0 f (m) = 0 and so f (m) = f ′(m′) = 0 for
all m′ ∈ M . Since a′0 = a−1

0 and b′0 = b−1
0 we get from Step 3 that

pA = p′A = 0 and pB = p′B = 0.

Step 5 . We prove that s = −t , s′ = t ′ , s′ = (a′0)
2s and

[A,A]s = 0 = s[B,B].

Setting m = m′ = 0 in (1) we get that
[(

a0a+ pA(a) as+ tb
b0b+ pB(b)

)
,

(
a′0a

′ + pA(a′) a′s′ + t ′b′
b′0b

′ + p′B(b′)

)]

=
[(

a 0
b

)
,

(
a′ 0

b

)] (6)

for all a,a′ ∈ A and b,b′ ∈ B . It follows from (6) that

a0a(a′s′ + t ′b′)+ (as+ tb)b′0b
′ −a′0a

′(as+ tb)− (a′s′ + t ′b′)b0b = 0 (7)
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for all a,a′ ∈ A and b,b′ ∈ B . Setting b = b′ = 0 in (7) we get that

a0aa′s′ −a′0a
′as = 0 (8)

for all a,a′ ∈ A . Setting a = a′ = 1A in (8) we get a0s′ = a′0s . Thus, the relation (8)
becomes a0(aa′ −a′a)s′ = 0 and then (aa′ −a′a)s′ = 0 as a0 is an invertible element
of A . That is, [A,A]s′ = 0. Recall that a0s′ = a′0s . It is easy to check that [A,A]s = 0.
Setting a = a′ = 0 in (7) we get that

tbb′0b
′ − t ′b′b0b = 0 (9)

for all b,b′ ∈ B . Setting b = b′ = 1B in (9) we get tb′0 = t ′b0 . Thus, the relation (9)
becomes t[b,b′]b′0 = 0 and so t[b,b′] = 0 as b′0 is an invertible element of B . Hence
t[B,B] = 0. Setting a = 0, b′ = 0, a′ = 1A , and b = 1B in (7) we get a′0t = −s′b0 .
Setting a′ = 0, b = 0, a = 1A , and b′ = 1B in (7) we get a0t ′ = −sb′0 . Recall that
a0s′ = a′0s . It is easy to check that s = −t , s′ = −t ′ , and s′ = (a′0)

2s .

Set λ = a′0 ⊕ b′0 . Then λ−1 = a0 ⊕ b0 . Using the relations in steps 2, 4 , and 5
we obtain that

g1

(
a m

b

)
=

(
a0a as+ tb+a0m

b0b

)

= λ−1
(

a m
b

)
+

[(
a m

b

)
,

(
0 s

0

)]

and

g2

(
a m

b

)
= λ

(
a m

b

)
+

[(
a m

b

)
,

(
0 (a′0)

2s
0

)]

= λ
(

a m
b

)
+

[(
a m

b

)
,λ 2

(
0 s

0

)]

= λ 2g1

(
a m

b

)

for all a ∈ A , b ∈ B , m ∈ M . Set u =
(

0 s
0

)
. In view of Step 5 it is easy to check that

u[U ,U ] = 0 = [U ,U ]u . This proves the result. �

REMARK 2.1. Let U be a triangular ring. Suppose that u∈U such that u[U ,U ]
= 0 = [U ,U ]u . Then

u =
(

0 m0

0

)

for some m0 ∈ M with [A,A]m0 = 0 = m0[B,B] .

Applying Theorem 2.1 and Remark 2.1 we have the following result:
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COROLLARY 2.1. Let U be a triangular ring such that either 1A ∈ [A,A] or
1B ∈ [B,B] . If g1,g2 are a pair of generalized derivations such that

[g1(x),g2(y)] = [x,y]

for all x,y ∈ U , then there exists λ ∈ Z(U ) such that g1(x) = λ−1x and g2(x) = λx
for all x ∈ U .

Proof. We assume without loss of generality that 1A ∈ [A,A] . We claim that A has
no nonzero central ideals. Indeed, if I is a central ideal of A , then I = I1A ⊆ I[A,A] =
[IA,A] = 0. By Theorem 2.1 we get that g1(x) = λ−1x+[x,u] and g2(x) = λ 2g1(x) for
all x ∈ U , where λ ∈ Z(U ) and u ∈ U with u[U ,U ] = 0 = [U ,U ]u . It suffices to
show u = 0. By Remark 2.1 we get that

u =
(

0 m0

0

)

for some m0 ∈ M with [A,A]m0 = 0 = m0[B,B] . Since 1A ∈ [A,A] we get m0 = 0 and
so u = 0. �

3. Applications

Let n � 2 be an integer. Let Tn(S) be an upper upper triangular matrix ring over
a unital ring S . Then Tn(S) can be viewed as the triangular ring

(
S Sn−1

Tn−1(S)

)
.

Applying Theorem 2.1 we have the following result:

COROLLARY 3.1. Let Tn(S) be an upper triangular matrix ring with n � 3 . If
g1,g2 are a pair of generalized derivations of Tn(S) such that

[g1(x),g2(y)] = [x,y]

for all x,y ∈ Tn(S) , then there exist λ ∈ Z(Tn(S)) and A ∈ Tn(S) with the property

A[Tn(S),Tn(S)] = 0 = [Tn(S),Tn(S)]A

such that g1(x) = λ−1x+[x,A] and g2(x) = λ 2g1(x) for all x ∈ Tn(S) .

Proof. It is easy to check that Tn−1(S) has no nonzero central ideals. Conse-
quently, Theorem 2.1 yields the conclusion. �

As a consequence of Corollary 2.1 we have the following result:
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COROLLARY 3.2. Let S be a unital noncommutative ring with 1 ∈ [S,S] . Let
Tn(S) be an upper triangular matrix ring with n � 2 . If g1,g2 are a pair of generalized
derivations of Tn(S) such that

[g1(x),g2(y)] = [x,y]

for all x,y ∈ Tn(S) , then there exists λ ∈ Z(Tn(S)) such that g1(x) = λ−1x and
g2(x) = λx for all x ∈ Tn(S) .

Applying Theorem 2.1 we have the following result:

COROLLARY 3.3. Let S be a unital noncommutative prime ring. Let Tn(S) be an
upper triangular matrix ring with n � 2 . If g1,g2 are a pair of generalized derivations
of Tn(S) such that

[g1(x),g2(y)] = [x,y]

for all x,y ∈ Tn(S) , then there exists λ ∈ Z(Tn(S)) such that g1(x) = λ−1x and
g2(x) = λx for all x ∈ Tn(S) .

Proof. Since S is a noncommutative prime ring we see that S has no nonzero
central ideals and so the condition of Theorem 2.1 is met. It follows from Theorem 2.1
that there exists an invertible element λ ∈ Z(Tn(S)) such that g1(x) = λ−1x + [x,A]
and g2(x) = λ 2g1(x) for all x ∈ Tn(S) , where A ∈ Tn(S) with A[Tn(S),Tn(S)] = 0 =
[Tn(S),Tn(S)]A . It suffices to show that A = 0. Set

A =
n

∑
i, j=1
i� j

ai jei j,

where ai j ∈ S and ei j denotes the standard matrix unit of Tn(S) . We get from the
property A[Tn(S),Tn(S)] = 0 that in particular, A[S,S] = 0 and then ai j[S,S] = 0 for
every ai j in A . Since S is a noncommutative prime ring we easily check that each
ai j = 0. Hence A = 0. �

A nest N is a totally ordered set of closed subspaces of a Hilbert space H such
that {0} , H ∈ N , and N is closed under the taking of arbitrary intersections and
closed linear spans of its elements. The nest algebra associated to N is the set
T (N ) = {T ∈ B(H) | TN ⊆ N for all N ∈ N }.

A nest algebra T (N ) is called trivial if N = {0,H} . A nontrivial nest al-
gebra can be viewed as a triangular algebra. Namely, if N ∈ N \ {0,H} and E
is the orthonormal projection onto N , then N1 = E(N ) and N2 = (1 − E)(N )
are nests of N and N⊥ , respectively. Moreover, T (N1) = ET (N )E , T (N2) =
(1−E)T (N )(1−E) are nest algebras. Thus

T (N ) =
(

T (N1) ET (N )(1−E)
T (N2)

)

is a triangular ring. We refer the reader to [9] for the general theory of nest algebras.
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COROLLARY 3.4. Let N be a nest of a complex Hilbert space H with dim(H) >
2 . If g1,g2 are a pair of generalized derivations of T (N ) such that

[g1(x),g2(y)] = [x,y]

for all x,y ∈ T (N ) , then there exist λ ∈C and A ∈ T (N ) with the property

A[T (N ),T (N )] = 0 = [T (N ),T (N )]A

such that g1(x) = λ−1x+[x,A] and g2(x) = λ 2g1(x) for all x ∈ T (N ) .

Proof. If N is a trivial nest, then T (N ) = B(H) is a prime ring and hence
the conclusion follows from [20, Corollary 2.12]. Thus, we may assume that N
is a nontrivial nest. Since dim(H) > 2 it follows that either dim(T (N1)) > 1 or
dim(T (N2)) > 1. If dim(T (N )1) > 1, then either T (N1) = B(N ) is a noncom-
mutative prime ring or T (N1) is a triangular algebra. Similarly, if dim(N2) > 1, then
either T (N2) = B(N2) is a noncommutative prime ring or T (N2) is a triangular
algebra. Consequently, either T (N1) or T (N2) has no nonzero central ideals (see
[3, Lemma 2.6]). Thus, the result follows from Theorem 2.1. �

Acknowledgement. The authors would like to express their sincere thanks to the
referee for careful reading of the paper and useful suggestions.
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