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LOCALLY QUASI–NILPOTENT ELEMENTARY OPERATORS
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(Communicated by D. R. Farenick)

Abstract. Let A be a unital dense algebra of linear mappings on a complex vector space X . Let
φ = ∑n

i=1 Mai ,bi be a locally quasi-nilpotent elementary operator of length n on A . We show that,
if {a1, . . . ,an} is locally linearly independent, then the local dimension of V(φ) = span{bia j :

1 � i, j � n} is at most n(n−1)
2 . If ldimV (φ) = n(n−1)

2 , then there exists a representation of φ
as φ = ∑n

i=1 Mui ,vi with viu j = 0 for i � j . Moreover, we give a complete characterization of
locally quasi-nilpotent elementary operators of length 3 .

1. Introduction

Let A be a unital complex algebra. In order to gain information on the range of a
linear mapping φ : A → A one can impose conditions on the size of the spectrum of the
elements φ(x) , x ∈ A . Various classes of linear mappings such as (inner) derivations
or generalised (inner) derivations with small spectrum in the range, especially when
the spectrum of every element in the range consists only of zero, have been studied
by Aupetit, Brešar, Le Page, Pták, Šemrl, the present authors and many others; see,
e.g., [3, 9, 5, 6, 18] and the references contained therein. Quite often such results are
connected with commutativity criteria; see, e.g., [3, §2 in Chapter V].

An attractive and fairly large class of linear mappings are the elementary operators,
that is, those which can be written as φ(x) = ∑n

i=1 aixbi , x ∈ A . In this paper we
intend, on the one hand, to extend various results that were available only for special
elementary operators, for instance, for generalised inner derivations x �→ ax− xb , to
general elementary operators; on the other hand, we want to uncover the algebraic
structure behind arguments which were at times used in an analytic setting.

Clearly, every elementary operator leaves each ideal of A invariant and thus in-
duces an elementary operator on each primitive quotient of A . As a result, we focus
our attention here solely on the case of dense algebras of linear mappings on a complex
vector space. The general case then is mainly a question of putting the information
from primitive quotients together to a global picture which can, e.g., be done with the
aid of the extended centroid of a semisimple algebra A .

In the setting of a dense algebra A of linear mappings on a vector space X , it
turns out that the local dimension of span{a1, . . . ,an} plays an important role in such
descriptions. In the case where {a1, . . . ,an} is locally linearly independent, we will
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determine the maximal local dimension of span{bia j : 1 � i, j � n} , and we shall give
a complete characterization if the local dimension is maximal. Our arguments depend
heavily on Gerstenhaber’s well-known theorem concerning linear spaces of nilpotent
matrices [14]. Lacking a general description of maximal nilpotent spaces, and since
the classification of minimal locally linearly dependent spaces is a highly non-trivial
matter [8, 17], we will, in the last part of the paper (Section 4), have to limit ourselves
to elementary operators of length at most three.

The main idea in our approach is as follows. Starting with a locally quasi-nilpotent
elementary operator φ (that is, the spectrum of φ(x) is the singleton 0 for every x∈ A),
we aim to find finite-dimensional φ(x)-invariant subspaces L⊆ X , for certain x , so that
φ(x)|L will be nilpotent. If the dimension of L is large relative to the local dimension
of span{a1, . . . ,an} , we will get full information on how to represent φ with suitable
coefficients. The details of this approach will be explained at the start of Sections 3
and 4.

In a sequel to this paper, [7], we shall apply our results to the study of spec-
trally bounded elementary operators on Banach algebras continuing the line of research
in [11] and [6], for example.

2. Preliminaries

Let X ,Y be two complex vector spaces. The space of all linear mappings from X
to Y will be designated by L(X ,Y ) , and L(X) stands for the algebra L(X ,X) . Through-
out this paper, A will denote a dense algebra (in the sense of Jacobson) of linear map-
pings on X .

Though not quite standard, we will use the term elementary operator for every
linear mapping φ : A → L(X) that can be written in the form

φ(x) =
n

∑
i=1

aixbi (x ∈ A), (2.1)

for some ai, bi ∈ L(X) and some n ∈ N . Special cases are La : x �→ ax , Rb : x �→ xb
and Ma,b = LaRb . Clearly the representation of φ in a sum as in (2.1) is not unique;
but it is well known that, in our setting, whenever we change the coefficients ai , bi to
new ones ui , vi (and possibly the n to some m) we obtain ui ∈ span{a1, . . . ,an} and
vi ∈ span{b1, . . . ,bn} . The smallest n ∈ N such that the elementary operator φ can be
written as φ = ∑n

i=1 Mai,bi is called the length of φ and will be abbreviated as �(φ) .
If φ = ∑n

i=1 Mai,bi and �(φ) = n then, evidently, the sets {a1, . . . ,an} and {b1, . . . ,bn}
are linearly independent. Moreover, if φ = ∑n

i=1 Mui,vi , there exists an invertible matrix
P ∈ Mn(C) such that

(viu j)1�i, j�n = P−1(bia j)1�i, j�n P.

We will denote by E�(A,L(X)) and E�n(A,L(X)) , respectively the set of elemen-
tary operators from A to L(X) of arbitrary length and of fixed length n . If φ =
∑n

i=1 Mai,bi ∈E�(A,L(X)) , we define a new elementary operator φ∗ by φ∗ = ∑n
i=1 Mbi,ai .
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We shall use the following notation for φ = ∑n
i=1 Mai,bi :

L(φ) = span{a1, . . . ,an},
R(φ) = span{b1, . . . ,bn},and

V (φ) = span{bia j : 1 � i, j � n}.

A linear mapping y ∈ L(X) is said to be quasi-nilpotent if λ − y is bijective for
each λ ∈ C \ {0} and y itself is not bijective. We shall call φ ∈ E�(A,L(X)) locally
quasi-nilpotent if φ(x) is quasi-nilpotent for every x ∈ A .

For a finite-dimensional subspace V of L(X ,Y ) , let ldimV = max{dimVζ : ζ ∈
X} denote the local dimension of V , cf. [16]. Recall that V (or, equivalently, a basis
of V ) is said to be locally linearly dependent if ldimV < dimV . For background on
these notions, the reader is referred to [8, 17]. In the case that ldimV = dimV , any
vector satisfying dimVζ = dimV is called a separating vector of V .

Spaces of matrices with bounded rank have been extensively studied by many au-
thors, see, e.g., [2], and their classification is still a challenging problem. The connec-
tion with locally linearly dependent spaces is given by the following lemma the proof
of which is straightforward and hence omitted.

LEMMA 2.1. Let X ,Y be complex vector spaces, and let V be a finite-dimensional
subspace of L(X ,Y ) . Suppose that ldimV = r and set X̂ = {ζ̂ : ζ ∈ X} , where

ζ̂ : V →Y is defined by ζ̂ (T ) = Tζ for all T ∈V . Then X̂ is a subspace of L(V,Y ) of
rank at most r .

Let F(X) denote the ideal of L(X) consisting of those linear mappings with finite-
dimensional range and let X∗ be the space of all linear functionals on X . For a vector
ξ ∈ X and a linear functional f ∈ X∗ , let ξ ⊗ f ∈ F(X) denote the mapping (ξ ⊗
f )(η) = f (η)ξ , η ∈ X .

The first of the next two auxiliary results is standard while the second follows from
[8, Lemma 2.1]; see also [15].

LEMMA 2.2. Let φ = ∑m
i=1 Mai,bi ∈ E�(A,L(X)) . Suppose that {u1, . . . ,un} is a

basis of L(φ) . Then there exists a basis {v1, . . . ,vn} of R(φ) such that φ = ∑n
i=1 Mui,vi .

LEMMA 2.3. Let X be a vector space and let V1, . . . ,Vk be finite-dimensional
subspaces of L(X) . Then there exists ζ ∈ X such that dimViζ = ldimVi for all 1 � i �
k .

PROPOSITION 2.4. Let φ = ∑n
i=1 φi , where φi : A → L(X) are linear mappings

satisfying φ j(x)φi(y) = 0 for all j � i and x,y ∈ A. Then ∏n+1
t=1 φ(xt) = 0 for all

x1, . . . ,xn+1 ∈ A.

Proof. We proceed by induction on n . The case n = 1 is trivial. Assume that
n > 1 and the desired conclusion holds for n−1. Since φn(x)φi(y) = 0 for all i and all
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x,y ∈ A , we have for each n ,

φ(x)φ(y) =
n−1

∑
i=1

φi(x)
n−1

∑
i=1

φi(y)+
n−1

∑
i=1

φi(x)φn(y)

and analogously for all r and x1, . . . ,xr ∈ A ,

r

∏
t=1

φ(xt ) =
r

∏
t=1

n−1

∑
i=1

φi(xt)+
r−1

∏
t=1

n−1

∑
i=1

φi(xt)φn(xr).

The induction hypothesis implies that ∏n
t=1 ∑n−1

i=1 φi(xt) = 0. Thus

n

∏
t=1

φ(xt ) =
n−1

∏
t=1

n−1

∑
i=1

φi(xt)φn(xn).

Consequently, ∏n+1
t=1 φ(xt) = 0. �

The following consequence of the above proposition explains a local nilpotency
property of elementary operators and is in part the motivation for our main result in
Section 4 of this paper.

COROLLARY 2.5. Let φ = ∑n
i=1 Mai,bi ∈ E�(A,L(X)) . Suppose that bia j = 0 for

all i � j . Then (φ(x))n+1 = 0 for all x ∈ A.

3. Locally nilpotent elementary operators

The purpose of this section is to find necessary conditions for local nilpotency of
an elementary operator.

Let φ = ∑n
i=1 Mai,bi be an elementary operator on A of length n , where ai,bi ∈

L(X) . Let ζ ∈ X and x ∈ A be such that xV (φ)ζ ⊆ Cζ . Then

φ(x)L(φ)ζ ⊆ L(φ)ζ . (3.1)

Let π : Cζ →C , π(ζ )= 1 denote the canonical map. Suppose moreover {a1ζ , . . . ,anζ}
is linearly independent; in such a situation, we shall abbreviate this set to aaaζ , if con-
venient. Let M(φ(x),aaaζ ) be the corresponding matrix representation of φ(x) with
respect to aaaζ . Then

M(φ(x),aaaζ ) = (π(xbia jζ ))1�i, j�n. (3.2)

PROPOSITION 3.1. Let φ = ∑n
i=1 Mai,bi ∈ E�(A,L(X)) be an elementary opera-

tor. Suppose that for every ζ ∈ X and x ∈ A such that xV (φ)ζ ⊆ Cζ , φ(x)|L(φ)ζ is
nilpotent. Then ∑n

i=1 biai = 0 .

Proof. Suppose that there exist ζ ∈ X and j ∈ {1, . . . ,n} such that b ja jζ �= 0.
Set s = dimL(φ)ζ . Rearranging the order of the ai ’s, if necessary, we may assume that
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{a1ζ , . . . ,asζ} is linearly independent. For t > s we can thus write atζ = ∑s
i=1 λtiaiζ

with unique λti ∈ C , s < t � n . Replacing the coefficients at , t > s by

a′t = at −
s

∑
i=1

λtiai, s < t � n

it is clear that atζ = 0 for t > s . As it is easily verified that

n

∑
i=1

Mai,bi =
s

∑
i=1

M
ai,bi+

n
∑

t=s+1
λtibt

+
n

∑
t=s+1

Ma′t ,bt
, (3.3)

we can write φ in this new representation assuming these two additional properties of
the coefficients ai . (This argument will be used repeatedly in the sequel.)

Choose i1, . . . , ir such that {bi1ai1ζ , . . . ,birair ζ} is linearly independent, r being
maximal. Fix j ∈ {1, . . . ,r} . Choose x ∈ A such that

xV (φ)ζ ⊆ Cζ , x(bi j ai jζ ) = ζ and x(bit ait ζ ) = 0 (1 � t � r, t �= j). (3.4)

Let J = {1, . . . ,s} \ {i1, . . . , ir} . Write biaiζ = ∑r
t=1 α i

t bit ait ζ for all i ∈ J . Then
xbiaiζ = α i

jζ for all i ∈ J . Moreover,

φ(x)L(φ)ζ ⊆ L(φ)ζ and Tr(φ(x)|L(φ )ζ
) = 1+∑

i∈J

α i
j,

where Tr denotes the trace. By our hypothesis, we must have 1+ ∑i∈J α i
j = 0. From

n

∑
i=1

biaiζ =
s

∑
i=1

biaiζ =
r

∑
t=1

bit ait ζ +∑
i∈J

biaiζ

=
r

∑
t=1

bit ait ζ +∑
i∈J

r

∑
t=1

α i
t bit ait ζ

we obtain
n

∑
i=1

biaiζ =
r

∑
t=1

(
1+∑

i∈J
α i

t

)
bit ait ζ . (3.5)

As a result, ∑n
i=1 biaiζ = 0.

Since this entails that ∑n
i=1 biaiζ = 0 for every ζ ∈ X , ∑n

i=1 biai = 0 as de-
sired. �

PROPOSITION 3.2. Let φ ∈ E�(A,L(X)) be an elementary operator such that
dimV (φ) = 1 . Set ldimL(φ) = r and suppose that for every ζ ∈ X and x ∈ A such
that xV (φ)ζ ⊆Cζ , φ(x)|L(φ)ζ is nilpotent. Then φ admits a representation of the form
φ = ∑n

i=1 Mui,vi with

(viu j)1�i, j�n =
(

T 0
∗ 0

)
, (3.6)

where T is a strictly upper triangular matrix of order r . Moreover, φ∗φ = 0 and
(φ(x))r+2 = 0 for all x ∈ A.
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Proof. Write φ = ∑n
i=1 Mai,bi . It follows from Lemma 2.3 that there exists ζ ∈ X

such that V (φ)ζ �= 0 and dimL(φ)ζ = r . As in the proof of Proposition 3.1, we can
suppose that {a1ζ , . . . ,arζ} is linearly independent and that akζ = 0 for every k > r .
It then follows from our assumption on V (φ) that R(φ)ak = 0 for all k > r . Let
s,t ∈ {1, . . . ,n} be such that bsat �= 0. Then V (φ) = Cbsat . Pick x ∈ A with the
property that xbsatζ = ζ . Then φ(x)

(
span{a1ζ , . . . ,arζ}

) ⊆ span{a1ζ , . . . ,arζ} and
we have

M(φ(x),aaaζ ) = (π(xbia jζ ))1�i, j�r. (3.7)

Choose a basis {u1ζ , . . . ,urζ} of L(φ)ζ such that M(φ(x),uuuζ ) is upper triangu-
lar. Write uiζ = ∑r

t=1 α i
t atζ . Replacing ui by ui = ∑r

t=1 α i
t at , if necessary, we have

span{u1, . . . ,ur} = span{a1, . . . ,ar} . For k > r , set uk = ak and write φ = ∑n
i=1 Mui,vi

for some suitable v1, . . . ,vn ∈ L(X) . It is clear that the matrix (viu j) has the desired
form. Next observe that φ is the sum of two elementary operators φ1 , φ2 , such that
�(φ1) = r , �(φ1)+ �(φ2) = �(φ) and R(φ)L(φ2) = 0. Therefore

(φ(x))k = (φ1(x))k + φ2(x)(φ1(x))k−1 (k ∈ N, x ∈ A). (3.8)

It is now easy to get the final assertion. �
The main result of this section gives a description of locally nilpotent elementary

operators where the coefficient spaces have maximal local dimension.

THEOREM 3.3. Let φ ∈ E�n(A,L(X)) be an elementary operator of length n such
that ldimL(φ) = n. Suppose that for every ζ ∈ X and x ∈ A such that xV (φ)ζ ⊆ Cζ ,

φ(x)|L(φ)ζ is nilpotent. Then ldimV (φ) � n(n−1)
2 . Moreover, if ldimV (φ) = n(n−1)

2 ,
then φ admits a representation of the form φ = ∑n

i=1 Mui,vi , where viu j = 0 for every

i � j . In particular, dimV (φ) = n(n−1)
2 .

Proof. Write φ = ∑n
i=1 Mai,bi , set ldimV (φ) = r and choose ζ ∈ X such that

dimV (φ)ζ = r and dimL(φ)ζ = n (Lemma 2.3). Let {bit a jt ζ}1�t�r be a basis of
V (φ)ζ . Pick x1, . . . ,xr ∈ A with xkbit a jt ζ = δktζ , for each 1 � t,k � r . Let N
be the vector subspace of Mn(C) generated by M(φ(xt ),aaaζ ) . Then N is nilpotent
and dimN = r . Applying Gerstenhaber’s theorem on maximal spaces of nilpotent
matrices [14], we infer that r � n(n−1)

2 and if r = n(n−1)
2 , there exists a basis B of

L(φ)ζ such that M(φ(x),B) is upper triangular for each x ∈ span{x1, . . . ,xr} . Next

suppose that r = n(n−1)
2 and set B = {u1ζ , . . . ,unζ} . Then L(φ) = span{u1, . . .un} .

Applying Lemma 2.2, we get the existence of a basis {v1, . . . ,vn} of R(φ) such that
φ = ∑n

i=1 Mui,vi . Since M(φ(x),B) = (π(xviu jζ ))1�i, j�n , we have π(xviu jζ )= 0 for all

i � j and x∈ span{x1, . . . ,xr} , thus viu jζ = 0 for all i � j . Since dimV (φ)ζ = n(n−1)
2 ,

the set {viu jζ : i < j} is a basis of V (φ)ζ .

Next we shall show by induction on n that dimV (φ) = n(n−1)
2 . The case n = 1

is trivial. Suppose that the desired result is true for elementary operators of length
n− 1, n > 1. We first claim that R(φ)u1 = 0. To prove the claim suppose that there
exists ζ ′ ∈ X such that R(φ)u1ζ ′ �= 0. Let i1 be maximal (among 1, . . . ,n ) such that
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vi1u1ζ ′ �= 0. It is clear that i1 > 1. Let i2 be maximal such that {vi1u1ζ ′,vi2u1ζ ′}
is linearly independent. If i2 < t < i1 , replace vt by v′t = vt −αvi1 and ui1 by u′i1 =
ui1 + αut such that v′tu1ζ ′ = 0. We recursively find i1 > .. . > ir and define u′i,v′i
such that u′1 = u1 , φ = ∑Mu′i,v′i , v′ju′iζ = 0 for all j � i , the sets {v′iu′jζ : i < j}
and {v′i1u′1ζ ′, . . . ,v′ir u

′
1ζ ′} are linearly independent and if t �∈ {i1, . . . , ir} , v′t u′1ζ ′ = 0.

Choose a non-zero scalar λ such that {v′iu′j(ζ + λ ζ ′) : i < j} is linearly independent.
Replacing ζ ′ by ζ + λ ζ ′ if needed, we may assume with no loss of generality that
{v′iu′jζ ′ : i < j} is linearly independent. Thus, by the above argument, there exists
c1 ∈ L(φ) such that R(φ)c1ζ ′ = 0. In particular, c1 �∈Cu′1 . Write c1 = ∑n

i=1 βiu′i . Since
v′1c1ζ ′ = 0 and {v′1u′2ζ ′, . . . ,v′1u

′
nζ ′} is linearly independent, we infer that β1v′1u

′
1ζ ′ �=

0. Consequently, ir = 1. We get a contradiction by choosing x∈A such that xv′it u
′
1ζ ′ =

0 for t = 1, . . . ,r−1 and xv′1u
′
1ζ ′ = ζ ′ (indeed, we have φ(x)u′1ζ ′ = u′1ζ ′ ). The claim

is proved. Now set ψ = ∑n
i=2 Mui,vi . Then for every x ∈ A and ζ ′ ∈ X such that

ψ(x)V (ψ)ζ ′ ⊆ Cζ ′ , the restriction of ψ(x) to L(ψ)ζ ′ must be nilpotent; otherwise,
there exists y ∈ A such that yV (φ)ζ ′ ⊆ Cζ ′ and y|V (ψ)ζ ′ = x|V (ψ)ζ ′ and φ(y)|V (φ)ζ ′ is
not nilpotent. Our induction hypothesis yields the desired result. �

PROPOSITION 3.4. Let φ = ∑n
i=1 Mai,bi be an elementary operator of length n

such that ldimL(φ) = n and ldimV (φ) = 1 . Suppose that for every ζ ∈ X and x ∈ A

such that xV (φ)ζ ⊆ Cζ , φ(x)|L(φ)ζ is nilpotent. Then dimV (φ) � n(n−1)
2 . Moreover,

if dimV (φ) = n(n−1)
2 , then φ admits a representation of the form φ = ∑n

i=1 Mui,vi where
viu j = 0 for every i � j .

Proof. Choose i, j such that bia j �= 0. The case dimV (φ) = 1 follows from
Proposition 3.2, so suppose that dimV (φ) > 1. Then there exists k, l such that bkal �∈
Cbia j . We have {bia jζ ,bkalζ} linearly dependent for each ζ ∈ X . It follows from [8,
Theorem 2.3] that bia j has rank one. Thus, there exists ζ0 ∈ X and linear function-
als fkl such that bkal = ζ0 ⊗ fkl for all 1 � k, l � n . Set M(ζ ) = ( fi j(ζ ))1�i, j�n for
every ζ ∈ X . Clearly, M(ζ )+ M(ζ ′) = M(ζ + ζ ′) . Observe that if dimL(φ)ζ = n ,
and x ∈ A satisfies xζ0 = ζ , then x(V (φ))ζ ) ⊆ Cζ and M(φ(x),aaaζ ) = M(ζ ) . Hence
M(ζ ) is nilpotent. Set dimV (φ) = r . Then dim span{ fi j : 1 � i, j � n} = r . Choose
ζ1, . . . ,ζr with the property that the set {M(ζ1), . . . ,M(ζr)} is linearly independent
and pick ζ ∈ X such that dimL(φ)ζ = n . It follows from [8, Lemma 2.1] that for
all but finitely many r+1-tuples (λ0,λ1, . . . ,λr) ∈ Cn , dimL(φ)(λ0ζ +∑r

t=1 λtζt) = n
and {M(ζ1 + λ0ζ ), . . . ,M(ζr + λ0ζ )} is linearly independent. In particular, for all but
finitely many (λ0,λ1, . . . ,λr) ∈ C

n , M(λ0ζ + ∑r
t=1 λtζt) is nilpotent. Let N be the

vector subspace of Mn(C) generated by

{M(λ0ζ +
r

∑
t=1

λtζt) : (λ0,λ1, . . . ,λr) ∈ C
n}.

Then it is easy to see that N is nilpotent and dimN � r . Applying once again Gersten-
haber’s theorem on maximal spaces of nilpotent matrices [14], we infer that r � n(n−1)

2

and if r = n(n−1)
2 , there exists an invertible matrix P ∈ Mn(C) such that P−1NP equals
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the subspace of nilpotent upper triangular matrices. Suppose that r = n(n−1)
2 and let

B = {u1, . . . ,un} be the basis corresponding to P of L(φ) . Then φ = ∑i Mui,vi for a
convenient basis {vi} of R(φ) . Set v jui = ζ0 ⊗ gi j . Then gi j = 0 for i � j . This
completes the proof. �

The first non-trivial case allows a particularly nice description.

COROLLARY 3.5. Let φ be an elementary operator of length 2 . Suppose that
for every ζ ∈ X and x ∈ A such that x(V (φ))ζ ⊆ Cζ , φ(x)|L(φ )ζ is nilpotent. Then
φ = Ma,b +Mc,d , where ba = dc = bc = 0 .

Proof. Write φ = ∑2
i=1 Mai,bi . Suppose first that ldimL(φ) = 2. Then the desired

result follows from Theorem 3.3 and Proposition 3.4. Now suppose that {a1,a2} is
locally linearly dependent. Then, by [8, Theorem 2.3], there exists ζ0 ∈ X and linear
functionals f1, f2 such that ai = ζ0⊗ fi . We have

φ(x)ζ =
2

∑
i=1

fi(xbiζ )ζ0. (3.9)

Suppose for a moment that biζ0 �= 0 for some i . Since { f1, f2} is linearly independent,
we can find x ∈ A such that fi(xbiζ0) = 1 and f j(xb jζ0) = 0 for j �= i , and we get a
contradiction. Thus bia j = 0 for i, j = 1,2. �

For each y ∈ L(X) , we define the point spectrum σp(y) by

σp(y) = {λ ∈ C : λ − y is not injective}.
The following result reveals the relationship between the two conditions “quasi-nilpotent”
and “of finite rank”.

PROPOSITION 3.6. Let φ = ∑n
i=1 Mai,bi be an elementary operator of length n,

and let N ∈ N . Suppose that #σp(φ(x)) < N for all x ∈ A. Then either bia j has finite
rank for all 1 � i, j � n or there exists a finite-codimensional subspace Y of X such
that for every ζ ∈ Y and x ∈ A satisfying xV (φ)ζ ⊆ Cζ , φ(x)|L(φ)ζ is nilpotent.

Proof. Suppose that there exists i, j∈ {1, . . . ,n} such that bia j /∈F(X) and choose
r > 0 maximal with the property that {bi1a j1 , . . . ,bira jr} is linearly independent mod-
ulo F(X) . Then for each i, j , there exist scalars α1

i j, . . . ,αr
i j and yi j ∈ F(X) such that

bia j = ∑r
i=1 αt

i jbit a jt + yi j . Set Y =
⋂

keryi j . Then it is easy to see that Y has finite
codimension. Suppose that there exists ζ ∈ Y and x ∈ A satisfying xV (φ)ζ ⊆ Cζ
and φ(x)|L(φ)ζ is not nilpotent. With no loss of generality, we may suppose that
there exists u ∈ L(φ) such that (φ(x))uζ = uζ . Set xbiuζ = λiζ and a = ∑λiai .
Then uζ = aζ . Applying [4, Lemma 2.1], we can find ζ1, . . . ,ζN ∈ Y such that
{bi1a j1ζt , . . . ,bira jrζt}1�t�N is linearly independent. Let μ1, . . . ,μN be distinct num-
bers. Choose y ∈ A such that ybika jkζt = μtπ(xbika jkζ )ζt . Since ζ ,ζ1, . . . ,ζN lie in
Y , for all i, j , ybia jζt = μt(πxbia jζ )ζt . For each c ∈ L(φ) , ybicζt = μt(πxbicζ )ζt .
Now φ(y)aζt = ∑aiybiaζt = μt aζt . In particular, {μ1, . . . ,μN} ⊆ σp(φ(y)) , a contra-
diction. �
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4. Locally quasi-nilpotent elementary operators of length 3

In this section we shall pay special attention to the case of locally quasi-nilpotent
elementary operators of length 3; shorter lengths have been treated elsewhere, see,
e.g., [6].

Suppose that φ(x) is quasi-nilpotent for every x ∈ A . For every x ∈ A and ζ ∈
X such that xV (φ)ζ ⊆ Cζ , we have φ(x)L(φ)ζ ⊆ L(φ)ζ . As dimL(φ)ζ is finite,
φ(x)|L(φ)ζ is nilpotent and we can apply the results of the previous section. Assum-
ing that �(φ) = n , the best case occurs when ldimL(φ) = n , that is, when we have a
separating vector for L(φ) . If, in addition, ldimV (φ) is maximal, then we obtain the
best possible representation of φ ; this was achieved in Theorem 3.3. In the case n = 2,
ldimV (φ) is at most 1 and therefore no complications can occur (Corollary 3.5). How-
ever, already in the case n = 3, the gap between ldimV (φ) and ldimL(φ) widens which
results in further “exceptional” descriptions of φ as in the theorem below. Moreover,
local nilpotency is no longer sufficient, as is illustrated by an example in Remark 4.5.

The proof of our main result is organised according to the three levels of difficulty:
ldimL(φ) = 3, ldimL(φ) = 2 and finally ldimL(φ) = 1.

THEOREM 4.1. Let X be a complex vector space and let A be a dense algebra of
linear operators on X . Then φ ∈ E�3(A,L(X)) is a locally quasi-nilpotent elementary
operator if and only if there exists a representation of φ of the form φ = ∑3

i=1 Mui,vi ,
ui,vi ∈ L(X) such that one of the following three cases occurs:

(i) viu j = 0 for all i � j ;

(ii) (viu j)1�i, j�3 =

⎛
⎝ 0 ζ1 ⊗ f 0

ζ0 ⊗ f 0 ζ1⊗ f
0 −ζ0⊗ f 0

⎞
⎠ ,

where {ζ0,ζ1} ⊆ X is linearly independent and f ∈ X∗ ;

(iii) (viu j)1�i, j�3 =

⎛
⎝ 0 ζ0⊗g 0

ζ0 ⊗ f 0 ζ0⊗g
0 −ζ0⊗ f 0

⎞
⎠ ,

where ζ0 ∈ X and { f ,g} ⊆ X∗ is linearly independent.

Proof. Set φ = ∑3
i=1 Mai,bi , ai,bi ∈ L(X) . Suppose first that L(φ) has a separating

vector. We distinguish three cases.
Case 1. ldimV (φ) = 3. This case follows from Theorem 3.3.
Case 2. ldimV (φ) = 2. Pick ζ ∈ X satisfying dimL(φ)ζ = 3 and dimV (φ)ζ = 2

(Lemma 2.3). Set

N = {M(φ(x),aaaζ ) : x ∈ A, xV (φ)ζ ⊆ Cζ}. (4.1)

Clearly, N is a nilpotent subspace of M3(C) of dimension 2. Let N′ be a maximal
subspace containing N . Then N′ is conjugate to one of the following subspaces by
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[12, Proposition 3] (see also [13]):⎧⎨
⎩

⎛
⎝0 α β

0 0 γ
0 0 0

⎞
⎠ : α,β ,γ ∈ C

⎫⎬
⎭ or

⎧⎨
⎩

⎛
⎝ 0 β 0

α 0 β
0 −α 0

⎞
⎠ : α,β ∈ C

⎫⎬
⎭ .

Thus, we distinguish two subcases.
Subcase 2.1. There exists ζ ∈ X and a representation of φ of the form φ =

∑3
i=1 Mui,vi , ui ∈ L(φ) , vi ∈ R(φ) such that dimL(φ)ζ = 3, dimV (φ)ζ = 2, and for

every x∈ A such that xV (φ)ζ ⊆Cζ , the matrix (π(xviu jζ ))1�i, j�3 is upper triangular.
Then

(viu jζ )1�i, j�3 =

⎛
⎝ 0 v1u2ζ v1u3ζ

0 0 v2u3ζ
0 0 0

⎞
⎠ .

Clearly, we may assume that one of the sets {v1u2ζ ,v1u3ζ} or {v1u3ζ ,v2u3ζ} is lin-
early independent. Using an argument similar to the one used in the proof of Theo-
rem 3.3, we show that R(φ)u1 = 0 or v3L(φ) = 0 and arrive at the desired conclusion.

Subcase 2.2. For every ζ ∈ X such that dimL(φ)ζ = 3 and dimV (φ)ζ = 2,
there exists a representation of φ of the form φ = ∑3

i=1 Mui,vi , ui ∈ L(φ) , vi ∈ R(φ)
depending on ζ such that, for every x ∈ A satisfying xV (φ)ζ ⊆ Cζ , the matrix
(π(xviu jζ ))1�i, j�3 has the form⎛

⎝ 0 π(xv2u3ζ ) 0
π(xv2u1ζ ) 0 π(xv2u3ζ )

0 −π(xv2u1ζ ) 0

⎞
⎠ . (4.2)

Then we have

(viu jζ )1�i, j�3 =

⎛
⎝ 0 v2u3ζ 0

v2u1ζ 0 v2u3ζ
0 −v2u1ζ 0

⎞
⎠ . (4.3)

Now fix a separating vector ζ of L(φ) such that V (φ)ζ has maximal dimension. Set
v2u1ζ = η1 and v2u3ζ = η2 . Pick η3 ∈ X \ span{η1,η2} . Write X = span{η1,η2,η3}
⊕Y , for some subspace Y of X . Let p1 : X → span{η1,η2,η3} and p2 : X → Y be
the natural projections. Fix γ1,γ2,γ3 ∈ C\{0} . Let ζ ′ ∈ X . Choose xζ ′ ∈ X satisfying

xζ ′ηi = γiζ ′, xζ ′ p2viu jζ ′ = 0 (1 � i, j � 3).

Set
M(ζ ′,γ1,γ2,γ3) =

(
πxζ ′viu jζ ′)

1�i, j�3

and
E(γ1,γ2,γ3) = {M(ζ ′,γ1,γ2,γ3) : ζ ′ ∈ X}.

Observe that if ζ ′ is a separating vector of L(φ) , we have

M(ζ ′,γ1,γ2,γ3) = M
(
φ(xζ ′),{u1ζ ′,u2ζ ′,u3ζ ′})
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which is nilpotent. Since for every ζ ′ ∈ X , ζ ′ + λ ζ is a separating vector of L(φ)
for all but finitely many λ ∈ C , we infer that E(γ1,γ2,γ3) is a nilpotent subspace of
M3(C) . Next apply once again [12, Proposition 3].

Suppose first that E(γ1,γ2,γ3) has dimension 2 for an open set O of values
(γ1,γ2,γ3) of C3 . Then, for every (γ1,γ2,γ3) ∈ O , ζ1,ζ2,ζ3 ∈ X and w1,w2,w3 ∈
{viu j : 1 � i, j � 3} , we must have det((xζ j

wiζ j)1�i, j�3) = 0. Let (i, j) �∈ {(1,2),(2,3),
(2,1),(3,2)} . Suppose for a moment that viu j �= 0. Then {viu j,v2u1,v2u3} is locally
linearly dependent. Since viu jζ = 0, viu jX ⊆ span{η1,η2} . Hence we may suppose
that viu jζ2 = η1 and either viu jζ3 = η2 , or viu jζ3 = 0. Set w1 = v2(γ2u1 − γ1u3) ,
w2 = viu j , w3 = v2u1 , and ζ1 = ζ . Computing the determinant, and using the fact
that xζ v2(γ2u1− γ1u3)ζ = 0, we see that v2u1ζ2 = 0, which is impossible since we can
replace ζ2 by ζ2 + λ ζ . Thus viu j = 0. Let ζ ′ be a separating vector of L(φ) . By
considering kernels, we see that we must have γ2u1 − γ1u3 ∈ span{u′1,u′3} where u′1 ,
u′3 now depend on ζ ′ . Therefore span{u1,u3} = span{u′1,u′3} . Now it is easy to see
that we can put ui = u′i for all i . This implies that we must have v2u1 = −v3u2 and
v1u2 = v2u3 .

Now suppose that the set of (γ1,γ2,γ3) for which dimE(γ1,γ2,γ3) �= 2 is dense
in C3 . Then observe that E(γ1,γ2,γ3) must be triangularizable for an open subset
(γ1,γ2,γ3) of C3 . By considering a common eigenvector, we see that we must have

γ2u1 − γ1u3 ∈ span{uζ ′
1 ,uζ ′

3 } for every separating vector ζ ′ of L(φ) . As above, we

deduce that we can put ui = uζ ′
i for all i .

Next suppose that there exists ζ ′ ∈ X with v2u1ζ ′ = η3 . Choose x ∈ A with
xη3 = ζ , xη2 = ζ ′ and xη1 = 0. Then φ(x)(u1ζ ′+u2ζ ) = u1ζ ′+u2ζ , a contradiction.
Hence p1v2u1X ⊆ span{η1,η2} . Analogously for p1v2u3 . We have thereby shown
that viu jX ⊆ span{η1,η2} for every i, j . Next choose ζ ′ ∈ X with v2u1ζ ′ = 0 (this
is possible since the dimension of X is greater than 2). Suppose for a moment that
v2u3ζ ′ �= 0. Pick x∈ A such that xη1 = ζ ′ and xv2u3ζ ′ = ζ . Then φ(x)(u1ζ +u2ζ ′) =
u1ζ + u2ζ ′ , a contradiction. Hence v2u1 and v2u3 have the same kernel. Since they
are at most rank 2, span{v2u3,v2u1} is generated by rank one operators. Thus we
can assume that v2u3,v2u1 are rank one. Since they must have the same kernel, we
conclude that we must have the form (ii).

Case 3. ldimV (φ) = 1. It follows from Propositions 3.2 and 3.4 that we only
need to treat the case where dimV (φ) = 2. So suppose that dimV (φ) = 2 and set
bia j = ζ0 ⊗ fi j for all 1 � i, j � 3. For every ζ ∈ X , let M(ζ ) = ( fi j(ζ ))1�i, j�3 and
consider the vector space N = {M(ζ ) : ζ ∈X} . As above, we show that N is a nilpotent
subspace of M3(C) , and hence, either N is triangularizable, or

N =

⎧⎨
⎩

⎛
⎝ 0 γ ′ 0

γ 0 γ ′
0 −γ 0

⎞
⎠ : γ,γ ′ ∈ C

⎫⎬
⎭ .

Thus, there exists a representation of φ of the form φ = ∑3
i=1 Mui,vi , ui,vi ∈ L(X) such
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that either viu j = 0 for all i � j or

(viu j)1�i, j�3 =

⎛
⎝ 0 ζ0⊗g 0

ζ0 ⊗ f 0 ζ0⊗g
0 −ζ0⊗ f 0

⎞
⎠ ; ζ0 ∈ X and f ,g ∈ X∗.

We now move to the case ldimL(φ) = 2. Let ζ ∈ X be such that the vector spaces
L(φ)ζ and V (φ)ζ have maximal dimensions. Choose u ∈ L(φ) such that u �= 0 and
uζ = 0. Write φ = ∑3

i=1 Mui,vi where u1 = u . Set ψ = ∑3
i=2 Mui,vi . Then arguing

as in the proof of Theorem 3.3, we see that for every x ∈ A satisfying xV (ψ)ζ ⊆
Cζ , φ(x)|L(ψ)ζ must be nilpotent. It follows from Corollary 3.5 that there exists a

representation of ψ = ∑3
i=2 Mci,di such that d jciζ = 0 for j � i . We have thereby shown

that there exists a representation of φ = ∑3
i=1 Mui,vi such that v juiζ = 0 for j � i . Next

we adapt the argument used in the proof of Theorem 3.3 to show that either R(φ)u1 = 0
or v3L(φ) = 0 (by our assumption on ζ and V (φ) , ldimV (φ) � 3). Treating the three
occurring cases ldimV (φ) = 1, 2 or 3 separately, it is easy to complete the argument.

Suppose finally that ldimL(φ) = 1. Then there exists ζ0 ∈ X such that ai =
ζ0⊗ fi . Therefore, for each x ∈ A and ζ ∈ X , we have

φ(x)ζ =
3

∑
i=1

fi(xbiζ )ζ0. (4.4)

Suppose that biζ0 �= 0 for some i and choose x∈A such that fi(xbiζ0)= 1, f j(xbiζ0) =
0 for j �= i (this is possible since the set { f1, f2, f3} is linearly independent). Then we
get a contradiction. Thus, bia j = 0 for each i, j .

To prove the converse, observe that if φ = ∑Mui,vi and viu j = 0 for all i � j , then
it follows from Corollary 2.5 that φ(x)4 = 0 for all x ∈ A . A straightforward compu-
tation checking the other cases shows that φ(x)5 = 0 for all x ∈ A . This completes the
proof. �

COROLLARY 4.2. Let φ ∈ E�3(A,L(X)) be a locally quasi-nilpotent elementary
operator. Then φ∗φ = 0 and φ(x)5 = 0 for all x ∈ A.

COROLLARY 4.3. Let φ ∈ E�3(A,L(X)) be a locally quasi-nilpotent elementary
operator. Then one of the following two cases occurs:

(i) there exists a representation of φ of the form φ = ∑3
i=1 Mui,vi , where viu j = 0 for

all i � j ;

(ii) the space φ(x)L(φ)X has at most dimension 3 for all x∈A, and hence dimφ(x)2X
� 3 for all x ∈ A.

Proof. Suppose first that there exists a representation of φ of the form φ = ∑3
i=1 Mui,vi

such that

(viu j)1�i, j�3 =

⎛
⎝ 0 ζ1 ⊗ f 0

ζ0 ⊗ f 0 ζ1⊗ f
0 −ζ0⊗ f 0

⎞
⎠ ,
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where ζ0,ζ1 ∈ X , f ∈ X∗ and {ζ0,ζ1} is linearly dependent. Then

φ(x)L(φ)X ⊆ span{u2xζ0,u2xζ1,u1xζ1−u3xζ0} (x ∈ A).

Next suppose that there exists a representation of φ of the form φ = ∑3
i=1 Mui,vi such

that

(viu j)1�i, j�3 =

⎛
⎝ 0 ζ0⊗g 0

ζ0 ⊗ f 0 ζ0⊗g
0 −ζ0⊗ f 0

⎞
⎠ ,

where { f ,g} ⊆ X∗ is linearly independent and ζ0 ∈ X . Then

φ(x)L(φ)X ⊆ span{u2xζ0,u1xζ0,u3xζ0} (x ∈ A).

Now the desired conclusion follows from Theorem 4.1. �

REMARK 4.4. In the above proof, if ldimV (φ) = 2 and ldimL(φ) = 3, then the
space X̂ (see Lemma 2.1) has rank at most 2. Hence one can use the classification of
spaces of matrices of rank at most 2 [1]. On the other hand, if ldimL(φ) = 2, one can
use the structure of locally linearly dependent spaces of dimension 3 which is clearly
stated in [10, Theorem 3.1]. However, in both cases, the proof will be longer. Our
approach here is direct and relatively elementary.

REMARK 4.5. In Section 3, our standard assumption on the elementary operator
φ ∈ E�(A,L(X)) was that, for all x∈ A and ζ ∈ X satisfying xV (φ)ζ ⊆Cζ , φ(x)|L(φ)ζ
is nilpotent. Suppose that φ = ∑3

i=1 Mui,vi is an elementary operator on A satisfying

(viu j)1�i, j�3 =

⎛
⎝ 0 v2u3 0

v2u1 0 v2u3

0 −v2u1 0

⎞
⎠ .

Then φ satisfies the above condition; however, in general, φ is not locally quasi-
nilpotent. This shows that, in contrast to the case of length two, see Corollary 3.5,
for length three these conditions are no longer equivalent.
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